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Abstract

We re-examine the estimation of 3D shape from images that are caused by shading of diffuse
Lambertian surfaces. We propose a neural model that is motivated by the well-documented
perceptual effect in which shape is perceived from shading without a precise perception of
lighting. Our model operates independently in each receptive field and produces a scalar
statistic of surface curvature for that field. The model’s architecture builds on previous
mathematical analyses of lighting-invariant shape constraints, and it leverages geometric
structure to provide equivariance under image rotations and translations. Applying our
model in parallel across a dense set of receptive fields produces a curvature field that we
show is quite stable under changes to a surface’s albedo pattern (texture) and also to
changes in lighting, even when lighting varies spatially across the surface.
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1. Introduction

There are many unanswered questions about the computational mechanisms that underlie
the perception of three-dimensional shape from diffuse shading in an image. One ques-
tion relates to the perceptual ambiguity that exists between perceiving an image as being
caused by shading and perceiving it as being caused by an alternative effect like defocus
or translucency (Mooney et al., 2019; Marlow and Anderson, 2021). Another relates to
the human ability to perceive shape without inferring a precise representation of incident
lighting (Cavanagh, 2005). Figure 1 contains some examples.

Computational models for “shape from shading” have been explored extensively in com-
puter vision since the 1970s (Horn, 1970), but they do not provide answers to these questions
because they deviate from human perception in two fundamental ways.

The first relates to representation. Whereas computational models represent output
shape as a single depth map or field of surface normals (Horn and Brooks, 1989; Zhang
et al., 1999; Barron and Malik, 2014; Bednarik et al., 2018), perception produces shape rep-
resentations that are seemingly topological or qualitative (Zucker, 2020; Todd and Petrov,
2022; Linton et al., 2023). Moreover, most computational models include an explicit repre-
sentation of lighting that is inferred in conjunction with shape (Zoran et al., 2014; Barron
and Malik, 2014; Wimbauer et al., 2022). This is at odds with the proven perceptual abili-
ties to report shape much faster than lighting and to report shape without noticing artificial
manipulations of lighting (Cavanagh, 2005; Ostrovsky et al., 2005).

The second difference relates to assumptions about the causes of input pixel values.
Almost all computational models assume their input pixel values were caused by diffuse
shading, as opposed to being caused by some other effect. This assumption often manifests
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Figure 1: (a) A diffusely shaded image without high-curvature ridges can be perceived as
defocus instead. Introducing boundaries can either (b) weaken or (c) strengthen
the perception of shading and 3D shape. (d) When the perception of shading and
3D shape is strong, it is often unaccompanied by a precise perception of lighting.
People can see the shape easily, while it takes some time to find which one has
different lighting. Here, one of the segments is lit differently than the others—can
you see which one? (Figures are inspired by Anderson and Marlow (2022) and
Cavanagh (2005).)

as an oracle that pre-segments the image and says “these pixels were caused by shading”.
The human observer, in contrast, does not have this luxury. She must decide for herself
which pixels were caused by shading and which ones were not. Perceptual experiments show
this determination can be challenging and ambiguous, even in very simple scenarios (Marlow
et al., 2019), and previous models provide no means for exploring why or how.

As a step toward bridging the gap between traditional machine vision models for shape
from shading and the insights gained from psychophysical studies, we aim to address the
following open questions under the Lambertian shading assumption: What information
about shape should be extracted from shading cues alone, and without inferred lighting?
How can we computationally model this process?

We take a neural-geometric approach to answering these questions. We begin with the
ansatz that from shading alone, a vision system should aim to infer a particular scalar curva-
ture statistic—the logarithmic of Casorati curvature—instead of explicit surface normals or
depth. Then, we build on previous mathematical characterizations of Lambertion shading
constraints (Kunsberg and Zucker, 2014; Xiong et al., 2014; Heal et al., 2020) to design a
neural architecture that infers this curvature statistic within each local receptive field. Cru-
cially, the architecture is designed to have a desirable mix of invariances and equivariances:
There is invariance to both the surface albedo (“paint color”) and the scene lighting; and
there is equivariance under 2D similarity transformations (rotation, translation and scale)
of the image plane.

We examine the behavior of our system using synthetic images like the one in Figure 1(a),
but with albedo and lighting patterns that vary from image to image, and that vary spatially
within each image. We find that our model produces curvature fields that are quite stable
under these changes to albedo and lighting patterns, and that are much more accurate
and stable than comparable curvature fields obtained from existing shape from shading or
inverse rendering models.
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We note that our approach is complementary to a recent trend of training large black-
box neural networks to perform monocular depth estimation (e.g., Ranftl et al. (2020, 2021))
and inverse rendering (e.g., Li et al. (2018); Yu and Smith (2019); Wimbauer et al. (2022)).
While the black-box approach has the advantage of capacity to exploit all sorts of cues
in a training set, it lacks interpretability and often struggles to generalize to images that
are radically new. Our work suggests an alternative front-end architecture that could help
future systems be more efficient and adaptable.

2. Methodology

According to a shadow-less Lambertian shading model, a graph-like surface with height
function h(x̄, ȳ) induces image I(x̄, ȳ) as

I(x̄, ȳ) = ρ(x̄, ȳ)L(x̄, ȳ) · N(x̄, ȳ)

||N(x̄, ȳ)||
, (1)

where ρ ∈ R+ and L ∈ R3 are the albedo and incident lighting at each location, and
N(x̄, ȳ) = (−∂h

∂x̄(x̄, ȳ),−
∂h
∂ȳ (x̄, ȳ), 1) is the field of un-normalized surface normals.

