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Abstract
Causal effect estimation from observational data
is fundamental in various applications. However,
selecting an appropriate estimator from dozens of
specialized methods demands substantial man-
ual effort and domain expertise. We present
CausalPFN, a single transformer that amortizes
this workflow: trained once on a large library of
simulated data-generating processes that satisfy
ignorability, it infers causal effects for new obser-
vational datasets out-of-the-box. CausalPFN com-
bines ideas from Bayesian causal inference with
the large-scale training protocol of prior-fitted net-
works (PFNs), learning to map raw observations
directly to causal-effects without any task-specific
adjustment. Our approach achieves superior aver-
age performance on heterogeneous and average
treatment effect estimation benchmarks (IHDP,
Lalonde, ACIC). This ready-to-use model does
not require any further training or tuning and takes
a step toward automated causal inference.

1 Introduction

Causal inference—estimating the effects of interventions
from data—is fundamental across numerous domains, in-
cluding public policy, economics, and healthcare (Manski,
1993; Angrist & Pischke, 2014; Imbens & Rubin, 2015).
The central challenge lies in estimating causal quantities
from observational data: records collected without explicit
interventions, where confounding factors can obscure true
causal effects. Various causal identification settings have
emerged to address this challenge (Angrist & Imbens, 1995;
Angrist et al., 1996; Balke & Pearl, 1997; MacKinnon et al.,
2007). Perhaps the most common one is to assume no unob-
served confounding (ignorability) (Rubin, 1974).
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Figure 1. Time vs. Performance. Comparison across 130 causal
inference tasks from IHDP, ACIC and Lalonde. CausalPFN
achieves the best average rank (by precision in estimation of het-
erogeneous effect) while being orders of magnitude faster.

Even within the conceptually straightforward ignorability
framework, researchers have developed dozens of special-
ized causal estimators over the past four decades. Prominent
examples include Meta-Learners (Künzel et al., 2019), dou-
bly robust methods (Funk et al., 2011; Kennedy, 2023),
double machine learning (DML) (Chernozhukov et al.,
2016; Foster & Syrgkanis, 2023), and neural network ap-
proaches (Shalit et al., 2017; Shi et al., 2019; Curth, 2021).
This large number of estimators creates practical challenges
as domain expertise is required to select, tune, or design the
most appropriate estimator for each application (Shimoni
et al., 2018; Schuler et al., 2018; Mahajan et al., 2024b).

The Bayesian paradigm offers an elegant framework to ad-
dress these challenges (Rubin, 1978; Imbens & Rubin, 1997;
2015; Hill, 2011); rather than manually designing or select-
ing the best estimator, one can: (1) parameterize an appro-
priate prior distribution over plausible underlying causal
mechanisms, i.e., the data-generating processes (DGPs), (2)
define the causal estimand as a functional of the DGP pa-
rameters, (3) compute a posterior distribution over DGPs
conditioned on data, and (4) derive the posterior-predictive
distribution (PPD) of the causal estimand. However, the
practical adoption of Bayesian methods remains limited.
Computing posterior distributions typically requires expen-
sive sampling methods (Oganisian & Roy, 2021), which
often leads researchers to make specific assumptions about
the DGPs or priors that are not necessarily reflective of the
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Figure 2. Traditional Causal Inference vs. CausalPFN. (Left): A domain expert manually builds or selects an estimator for the given data.
(Right): The domain expert simulates diverse DGPs for pre-training, and a transformer learns to amortize causal inference automatically.

complexity of the downstream tasks (Li et al., 2023a).

Meanwhile, an emerging area in deep learning suggests
using single large models that can arbitrarily approximate
PPDs for different datasets by amortizing the expensive pos-
terior inference (Garnelo et al., 2018b;a; Kim et al., 2019). A
successful example is the prior-fitted network (PFN) (Müller
et al., 2022) that achieved remarkable performance in tabu-
lar prediction tasks (Hollmann et al., 2023; Ma et al., 2024;
Hollmann et al., 2025). PFNs employ transformer archi-
tectures trained on large-scale simulated DGPs to perform
posterior-predictive inference via in-context learning; given
a dataset of input-output examples as context, they can pre-
dict outputs for new inputs. PFNs shift the computational
burden from inference time to training time, producing a sin-
gle model that can generalize across diverse tasks. However,
they are only designed for predictive tasks like regression
and classification, not causal inference.

We propose to bridge the large-scale training of amor-
tized models with Bayesian causal inference and introduce
CausalPFN, a transformer-based model for causal effect es-
timation via in-context learning. Our framework leverages
a general-purpose prior, based on the ignorability assump-
tion, to generate a vast collection of simulated DGPs. By
training on these diverse DGPs, our method learns to in-
fer the causal estimands directly from observational data.
While our approach requires expensive training, that can
reportedly take up to seven days, once done, it is ready
to use for new datasets. CausalPFN is an easy-to-use es-
timator with remarkably strong performance. It requires
no further hyperparameter tuning or training for new tasks,
in contrast to the bespoke models. Figure 1 illustrates the
relative performance and efficiency of our method compared
to standard baselines. Specifically, CausalPFN incurs no
additional cost beyond inference time, whereas baseline
methods require full pipelines, including training, hyperpa-
rameter tuning, and inference for every new dataset. We also
show CausalPFN’s workflow compared to traditional causal
inference in Figure 2. Our main contribution is to show that,
for the first time, a single transformer-based model trained
on a diverse library of simulated DGPs can match or surpass

specialized estimators across multiple datasets without task-
specific tuning. Specifically, CausalPFN achieves superior
average performance on IHDP, ACIC, and Lalonde bench-
marks. Moreover, we release our model’s weights with a
user-friendly API, streamlining the adoption of CausalPFN
as a capable estimator. CausalPFN is ready-to-use and does
not require any further training or hyperparameter tuning.

2 Background

Causal Effect Estimation. We adopt the potential outcomes
framework for causal inference (Rubin, 2005). Let T be the
treatment assignment and X the observed covariates. For
each t ∈ T , Yt denotes the potential outcome under treat-
ment t; the realized (factual) outcome is Y := YT . Given
observational samples (X, T, Y ), a central goal is to recover
the conditional expected potential outcomes (CEPOs)

µt(x) := E[Yt | X = x], ∀t ∈ T . (1)

For binary treatments, T = {0, 1}, two widely-used causal
estimands are the average treatment effect (ATE) and the
conditional average treatment effect (CATE). Both can be
derived through CEPOs:

ATE : λ := E[µ1(X)− µ0(X)], (2)
CATE : τ(x) := µ1(x)− µ0(x). (3)

We refer to CEPOs, CATE, and ATE collectively as causal
effects. Recovering causal effects from observational data is
impossible without further assumptions: different DGPs can
induce the same distribution over (X, T, Y ) but have dif-
ferent causal effects (Pearl, 2009; Hernán & Robins, 2010;
Imbens & Rubin, 2015). Throughout this work, we assume
strong ignorability, a standard assumption that makes esti-
mation possible. Strong ignorability posits that, conditional
on observed covariates, treatment assignment has positive
probability for all t ∈ T and is independent of all poten-
tial outcomes (Rubin, 1974; Rosenbaum & Rubin, 1983); a
precise statement is given in Appendix A.

Bayesian Causal Inference. A Bayesian formula-
tion of causal inference considers an explicit likelihood
model for the observed data and the unobserved poten-
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tial outcomes (Rubin, 1978; Hahn et al., 2020). Let
ψ be the parameter that indexes the joint distribution
Pψ (X, T, {Yt}t∈T , Y ). A prior π(ψ) encodes domain
knowledge on parameters ψ. Given i.i.d. observa-
tions Dobs =

{
(x(n), t(n), y(n))

}N
n=1

coming from the
observational distribution Pψobs, Bayes’ rule yields the
posterior π (ψ | Dobs). For any functional g(ψ)—for
example g(ψ) = Eψ[Y1 − Y0] for ATE—the pos-
terior predictive distribution (PPD) πg (· | Dobs) :=∫
I (g(ψ) ∈ ·) dπ(ψ | Dobs) is induced by the posterior dis-

tribution π (ψ | Dobs). Point estimates and credible intervals
therefore arise automatically from these induced posteriors.
Because the posterior is rarely available in closed form,
one resorts to approximate inference such as Markov-chain
Monte-Carlo (MCMC) (Hill, 2011). The Bayesian paradigm
offers a unified framework for inference on causal estimands
with automatic uncertainty quantification.

3 CausalPFN

Objective. We adopt the Bayesian paradigm for causal
inference, as discussed above. Our primary estimands of
interest are the CEPOs µt (x ; ψ) from (1). As shown in
(2) and (3), CEPOs directly enable estimation of both ATE
and CATEs. We focus on developing an estimator that can
accurately infer these quantities from observational data.

Given a suitably rich prior distribution π over the DGPs,
which we will explicitly design in this section, we define
our target as the posterior-predictive distribution of CEPOs:

Definition 1 (CEPO-PPD). For each t ∈ T and co-
variate vector x, the CEPO-PPD is πµt(· | x,Dobs) :=∫
I (µt(x ; ψ) ∈ ·) dπ(ψ | Dobs).

