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Abstract

Practitioners prune neural networks for efficiency gains and generalization im-
provements, but few scrutinize the factors determining the prunability of a neural
network – the maximum fraction of weights that pruning can remove without
compromising the model’s test accuracy. In this work, we study the properties of
input data that may contribute to the prunability of a neural network.

For high dimensional input data such as images, text, and audio, the manifold
hypothesis suggests that these high dimensional inputs approximately lie on or
near a significantly lower dimensional manifold. Prior work demonstrates that
the underlying low dimensional structure of the input data may affect the sample
efficiency of learning. In this paper, we investigate whether the low dimensional
structure of the input data affects the prunability of a neural network.

1 Introduction

The manifold hypothesis states that the input data for tasks involving images, texts and sounds
approximately lie in a low-dimensional manifold embedded in a high dimensional space [Fefferman
et al., 2016]. Ample evidence [Cayton, 2005, Narayanan and Mitter, 2010, Ham et al., 2004] supports
the manifold hypothesis for commonly used datasets in machine learning tasks. [Narayanan and
Niyogi, 2009, Pope et al., 2021] argue that the manifold hypothesis is connected to the sample
efficiency of deep neural network models. We investigate whether the low-dimensional manifold
structure of input data may also play a role in the surprising empirical success of weight pruning
– pruning techniques can remove more than 90% of weights in a neural network model without
compromising its accuracy [LeCun et al., 1990, Frankle and Carbin, 2019, Han et al., 2015].

In this work, we empirically examine the impact of three different measures of input data dimension-
ality on the prunability of a neural network model, defined as the maximum fraction of weights that a
pruning technique can remove without reducing model accuracy. We refer to the dimensionality of
the model inputs as the extrinsic dimensionality, and the dimensionality of the lower dimensional
manifold that the data lies on as its intrinsic dimensionality. We also define a new dimensionality, task
dimensionality, which is the minimal number of intrinsic dimensions that the output of the function
being learned depends on. We develop and test three hypotheses: that the extrinsic, intrinsic, and task
dimensionality each contribute to the prunability of neural network models . To test these hypotheses
we design three experiments: for each type of dimensionality (extrinsic, intrinsic, and task) we vary
that dimensionality while holding all others fixed and observe its effect on the prunability of the
neural network model.
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Contributions. We present the following contributions:

• We find that extrinsic dimensionality has limited effect on neural network prunability. As
extrinsic dimension increases prunability slightly increases with weak correlation.

• We find that intrinsic dimensionality does affect neural network prunability. As intrinsic
dimension increases prunability decreases.

• We find that task dimensionality does not affect neural network prunability.

2 Preliminaries

Dimensionality of data. Consider a classification task on D-dimensional inputs. We refer to the
input dimensionality D as the extrinsic dimensionality. The manifold hypothesis states that natural
data lies on or near a low-dimensional manifold embedded in high dimensional space [Fefferman et al.,
2016]. We refer to dimensionality of the manifold that the data lies on as the intrinsic dimensionality
d. Thus, according to the manifold hypothesis, d ≪ D. We refer to the low dimensional manifold
that the inputs lie on as the intrinsic space.

Pruning. We prune a neural network using iterative magnitude pruning (IMP) with the weight
rewinding algorithm [Frankle et al., 2020], which is considered to be state-of-the-art [Rosenfeld et al.,
2021, Gale et al., 2019]. IMP begins by training to a network- and data-specific iteration t early in
training, and from that point on it iteratively performs the following procedure until it reaches the
desired sparsity level: train a (sparse) network to convergence using standard hyperparameters, prune
the smallest magnitude weights, rewind the remaining weights back to t.

A matching subnetwork is a sparse subnetwork with error that is equal to or lower than the error of
the original dense network that the sparse subnetwork was obtained from. The highest sparsity at
which a pruned subnetwork is still matching describes the prunability of a network with respect to a
particular input data distribution and task.