As depicted in Fig. 2, our system processes each receptive field P independently. So
hereon, we use a patch-centered coordinate system (x, y) ∈ P , with coordinate (0, 0) at
the receptive field’s center, and I(x, y) and f(x, y) the image and surface height functions,
respectively, within the receptive field. Critically, we assume the receptive field size is such
that the local surface f(x, y) is well approximated by a quadratic function

f(x, y) = fxx+ fyy +
1

2
fxxx

2 + fxyxy +
1

2
fyyy

2, (2)

with third and higher-order derivatives being negligible.1 Our task is to infer the local
shape f = (fx, fy, fxx, fxy, fyy), or in fact a statistic of that shape, from local intensity
I(x, y). Note that when convenient, we express quadratic shape as f = (n, κ) and refer to
n = (fx, fy) as orientation and κ = (fxx, fxy, fyy) as curvature.

Our system has two levels of processing. First, at each image point we use deriva-
tive filters to compute the local 2-jet, meaning the derivatives up to second order, I =
(I, Ix, Iy, Ixx, Ixy, Iyy). This is fed to a (pre-trained) neural unsigned distance function
gθ(I, f) whose zero-set encodes the manifold of local shapes f that are consistent with I.
One of our contributions is a design for gθ that provides equivariance under similarity
transformations of (x, y) and invariance to the albedo and lighting at the point in question.

In the second stage of processing, we aggregate information from many points in P using
spatial consistency. This stage has an iterative form, akin to test-time optimization, and it
is simple with no trainable parameters. We design it to output a particular scalar statistic
of the local shape f in patch P , namely the logarithm of the Casorati curvature. As we
describe next, our choice of output is motivated by both mathematics and vision science.

1. In the wild, the “right” receptive field size will vary across the visual field and cannot be known before-
hand, so it would be necessary to apply and fuse our patch-based processing across multiple scales. In
this paper, we simply assume the surface h(x̄, ȳ) has spatial frequencies that permit one receptive field
size everywhere, and that this size is known a priori.
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Figure 2: Two stages of processing to produce logCP from image patch P . (a) Pre-trained
neural UDF gθ operates in parallel on image 2-jets Ij at every point. The UDF’s
zero-set at j approximates a canonical piece F+(Ij) of the two-dimensional man-
ifold of quadratic shapes f ∈ F (Ij) that are consistent with Ij . Geometric trans-
forms TIj precede each UDF to provide equivariance. (b) We iteratively estimate
the patch’s central normal and curvature, f0 = (n, κ) ∈ R5, and thus its logCP ,
by quadratically transporting the central (n, κ) to get values (nj , κj) at each j
and minimizing the sum of neural distances that they imply.

2.1. Why Casorati Curvature?

Mathematically, when the lighting and albedo fields are unknown, there is an entire three-
parameter family of surfaces, ax̄+ bȳ + ch(x̄, ȳ) with a, b, c ∈ R, that can exactly explain a
Lambertian image I(x̄, ȳ). This is true even when lighting L(x̄, ȳ) = L is uniform over the
image (Belhumeur et al., 1999), and it has been dubbed the generalized bas-relief ambiguity.
Perceptual experiments by Koenderink et al. (2001) are consistent with this idea: They sug-
gest that when subjects are forced to make choices about first-order shape (∂h/∂x̄, ∂h/∂ȳ)
they choose surfaces from among the three-parameter family somewhat arbitrarily. For a
second order Taylor approximation to the surface in patch P , this ambiguity implies an
equivalence class of local shapes (a + cfx, b + cfy, cfxx, cfxy, cfyy), which in turn implies
that in the absence of other cues, a quadratic shape from shading processor for patch P
should produce, at best, an estimate of curvature up to scale: cκ = c(fxx, fxy, fyy).

A separate analysis of shading, this time within small patches, has shown that when
lighting and albedo are unknown and uniform over a patch such as P , an exactly-quadratic
surface (Equation (2)) can, at best, be determined up to a four-way choice that comprises
a convex-concave-saddle ambiguity (Xiong et al., 2014). This implies that a reasonable
expectation for local shading processors like ours is to produce a statistic of shape that is
invariant to this ambiguity. Next, we show that Casorati curvature is one such statistic.

Casorati curvature was introduced by Koenderink (1990) as a convenient reparametriza-
tion of local curvature κ = (fxx, fxy, fyy). The reparameterization is (C, σ, 2ϕ) with Casorati
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curvature C, shape index σ and orientation ϕ; and it relates to κ via

C =
√

(k21 + k22)/2; σ = arctan
k2 + k1
k2 − k1

; ϕ =
1

2
arctan

2fxy
fxx − fyy

,

with k1 ≥ k2 ∈ R the principal curvatures (i.e., eigenvalues of the Hessian formed from κ).
The Casorati curvature measures the overall deviation from local planarity, while orientation
2ϕ ∈ [−π, π) indicates the rotation of the principal curvature frame relative to the (x, y)
frame, and shape index σ ∈ [−π/2,+π/2] smoothly transitions through convex, saddle-like
and concave quadratics that have equal deviations from planarity.

To show that Casorati curvature is invariant under the four-way ambiguity of Xiong
et al. (2014), we apply the mathematical expressions of the ambiguity’s two defining auto-
morphisms, ρ1, ρ2, to the reparameterized local shape and find (for σ > 0)

ρ1 : (fx, fy, C, σ, 2ϕ) → (−fx,−fy, C,−σ, π − 2ϕ)

ρ2 : (fx, fy, C, σ, 2ϕ) → (fx cos(2ϕ) + fy sin(2ϕ), fx sin(2ϕ)− fy cos(2ϕ), C, π/2− σ, 2ϕ).
(3)

This shows that Casorati curvature is indeed invariant, and it also provides an intuitive
description of the ambiguity: A convex shape f transforms to a concave shape via ρ1 and
to saddles via ρ2 and ρ1 ◦ ρ2.

Combining these observations leads to the logarithm of Casorati curvature as a desirable
output for any locally-quadratic shading processor, because it is invariant to both the local
four-way ambiguity and the global multiplier c from the generalized bas relief ambiguity.
The next sections propose and evaluate an architecture for producing this output.