Running a new posterior inference for every dataset is com-
putationally demanding. Recent work shows that in-context
transformers can amortize Bayesian prediction: instead of
sampling from the posterior at test time, a single network is
trained to map a context set directly to the PPDs (Garnelo
et al., 2018a;b; Müller et al., 2022). Inspired by those, we
amortize the entire posterior-predictive inference using a
single transformer model qθ that approximates the CEPO-
PPDs, that is πµt (· | x,Dobs) ≈ qθ (· | x, t,Dobs), without
requiring to compute π(ψ | Dobs). To train, we introduce
the following loss function:

Definition 2 (Causal Data-Prior Loss). For any t ∈
T , we define the causal data-prior loss as Lt(θ) :=
Eψ∼π, Dobs∪{x} ∼ Pψobs

[− log qθ(µt(x ; ψ) | x, t,Dobs)].

This loss function enables a fundamental shift in compu-
tational paradigm; rather than computing the posterior dis-
tribution at inference, we transfer the computation burden
to training. By minimizing the causal data-prior loss, the
model qθ learns to map the observational data to the corre-

sponding predictive distribution directly, without ever ex-
plicitly computing the posterior. Given observational data
Dobs from an underlying ψ⋆, a natural point estimate for
CEPOs is the expectation of the predicted CEPO-PPD, that
is, Eµ∼qθ [µ | x, t,Dobs] ≈ µt(x;ψ

⋆). These CEPO esti-
mates can also form point estimates for CATEs using (3),
and for ATEs using (2) by empirical averaging across units
in Dobs. We provide a theoretical justification for the causal
data-prior loss in Appendix B.

A Scalable Causal Prior. Here, we focus on designing an
appropriate prior π for the causal data-prior loss in Defini-
tion 2. This prior must balance two factors: First, it should
contain a rich set of DGPs with sufficient coverage to ap-
proximate real-world scenarios. Second, all DGPs in our
prior must satisfy strong ignorability. Otherwise, the result-
ing model cannot distinguish between DPGs with different
causal effects but similar observational data.

To address these requirements, we develop a procedure that
can transform any base table from standard tabular priors
into a valid causal dataset: (i) retrieve a base table with N
rows from either a large library of tabular data or synthesize
it; (ii) randomly select columns with a varying number of co-
variates as X; (iii) pick two other columns, relabel them as
µ0(X), µ1(X); (iv) add zero-mean noise to µ0(X), µ1(X)
and obtain Y0, Y1—these four steps simulate samples from
a joint (X, Y0, Y1); (v) generate a random function f to
map covariates to their treatment logits; (vi) sample binary
treatments T ∼ Bernoulli (Sigmoid (f(X))); (vii) finally,
form the observed outcomes Y := YT . This approach guar-
antees strong ignorability by design: since treatment T is
determined solely from X, it is conditionally independent
from the potential outcomes Y0, Y1. Also, by applying the
sigmoid function, we ensure 0 < P (T | X), satisfying
positivity. For the diversity aspect of π, we rely on sam-
pling covariates directly from a mix of real and synthetic
tables, which yields data that is more likely to reflect the
scenarios the model will face at inference. Appendix C
details additional mechanisms for controlling treatment ef-
fect heterogeneity and positivity, as well as the detailed
configurations of the prior-generation process.

Model Architecture & Parallel Training. We model qθ
using a PFN-style transformer encoder that receives a se-
quence of row tokens as context (i.e., Dobs), where each
token embeds a triplet (t(n),x(n), y(n)). At every iteration,
we embed BQ batched query tokens (t,x). We then apply
20 layers of self-attention and MLP layers, followed by
a final projection layer to get qθ (· | x, t,Dobs) for all the
(t,x) pairs in the batched query. The transformer uses the
asymmetric masking used in PFNs: both context and query
tokens attend only to the context tokens, ensuring that the
predicted CEPO-PPDs are mutually independent.

To model CEPO-PPDs, we approximate each with a quan-
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Table 1. CATE & ATE results. Columns correspond to benchmark suites: IHDP, ACIC 2016, Lalonde CPS/PSID. (left half) mean PEHE
and the average rank when pooling all tasks. (right half) mean ATE relative error and its average across all tasks. Lalonde PEHE is in
thousands. Top-three per column are green, blue, and orange. Cells with “—” indicate that the method is not applicable or has diverged.

Method Mean PEHE ± Standard Error (↓ better) Mean ATE Relative Error ± Standard Error (↓ better)
IHDP ACIC 2016 Lalonde CPS Lalonde PSID Avg. IHDP ACIC 2016 Lalonde CPS Lalonde PSID Avg.

(×103) (×103) Rank Error
CausalPFN 0.58±0.07 0.92±0.11 8.83±0.04 13.98±0.43 2.22±0.16 0.21±0.04 0.04±0.01 0.08±0.02 0.20±0.03 0.18±0.03
T-Learner 1.90±0.34 1.03±0.08 9.21±0.09 13.43±0.42 4.16±0.25 0.21±0.04 0.04±0.01 0.27±0.03 0.03±0.01 0.19±0.03
X-Learner 2.83±0.46 0.85±0.14 12.19±0.42 20.37±0.78 5.78±0.27 0.19±0.03 0.03±0.01 0.86±0.07 0.70±0.08 0.27±0.03
BART 2.50±0.38 0.68±0.10 12.78±0.11 20.86±0.43 5.99±0.25 0.48±0.11 0.04±0.01 1.01±0.02 0.83±0.03 0.52±0.09
DragonNet 2.16±0.25 2.11±0.18 10.31±0.29 15.64±0.53 6.08±0.22 0.22±0.03 0.07±0.02 0.52±0.08 0.40±0.07 0.24±0.03
S-Learner 3.45±0.60 1.19±0.15 12.77±0.09 22.00±0.48 6.37±0.29 0.20±0.04 0.05±0.01 1.01±0.02 0.95±0.02 0.31±0.04
TarNet 1.80±0.14 2.20±0.20 — 18.93±0.42 6.64±0.17 0.23±0.04 0.07±0.02 — 0.76±0.04 0.26 ±0.03
GRF 3.67±0.60 1.32±0.28 12.40±0.19 22.39±0.45 6.68±0.28 0.18±0.03 0.07±0.02 0.81±0.06 0.80±0.05 0.52±0.09
DR-Learner 3.45±0.54 1.09±0.15 20.05±1.88 33.99±8.71 6.74±0.27 0.16±0.03 0.06±0.02 1.68±0.67 0.75±0.07 0.31±0.07
Forest DML 4.31±0.70 1.42±0.29 171.0±50.6 22.66±0.51 7.35±0.28 0.09±0.01 0.04±0.01 2.31±0.66 0.96±0.03 0.32±0.08
RA-Net 2.35±0.19 2.35±0.24 11.50±0.31 16.95±0.78 7.57±0.19 0.23±0.03 0.07±0.02 0.75±0.06 0.44±0.05 0.27±0.03
IPW — — — — — 0.23±0.04 0.24±0.05 0.25±0.03 0.05±0.01 0.22 ±0.03

tized histogram. We discretize the outcome axis into
L = 1024 bins and let the network project the query
tokens into L logits. We then apply SoftMax to turn
those into a quantized distribution qθ(· | x, t,Dobs)[ℓ], for
ℓ ∈ [L]. At each round of gradient update, we place a
Gaussian kernel with a small σ at the true CEPO µt(x)
and integrate it over bins to obtain Gaussian quantized
probabilities PGauss

µt(x)
[ℓ] and minimize the histogram loss:

HL
[
µt(x) ∥ qθ

]
= −

∑L
ℓ=1 P

Gauss
µt(x)

[ℓ] log qθ[ℓ]. This loss is
an approximate form of the causal data-prior loss, which
matches in the limit σ → 0 and L → ∞. The histogram
loss affords a tractable proxy for the continuous CEPO-PPD.
See Appendix D for the complete parallel training pipeline.

4 Experiments

Baseline Estimators. We compare to a broad suite of base-
lines. This includes double machine learning (DML) with
causal forests, doubly robust learner (DR-Learner), as well
as the T-, S-, and X-Learners, all part of the EconML pack-
age (Battocchi et al., 2019). Moreover, we include deep-
learning–based methods such as TarNet, DragonNe, and
RA-Net, implemented via the CATENets library (Curth,
2021). Finally, we compare to inverse propensity weighting
(IPW) (Rosenbaum & Rubin, 1983), Bayesian regression
trees (BART) (Hill, 2011), and generalized random forests
(GRF) (Athey et al., 2019). All the baselines, except for
IPW, provide both CATE and ATE estimates. We tune most
of the baselines with cross-validation via grid search. The
set of hyperparameter, along with the results with default
hyperparameters are all detailed in Appendix E.