Correlation testing. As we are interested in determining whether varying data dimensionality
affects prunability, we quantify the correlation between the ordering of data dimensionalities and
prunability using the Spearman rank correlation test. To reflect the underlying uncertainty of the
observed pruning rates in the correlation coefficient, we employ a Monte Carlo method to estimate
the distribution of the correlation coefficient [Curran, 2014]. To summarize the correlation of a set of
experiments, we report both the mean and standard deviation of the correlation coefficient. More
details on how we estimate the correlation coefficient distribution are described in Appendix A.2.

3 Extrinsic Dimensionality Has Limited Effect on Prunability

For an image-classification model, the extrinsic dimensionality of its input data is equal to the
number of pixels per image. The difference between the extrinsic dimensionality and the intrinsic
dimensionality of the input data is therefore a natural source of redundancy in the representation of
the input data, which may contribute to the prunability of neural network models. In this section, we
examine the impact of the extrinsic dimensionality of the input data on the prunability of a neural
network model, while keeping other data dimensionalities fixed.

Methodology. Following the precedent of Pope et al. [2021], we vary the extrinsic dimensionality
of the input data by resizing the input image using nearest-neighbor interpolation. For each target
extrinsic dimensionality, we resize the spatial dimensions of the input images in a given dataset to
the specified extrinsic dimensionality, creating a distinct dataset for each extrinsic dimensionality
we study. Subsequently, we train and prune a specified model architecture using the aforementioned
dataset. We examine the relationship between the extrinsic dimensionality of the input data and the
prunability of the neural network model. We experiment on the CIFAR-10 dataset which originally
has an extrinsic dimensionality of 32 (height) x 32 (width) x 3 (channel) = 3072. We vary its extrinsic
dimensionality by resizing its spatial dimension to create four separate datasets of spatial dimension
16× 16, 32× 32, 64× 64, and 128× 128. We experiment with 3 variants of the ResNet20 model,
evaluating across model widths of 16, 32, and 64. The number of weights in a convolutional neural
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Figure 1: Test accuracy as a function of the percentage of model weights remaining for each model
width and extrinsic dimensionality. Pruning across varying extrinsic dimensionalities often follows a
line with similar curvature. Legend indicates extrinsic dimension.

network is independent of the spatial dimension of its input. Therefore, in our experiments, varying
the extrinsic dimensionality of the input data does not alter the number of weights present in the
neural network.

Results. In Figure 1 we plot the model’s test accuracy as a function of the percentage of weights
remaining for each of the combinations of model width and extrinsic dimensionality. We find that,
while the extrinsic dimensionality has an impact on the initial accuracy of the dense model, the
accuracy versus sparsity curves across each extrinsic dimensionality with the same model width
have similar shapes, suggesting that extrinsic dimensionality has little effect on pruning. We also
find that there is no clear relationship between the ordering of extrinsic dimensionalities and the
ordering of their corresponding pruning rates. See Table 1 for numerical results. To quantify the
weak correlation between the extrinsic dimensionality and prunability, we compute the Spearman
rank correlation between the extrinsic dimensionality and the percentage of weights remaining in
the smallest matching subnetworks. Across the different model widths, we find an average rank
correlation coefficient of -0.22±0.03. This suggests that while prunability increases as the extrinsic
dimensionality increases, it is only a weakly correlated relationship.

Takeaway. We find that increasing the extrinsic dimensionality of input data by upsampling their
spatial dimensions is weakly correlated with increased prunability of neural network models.

4 Intrinsic Dimensionality Does Affect Prunability

In this section, we examine the effect of the intrinsic dimension on neural network prunability. The
intrinsic dimensionality of the data is the dimensionality of the low dimensional manifold the data
lies on. Thus, we hypothesize that as the intrinsic dimensionality of the data increases the prunability
of the neural network will decrease as there are fewer redundant dimensions in the data.

