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Abstract
Post-training quantization (PTQ) has emerged as a
critical technique for efficient deployment of large
language models (LLMs). This work proposes
NESTQUANT, a novel PTQ scheme for weights
and activations that is based on self-similar
nested lattices. Recent works have mathemati-
cally shown such quantizers to be information-
theoretically optimal for low-precision matrix
multiplication. We implement a practical low-
complexity version of NestQuant based on Gos-
set lattice, making it a drop-in quantizer for any
matrix multiplication step (e.g., in self-attention,
MLP etc). For example, NestQuant quantizes
weights, KV-cache, and activations of Llama-3-
8B to 4 bits, achieving perplexity of 6.6 on wiki-
text2. This represents more than 55% reduction in
perplexity gap with respect to unquantized model
(perplexity of 6.14) compared to state-of-the-art
Meta’s SpinQuant (perplexity 7.3), OstQuant (7.3)
and QuaRot (8.2). Comparisons on bigger models
(up to 70B) and on various LLM evaluation bench-
marks confirm uniform superiority of NestQuant.

1. Introduction
There are three principal goals of post-training quantization
(PTQ). First, reducing the number of bits per parameter
allows for loading big models on cheap GPUs with limited
memory, thus democratizing access to LLMs. This requires
“weights-only” quantization algorithms of which the most
popular are AWQ, GPTQ, and QuIP (see references in Sec-
tion 2.2).

The second goal of PTQ is to accelerate inference. In LLMs
most of the compute is spent multiplying matrices. Multiply-
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Figure 1. Perplexity of quantized Llama-3-8B models for three
regimes (weight-only, weights + KV cache, end-to-end) on wiki-
text2 vs number of bits per entry.

ing a pair of n× n matrices requires 2n3 FLOPs and 3
8Rn2

bytes to exchange between the core and memory (here and
below R designates the number of bits required to store each
entry of a vector/matrix). So when matrices are large (such
as during the pre-fill phase when the prompt is processed)
the GPU is compute-bound, while when n is small (such as
during generation) the GPU becomes memory-bound. One
therefore needs to reduce R by quantizing both weights and
the KV cache, thereby alleviating the memory bandwidth
bottleneck during generation.

The third goal of PTQ is to accelerate inference of giant
LLMs that require hosting each layer on a separate GPU
(pipelining parallelism). For this goal one needs to quantize
activations passed from one layer to the next to reduce the
communication bottleneck.

While quantization of weights to R = 3, 4 and even R = 2
bits has been achieved with minimal loss of quality, quan-
tization of KV cache and activations has been much more
challenging. Popular algorithms for full quantization are
LLM.int8(), SmoothQuant and SpinQuant (see references in
Section 2.2), the latter having state-of-the-art performance.
This work proposes an alternative algorithm (NestQuant)
for quantizing weights, KV-cache, and activations. The
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Model Bits ↓ Bits (no zstd) ↓ ARC-C ↑ ARC-E ↑ Hellaswag ↑ PIQA ↑ Winogrande ↑ Zero-shot Avg ↑ Wikitext2 ppl ↓
Baseline (FP16) 16 16 0.54 0.78 0.79 0.81 0.74 0.73 6.1

Weights only
LLM-QAT 4.00 - 0.51 0.77 0.48 0.79 0.72 0.65 7.7
GPTQ 4.00 - 0.47 0.72 0.74 0.77 0.71 0.68 7.2
SpinQuant 4.00 - 0.54 0.77 0.78 0.80 0.72 0.72 6.5
NestQuant q = 14, k = 4 (ours) 3.99 4.06 0.53 0.78 0.79 0.80 0.73 0.72 6.3

Weights + KV cache
SpinQuant 4.00 - 0.51 0.77 0.77 0.78 0.69 0.70 6.6
NestQuant q = 14, k = 4 (ours) 3.99 4.06 0.53 0.78 0.79 0.79 0.74 0.72 6.4

Weights, KV cache, activations
LLM-QAT 4.00 - 0.27 0.41 0.38 0.60 0.53 0.44 52.5
Quarot 4.00 - 0.44 0.67 0.75 0.75 0.66 0.67 8.4
SpinQuant 4.00 - 0.51 0.75 0.75 0.77 0.66 0.68 7.3
NestQuant q = 14, k = 4 (ours) 3.99 4.06 0.51 0.75 0.78 0.79 0.72 0.71 6.6

Table 1. 4-bit quantization of Llama-3-8B. The bits column for NestQuant corresponds to actually measured average number of bits per
entry (when a vector of auxiliary scaling coefficients β is compressed via zstd) and the second column shows quantization rate when no
compression step is used.

algorithm is motivated by recent theoretical work on approx-
imate matrix multiplication and follows several classical
ideas such as Conway and Sloane’s Voronoi codes and their
algorithms for finding the closest lattice vector in some
canonical lattices in low/moderate dimensions.