Results. We report the relative error for ATE, and the pre-
cision in estimation of heterogeneous effects (PEHE) for
CATE, defined as the root mean squared deviation between
predicted and true CATEs (Hill, 2011). Table 1 compares
CausalPFN to all baselines on four standard set of datasets:
100 realizations of IHDP (Ramey et al., 1992; Hill, 2011),
10 realizations of ACIC 2016 (Dorie et al., 2019), and the

Lalonde CPS and Lalonde PSID cohorts (LaLonde, 1986) with
their causal effects provided by RealCause (Neal et al.,
2020) (we use the first 10 realizations). Our model demon-
strates superior performance on both CATE and ATE tasks,
remaining within the top three models across all the bench-
marks, except for the ATE on IHDP datasets. To assess the
overall performance of each method on CATE, we calcu-
late the average rank of each method (based on PEHE) on
all 130 realizations, as PEHEs are not standardized across
different datasets. For ATEs, we average the relative errors
directly. CausalPFN outperforms all the baselines on both
average metrics. Notably, unlike other methods that are
trained directly on the target datasets, our model is trained
entirely on simulated data and never sees the evaluation
data. Additional results on marketing datasets and uncer-
tainty quantification are provided in Appendices F and G.

5 Conclusions & Limitations

In this paper, we introduced a practical paradigm for amor-
tized causal effect estimation that combines Bayesian causal
inference with large-scale tabular training. Despite learning
solely from simulated data, CausalPFN matches, and often
outperforms, specialized causal estimators across diverse
real-world domains. Through amortization, we significantly
reduce the burden of estimator selection at inference time,
and to foster adoption, we will open-source the model.

That said, several important limitations remain: (i) We
fundamentally assume strong ignorability, which is an
untestable assumption. Without this condition, CausalPFN
has no guarantees of validity. Domain expertise remains
essential to determine whether this method is appropri-
ate or whether alternative approaches should be employed.
(ii) While CausalPFN already supports multi-arm discrete
treatments, extending amortized inference to continuous
treatments remains unexplored. (iii) Finally, extending our
framework to richer domain-informed priors like instrumen-
tal variables can broaden the framework’s reach.
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A., Yasunaga, M., Oblak, S., and Leskovec, J. Zero-
shot causal learning. Advances in Neural Information
Processing Systems, 36:6862–6901, 2023.

Oganisian, A. and Roy, J. A. A practical introduction to
bayesian estimation of causal effects: Parametric and
nonparametric approaches. Statistics in Medicine, 40(2):
518–551, 2021.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark,
J., Kaplan, J., McCandlish, S., and Olah, C. In-context
learning and induction heads. arXiv:2209.11895, 2022.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D.,
Nowozin, S., Dillon, J., Lakshminarayanan, B., and
Snoek, J. Can you trust your model's uncertainty? evaluat-
ing predictive uncertainty under dataset shift. In Advances
in Neural Information Processing Systems, volume 32,
2019.

Pearl, J. Causality. Cambridge University Press, 2009.

Peters, J., Mooij, J. M., Janzing, D., and Schölkopf, B.
Causal discovery with continuous additive noise models.
The Journal of Machine Learning Research, 15(1):2009–
2053, 2014.

Peters, J., Janzing, D., and Schölkopf, B. Elements of causal
inference: Foundations and learning algorithms. The
MIT Press, 2017.

Peyrard, M. and Cho, K. Meta-statistical learning: Su-
pervised learning of statistical inference. arXiv preprint
arXiv:2502.12088, 2025.

Qu, J., Holzmüller, D., Varoquaux, G., and Morvan, M. L.
TabICL: A Tabular Foundation Model for In-Context
Learning on Large Data. arXiv:2502.05564, 2025.

Radcliffe, N. Using control groups to target on predicted lift:
Building and assessing uplift models. Technical report,
Stochastic Solutions, 2007.

Ramey, C. T., Bryant, D. M., Wasik, B. H., Sparling, J. J.,
Fendt, K. H., and La Vange, L. M. Infant health and
development program for low birth weight, premature
infants: Program elements, family participation, and child
intelligence. Pediatrics, 89(3):454–465, 1992.

Retail Hero. Retail hero (x5) uplift dataset. https://
github.com/maks-sh/scikit-uplift, 2020.
Accessed: 2025-05-11.

7

https://www.uplift-modeling.com/en/latest/user_guide/index.html
https://www.uplift-modeling.com/en/latest/user_guide/index.html
https://www.uplift-modeling.com/en/latest/user_guide/index.html
https://github.com/maks-sh/scikit-uplift
https://github.com/maks-sh/scikit-uplift
https://github.com/maks-sh/scikit-uplift
https://github.com/maks-sh/scikit-uplift


CausalPFN: Amortized Causal Effect Estimation via In-Context Learning

Rosenbaum, P. R. and Rubin, D. B. The central role of
the propensity score in observational studies for causal
effects. Biometrika, 70(1):41–55, 1983.

Rubin, D. B. Estimating causal effects of treatments in
randomized and nonrandomized studies. Journal of Edu-
cational Psychology, 66(5):688, 1974.

Rubin, D. B. Bayesian inference for causal effects: The role
of randomization. The Annals of Statistics, pp. 34–58,
1978.

Rubin, D. B. Causal inference using potential outcomes:
Design, modeling, decisions. Journal of the American
Statistical Association, 100(469):322–331, 2005.

Scetbon, M., Jennings, J., Hilmkil, A., Zhang, C., and Ma,
C. A fixed-point approach for causal generative modeling.
In Proceedings of the 41st International Conference on
Machine Learning, volume 235, pp. 43504–43541, 2024.

Schuler, A., Baiocchi, M., Tibshirani, R., and Shah, N.
A comparison of methods for model selection when es-
timating individual treatment effects. arXiv preprint
arXiv:1804.05146, 2018.

Shalit, U., Johansson, F. D., and Sontag, D. Estimating
individual treatment effect: generalization bounds and
algorithms. In International conference on machine learn-
ing, pp. 3076–3085. PMLR, 2017.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Shi, C., Blei, D., and Veitch, V. Adapting neural networks
for the estimation of treatment effects. In Advances
in Neural Information Processing Systems, volume 32,
2019.

Shimoni, Y., Yanover, C., Karavani, E., and Goldschm-
nidt, Y. Benchmarking framework for performance-
evaluation of causal inference analysis. arXiv preprint
arXiv:1802.05046, 2018.

Thomas, V., Ma, J., Hosseinzadeh, R., Golestan, K., Yu, G.,
Volkovs, M., and Caterini, A. L. Retrieval & fine-tuning
for in-context tabular models. Advances in Neural Infor-
mation Processing Systems, 37:108439–108467, 2024.

Vetter, J., Gloeckler, M., Gedon, D., and Macke, J. H. Effort-
less, simulation-efficient bayesian inference using tabular
foundation models. arXiv preprint arXiv:2504.17660,
2025.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pp.
35151–35174. PMLR, 2023.

von Oswald, J., Schlegel, M., Meulemans, A., Kobayashi,
S., Niklasson, E., Zucchet, N., Scherrer, N., Miller, N.,
Sandler, M., y Arcas, B. A., Vladymyrov, M., Pascanu,
R., and Sacramento, J. Uncovering mesa-optimization
algorithms in transformers. arXiv:2309.05858, 2023.

Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. The
causal-neural connection: Expressiveness, learnability,
and inference. Advances in Neural Information Process-
ing Systems, 34:10823–10836, 2021.

Xia, K., Pan, Y., and Bareinboim, E. Neural causal models
for counterfactual identification and estimation. arXiv
preprint arXiv:2210.00035, 2022.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. In International Conference on Learning Rep-
resentations, 2022.

Yadlowsky, S., Doshi, L., and Tripuraneni, N. Pretraining
data mixtures enable narrow model selection capabilities
in transformer models. arXiv:2311.00871, 2023.

Zhang, J., Jennings, J., Hilmkil, A., Pawlowski, N.,
Zhang, C., and Ma, C. Towards causal foundation
model: on duality between causal inference and atten-
tion. arXiv:2310.00809, 2023.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P.
DAGs with NO TEARS: Continuous Optimization for
Structure Learning. In Advances in Neural Information
Processing Systems, volume 31, 2018.
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A Assumptions for Causal Effect Estimation

Let P be the joint distribution on the covariates X, treatment T , potential outcomes {Yt}t∈T , and the observed outcome Y .
Denote the observational distribution of the variables (X, T, Y ) by Pobs. Recall that our main quantities of interests are
conditional expected potential outcomes (CEPOs), defined as µt(x) = E [Yt | X = x].

To make estimating CEPOs from observational data feasible, we make the following assumption:

Assumption 0. [Strong Ignorability & SUTVA]

1. (Unconfoundedness or Ignorability) Yt ⊥⊥ T | X for all t ∈ T ,

2. (Positivity or Overlap) P(T = t | X) > 0 a.e. for all t ∈ T ,

3. (Consistency) Y = Yt if T = t for all t ∈ T ,

4. (No-Interference) The treatment assigned to one unit does not affect the outcomes of other units.