3. Point-wise Shape with a Neural Unsigned Distance Function

Our first stage is the parallel application of a neural unsigned distance function (UDF) gθ to
every point in P . Our architecture draws on the differential geometry results of Kunsberg
and Zucker (2014) and their subsequent algebraic geometry counterparts (Heal et al., 2020;
Heal, 2021). These provide mathematical characterizations of the set of second-order shapes
f ∈ R5 that are consistent with an image 2-jet I = (I, Ix, Iy, Ixx, Ixy, Iyy) when the point’s
albedo and lighting are unknown. One result says that given a point’s 2-jet, such as I1 in
Figure 2(a), there is a two-dimensional manifold of consistent shapes f . Another result says
the manifold comprises four isomorphic pieces, so neural representations like ours need only
represent one piece. We state the results here, and details are in the appendix.

Theorem 1 (Kunsberg and Zucker (2014), Heal et al. (2020)) Assume shadow-less Lam-
bertian shading (Equation (1)) of a quadratic surface (Equation (2)) and the image 2-jet
I at a point (x, y) that has locally-constant albedo and lighting, ı.e., ∀k > 0, Dk

x,yρ(x, y) =

Dk
x,yL(x, y) = 0. A non-degenerate shape f ∈ R5 that is consistent with I satisfies the three

fourth-order polynomials, Ci(f ; I) = 0, i = 1, 2, 3, in Appendix A.

This result applies to shapes f that are non-degenerate, meaning they satisfy (fxx +
fyy)(fxxfyy − f2

xy)(4f
2
xy + (fxx − fyy)

2) ̸= 0, which excludes perfect planes, cylinders and
surfaces with equal principal curvature magnitudes. We call the set of non-degenerate
shapes that form the zero-set of Ci(f ; I) the consistent shape-set and denote it as F (I), a
two-dimensional algebraic variety.
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Remark 2 (Heal et al. (2020)) The automorphisms of Equation (3) divide F (I) into four
isomorphic pieces, allowing the consistent shape-set to be represented by only one piece. We
select the piece that corresponds to convex shapes and call it the positive shape set, defined
as F+(I) = {f ∈ F (I) | fxx + fyy > 0 and fxxfyy − f2

xy > 0}.

The left of Figure 2(a) depicts the projection of F (I1) onto the three curvature dimen-
sions (fxx, fxy, fyy), with colors showing its four pieces. Knowing a consistent shape f1 on
the positive shape set allows computing three other consistent shapes via Equation (3).2

3.1. Equivariance

There are no known symbolic expressions for the zero-set of Ci(f ; I) given I (Heal et al., 2020;
Heal, 2021), so we propose representing F+(I) implicitly using a neural UDF gθ(I, f) that
evaluates to zero for all f ∈ F+(I). Here, we show that our UDF can be made equivariant
under 2D similarity transformations of the image plane and invariant to overall brightness
by preceding it with a measurement-dependent transformation TI : (I, f) 7→ (Ĩ, f̃). We also
show this transformation reduces the dimension of the UDF domain from eleven to eight.

Our transformation TI essentially invokes a point-wise change of the image coordinate
system to one that aligns with the eigenvectors of the image Hessian constructed from
(Ixx, Ixy, Iyy) and that is scaled according to the Hessian eigenvalues. We describe it here
as a composition of four components.

1. Contrast normalization. Since polynomials Ci are linear in intensity I, we can achieve
invariance to overall brightness simply by normalizing a 2-jet by its intensity and leaving
the shape-vector unchanged: (I, f) 7→ (I/I, f).

2. Rotation to image Hessian frame. We rotate the local (x, y)-frame to align with the
eigenvectors of the image Hessian. Suppose matrix RT

I HIRI = diag(λ1, λ2) with eigenvalues
λ1 ≥ λ2, then the transformation is: (Ix, Iy) 7→ (Ix, Iy)RI; (fx, fy) 7→ (fx, fy)RI;(

Ixx Ixy
Ixy Iyy

)
7→ RT

I

(
Ixx Ixy
Ixy Iyy

)
RI =

(
λ1 0
0 λ2

)
; and

(
fxx fxy
fxy fyy

)
7→ RT

I

(
fxx fxy
fxy fyy

)
RI.

3. Isotropic scale. We scale the (x, y)-frame isotropically based on the sum of squared
image Hessian eigenvalues. Defining s =

√
1/(λ2

1 + λ2
2) this implies:

I 7→ (I, sIx, sIy, s
2Ixx, s

2Ixy, s
2Iyy); f 7→ (fx, fy, sfxx, sfxy, sfyy).

4. Reflection, if needed. Finally, if the transformed value of Ix is negative, we reflect
the orientation via I 7→ (I,−Ix,−Iy, Ixx, Ixy, Iyy) and f 7→ (−fx,−fy, fxx, fxy, fyy).

One can show (Heal, 2021) that the composition of these transformations does not affect
consistency, meaning ∀i Ci(f ; I) = 0 ⇔ Ci(f̃ ; Ĩ) = 0. It is also clear that the transformed
2-jet has the form Ĩ = (1, Ĩx, Ĩy, Ĩxx, 0, Ĩyy) with Ĩx ≥ 0; and since λ1 ≥ λ2, we know
(Ĩxx, Ĩyy) is contained in the unit half-circle, which we parameterize by, say, α ∈ [0, π].
Thus, the transformation maps 2-jets in R6 to R+ ×R× S+, and we can write TI : (I, f) 7→(
(Ĩx, Ĩy, α), (f̃x, f̃y, f̃xx, f̃xy, f̃yy)

)
.