Throughout this paper, NestQuant is described with the 8-
dimensional Gosset lattice, but the framework is general and
can be similarly implemented using any other base lattice,
in any dimension, provided that a low-complexity closest
lattice vector algorithm exists for this lattice.

1.1. Summary of results

The NestQuant algorithm is described in Section 4.
NestQuant is a generic drop-in replacement for any matrix
multiplication. Its performance for synthetic random Gaus-
sian matrices comes pretty close to information-theoretic
limits (see Fig. 3) and significantly outperforms uniform
quantization employed by SpinQuant. Switching from a
scalar (uniform) quantization to vector quantization requires
some price to pay computationally (Section E.1), however,
among vector quantizers NestQuant is rather economical as
it builds upon the Voronoi Codes framework of (Conway &
Sloane, 1983). We mention that in the presence of activation
quantization, it is important to quantize weights properly –
an innovation we call QA-LDLQ (Section 4.5).

Applying NestQuant to quantizing an actual LLMs (Llama 2
and 3 with parameter count ranging from 1B to 70B) shows
massive end-to-end improvement: Fig. 1 shows a significant
reduction of perplexity compared to the previous methods;
Table 1 confirm enhanced performance on standard LLM
benchmarks; and Table 2 show NestQuant stays consistently
on top for different model sizes. In fact, NestQuant in full
quantization (weights, activations, and KV cache) outper-
forms SOTA results with quantized weights and activations
(but not KV cache).

The main source of improvement of NestQuant is demon-
strated in Fig. 2 (although NestQuant uses an 8-dimensional
Gosset lattice, not a 2D hexagonal one). More details on
this as well as directions for improvement are discussed in
Section 3.

Thus, we believe that NestQuant offers an excellent alterna-
tive to other algorithms. It quantizes weights, KV-cache and
activations, and achieves significant improvement on both
synthetic and real data.

1.2. Paper organization

We start with a detailed review of classical work on vector
quantization and modern LLM quantization (Section 2).
Then in Section 3 we explain the motivation for each step
of the algorithm. Section 4 contains the pseudocode of the
algorithm and diagram of quantized LLM. Finally, Section 5
concludes with details about empirical performance. Further
details and evaluations are relegated to the Appendices.

2. Prior work
We briefly survey prior work, which we separate into work
by information theorists and by the ML community.

2.1. Information-theoretic quantization

Rate R quantization of an information source X in Rn is
the operation of encoding it to nR bits, from which a de-
coder can produce a reconstruction X̂ ∈ Rn that has small
distortion with respect to X . The most popular distortion
criterion is the quadratic loss, where the expected distortion
is defined as D = 1

nE∥X − X̂∥2, and here we restrict at-
tention to this loss. Characterization of the optimal tradeoff
between R and D is a classic topic in information theory,
e.g. (Polyanskiy & Wu, 2024, Part V).

For a Gaussian source X ∼ N (0, In) the rate-distortion
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theorem states that any compressor at rate R must satisfy
D ≥ D(R) ≜ 2−2R. Furthermore, as dimension n in-
creases there exist quantizers with distortion approaching
D(R). Notably, such quantizers can be made universal, in
the sense that they attain distortion D(R) not only for iid
Gaussian X but for any (even adversarial) input as long as
its Euclidean norm is (1 + o(1))

√
n.

One way for constructing these universal quantizers is based
on lattices (Zamir, 2014) that admit much more structure
than more classical random codes (and ϵ-nets).

Arguably, the most notable lattice-based quantization
scheme is the family of Voronoi codes (Conway & Sloane,
1983), which we use in this work.

How does one convert a quantizer adapted to Gaussian
inputs to work (with the same guaranteed loss) on non-
Gaussian data? In a nutshell, the idea is simple: if U is
chosen to be a random n × n orthogonal matrix then the
entries of UX will be distributed as iid Gaussian (Stam,
1982). This idea of applying random rotations to smooth
out the distribution of the quantizer’s input may be viewed
as a special case of high-dimensional companding (Gersho,
1979), and has been been used in various applications, such
as image compression (Hung & Meng, 1998), and as a po-
tential replacement for dithering (Hadad & Erez, 2016), to
name a few.