Under the above assumption, it can be proven that P1 ̸= P2 implies P1
obs ̸= P2

obs (Peters et al., 2017). In particular, CEPOs
can be re-written as conditional expectations:

µt(x) = E [Yt | X = x] = E [Y | X = x, T = t] . (4)

B Asymptotic Justification of CausalPFN

In this section, we provide a theoretical motivation for our approach and the causal data-prior loss function by providing an
asymptotic consistency result. We first provide an informal statement and give a proof sketch to develop some intuition.

B.1 Informal Statement and Proof

Proposition 1 (Informal). Assume (i) the model is sufficiently expressive, i.e., there exists parameters θ⋆ that attain the
global minimum of Lt(θ) for every t ∈ T , and (ii) the support of the prior π only consists of DGPs that satisfy strong
ignorability. Then, under mild regularity assumptions, for almost all ψ⋆ ∼ π, and any i.i.d. set of observational samples
Dobs ∼ Pψ

⋆

obs that |Dobs| → ∞, we have

Eµ∼qθ⋆
[
µ
∣∣x, t,Dobs

] a.s.−→ µt(x ; ψ⋆) for almost every x ∼ Pψ
⋆

(X). (5)

Although the theorem assumes the idealized conditions ψ⋆ ∼ π and a globally optimal θ⋆, it still yields practical guidance:
enlarging model capacity and broadening the prior π increases the chance of consistently recovering the CEPO. The proof
sketch is as follows: first, we prove that optimizing the causal data-prior loss is equivalent to minimizing the KL divergence
between qθ and the true CEPO-PPD. Second, we draw from the Bayesian consistency theory and link its identification to the
causal identification under strong ignorability. Once this link is established, the theorem follows naturally from Doob’s
theorem (Doob, 1949), with the mean of πµt(· | Dobs) almost surely converging to the true CEPO as observations grow.

B.2 Formal Proof

We now outline the concrete notation and set of assumptions we need for the formal statement and proof of Proposition 1.

Let B be the Borel sets of the real line. Let the random variable Z = (X, T, Y ) denote all the observed data, defined on
the sample space Z with the σ-algebra BZ . Similarly, let Z̃ = (X, T, {Yt}t∈T ) be the random variable denoting all the
observed and unobserved variables, defined on the sample space Z̃ with the σ-algebra BZ̃ . We use Dn

obs to represent a set of
n observed samples (Z1, Z2, . . . , Zn).

In addition to the random variables above, we define parameters ψ as random variables taking values in Ψ, with σ-algebra
BΨ. We abuse the notation and use ψ to refer to both a random variable and a fixed value in Ψ. Denote the probability
measure on (Ψ,BΨ) by π. For each ψ ∈ Ψ, let Pψobs and Pψ be probability measures on (Z,BZ) and (Z̃,BZ̃), respectively.
We also define (parametric) CEPOs, and the posterior-predictive distribution (PPD) of CEPOs as

µt (x ; ψ) := EYt∼Pψ [Yt | X = x] , πµt (B | x,Dn
obs) :=

∫
I (µt (x ; ψ) ∈ B) dπ (ψ | Dn

obs) , (6)
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respectively, for all ψ ∈ Ψ, t ∈ T , and B ∈ B. Finally, let qθ(· | x, t,Dn
obs) denote the predictive distribution produced by a

model with parameter θ, given the query (t,x) and the context Dn
obs. We use qθ and πµt for both the measures and their

Lebesgue’s densities, which we assume have full support over R. We now state our assumptions:

• Assumption 1. [Measurability] Z is a Borel measurable subset of a Polish space. An analogous statement holds for Ψ.
Moreover, ψ 7→ Pψobs (A) is measurable for every A ∈ BZ .

Given Assumption 1, we can define Pπobs as the joint distribution of
(
(Z1, Z2, . . . , ) , ψ

)
. We abuse the notation of Pψobs and

write x ∼ Pπobs as the marginal distribution of x, where we first sample ψ ∼ π, and then z = (x, t, y) ∼ Pψobs.

• Assumption 2. [No Redundancy] Pψ1 ̸= Pψ2 for all ψ1, ψ2 ∈ Ψ that ψ1 ̸= ψ2.

• Assumption 3. [Existence of Conditional Expectations] There exists a X0 with Pπobs (X0) = 1, such that for any t0 ∈ T ,
x0 ∈ X0, there exists a measurable function g(ψ) := EY∼Pψobs

[Y | X = x0, T = t0] that Eψ∼π [|g(ψ)|] <∞.

We refer to Assumptions 1-3 collectively as the regularity assumptions. Besides these assumptions, we make the following
two idealistic assumptions:

• Assumption 4. [Well-Specified Prior] The support of prior π only consists of parameters ψ such that Pψ satisfies
Assumption 0 (strong ignorability & SUTVA).

To state the final assumption, we re-state a more formal definition of causal data-prior loss:

Definition 2 (Formal). For any t ∈ T , we define the causal data-prior loss for datasets of size n as

Lt,n(θ) := Eψ∼π, Dnobs∪{x} ∼ Pψobs
[− log qθ(µt(x ; ψ) | x, t,Dn

obs)] . (7)

• Assumption 5. [Expressive Model] There exists a parameter θ⋆ that attains the global minimum of Lt,n(θ) defined in
(7), for all t ∈ T and all n ∈ [N].

Proposition 1 (Formal). Assume the regularity Assumptions 1-3 hold. Moreover, assume the prior distribution π satisfies
Assumption 4, and there exists θ⋆ that satisfies Assumption 5. Then, there exists a set X0 with Pπobs (X0) = 1, such that for

almost all ψ⋆ ∼ π, if Z1, Z2, . . .
i.i.d.∼ Pψ

⋆

obs, we have

lim
n→∞

Eµ∼qθ⋆
[
µ
∣∣x0, t0,Dn

obs

] a.s.
= µt0(x0 ; ψ

⋆) for all t0 ∈ T , x0 ∈ X0, (8)

where Dn
obs = (Z1, Z2, . . . , Zn).

Proof. We outline the proof as follows: first, we prove that optimizing the causal data-prior loss is equivalent to minimizing
the KL divergence between qθ and the true CEPO-PPD. Second, we draw from the Bayesian consistency theorem of Doob
(Doob, 1949; Miller, 2018) to show that under strong ignorability, as the observational data grows, the mean of the predictive
distribution πµt(· | x,Dn

obs) almost surely converges to the true CEPO.

Step 0. Defining the expected forward-KL divergence between πµt (· | x,Dn
obs) and qθ (· | x, t,Dn

obs):

Let Pπobs (Z1, Z2, . . .) :=
∫
Ψ
Pψobs (Z1, Z2, . . .) dπ(ψ), be the marginal observational distribution under the prior π. Then,

the expected forward-KL divergence between the PPD πµt and qθ, for datasets of size n, is defined as

LKL
t,n (θ) := EDnobs∪{x} ∼ Pπobs

[DKL (π
µt (· | x,Dn

obs) ∥ qθ (· | x, t,Dn
obs))] , (9)

where Dn
obs ∪ {x} ∼ Pπobs means to sample ψ ∼ π first and then sample Dn

obs ∪ {x} ∼ Pψobs.

Step 1. The causal data-prior loss Lt,n in (7) is equivalent to the expected forward-KL LKL
t,n :

First, note that

LKL
t,n (θ) = EDnobs∪{x} ∼ Pπobs

[∫
R
log

πµt(µ | x,Dn
obs)

qθ(µ | x, t,Dn
obs)

dπµt(µ | x,Dn
obs)

]
. (10)
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From (6), we can see that the measure πµt(· | x,Dn
obs) is the pushforward of the measure π(· | Dn

obs) by the function
f(ψ) = µt(x ; ψ). Hence, for any measurable function h : R → R, we get

Eµ∼πµt (·|x,Dnobs)
[h(µ)] = Eψ∼π(·|Dnobs)

[h(f(ψ))] = Eψ∼π(·|Dnobs)
[h(µt(x ; ψ))] . (11)

Setting h(µ) = log
πµt (µ|x,Dnobs)
qθ(µ|x,t,Dnobs)

, and combining with (10) and (11) yields

LKL
t,n (θ) = EDnobs∪{x} ∼ Pπobs

[
Eψ∼π(·|Dnobs)

[
log

πµt(µt(x ; ψ) | x,Dn
obs)

qθ(µt(x ; ψ) | x, t,Dn
obs)

]]
(12)

= EDnobs∪{x} ∼ Pπobs, ψ∼π(·|Dnobs)

[
log

πµt(µt(x ; ψ) | x,Dn
obs)

qθ(µt(x ; ψ) | x, t,Dn
obs)

]
. (13)

Next, we use the Bayes’ rule to derive

Pπobs (Dn
obs)︸ ︷︷ ︸

evidence

π(ψ | Dn
obs)︸ ︷︷ ︸

posterior

= π(ψ)︸ ︷︷ ︸
prior

Pψ (Dn
obs)︸ ︷︷ ︸

likelihood

. (14)

Combining (13) and (14), we get

LKL
t,n (θ) = Eψ∼π, Dnobs∪{x} ∼ Pψobs

[
log

πµt(µt(x ; ψ) | x,Dn
obs)

qθ(µt(x ; ψ) | x, t,Dn
obs)

]
(15)

= Eψ∼π, Dnobs∪{x} ∼ Pψobs
[− log qθ(µt(x ; ψ) | x, t,Dn

obs)] + constant term in θ (16)

= Lt,n(θ) + constant term in θ. (17)

Step 2. Attaining the global optima for the causal data-prior loss Lt,n at θ⋆ for all t ∈ T and n ∈ [N] means that
qθ⋆ (· | x, t,Dn

obs)
a.e.
= πµt (· | x,Dn

obs) for all t ∈ T , n ∈ N, and almost all Dn
obs ∪ {x} ∼ Pπobs.