2. Appendix A includes the expressions for the automorphisms in the {fxx, fxy, fyy} parameterization.
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By preceding our UDF with transformation TI and following it with the inverse transfor-
mation T −1

I applied to each zero-distance shape f̃ , we obtain a system for making inferences
about point-wise shape f that is invariant to image brightness and equivariant to 2D sim-
ilarities. Moreover, we substantially decrease the dimension of the UDF domain, which
reduces network complexity and training.

We note that our neural representation and transformation TI are inspired by those
in (Heal et al., 2020) and offer three improvements. By aligning our local (x, y)-frame with
the image Hessian instead of with the gradient (Ix, Iy) used by (Heal et al., 2020), we
accommodate all non-degenerate points, including those with vanishing Ix, Iy. Also, we
expand upon that work’s equivariance under rigid transformations by also including scale
s. Finally and most importantly, we avoid Heal et al. (2020)’s assumption that F+(I) has
the graph structure κ = hθ(n; I), which is not valid as we show in Appendix C.

3.2. UDF Architecture and Training

Our neural approximation to the positive shape set is a parameterized unsigned distance
function gθ : R+×R×S+×R5 → R+, (Ĩ, f̃) 7→ d that evaluates to zero when (transformed)
point-wise shape f̃ is consistent with (transformed) 2-jet Ĩ. For convenience we use notation
v ≜ (Ĩ, f̃), an 8-vector. Our training scheme is inspired by Gropp et al. (2020). Namely, we
learn parameters θ by numerically generating samples that are consistent, vi = (Ĩi, f̃i) with
f̃i ∈ F+(Ĩi), and random samples that are not, v′ ∈ R8; and then we minimize

l(θ) =
1

|{vi}|
∑
vi

|gθ(vi)|+ λE{v′}(||∇v′gθ(v
′)|| − 1)2 (4)

with some λ > 0. The first term encourages zero distance for each vi, and the second
“Eikonal” term encourages the general behavior of a distance function (Gropp et al., 2020),
which has unit gradient magnitude almost everywhere. To improve convergence, we find
it helpful to create a third set of samples v′′ that are distance ϵ from F+(Ĩi) and add the
additional loss E{v′′}

(
|gθ(v′′)− ϵ|+ (||∇v′′gθ(v

′′)|| − 1)2
)
. Details are in Appendix D.

We create 440k training samples vi using a numerical polynomial solver. The network
has 8 fully-connected layers each with 512 hidden units and a softplus layer, and a skip
connection from the input to the middle layer. We use geometric weight initialization from
Atzmon et al. (2019) and train for 7k epochs using Adam optimizer and learning rate 0.001.

4. Spatial Consistency within Receptive Field P

While there is an entire manifold of shapes that are consistent with a single 2-jet I, the
results from (Xiong et al., 2014; Heal, 2021) suggest that combining multiple 2-jets within
a patch P can reduce the ambiguity to the discrete four-way choice, and thus can uniquely
identify the Casorati curvature, which is invariant to this four-way choice.

As depicted in Figure 2(b), our strategy is to define and iteratively optimize over a
patch-level orientation and curvature (n, κ) ∈ R5 that equals these values at the receptive
field’s center (0, 0). Since the surface is quadratic over P by assumption, choosing a value
for these patch-level variables implies values for point-wise shapes fj = (nj , κj) at all points
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(xj , yj) ∈ P via quadratic transport:

nj = Ajκ
T + n with Aj =

(
xj − x yj − y 0

0 xj − x yj − y

)
. (5)

Thus, we can measure the consistency of patch-level shape (n, κ) with all of the 2-jets
in patch P by summing the consistencies of the point-wise shapes they imply. That is, we
use iterative optimization to solve

argmin
n,κ

1

|P |
∑
j∈P

gθ

(
Ĩj ; TIj(nj , κj)

)
, (6)

with each (nj , κj) determined by (n, κ) via Equation (5). We use 400 steps of the Adam
optimizer with learning rate 0.01.

By applying this process in parallel to the overlapping receptive fields in an image (stride
1) we obtain estimates of (n, κ) for every pixel. Each pixel is independently subject to the
four-way ambiguity, but the log-Casorati curvature logC is uniquely determined. This is
what we visualize as the output in our experiments.

We emphasize that even though we use the log-Casorati curvature field for visualization,
our system’s output is richer than that. It comprises the full values (n, κ) at each pixel,
which via the automorphisms of Equation (3), represent an equivalence class of four local
shapes for that pixel. Appendix F contains a preliminary experiment that combines this
richer information with external boundary cues to reconstruct a field of surface normals.

5. Experiments

For our simulation experiments, we focus on shapes whose images are inherently ambiguous.
By this we mean they are void of other shape cues like boundaries, periodic textures or
specular highlights. They are also void of high-curvature ridges that recent results have
shown can also induce “anchor curves” for shape (Kunsberg and Zucker, 2021).

We create surfaces h(x̄, ȳ) that are cubic splines with a grid of 6 × 6 knots having
random height values, and we render images of them I(x̄, ȳ) using Equation (1) with various
albedo and lighting fields. The shapes are all sufficiently low-frequency for the quadratic
assumption (Equation (2)) to be valid in every 7× 7 patch. Each input is a 41× 41 grid of
image derivatives (the 2-jet at each pixel) and our patch processor operates in parallel in the
overlapping stride-one 7 × 7 patches. We visualize the output as a log-Casorati curvature
field over the 41× 41 image domain. Figure 3 shows two examples.