In the context of LLMs, the goal in quantization is slightly
different since quantization is used to facilitate approximate
matrix multiplication with reduced burden on the mem-
ory bandwidth. For example, when quantizing two vectors
X,Y ∈ Rn the goal is not to approximate them but to
approximate their inner product. Recently, information-
theoretic characterization of this task was completed in (Or-
dentlich & Polyanskiy, 2024). Specifically, the authors
show that if X,Y ∼ N (0, In) are independent then for
any algorithm operating on the basis of rate-R quantized
representations of X and Y we must have

E(X⊤Y − X̂⊤Y )2 ≥ nΓ(R), (1)

where X̂⊤Y is the reconstructed inner product, and

Γ(R) =

{
1−

(
1− (2 · 2−2R∗ − 2−4R∗

)
)

R
R∗ R < R∗

2 · 2−2R − 2−4R R ≥ R∗ ,

(2)

where R∗ ≈ 0.906 is a solution to a certain transcendental
fixed-point equation.

The same paper also constructs universal quantizers based
on nested lattices that asymptotically (as n→∞) achieve
this lower bound. Note that extension from vectors to matri-
ces can be made trivially by observing that one can quantize
each column separately and treat matrix product as a collec-
tion of inner products.

Remark 2.1. Using optimal quantizers, in terms of achiev-
ing D(R), for quantizing X and Y , and then computing the
inner product of the quantized vectors (maybe with some
MMSE scaling) will not necessarily lead to the optimal per-
formance Γ(R). The reason is that the covariance matrix
of each vector’s quantization error affects the inner product
distortion through its trace, and its Frobenius norm (Or-
dentlich & Polyanskiy, 2024). For optimal lattice quantizers
in any dimension, the Frobenius norm is guaranteed to be
minimal (Zamir & Feder, 1996), and consequently, using
lattice quantizers seems essential for achieving Γ(R).

In this work we show that with appropriate tweaks Voronoi
codes can indeed result in practical fast and efficient algo-
rithms for LLM quantization. We emphasize that most of
our work is on simply developing a drop-in replacement
for quantized matrix product and as such is not specific to
LLMs.

The idea of applying random rotations to “Gaussianize” in-
puts in the context of approximate inner product computa-
tion is even more natural than in the standard quantization.
Indeed, since one is only interested in the inner product,
not vectors themselves, one does not need to store (even a
seed used to generate the) random orthogonal matrix. This
has been long exploited in locality-sensitive hashing (LSH)
algorithms,1 which can be viewed as an (extremely low rate)
quantizers for inner product approximation (Charikar, 2002;
Datar et al., 2004; Andoni & Indyk, 2008). Unsurprisingly,
as we will see next, random rotations have also been found
quite useful for quantizing LLMs.

2.2. LLM quantization

One of the directions of prior research on LLM quantiza-
tion is addressing the issue of activation outliers that hinder
the quantization quality. These outliers are present in cer-
tain dimensions of activations, weights and KV cache. In
LLM.int8() of (Dettmers et al., 2022), these outlier dimen-
sion are kept unquantized. In SmoothQuant (Xiao et al.,
2023) authors balance the scale of outliers between weights
and activations by modifying LayerNorm’s diagonal matri-
ces.

Going to random rotations, by rewriting matrix product
AB = (AU)(U⊤B) for an orthogonal matrix U , one gets
matrices with much more Gaussian entries (few outliers)
and can apply standard quantization algorithms. Some of
the multiplications by U can be merged with the weights (i.e.
do not require additional runtime FLOPs), while the rest are
applied at runtime. For the latter, matrices U should have

1In LSH, one typically performs several random projections of
the vector and quantizes them. This is equivalent to performing
random rotation and quantizing only a small number of entries of
the rotated vector.
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Figure 2. Demonstrating advantage of NestQuant in 2D. Typical
weights and activations are vectors inside the black circle. Uniform
quantization wastes about 32% of allocated bitstrings for vectors
outside of the circle, while nested hexagonal lattices only wastes
15% (explicitly enumerating points inside the circle to avoid the
waste is too slow to do at runtime). This allows NestQuant to use
finer grid while quantizing to the same rate R. The gain becomes
much more dramatic in higher dimensions.

structure to enable fast multiplication. For example, QuaRot
(Ashkboos et al., 2024) uses randomized Hadamard matri-
ces as coordinate transformations, which can be applied
to a vector of size n in O(n log n) additions. SpinQuant
(Liu et al., 2024) uses a rotation parametrization with four
orthogonal matrices R1, R2, R3, R4, where R1 and R2 can
be arbitrary orthonormal matrices, and R3 and R4 should
have a fast multiplication algorithm. The authors use Cayley
SGD (Li et al., 2020) to optimize R1 and R2 for minimiza-
tion of the quantization error, while the matrices R3 and R4

are chosen to be random Hadamard.