This result directly follows from the Step 1, and the fact that the KL divergence between two distributions is globally
minimized and equal to zero iff the two are equal a.e.

Now that we have established the equivalence of the model qθ with the PPD πµt , we show the asymptotic consistency of
πµt .

Step 3. Re-stating Doob’s consistency with our notation:

Corollary 2 (Corollary 2.3 in Miller (2018)). Suppose Z and Ψ are Borel measurable subsets of two Polish spaces. Suppose
g : Ψ → R is a measurable function with E [|g(ψ)|] <∞. For every ψ ∈ Ψ, let Pψobs be a probability measure on (Z,BZ).
Moreover, assume ψ 7→ Pψobs (A) is measurable for every A ∈ BZ , and ψ ̸= ψ′ =⇒ Pψobs ̸= Pψ

′

obs. There exists Ψ0 ⊆ Ψ

with π (Ψ0) = 1 such that for all ψ⋆ ∈ Ψ0, if Z1, Z2, . . . ∼ Pψ
⋆

obs i.i.d., then

lim
n→∞

Eψ∼π(·|Z1,...,Zn) [g(ψ) | Z1, . . . , Zn]
a.s.
= g(ψ⋆). (18)

Final Step. All the assumptions for Doob’s Theorem are satisfied and we can reach the main result:

• Assumption 1 states that Z and Ψ are Borel measurable subsets of two Polish spaces. Moreover, ψ 7→ Pψobs (A) is
measurable for every A ∈ BZ .

• Fix a value of x0 ∈ X0, and any t0 ∈ T . Define g(ψ) := EY∼Pψobs
[Y | X = x0, T = t0]. According to Assumption 3,

g(ψ) is measurable and satisfies E [|g(ψ)|] <∞.

• Assumptions 2 and 4 combined yield ψ ̸= ψ′ =⇒ Pψobs ̸= Pψ
′

obs for all ψ,ψ′ in the support of π.

We can now directly use Corollary 2 to deduce that there exists Ψ0 ⊆ Ψ with π (Ψ0) = 1, such that for all ψ⋆ ∈ Ψ0 and
i.i.d. Dn

obs ∼ Pψ
⋆

obs, we have

lim
n→∞

Eψ∼π(·|Dnobs)
[g(ψ) | Dn

obs]
a.s.
= g(ψ⋆). (19)

Finally, note that since the support of π satisfies strong ignorability (under Assumption 4), for any i.i.d. Dn
obs =

12
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(Z1, . . . , Zn) ∼ Pψ
⋆

obs, the support of the posterior π (· | Dn
obs) also satisfies strong ignorability. Hence,

Eψ∼π(·|Dnobs)
[g(ψ) | Dn

obs] = Eψ∼π(·|Dnobs)

[
EY∼Pψobs

[Y | X = x0, T = t0]
∣∣∣ Dn

obs

]
(20)

(By Strong Ignorability) = Eψ∼π(·|Dnobs)

[
EYt0∼Pψ [Yt0 | X = x0]

∣∣∣ Dn
obs

]
(21)

= Eψ∼π(·|Dnobs)
[µt0 (x0 ; ψ)] (22)

= Eµ∼πµt0 (·|x0,Dnobs)
[µ] . (23)

Combining (23) with (19), we get

lim
n→∞

Eµ∼πµt0 (·|x0,Dnobs)
[µ] = µt0 (x0 ; ψ

⋆) . (24)

for almost all ψ⋆ in the support of π.

We have now shown consistency guarantees for the true CEPO-PPD πµt . To obtain the final result, we can simply plug in
qθ

a.e.
= πµt (from Step 2) to prove Proposition 1.

C Prior Generation & Simulating DGPs

Figure 3. Prior construction. Sample diverse base
tables (OpenML or synthetic TabPFN), select covari-
ates X , draw treatment T with a random propensity
model, select columns µ0, µ1 and add zero-mean
noise to form Y0, Y1, and Y .

As illustrated in Figure 3, our prior generation consists of retrieving
or synthesizing a base table, subsampling covariates X and CEPOs µ0

and µ1, synthesizing treatments T , potential outcomes Yt, and finally,
observed outcomes Y . We break down each of the components:

Data Sources for the Base Tables. We draw the base tables from two
sources: (i) real-world tables from OpenML, and (ii) fully synthetic data.

(i) We use the OpenML collections used in Grinsztajn et al. (2022),
AMLB (Gijsbers et al., 2024), and TabZilla (McElfresh et al., 2023),
all listed in Ma et al. (2024). To widen coverage, we also add tables
from CTR23 (Fischer et al., 2023) and CC18 (Bischl et al., 2021).
All OpenML IDs are in this link.1 Data leakage is ruled out as none
of the tables that share covariates or outcomes with our test sets
(Lalonde, IHDP, ACIC, Criteo, Megafon, Hillstrom, Lenta, X5) are
included in training. Moreover, the propensities are sampled purely
synthetically, following the approach described below.

(ii) For additional diversity, we generate synthetic tables using the
random neural networks used to train TabPFN v1, with the same
hyperparameters described in Hollmann et al. (2023). Inputs, from
a standard Gaussian distribution, are fed into the network, and a
subset of the outputs and hidden neurons are selected to construct the tabular data. Some columns are discretized
at random to produce categorical and ordinal variables to reflect the structure of real-world tabular domains. While
TabPFN v2 (Hollmann et al., 2025) is a newer and stronger model, its training data is not publicly available, so we
restrict ourselves to the v1 generator to ensure transparent evaluation and leakage control.

CEPOs with Heterogeneity Control. Once the base table is given, we randomly select two columns and name them µraw,0
and µraw,1. However, in practice, we observe that directly using such columns for CEPOs can result in large variances
(heterogeneity) for CATEs. We therefore apply a light-weight post-processing inspired by RealCause (Neal et al., 2020).

The post-processing requires a heterogeneity hyperparameter γ, which we sample uniformly from [0, 1] during prior
generation. Then, for N units (rows) extracted from the base table, let τ (n)raw = µ

(n)
raw,1 − µ

(n)
raw,0 be the CATE for unit n ∈ [N ],

and λraw = 1
N

∑N
n=1 τ

(n)
raw the sample ATE. We draw i.i.d. {α(n)}Nn=1 ∼ Unif[0, 1] and construct the final γ-augmented

1https://drive.google.com/file/d/1NXib83Lc7jGOPJx554p-I3sxFrcWeF52
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CEPOs as

µ
(n)
1 :=

[
α(n) + (1− α(n))γ

]
µ
(n)
raw,1 + (1− γ)(1− α(n))(µ

(n)
raw,0 + λraw), (25)

µ
(n)
0 :=

[
(1− α(n)) + α(n)γ

]
µ
(n)
raw,0 + (1− γ)α(n)(µ

(n)
raw,1 − λraw). (26)

A simple algebraic check shows

τ (n) := µ
(n)
1 − µ

(n)
0 = γ τ (n)raw + (1− γ)λraw, Var[τ | x] = γ2 Var[τraw | x]. (27)

Hence, while preserving the average treatment effect, γ = 0 yields a dataset with a zero variance CATE (fully homogeneous),
whereas γ = 1 recovers the original heterogeneity.

Outcomes. After constructing the CEPO columns µ0(x) and µ1(x), we need to turn them into potential outcomes by
adding zero-mean noises. To avoid tying the data to a specific parametric noise model, we introduce two additional nuisance
columns, η0(x) and η1(x), sampled from the base table. Let ϵt be random scalars, independent from x, with E[ϵt] = 0. We
define the potential outcomes as

Yt = µt(x) + ηt(x) ϵt, t ∈ T . (28)

This construction preserves the conditional means, that is E[Yt | x] = µt(x). The input-dependent scale factors ηt(x) allow
for heteroscedastic noises and capture a richer family of outcome distributions than additive parametric noise models. For
our training, we sample ϵt from a Gaussian with a variance uniformly drawn from (0,Var(µt)]. This choice of noise values
ensures a similar noise scale to the scale of CEPOs, resulting in training data with a more informative signal-to-noise ratio.