For each surface, we consider a variety of albedo and lighting conditions. In each panel
of Figure 3, each of the first three columns has uniform albedo ρ(x̄, ȳ) = 1 and spatially-
uniform lighting L(x̄, ȳ) = L from a randomly-chosen direction. The next two columns each
have uniform albedo ρ(x̄, ȳ) = 1 and a lighting field L(x̄, ȳ) whose directions change spatially
within an angular anulus of 25◦ to 50◦ of the view direction. The final two columns are
rendered with similar varying lighting fields but with albedo fields ρ(x̄, ȳ) that are piecewise
constant. Specifically, Column 6 has circular regions with ρ = (0.7, 0.85), and Column 7
has circular regions with ρ = (0.1, 0.2). All of the images in Figure 3 are rendered without
noise. Appendix E contains additional results, including some with additive Gaussian noise.
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Figure 3: True and estimated curvature fields for four surfaces with various lighting and
albedo patterns. The first three columns have uniform albedo and are lit uni-
formly but from different directions, while the last four columns have spatially
varying lighting, and either uniform or spatially-varying albedo. We compare
with SIFS (a boundary-less variant of SIRFS (Barron and Malik, 2014)) and
Derender3D (Wimbauer et al., 2022) by computing log-Casorati curvatures from
their predicted normal fields.
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As baselines, we show comparable results derived from two previous computer vision
models: Derender3D (Wimbauer et al., 2022) and a boundary-less and uniform-albedo
variant of SIRFS (Barron and Malik, 2014), known as SIFS. Like most existing computer
vision models for shape reconstruction, these are inverse-rendering systems that aim to infer
precise lighting (and reflectance) in addition to shape. Both models operate on entire images
instead of patches so they can exploit the global statistics of the surface shapes that occur in
their training sets. We choose these two models because they are rare examples that do not
rely critically on the presence of boundary contours or other shape cues. The boundary-less
and uniform-albedo variant of SIRFS is an interpretable model with an engineered prior
for h(x̄, ȳ), and derender3D is an autoencoder trained on more than 20k images. Each of
the two models produces a surface normal field, and from these we compute curvature and
then log-Casorati curvature fields.

We find that our model’s curvature fields are more accurate and more stable under
variations in lighting and albedo, especially when lighting and albedo fields vary within an
image, and when some albedo values are very small. We attribute our model’s stability to
its architecture, which by Theorem 1 and the structure of Equation (6), allows the albedo
and lighting to vary (as piecewise constant functions) even inside of P . We attribute the
baseline models’ weaker performance to the fact that our images are different from their
training images, which highlights the challenge of creating models that can generalize.

Limitations. While they are randomly generated, our test surfaces are all sufficiently low-
frequency for the quadratic surface approximation to be accurate using the same receptive
field size at every location. In the wild this will almost never occur, so it would be necessary
to execute our processing using many receptive field sizes (and possibly many Gaussian
derivative scales), and to design fusion or selection schemes that can exploit the appropriate
sizes where needed. Along these lines, we have also yet to explore how to incorporate a
point-wise UDF front-end architecture like ours into a drastically-larger model that has
capacity to leverage other visual cues and non-local context. Another limitation of our
model is its reliance on Lambertian rendering for UDF pre-training. This is very different
from how biological systems must learn, and it is not well-aligned with perceptual evidence
that humans can infer shape information for a variety of non-Lambertian diffuse rendering
functions (Zucker, 2020). Perhaps there are unsupervised schemes that can train UDF-based
architectures like ours directly from images instead of from algebraic equations.

6. Conclusion

Experiments with human perception suggest there are useful computational “shortcuts” for
inferring 3D shape from diffuse shading without having to infer precise lighting or execute
complete inverse rendering. We have introduced some ideas for what such a shortcut could
be and how it could be implemented, with particular attention to achieving some desirable
invariance and equivariance properties. Our simple prototype system, which operates patch-
wise and has no trainable parameters beyond those of the pre-trained UDF gθ, exhibits the
ability in simulation to produce curvature fields that are more accurate and stable than
alternative inverse rendering models, in particular when the albedo field or incident lighting
field are varying across a surface. This may inspire new directions for research in learned
representations that are more efficient or that align more closely with biological systems.
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Appendix A. Polynomials of Consistent Shape

The polynomials that implicitly describe the consistent shapes f for image measurement I
are (from Heal et al. (2020)):

C1(f; I) = f4
xIxx + 2f3

xfxxIx + f2
xf

2
xyI + 2f2

xfxyfyIx + 2f2
xf

2
y Ixx

+ 2f2
xIxx − 2fxfxxfxyfyI + 2fxfxxfy

2Ix + 2fxfxxIx

+ f2
xxf

2
y I + f2

xxI + f2
xyI + 2fxyf

3
y Ix + 2fxyfyIx

+ f4
y Ixx + 2f2

y Ixx + Ixx (7)

C2(f; I) = f4
xIyy + 2f3

xfxyIy + 2f2
xf

2
y Iyy + 2f2

xfyfyyIy + f2
xf

2
yyI

+ 2f2
xIyy + 2fxfxyf

2
y Iy − 2fxfxyfyfyyI + 2fxfxyIy

+ f2
xyf

2
y I + f2

xyI + f4
y Iyy + 2f3

y fyyIy + 2f2
y Iyy

+ 2fyfyyIy + f2
yyI + Iyy (8)

C3(f; I) = f4
xIxy + f3

xfxxIy + f3
xfxyIx + f2

xfxyfyIy + f2
xfxyfyyI

+ 2f2
xf

2
y Ixy + f2

xfyfyyIx + 2f2
xIxy + fxfxxf

2
y Iy

− fxfxxfyfyyI + fxfxxIy − fxf
2
xyfyI

+ fxfxyf
2
y Ix + fxfxyIx + fxxfxyf

2
y I + fxxfxyI

+ fxyf
3
y Iy + fxyfyIy + fxyfyyI + f4

y Ixy + f3
y fyyIx

+ 2f2
y Ixy + fyfyyIx + Ixy (9)

As noted in Heal et al. (2020), the real solutions to the polynomial system {Ci = 0, ∀i} are
identical to those for the rational equations in Corollary 4.2 of Kunsberg and Zucker (2014).