Methodology. We follow the precedent of Pope et al. [2021] to generate datasets of varying intrinsic
dimensionalities. Concretely, we use a class conditional Generative Adversarial Network (GAN),
specifically BigGAN [Brock et al., 2018], to generate images as inputs which are labeled by the
class they are conditioned on. The GAN network maps vectors in a latent space to natural images.
The dimensionality of the vectors sampled within the latent space is therefore an upper bound on
the intrinsic dimensionality of the generated dataset. To vary the intrinsic dimensionality, we mask
out the corresponding number of latent dimensions from each vector sampled in the latent space
by setting them to 0, before feeding them to the GAN network. For this experiment, we fix the
extrinsic dimensionality of the images to be 32 × 32 × 3 and vary the intrinsic dimensionality in
{16, 32, 64, 128}. We experiment with 3 variants of the ResNet20 model, evaluating across model
widths of 8, 16, and 32.
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Figure 2: Test accuracy as a function of the percentage of model weights remaining for each model
width and intrinsic dimension. Lower intrinsic dimension corresponds to pruned model performance
matching dense accuracy for greater amounts of pruning. Legend indicates intrinsic dimension.

Results. In Figure 2 we plot the pruned model’s test accuracy as a function of the percentage of
weights remaining for each of the combinations of model width and intrinsic dimensionality. We find
that models pruned on datasets with lower intrinsic dimensionalities can be pruned to fewer weights
remaining without compromising accuracy compared with the same models pruned on datasets with
higher intrinsic dimensionalities. See Table 2 for numerical results. To quantify the correlation
between the intrinsic dimensionality and prunability, we compute the Spearman rank correlation
between the intrinsic dimensionality and the percentage of weights remaining in the smallest matching
subnetworks. Averaged across model widths, we find a high rank correlation coefficient of 0.74±0.01.
This correlation supports our observation that as intrinsic dimensionality increases, the percentage of
weights remaining in the smallest matching subnetworks also increases.

Takeaway. For the classification datasets we generate using a GAN model, we find that the intrinsic
dimensionality of the input data affects prunability. The lower the intrinsic dimensionality of input
data, the larger the fraction of model weights that can be pruned without compromising test accuracy.

5 Task Dimensionality Does Not Affect Prunability

For image classification tasks, the label of an image often depends only on a subset of the features
present in the image. For example, the background of an image is often irrelevant to the classification
task. Does the prunability of a neural network model depend on the fraction of the input features that
contribute to the task output? In this section, we formalize the intuition behind the number of input
features that contribute to the task output and examine its influence on prunability.

Methodology. For this experiment, we assume that the label assigned to a datapoint is a function
of its representation in the intrinsic space. Then, for a labeling function f , we define the task
dimensionality as the number of intrinsic dimensions that the output of f depends on . To investigate
the impact the task dimensionality has on prunability, we create a synthetic dataset encoding a linear
classification task as follows.

To construct inputs, we first randomly sample d−dimensional vectors z wherein each component
is sampled i.i.d. from a normal distribution N (0, 1). We randomly sample a D by d matrix and set
the D dimensional input vectors x = Az. Each component of A is sampled i.i.d. from a uniform
distribution U(−1, 1). By construction, such input vectors have intrinsic dimensionality of d, and
extrinsic dimensionality of D.

To label inputs, we create hyperplanes defining classification boundaries in the intrinsic space. We
sample and fix a random d−dimensional vector h, representing the normal vector to the plane
wherein each component is sampled i.i.d. from a uniform distribution U(−1, 1). Then, we randomly
select t components of this hyperplane-defining normal vector to retain and zero out the remaining
components. We define the label of an input vector x as y = sign(h⊤x). That is, we label each
input vector based on which side of the hyperplane its corresponding representation in the intrinsic
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Figure 3: Test accuracy as a function of the percentage of model weights remaining for each model
width and task dimension. For most runs the pruning curves are indistinguishable and overlap highly.
Legend indicates task dimension.

space lies on. Zeroing out a component in h removes the dependence of classification output on the
corresponding intrinsic dimension. This classification task has a task dimensionality of t.