Propensities with Positivity Control. Given a covariate vector x, the strong ignorability assumption requires the propensity
values 0 < P(T = 1 | X = x) < 1. Hence, due to the invertibility of the sigmoid function, it is sufficient to generate
treatment logits, through any function f : X → R, and then apply a sigmoid function to get values within (0, 1). To simulate
different degrees of confounding, we choose f by randomly selecting one of the following mechanisms:

(i) Randomized treatments (RCT). Treatments are independent of covariates, i.e., f is constant. We sample c ∼
Logistic(0, 1) and set f(x) = c to get uniform propensities.

(ii) Linear logits. Draw the random vector w from a standard Gaussian and set f(x) = w⊤x.

(iii) Non-linear logits. Feed x into a randomly initialized MLP, similar architecture of Hollmann et al. (2023), to get f(x).

Empirically, we observe that the above procedure yields an artificially high level of positivity, which is not reflective of
real-world scenarios. We therefore apply a light-weight post-processing transform, inspired by RealCause (Neal et al.,
2020), to better control the positivity level. Concretely, we sample a parameter ξ ∈ [0, 1] and exacerbate extreme propensity
scores to mimic poor positivity:

P(T = 1 | X = x) := ξ Sigmoid (f(x)) + (1− ξ) I
[
f(x) > 0

]
. (29)

Here, ξ = 1 leaves the original positivity intact. However, for smaller ξ values, the support of the treated and control groups
become increasingly disjoint, leading to low-positivity scenarios.

Treatment Assignment. Finally, each unit’s treatment is drawn as T ∼ Bernoulli (Sigmoid (f(X))), and the observed
outcome Y is also derived by selecting the assigned potential outcome Y := YT .

Collectively, all of the steps above simulate different DGPs, with various levels of positivity and heterogeneity, extracted
from real and synthetic sources of tabular data. This procedure creates a broad prior π for CausalPFN, which is necessary
for the model to work well in practice.

D Architecture & Training Details

D.1 A High-Level Overview of the Training Pipeline

Figure 4 illustrates the abstract training pipeline: at each iteration, we sample a DGP ψi ∼ π, generate an observational
dataset Dobs from this DGP, and select a query point (x, t). We compute (simulate) the ground-truth CEPO µt (x ; ψi) and
feed both the observational data and query to the model. The model outputs a CEPO-PPD, and we update θ to increase
the probability assigned to the true CEPO value. Through stochastic gradient descent, θ minimizes the data-prior loss and
implicitly learns to perform posterior-predictive inference, without ever explicitly computing the posterior.
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Figure 4. Causal Data-prior Training. At each iteration a DGP ψi ∼ π is sampled (left), yielding the joint law Pψi(X,T, {Yt}t∈T , Y ).
From this DGP we simulate an observational contextDobs and a query (x, t) with its true µt(x ; ψi) (centre). Passing (x, t,Dobs) through
the transformer predicts the CEPO-PPD qθ(· | x, t,Dobs) (in green), which is derived from an implicit posterior π(· | Dobs) that is never
explicitly computed (right). We train θ to minimize the causal data-prior loss − log qθ

(
µt(x ; ψi) | x, t,Dobs

)
(bottom).

Algorithm 1 Parallel training of CausalPFN.

1: Input: Prior π, DGPs and CEPO values Pψobs, µt(·; ψ), model qθ , DGP batch size Bt, query batch size Bq , fixed feature length F ,
and histogram loss HL.

2: while not converged do
3: Sample ψ[1], . . . , ψ[Bt] ∼ π
4: Sample Dobs[i] ∼ P

ψ[i]
obs , ∀1 ≤ i ≤ Bt

5: Randomly sample query treatments t(i,j) for 1 ≤ i ≤ Bt, 1 ≤ j ≤ Bq
6: Sample query covariates x(i,j) ∼ Pψobs[i] for 1 ≤ i ≤ Bt, 1 ≤ j ≤ Bq
7: Set µ(i,j) ← µt(i,j)

(
x(i,j) ; ψ[i]

)
8: Pad x(i,j) with zeros such that x(i,j) ∈ RF

9: L̂ ← 1
Bt·Bq

∑
i,j HL

[
µ(i,j)∥qθ(· | x(i,j), t(i,j),Dobs[i])

]
10: Update θ using the gradients∇θL̂
11: end while

D.2 Architecture & Training

We represent each context row (t,x, y) and query row (t,x) as single tokens by summing up (1) a treatment embedding for
t, (2) a covariate embedding for x (padded to length F = 100), and (3) an outcome embedding for y (only for context rows).
We use linear layers for embeddings and omit the positional encodings to preserve the permutation invariance of the context
set, similar to other PFN-style transformers. All tokens—context and query—are passed into a 20-layer transformer, with a
hidden size of 384, QK-normalization (RMS)2, and a parallel SwiGLU-activated (Shazeer, 2020) feed-forward block.

The transformer’s query outputs are then projected to a 1024-dimensional logit vector, then softmaxed at a fixed temperature
of θT = 1.0 to form a discrete CEPO posterior over the interval [−10, 10]. We then scale the interval to match the scale of
the outcomes and clip the out-of-range values. At inference time, we return the posterior mean as the point estimate and
sample 10,000 times to estimate credible intervals at any desired significance level α.

The full model has approximately 20M parameters and is trained in two stages: (i) a predictive phase that mimics standard
predictive PFN training from Ma et al. (2024), and (ii) a causal phase that optimizes the CEPO loss. We use AdamW (Kingma,
2014) with warmup and cosine annealing for the predictive phase, and switch to the schedule-free optimizer (Defazio et al.,
2024) in the causal phase. The model is trained with a maximum context length of 16K in the first phase and 2,048 in the
second. We use four A100 GPUs trained for one week for the initial phase, and two days on an H100 for the second phase.

Finally, to enhance parallel training, we batch both the queries and the tables. That is, rather than sampling only one DGP
and one query token, each gradient update samples Bt DGPs, draws Bq queries per DGP, and concatenates everything into a
single tensor. The tensor is then passed through the transformer to get BtBq CEPO-PPDs. The final loss is averaged over all
the batches. See Figure 5 and Algorithm 1 for a detailed demonstration of CausalPFN’s training pipeline.

D.3 Handling Large Tables at Inference Time

CausalPFN’s default maximum context length is set to 4,096 at inference, but real-world tables may contain millions of
rows. Training PFN-style transformers on such long contexts can be challenging due to hardware or architectural constraints.

2Different from Henry et al. (2020), we perform normalization after the query and key projection.
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Figure 5. Training pipeline. (Left): An observational data, and a batch of queries along with their true CEPO values are sampled from the
prior. Each observational row, containing the treatment, covariates, and the outcome form a context token, while query tokens consist of
only the treatment and covariates. (Middle): The context and query tokens are fed into a transformer encoder with an asymmetric attention
masking, where both context and query tokens attend only to the context tokens. (Bottom-Right): The output tokens are projected into
a 1024-dimensional logit vector and softmaxed to form a discrete posterior-predictive distribution (CEPO-PPD). Then, the true CEPO
value corresponding to each output token is smoothed by adding narrow-width Gaussian noise, and training is done by minimizing the
cross-entropy (histogram) loss; this is a trick commonly used for stabilizing training in histogram losses. (Top-Right): At inference time,
we return the CEPO-PPD mean as the point estimate and sample from CEPO-PPD to estimate credible intervals.

While some tabular foundation models such as TabICL (Qu et al., 2025) modify the architecture itself, Thomas et al. (2024)
show that, retrieving a small relevant subset of rows for each query at inference time allows a model with a short context
length to better generalize to longer contexts.

We adopt this retrieval philosophy in CausalPFN to enable causal effect estimation on large tables. First, we fit a lightweight
gradient boosting regressor on the context data to produce weak CATE estimates for each covariate. This regressor estimates
CATE by regressing outcomes on the treatment and covariates and then taking the difference in predicted outcomes between
T = 1 and T = 0. This step is applied only when the table is too large to fit within the model’s maximum context window.
We then (i) sort both the context rows and the queries based on their weak CATE estimates, which effectively stratifies the
data; (ii) partition the ordered queries into consecutive mini-batches; and (iii) for each query batch, use a fast bisection
search to select a contiguous window of context rows whose weak CATE estimate range most closely matches that of the
batch. As a result, each batch is exposed only to a neighborhood of rows with similar causal effects, allowing all CEPO
predictions to be computed with short forward passes.

E Baseline Hyperparameters and Results without Hyperparameter Tuning

No Hyperparameter Tuning. Table 2 summarizes the performance of all methods without hyperparameter tuning. Indeed,
in this setting, CausalPFN consistently attains the first or second best results on heterogeneous treatment effect, and overall
minimum average relative error on ATE.