The automorphism in Equation (3) can be expressed in the Euclidean frame as:

ρ1 : f → −(fx, fy, fxx, fxy, fyy), ρ2 : f →
1√

4f2
xy + (fxx − fyy)2


fxfxx − fxfyy + 2fyfxy
2fxfxy + fyfyy − fyfxx
f2
xx − fxxfyy + 2f2

xy

fxxfxy + fxyfyy
f2
yy − fxxfyy + 2f2

xy


(10)
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Appendix B. Curvature Landscape

Define the following transformation: r = 1
2(fxx − fyy); s = fxy; t =

1
2(fxx + fyy). Denote

the principal curvatures of the local shape as k1 ≥ k2 ∈ R. The definitions of curvature
landscape descriptors (C, σ, 2ϕ) can be written as

Casorati curvature C =
√

r2 + s2 + t2 =
√
(k21 + k22)/2;

Shape Index σ = arctan
t√

r2 + s2
= arctan

k2 + k1
k2 − k1

;

Orientation ϕ =
1

2
arctan

s

r

Since the principal curvature magnitude |k1|, |k2| remains unchanged for the four-way ambi-
guity (Xiong et al., 2014), it is expected that the Casorati curvature is an invariant statistics
under the convex-concave-saddle ambiguity.

We can also express r, s, t as

t = C sinσ;

r = C cosσ cos 2ϕ;

s = C cosσ sin 2ϕ.

Then (r, s, t) and (C, σ, 2ϕ) are the Cartesian and polar coordinats of the quadratic shape
space, according to Koenderink and Van Doorn (1992); Koenderink and Doorn (2014). We
visualize this space in Fig. 4, where the radius of the sphere corresponds to the casorati cur-
vature. Note that the orientation ϕ is not defined for σ = ±π

2 since the shape is rotationally
symmetric.

Appendix C. Representing F+: Explicit Graph or Implicit Unsigned
Distance Function?

Intuition for representing the positive shape set F+ implicitly by a neural unsigned distance
function (fx, fy, fxx, fxy, fyy) 7→ R+ (as done in this paper) instead of explicitly representing
it by a neural graph (fx, fy) 7→ (fxx, fxy, fyy) (as done in Heal et al. (2020)) can be gleaned
from the following one-dimensional case.

A locally quadratic “surface” has height f(x) = ax+1
2bx

2. The normal at the center pixel
x = 0 is thus N(x) = (−b, 1). With light direction L = (Lx, 1), albedo ρ and view direction

(0, 1), the intensity at image point x is I(x) = ρL · N)(x)
||N(x)|| . We acquire image measurement

I = (I, Ix, Ixx) by calculating spatial image derivatives at x = 0. Using similar derivations
as in Heal (2021), we obtain the polynomial defining the consistent shape set at x = 0:

D1(f ; I) = D1(a, b; I) = b2I + (1 + a2)2abIx + (1 + a2)2Ixx. (11)

Any consistent shape that is non-degenerate (b ̸= 0) satisfies D1(a, b; I) = 0.

As an aside, here is the analog to our paper’s canonicalization TI in this one-dimensional
case:
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Increasing C

𝜎 = −
𝜋
2

𝜎 =
𝜋
2

𝜎 = −
𝜋
4

𝜎 =
𝜋
4

𝜎 = 0

C2𝜙 = 𝜋 2𝜙 = 0

Figure 4: Visualization of curvature Landscape descriptors (C, σ, 2ϕ). Casorati curvature
C represents the deviation from planarity. Shape index σ is scale-invariant and
characterizes the quadratic shape into spherical cups/caps, saddles, ridges, etc.
Orientation ϕ describes the relative alignment of the principal curvatures w.r.t.
the Cartesian frame.

• Constant scaling: division by I such that (I, Ix, Ixx) → (1, IxI ,
Ixx
I ). Curve parameters

(a, b) remain unchanged.

• Isotropic scaling by
√
|Ixx|: (1, Ix, Ixx) → (1, Ix√

|Ixx|
,±1) and (a, b) → (a, b√

|Ixx|
).

• Reflection: When Ix < 0, we can transform it to positive value by reflection Ix → −Ix
and a → −a. The second order terms Ixx, b are not affected.

C.1. 1D Case: F+ is not a graph

In the one-dimensional case, given an image measurement (I, Ix, Ixx) and a surface orien-
tation a, one can solve for the corresponding consistent curvatures b analytically:

b =
−2aIx(1 + a2)±

√
4a2(1 + a2)2I2x − 4I(1 + a2)2Ixx

2I
. (12)

We can also plot the consistent shape set F (I) = {(a, b)|D1(a, b; I) = 0} on the (a, b)-plane,
for any measurement I. Figure 5 shows a few examples.

Analogous to the four-way choice in the main paper, in this one-dimensional scenario
there is a two-way concave/convex ambiguity. For instance, shapes (a, b) = (−1, 1) and
(a′, b′) = (1,−1) generate the same image under lighting L = (0, 1). Thus, we can define
the positive shape set F+(I) as the subset of consistent shapes for which b > 0.

But even when we consider just the positive shape set (those with b > 0), we see that
in two of the three examples, there are two distinct positive curvature values that form a
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𝑰! = (0.9864,−0.1661,−0.5486)

𝑰" = (0.9487,−0.1897, 0.1123)

𝑰# = (0.9138,−0.1570, 0.1788)

𝑎

𝑏

Figure 5: Solution set for three 1D curve image measurements Ii. The dotted lines show
that for given a, we can have none, one or two solutions with positive/negative
curvature b.

consistent shape together with a. That is, the positive shape set F+(I) cannot be represented
as a function of a. This is made precise by the discriminant:

∆ = 4a2(1 + a2)2I2x − 4I(1 + a2)2Ixx = 4(1 + a2)2(a2I2x − IIxx). (13)

When Ixx < 0 we always have the discriminant > 0. Since the value ∆ under the square
root is also larger than the first term in the numerator, for any a ∈ R, we can find a solution
b1 > 0 and another solution b2 < 0, such as the orange line in Fig 5. When Ixx > 0, there
are cases when a has no solution, one solution or two solutions of b ∈ R+. Examples are
shown by the green and blue lines.