For our experiments, we vary the task dimensionality t ∈ {16, 32, 64, 128} while we fix the intrinsic
dimensionality d = 128, and extrinsic dimensionality D = 1024. We train and prune a 2-layer neural
network model consisting of 2 linear layers. We use MLP-P-Q to denote such 2-layer models, where
P and Q correspond to the number of features in the first and second hidden layers respectively. For
each task dimension, we vary (P,Q) in (256, 128), (512, 256), (1024, 512).

Results. In Figure 3 we plot the test accuracies of pruned models as a function of the percentage of
weights that remain in the pruned models. We find that across all model architectures we examine, the
prunability of the model does not correlate with task dimensionality of the labeling function. With one
exception (MLP-256-128 with TD=16), for each dense model, the sparsities of its smallest matching
subnetworks that pruning produces across all task dimensionalities are within one standard deviation
of each other. These results suggest that the task dimensionality does not affect the prunability of a
neural network model. See Table 3 for numerical results. To quantify the correlation between the
task dimensionality and prunability, we compute the Spearman rank correlation between the task
dimensionality and the fractions of weights that remain in the smallest matching subnetworks. We
obtain a correlation coefficient of 0.01±0.03 suggesting that there is no correlation between task
dimensionality and prunability.

Takeaway. For the synthetic linear classification tasks we construct, we find that task dimensionality
does not correlate with the prunability of a neural network model.

6 Related Work

Pruning. Practitioners use pruning for many reasons: pruning may improve model generalization
and explainability (e.g., [LeCun et al., 1990, Hassibi et al., 1993]); pruning also may reduce memory
footprint and improve computational efficiency of model training or inference (e.g., [Han et al., 2015,
Frankle and Carbin, 2019, Renda et al., 2020, Blalock et al., 2020, Lebedev and Lempitsky, 2016,
Molchanov et al., 2017, Dong et al., 2017, Yu et al., 2018, Baykal et al., 2019, Lee et al., 2019, Wang
et al., 2019, Serra et al., 2020, Lee et al., 2020]). While a variety of pruning techniques exist, we
choose to study iterative magnitude pruning as it achieves state-of-the-art trade-off between model
size and accuracy [Rosenfeld et al., 2021, Gale et al., 2019].

Cause of prunability. Despite the widespread empirical success of pruning for deep neural network
models, there has been little analysis on the cause of prunability – why and when can pruning remove
substantial fraction of weights in a given model without compromising its accuracy? LeCun et al.
[1990], Hassibi et al. [1993], Han et al. [2015] attributed the prunability of neural network models to
bias-variance trade-off: as increasing number of weights are pruned, model variance decreases while
model bias increases. A smaller model size may therefore exist with the same overall test accuracy
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but different decomposition of error into bias and variance. Frankle and Carbin [2019] showed the
existence of sparse and trainable subnetworks at initialization, thereby conjecturing that SGD seeks
out and trains a subset of well-initialized weights. Outside this select subset, weights are therefore
redundant. Arora et al. [2018] showed that in deep neural network models, each layer’s output is
robust against noise injected at preceding layers. They showed that this form of noise stability implies
prunability of neural network model.

7 Discussion

In this section we further discuss our results and limitations.

Falsified Hypotheses. We begin our work with a motivating conjecture that the true low dimensional
structure of input data contributes to the surprising empirical success of neural network pruning.
Based on this conjecture, we develop 3 hypotheses: that extrinsic, intrinsic, and task dimensionality
affect prunability. Our empirical observations falsify the hypothesis that task dimensionality affects
prunability, and shows that the correlation between extrinsic dimensionality and prunability is weak.
Together we present a set of positive and negative results that advances our understanding of the
empirical success of neural network pruning.