EconML Hyperparameters. For the results without hyper parameter tuning in Table 2, we ran the models with the
recommended hyper parameters in the Jupyter notebooks from EconML (Battocchi et al., 2019). For the tuned results in
Table 1, we performed a grid search on both the propensity and outcome models with the following search space:

• Model family ∈ { Random forest (with 100 trees), Gradient boosting }

• Maximum depth ∈ {3, 5}

• Minimum samples per leaf ∈ {10, 50}

Each candidate configuration was evaluated using three-fold cross-validation. For DR-Learner and Forest DML, we
additionally expanded the covariates with quadratic terms (polynomial degree 2).

CATE Nets. For the results without hyper parameter tuning in Table 2, we ran the models with the default hyperparameters

16



CausalPFN: Amortized Causal Effect Estimation via In-Context Learning

and a batch size of 512. For the tuned results in Table 1, we perform a grid search on the hyperparameters for the neural
architecture:

• Number of layers ∈ {2, 3}

• Representation dimension ∈ {128, 256}

• Number of hidden output layers ∈ {1, 2}

• Width of the hidden output layers ∈ {128, 256}

the rest of the hyperaparameters are left unchanged.

BART & GRF. The GRF implementation includes an internal tune option. We enable this option for the tuned experiment
reported in Table 1 and disable it for the untuned experiment in Table 2. BART, on the other hand, offers no comparable
hyperparameter-tuning routine. Its only alternative, a full cross-fit, is prohibitively slow uses a rudimentary Bayesian routine.
Thus, the BART scores appear unchanged in both Table 1 and Table 2.

Table 2. CATE & ATE results. PEHE (left half) alongside ATE relative error and its overall average (right half). PEHE for Lalonde
CPS/PSID is shown in thousands. Best numbers are in green; second best are in blue.

Method PEHE ± Standard Error (↓ better) ATE Relative Error ± Standard Error (↓ better)
IHDP ACIC 2016 Lalonde CPS Lalonde PSID IHDP ACIC 2016 Lalonde CPS Lalonde PSID Avg.

(×103) (×103)
CausalPFN 0.58±0.07 0.92±0.11 8.83±0.04 13.98±0.43 0.20±0.04 0.04±0.01 0.07±0.02 0.20±0.04 0.18±0.03
T Learner 2.28±0.34 1.41±0.11 9.24±0.05 14.01±0.41 0.21±0.04 0.05±0.01 0.37±0.02 0.09±0.03 0.20±0.03
DragonNet 2.13±0.24 2.23±0.20 10.3±0.39 16.2±0.78 0.19±0.04 0.09±0.02 0.55±0.10 0.40±0.07 0.23±0.03
GRF 4.26±0.69 1.36±0.30 12.1±0.22 21.2±0.48 0.18±0.03 0.07±0.02 0.81±0.06 0.80±0.05 0.27±0.03
DR Learner 3.82±0.49 1.09±0.09 14.34±0.72 34.04±3.64 0.19±0.03 0.04±0.01 0.91±0.10 46.8±42.9 0.28±0.03
RA Net 2.08±0.19 2.08±0.19 12.5±0.37 19.9±1.71 0.20±0.03 0.07±0.03 0.93±0.05 0.67±0.06 0.28±0.03
TarNet 1.88±0.15 2.26±0.20 11.9±0.13 18.4±0.45 0.20±0.04 0.06±0.02 0.95±0.02 0.68±0.03 0.29±0.03
S Learner 3.06±0.52 1.36±0.12 12.86±0.04 21.81±0.44 0.23±0.05 0.05±0.01 1.01±0.01 0.94±0.01 0.33±0.04
Forest DML 3.73±0.61 1.20±0.24 133.9±13.8 27.51±1.83 0.11±0.02 0.05±0.01 3.91±0.63 0.96±0.09 0.50±0.10
BART 2.50±0.39 0.68±0.11 12.7±0.11 20.8±0.45 0.50±0.11 0.04±0.01 1.01±0.02 0.83±0.03 0.53±0.08
IPW 5.70±0.89 3.21±0.62 10.94±0.06 18.20±0.45 0.23±0.04 0.24±0.05 0.25±0.03 0.05±0.01 0.81±0.03
X Learner 3.00±0.47 1.02±0.16 13.01±0.10 20.27±0.69 0.19±0.03 0.03±0.01 1.06±0.02 0.74±0.06 0.92±0.03

F Marketing Experiments

Policy Evaluation on Marketing Randomized Trials. Ground-truth CATEs are only available for synthetic or semi-
synthetic datasets. However, if a randomized controlled trial (RCT) is available, we can still evaluate the quality of a CATE
estimator by assessing the performance of policies derived from it. A common tool for evaluating such policies is the Qini
curve (Radcliffe, 2007), which plots the cumulative treatment effect when units are ranked in descending order of their
predicted CATE.

Formally, let (y(n), t(n))Nn=1 denote outcomes and binary treatments from an RCT, and let τ̂n be the corresponding CATE
estimates, ordered so that τ̂1 ≥ · · · ≥ τ̂N . Define

λ(q) :=

⌊qN⌋∑
n=1

(
t(n)y(n)

r(q) − (1−t(n))y(n)

1−r(q)

)
, Q(q) := q · λ(q)/λ, 0 ≤ q ≤ 1, (30)

where r(q) = 1
⌊qN⌋

∑⌊qN⌋
n t(n) is the empirical treatment rate for the first q-quantile of units. Because the data comes from

an RCT, λ(q) unbiasedly estimates the ATE for the top q-quantile of units ranked by predicted CATEs. Plotting Q(q) against
the treated fraction q yields the (normalized) Qini curve, and the area under this curve is called the Qini score. A random
ranking produces a baseline curve as a straight line from (0, 0) to (1, 1). The higher the Qini curve lies above this line, the
better the model prioritizes high-impact units with larger CATE values, leading to greater lift and policy benefit.

We benchmark CausalPFN on five large marketing RCTs from the scikit-uplift library (Maksim Shevchenko, 2020).
The first dataset, Hillstrom (Hillstrom, 2008), includes 64,000 customers randomly assigned to one of three treatments: no
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Figure 6. Hill(1) & Hill(2) Qini curves.

Table 3. Normalized Qini scores (↑ better). All datasets use 50k stratified sub-
samples, except Hill(1) and Hill(2), which use the full 64k rows. Columns are
normalized to 1.0 for the best model and winners are bolded.

Method Hill(1) Hill(2) Criteo X5 Lenta Mega Avg.

CausalPFN 0.992 0.968 0.859 0.922 1.000 0.970 0.952
X Learner 0.975 0.980 1.000 0.937 0.771 1.000 0.944
S Learner 1.000 1.000 0.881 1.000 0.651 0.941 0.912
DA Learner 0.985 0.964 0.626 0.929 0.781 0.998 0.881
T Learner 0.991 0.972 0.701 0.964 0.644 0.986 0.876

Table 4. Normalized Qini scores (↑ better). Scores are normalized per dataset such that the top-performing model achieves 1.0 (highlighted
in bold). All datasets use full stratified subsamples: Hill(1) and Hill(2) (64K rows), Criteo (2.5M rows), X5 (200K rows), Lenta (687K
rows), and Mega (600K rows).

Method Hill(1) Hill(2) Criteo X5 Lenta Mega Avg.

S Learner 1.000 1.000 1.000 1.000 1.000 0.913 0.985
X Learner 0.975 0.980 0.994 0.965 0.868 0.997 0.963
DA Learner 0.985 0.964 0.955 0.969 0.903 1.000 0.963
T Learner 0.991 0.972 0.902 0.953 0.833 0.987 0.940
CausalPFN 0.992 0.968 0.939 0.746 0.947 0.954 0.924

e-mail, an e-mail advertising men’s merchandise, or an e-mail advertising women’s merchandise. The outcome is whether
a website visit occurred within two weeks (binary). We consider two causal tasks: Hill(1) – Men’s-merchandise e-mail
(treatment) vs. no e-mail (control), and Hill(2) – Women’s-merchandise e-mail vs. no e-mail. We estimate CATEs using
CausalPFN (five-fold honest splitting) and X Learner. Figure 6 shows Qini curves where CausalPFN closely matches
X Learner across the targeting range. Notably, Hill(2) shows much greater gains, suggesting women’s-merchandise ads,
compared to men’s, drive more visits. We also evaluate CausalPFN on four larger campaigns—Lenta, Retail Hero (X5),
Megafon (Mega), and Criteo (Lenta LLC, 2020; Retail Hero, 2020; Megafon PJSC, 2020; Émilie Diemert et al., 2018)—each
with ∼106 rows. For tractability, we compute Qini scores on stratified 50k subsamples; Table 3 shows CausalPFN achieves
the best mean performance. However, when we run it on full tables in Table 4, we observe a drop in performance, which
aligns with known context-length limitations of PFN-style models on large tables (Thomas et al., 2024). Still, the strong
subsample results highlight the potential of scaling CausalPFN to longer contexts, remaining an important future direction.