C.2. 2D Case: Numerical evidence

In the two-dimensional case, we have not yet found examples where F+(I) can be sym-
bolically proven to not be a graph, but it is easy to acquire very strong evidence from a
numerical polynomial solver. An example is shown in Table 1 and Figure 6, where we fix
measurement I and orientation (fx, fy) and ask a numerical polynomial solver 3 for the
real-valued roots (fxx, fxy, fyy) that satisfy Ci(fxx, fxy, fyy; fx, fy, I) = 0 ∀i, from which we
select the ones with positive curvature. The table and figure report these roots for some
choices of orientation (fx, fy), along with their associated Casorati curvature values.

First, we observe that as in the 1D case, there are multiple (two) positive curvatures
that form a consistent shape along with orientation (fx, fy), suggesting that the positive
shape set is not a graph over orientation. Moreover, for image measurements where a chosen
orientation (fx, fy) has multiple positive curvatures (fxx, fxy, fyy) that are consistent, we
observe behavior that mimics the one-dimensional case: When |fx|, |fy| are small (i.e., the
normal is close to the view direction), the curvatures κ, κ′ and their Casorati curvatures are
close. When |fx|, |fy| are larger (i.e., as the normal turns away from the view direction), the

3. Solved using https://reference.wolfram.com/language/ref/NSolve.html
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Table 1: Given surface first order terms fx, fy, there can be multiple pos-
itive shape solutions. Numerically solved examples for I =
(0.6315,−0.3403, 0.3672,−1.2077, 0.5387,−0.0505). We use / to denote the
case when there is no real solution output from the solver.

fx fy fxx fxy fyy Casorati curvature

−0.1 −0.2 / / / /
−0.5 −1 / / / /
−1 −2 3.0835 −0.9895 3.8359 3.6180

3.0722 −1.1204 2.3267 2.9464
−2 −3 4.7432 −0.4776 8.5723 6.9440

4.6068 −1.3903 2.4684 3.9485
−3 −4 6.6049 0.0904 12.7974 10.1837

6.2794 −1.7003 2.9464 5.1911
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Figure 6: Positive shape solution from a specific image measurement I along the line
fy = 2fx. We compute the Casorati curvature from each numerically solved
(fxx, fxy, fyy) solution. We see from the figure that a given (fx, fy) can have 2
solutions, one with higher curvature (orange) and the other with lower curvature
(blue) and their difference diverge as |fx|, |fy| becomes larger.

difference between κ, κ′ also increases. This is analogous to the 1D visualization where, for
the blue and green cases, the two consistent positive curvatures b diverge as |a| gets larger.
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Appendix D. Details on Model Training and Inference

D.1. Training Data Generation

To obtain the training samples, we first generate image vectors I by sampling some light
source directions L and surface vectors f . Then for each I we densely sample surface normals
and solve for the roots of the polynomial system using Mathematica. We filter for solutions
in the positive shape set F+ and set a upper bound for curvature values to obtain around
440k training data points.

We train the network gθ on canonicalized f̃ , Ĩ with the loss in Equation (4) for 7k
iterations using the Adam optimizer and learning rate 0.001. The loss hyper-parameter λ
is set to 1.

Training

Inference

𝑰, 𝒇 ∈ ℝ!× ℝ" 
∈ 𝑭#

𝓣𝑰
(*𝑰, *𝒇) ∈ ℝ%× ℝ" 

∈ 𝑭#

1
𝑃!

Σ𝑔"(&𝑰, &𝒇)

𝑔&

Neural UDF

𝑑

𝑰'

𝑛(, 𝜅'

𝑛), 𝜅*
𝑰*

𝓣𝑰𝒋

𝓣𝑰𝒊 𝑔&

𝑔&(0𝑰𝒋, 0𝒇𝒋)

(0𝑰𝒊, 0𝒇𝒊)

Iterative update

Spatial Consistency

𝑃1

Figure 7: During training, we optimize UDF weights θ by minimizing distance d at ground
truth points (I, f) together with loss Laug at augmented points and the Eikonal
loss at random points. At inference time, given patch Pi centered at i, the surface
vector of every neighboring pixel j is computed with spatial consistency constraint
(Equation (5)) using the normal ni and curvature κi of point i. After applying
canonicalization TIj pixel-wise, we use gradient descent to minimize the mean
distance loss over the center pixel’s shape.

In Fig. 7 we show how the canonicalization step is applied in both training and inference.
When training the UDF, consistent f , I pairs from the ground truth manifold F+ are densely
sampled. They are then canonicalized by TI to train the UDF weights θ. We also incorporate
an augmentation loss and an Eikonal loss on points near the ground truth manifold as
described in the main paper.

During inference, the transformation TI is analytic and invertible, so we can use auto-
differentiation to optimize for the shape.
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D.2. Data Augmentation for UDF Training

The method of Gropp et al. (2020) learns a signed distance function for an (n − 1)-
dimensional manifold embedded in Rn. In those cases, the normal direction is unique
(up to sign) and one can also regularize the loss based on normals if provided by data.
However, their sampling scheme becomes problematic for manifolds that have lower dimen-
sion. To learn an implicit neural representation for such lower-dimensional objects, we need
to modify the network architecture to output unsigned distance instead of signed distance,
because signed distance is ill-defined when there is no notion of an interior.

After modifying the network to output unsigned distance, we test it on a toy problem
comprising a space curve in 3D. We find that the sampling scheme from Gropp et al. (2020)
is not sufficient to learn a good representation of the space curve, converging instead to
a higher dimensional surface. Examples are shown in Fig.8. This is because the method
relies on implicit geometric regularization and only sample sparsely in space. Since the
logarithmic spiral is a subset of the cone and a circle is a subset of the sphere, without
further dense sampling to disambiguate the two shape, the UDF for the curve converges to
the higher dimensional shape instead.