Experimental Methodology. In this work, we examine the empirical success of neural network
pruning from a novel perspective – we investigate how properties of the input data affect prunability.
To this end, we design and validate several experimental methodologies. However, this work only
presents a preliminary empirical analysis. An important next step is to derive a theoretical framework
that unites the observations made across the various types of data dimensionalities studied in this
work. Our empirical analysis lays the groundwork for such future studies.

8 Conclusion

To the best of our knowledge, we present the first study that systematically studies the effects of
several properties of the input data distribution on prunability. We study how the extrinsic, intrinsic,
and task dimensionality of the input data affects neural network prunability. Our results empirically
demonstrate that while intrinsic dimensionality affects prunability, extrinsic and task dimensionality
have little to no effect on prunability.
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A.2 Correlation of Input Dimensionality and Prunability

In this section we describe how we compute the Spearman rank correlation coefficient for each
setting, and plot the correlation between prunability and data dimensionality.

Methodology As outlined in Section 2, we compute the Spearman rank correlation coefficient
between the minimum fraction of weights remaining and the dimensionality of the data. To capture the
uncertainty in our experiments in the rank correlation coefficient, we simulate experiment outcomes
using the mean and standard deviation of the fraction of weights remaining. For each rollout, we
generate 1000 potential experimental outcomes by randomly selecting a data dimensionality and
then sampling an outcome from a normal distribution with the same mean and standard deviation
as the observed trial. We then compute the rank correlation coefficient based on the 1000 sampled
outcomes. To collect the distribution of correlation coefficients, we perform 5000 rollouts.
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Figure 4: Distribution of Spearman rank correlation coefficients between the data dimensionality and
the percentage of model weights remaining at matching sparse accuracy.
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Results As can be seen in Figure 4, the intrinsic dimension experiments have a high positive
correlation between input dimensionality and percentage of weights remaining, while the extrinsic
and task dimension experiments have weak and no correlation respectively. This can be interpreted
as higher intrinsic dimensions are correlated with a greater percentage of weights remaining and thus
lower sparsity, while the extrinsic and task dimensions do not significantly influence the prunability.

A.3 Sparsity Rates

In this section we report the full set of results on pruning rates across extrinsic, intrinsic, and task
dimensionality (Table 1,2,3).

Table 1: Minimum percentage of weights remaining where the sparse model matches the dense model
accuracy. Results reported for each model width and extrinsic dimension.

Model Extrinsic dimension Weights remaining (%)

ResNet20-W16 16 15.86± 0.71
32 19.15± 1.96
64 18.38± 1.70

128 14.53± 1.30

ResNet20-W32 16 13.37± 1.33
32 14.03± 0.59
64 13.26± 0.50

128 11.76± 1.12

ResNet20-W64 16 10.66± 0.69
32 10.17± 0.00
64 10.17± 0.00

128 9.39± 0.25

Table 2: Minimum percentage of weights remaining where the sparse model matches the dense model
accuracy. Results reported for each model width and intrinsic dimension.

Model Intrinsic dimension Weights remaining (%)

ResNet20-W8 16 6.32± 0.23
32 7.73± 0.00
64 9.64± 0.86

128 70.85± 41.22

ResNet20-W16 16 5.43± 0.41
32 6.16± 0.11
64 23.34± 22.58

128 8.87± 0.23

ResNet20-W32 16 4.37± 0.10
32 5.18± 0.29
64 6.09± 0.29

128 9.36± 2.49
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Table 3: Minimum percentage of weights remaining where the sparse model matches the dense model
accuracy. Results reported for each model width and task dimension.

Model Task dimension Weights remaining (%)

MLP-256-128 16 5.65± 0.09
32 5.79± 0.00
64 5.79± 0.00

128 5.72± 0.09

MLP-512-256 16 5.40± 0.00
32 5.40± 0.00
64 5.34± 0.08

128 5.40± 0.00

MLP-1024-512 16 5.06± 0.00
32 5.06± 0.00
64 5.06± 0.00

128 5.06± 0.00
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