G Uncertainty Quantification and Calibration

Beyond point estimation, the CEPO-PPDs capture the epistemic uncertainty about the true CEPO given the observed
data; a sharply peaked CEPO-PPD indicates that the available data confidently pins down the causal effects, whereas a
high-variance distribution signals substantial uncertainty, which can justify making conservative decisions. Thus, we can
use qθ to construct credible intervals around CEPOs, CATEs, and ATEs via sampling from qθ(· | x, t = 1,Dobs) and
qθ(· | x, t = 0,Dobs) and using them to quantify the epistemic uncertainty of our causal-effects.

For each unit covariate x, CausalPFN can produce both point estimates and credible intervals for the CATE and CEPO.
In particular, we do so by drawing 10,000 samples from the quantized distribution qθ(· | x, t,Dobs) and construct credible
intervals at any desired level α. Here, we evaluate these intervals, focusing on the model’s calibration. We also assess a key
assumption from Proposition 1—whether the inference-time DGP ψ⋆ lies within the prior π, and critically, how the model
behaves when this assumption is violated.

We define families of synthetic DGPs to simulate both in-distribution and out-of-distribution (OOD) scenarios. We use two
families of synthetic DGPs, polynomials and sinusoidals. CausalPFN is trained either on the same family it is tested on, or
on a different one (OOD). As a general recipe, each DGP defines a treatment logit function f(x) ∈ R and assigns treatments
by sampling from the Bernoulli (Sigmoid(f(x))). Moreover, each DGP specifies two CEPO functions µ0, µ1 : x → R.
It then samples the potential outcomes by Yt = µt (x) + ϵt for t ∈ {0, 1}, where the noise terms ϵt ∼ Normal(0, 1),
Laplace(0, 1), or Uniform(−1, 1) with equal probability. We now describe each DGP family in more detail:
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Figure 7. Calibration. (Left): CATE coverage vs. nominal credibility. In-distribution DGPs (blue) lie on or above the diagonal
(calibrated/conservative), while OOD DGPs (orange) fall below it (overconfident). (Middle): Across model–DGP pairs, CATE ICE
(x-axis) exceeds regression ICE (y-axis). (Right): Temperature scaling based on regression ICE ensures the model is either calibrated or
conservative for both in- and out-of-distribution DGPs.

(a) Polynomial. We first draw the number of features d ∼ Unif{10, . . . , 20} and sample covariate vectors x ∼
Unif[−2, 2]d. We then fix a maximum degree deg ∈ {1, 2, 3, 4}, augment covariates with powers xext =

(x1, . . . , xd, x
2
1, . . . , x

deg
d ), sample weights wµ0

,wµ1
,wT ∼ Unif[−5, 5]d×deg+1, and define

f(x) = w⊤
T xext, µt(x) = w⊤

µtxext for t ∈ {0, 1}. (31)

Degrees 1, 2, 3, and 4 give the Linear, Quadratic, Cubic, and Quartic sub-families; each degree adds new terms and is
therefore a super-set of all lower degrees. We train on one degree family and test on the others to probe generalization.

(b) Sinusoidal. We draw the number of features d ∼ Unif{5, . . . , 10} and sample covariate vectors x ∼ Unif[−3, 5]d.
We then sample weight vectors wµ0

,wµ1
,wT ∼ Unif[−10, 6]d, and a frequency ω ∈ R+. We define the treatment

logit function and the CEPOs as

f(x) = sin
(
ω
{
w⊤
T x

})
+w⊤

T x, µt(x) = sin
(
ω
{
w⊤
µtx

})
+w⊤

µtx for t ∈ {0, 1}. (32)

For training DGPs, we create three sub-families: Linear (ω = 0), L1 (ω ∈ [0, 1]) and L2 (ω ∈ (1, 2]). For test-time
DPGs, we use the following: Linear (ω = 0), L1 (ω∈ [0.5, 1]), L2 (ω∈(1.5, 2]), and L3 (ω∈(2.5, 3]). This allows us
to measure extrapolation to unseen frequencies. E.g., an L2-trained model has seen DGPs from L1 and L2, but not L3.

For a unit with covariates x and credibility level α, we say the true CATE is covered if τ(x) lies within the predicted
100(1−α)% interval obtained from samples of qθ. Plotting Bayesian coverage against nominal levels of α yields the CATE
calibration curve ĉovτ (α). As shown in Figure 7 (left), CausalPFN is reliably calibrated under in-distribution settings but
becomes severely overconfident when evaluated on OOD DGPs (ψ⋆ ̸∼ π). This aligns with prior observations that neural
models often exhibit pathological overconfidence under distribution shift (Guo et al., 2017; Ovadia et al., 2019).

To correct this, we apply a temperature parameter θT to the SoftMax that outputs the quantized CEPO-PPD qθ(· |
x, t,Dobs

C )[ℓ] from the logits of the model. Typically, one can tune θT to minimize the calibration error; however, in our
case, direct CATE calibration is impossible because τ(x) is never observed at test-time. Instead, we introduce the regression
calibration for observational data: an observed triple (t,x, y) is covered by the predicted credible interval when y lies inside
the model’s predicted interval for the CEPO-PPD. With that in mind, we let ĉovµ(α) and ĉovτ (α) denote the Bayesian
coverage at level α for the regression and CATE calibration curves, respectively, and define

ICEµ :=

∫ 1

0

(
ĉovµ(α)− α

)
dα, and ICEτ :=

∫ 1

0

(
ĉovτ (α)− α

)
dα, (33)

as the integrated coverage error (ICE) for regression and CATE (negative values = overconfidence).

Ideally, we do not expect ĉovµ to be calibrated: regression intervals combine epistemic uncertainty of the CEPO with the
irreducible (aleatoric) noise in Y , so ICEµ is biased downward. Still, it holds a useful signal. Across all model–DGP
pairs in Figure 7 (middle) we consistently observe ICEµ ≤ ICEτ : the regression curve sits at or below the CATE curve.
While ICEτ is inaccessible without having the true CATE, ICEµ is computable from observational data. Consequently,
temperature-scaling the logits to lift ĉovµ to the diagonal also calibrates, or at worst makes conservative, the CATE intervals.
We thus tune θT by grid search to drive ICEµ to zero using a 5-fold calibration on the observational data. The calibrated

19



CausalPFN: Amortized Causal Effect Estimation via In-Context Learning

curves in Figure 7 (right) on the unseen test-set confirm that, after temperature scaling, overconfidence disappears and the
model reliably knows when it does not know.

H Related Work

Single–dataset Estimators. Common methods for causal effect estimation are trained and applied on a single dataset.
Representative examples include the X-, S-, DR-, and RA-Learners, as well as IPW and DML (Battocchi et al., 2019).
Alongside these approaches, several neural variants such as TARNet (Shalit et al., 2017), DragonNet (Shi et al., 2019),
CEVAE (Louizos et al., 2017), and NCMs (Xia et al., 2021; 2022) have been proposed; however, all of them still require
per-dataset training and do not amortize across various datasets.

Amortized Causal Inference. Amortized causal inference methods train a single network to map observational data to
causal quantities across multiple DGPs. Existing methods either first recover a causal graph representing the observational
data and then compute interventions on that graph (Scetbon et al., 2024; Mahajan et al., 2024a), mirroring ideas from
causal-discovery (Peters et al., 2014; Zheng et al., 2018; Khemakhem et al., 2021; Lorch et al., 2022; Ke et al., 2023;
Kamkari et al., 2023), while others infer effects end-to-end (Nilforoshan et al., 2023; Zhang et al., 2023; Bynum et al.,
2025). While all these methods can conceptually be used for amortized causal effect estimation, none of them provide
a ready-to-use estimator that can surpass the specialized single-dataset estimators on standard benchmarks. They either
rely on synthetic datasets as proof-of-concept or require multiple datasets similar to the one given at inference to train
their estimators. Contrary to prior work, our method is trained once and produces causal effects without any access to,
or adaptation on, the test-time DGPs. CausalPFN, through large-scale training, yields out-of-the-box performance that
surpasses the specialized single-dataset estimators, setting a new milestone for amortized methods.

Scaling In-Context Transformers. In-context learning with transformers has shown impressive results across a range of
domains (Brown et al., 2020; Xie et al., 2022; Coda-Forno et al., 2023; Dong et al., 2024; Vetter et al., 2025). Although the
underlying mechanisms responsible for this success remain an active area of research (Akyürek et al., 2023; Dai et al., 2023;
Olsson et al., 2022; Von Oswald et al., 2023; Li et al., 2023b; Yadlowsky et al., 2023; von Oswald et al., 2023; Bai et al.,
2023; Peyrard & Cho, 2025), increasing model size and training data have consistently and undoubtedly led to stronger
performance. This success has recently extended to tabular prediction with models such as TabPFN (Hollmann et al., 2023;
2025), TabDPT (Ma et al., 2024), and TabICL (Qu et al., 2025), which are trained on broad prior distributions and perform
well on real-world data without fine-tuning. CausalPFN complements these works, demonstrating that—with sufficient scale
and training—in-context learning can also be effectively adapted to causal inference.
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