We use the following data augmentation to improve the sampling scheme. For k-
dimensional differentiable manifold in Rn with explicit parametrization, we can compute its
tangent space basis vectors {ti ∈ Rn, i ∈ [1, 2, . . . , k]} by taking partial derivatives. Then
we can derive the normal space basis {ni ∈ Rn, i ∈ [1, 2, . . . , n− k]} by finding vectors that
are orthogonal to {ti}. Then we randomly sample in the normal space to get a unit-length
direction vector d =

∑
βini(x) that is locally orthogonal to the manifold at x. Taking a

distance of ϵ away from the manifold gives an augmented data point x′′. By construction,
it has unsigned distance ϵ to the ground truth manifold. Repeating this step on multiple
points {x} sampled from the ground truth manifold forms a ‘shell’ around the shape. We
can apply the distance loss and Eikonal loss on the augmented data points:

Laug = Ex′′
(
τ1|gθ(x′′)− ϵ|+ τ2(||∇x′′gθ(x

′′)|| − 1)2
)

We then train the network along with the regular training loss described in the main paper.
The original data and augmented data for the space curves is visualized in Fig. 8.

For manifold with implicit parametrizations, the tangent space at point x is spanned
by the null space of the Jacobian matrix. We can then find an orthogonal direction by
computing vectors that are perpendicular to all the tangent vectors at a point. In the case
of the consistent shape polynomial for F+, the canonicalized shape space has 8 dimensions.
We compute its Jacobian (3 by 8) by taking partial derivatives of Ci with respect to the
canonicalized parameters Ĩx, Ĩy, α, f̃x, f̃y, f̃xx, f̃xy, f̃yy. Then for each sampled data point
v ∈ R8, we sample along some orthogonal direction to the shape manifold for ϵ distance
and obtain an augmented data point v′′ .

This approach relies on having an analytic expression for the manifold. In practice, we
also need to ensure that the distance ϵ is chosen such that the augmented points do not
intersect with the original manifold. For training the consistent shape UDF of our model,
we choose ϵ = 0.1 and τ1 = τ2 = 1.
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Shape manifold Training and 
Augmentation points

UDF zero level-set 
with augmentation 

UDF zero level-set 
without augmentation 

Figure 8: Examples for training the UDF with and without data augmentation. The zero
level-set is computed on a discrete grid for points with distance < 0.1. We see
that without augmentation, the network tends to converge to a surface instead
of the space curve.

Appendix E. More Results on Curvature Field Estimation

Here we present more experiment results for inferring the log-Casorati curvature field on
synthetic surfaces.

Fig. 9 summarizes our models’ predicted curvature field on multiple spline surfaces. The
last column (f) has additive Gaussian noise with variance = 4e−4. For all images we use
overlapping patch of size 7 by 7 for optimization.

In Fig. 10 we present additional results where the algorithm uses different patch sizes.
For the first three surfaces, we use overlapping patches of size 7 by 7. For the fourth surface,
we use patch of size 9 by 9. For the last test surface we use patch size of 11 by 11. The
patch size is visualized by the blue box on the images.

Appendix F. Planar cut and normal reconstruction

Inspired by previous psychophysical studies, we hypothesize that without additional priors
or boundary cues, a perceptually consistent normal field cannot be uniquely determined.
When such cue is present and the resulting image induces 3D perception, we can incorporate
additional shape prior, such as a convexity prior to reconstruct the normal field partially.
We examine this hypothesis using the planar cut experiment inspired by Anderson and
Marlow (2022), where a surface is cut with a horizontal plane at certain height.

We hypothesize that a planar cut will reinforce the perception of 3D only when its
boundaries are aligned with low curvature regions. An example is shown in Fig. 11 left. In
the middle column, when the log-Casorati curvature minimum (dark regions) align or has
small angles with the planar cut contour, the planar cut is perceived as consistent. In the
right column, large areas of curvature minimum occur in the interior of the shape instead
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(a) (b) (c) (d) (e) (f)

Figure 9: Ground truth and estimated log-Casorati curvature field visualizations. Column
(a)-(c) are single directional light source. Column (d)-(e) are spatially varying
light sources. Column (f) has added Gaussian noise with variance = 4e−4.
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(a) (b) (c) (d) (e) (f)

Figure 10: Ground truth and estimated log-Casorati curvature field visualizations. Column
(a)-(c) are single directional light source. Column (d)-(e) are spatially varying
light sources. Column (f) has added Gaussian noise with variance = 4e−4. The
blue box indicates the patch size used for each row of test images.
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Aligned MisalignedImage Ground truthImage Reconstruction

Figure 11: Left: The planar cut applied to the shading image and underlying surface’s
curvature field. Right: Normal reconstruction of two shaded images given con-
sistent planar cut boundary.

of along the contour. Therefore the inconsistent shading cue is overridden by the contour
information and thus we no longer perceive a diffusely-shaded 3D surface.

When the planar cut is indeed consistent with shading, our model can output a recon-
struction of the normal field using a simple heuristic. We first initialize the normal field
with the output from the overlapping patches by applying 6. Using the estimated curvature
field and previous observations, we apply the following steps. For high curvature regions,
we select the ‘convex’ shape explanation from the 4-way choice of the normal field output.
For low curvature regions, we first aggregate the boundary information in its neighboring
region. Then we determine from the 4-way choice described in equation 10 the normals
that has smallest angle with the boundary normals. An interpolated normal from the two
is assigned to those pixels. At last we apply spatial smoothing along the low curvature re-
gions. Examples of the reconstruction outcome are shown in Fig.11 right. The top surface’s
estimated normal field has mean angular error (MAE) = 17.1◦ and the bottom result has
MAE = 9.7◦.
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