Starting from LLM.int8() most of the schemes used uni-
form quantization (i.e. where a floating point vector simply
rounded to a nearest integer after an appropriate rescaling).
To the best of our knowledge, so far non-scalar quantization
has only been used for weight-only compression for LLMs
in QuIP# (Tseng et al., 2024a), which uses E8P codebook
for 2-bit quantization, and applies Resdidual Vector Quan-
tization (Juang & Gray, 1982) to get a 4-bit quantization
scheme; and QTIP (Tseng et al., 2024b) which uses trelis
codebook. Unfortunately these methods appear to be too
expensive to apply in runtime, perhaps explaining why non-
uniform quantization for activations and KV-cache was not
attempted before this work.

Finally, when quantizing weight matrices, one may notice
that MSE distortion loss should be replaced by a weighted-
MSE loss dependent on the statistics of the incoming acti-
vations. We refer to this type of algorithms as LDLQ, fol-
lowing authors of QuIP (Chee et al., 2023), QuIP# (Tseng
et al., 2024a) and GPTQ (Frantar et al., 2022). In the pres-
ence of activation quantization, however, the LDLQ needs
to be modified (see Section 4.5 introducing QA-LDLQ).
Equipping NestQuant with QA-LDLQ incurs significant
improvement; see results in Section 5.

3. Outline of NestQuant approach
In this section we outline the main components of our ap-
proach. A detailed description is brought in the following
section.

When designing a quantizer, one needs to make some as-
sumptions about the distribution of the source that will be
fed to it. While weights (and sometimes activations) can
be well-approximated by Gaussians, their magnitudes are
wildly varied. Thus, one employs two ideas: normalization
and random rotation.

Normalization: In most of the literature, the normalization
is done by taking an input vector of large dimension n
(e.g. n = 4096 for Llama-3), dividing by the L∞ norm
to get entries to be in [−1, 1] and then applying uniform
quantization. This is suboptimal for two reasons: one is
that uniform quantization induces error that is distributed
uniformly on the small cube, which is suboptimal from the
MSE point of view. Second reason, much more serious,
is known as the shaping gain and demonstrated on Fig. 2.
When entries of the vector are Gaussian, it will typically lie
inside the black circle. Thus those grid elements outside of
it will almost never be used, wasting bitspace.

Instead, we use normalization by the L2-norm (see Algo-
rithm 3) and then use points inside the Voronoi region of a
Gosset lattice, which as Fig. 2 (right) demonstrates wastes a
lot fewer bitstrings for rare vectors, thus allowing us to use
finer grids.

Random rotation: When input to the quantizer significantly
differs from the presumed model (of iid Gaussians), perfor-
mance can become quite poor. As discussed previously,
multiplying by a random orthoghonal matrix U provides an
excellent fix. Specifically, UX vector becomes uniform on
the n-sphere of radius

√
n, and small chunks of this vector

have distribution very close to Gaussian iid. In particular,
the total variation between any subset of d coordinates and
N (0, Id) is O(d2/n) (Stam, 1982), such that for d = o(

√
n)

what we quantize is effectively iid Gaussian.

Lattices: A lattice Λ ⊂ Rd is a discrete subgroup of Rd.
Any lattice Λ ⊂ Rd has a (non-unique) generating matrix
G ∈ Rd×d, such that Λ = GZd (that is, Λ is the integer
span of the columns of G). We define the nearest neighbor
quantizer QΛ : Rd → Λ as

QΛ(x) = argmin
λ∈Λ

∥x− λ∥, (3)

where ties are broken arbitrarily, but in a systematic manner.
The Voronoi region VΛ is defined as the set of all points in
Rd that are closer to 0 than to any other lattice point

VΛ =
{
x ∈ Rd : QΛ(x) = 0

}
. (4)

The covolume of a lattice is defined as covol(Λ) =
|detG| = vol(VΛ). We say that a lattice Λc ⊂ Rd is nested
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in the lattice Λf ⊂ Rd, if Λc ⊂ Λf . Note that for any inte-
ger q ≥ 2 we have that qΛ ⊂ Λ, and that Λ/qΛ ∼= (Z/qZ)d.
For an introduction to lattices and their role in quantization,
see (Zamir, 2014).

Complexity of lattice quantization: In order to explain
our choice of nested lattice quantizer, we need to carefully
balance several requirements. One of the key ones is com-
plexity. It is known that finding (even approximating) a
nearest lattice point is a well-known cryptographic assump-
tion (Dinur et al., 2003). Thus, we are not suggesting to
directly operate on n-dimensional lattices. Instead, we par-
tition the n-vector into sections, each of dimension d and
apply lattice quantization to d-subvectors. Equivalently, our
vector quantizers for Rn are constructed as Cartesian prod-
ucts of vector quantizers of small dimension d (we will take
d = 8 for all experiments).

Granular and overload quantization errors: There are
two different sources of errors for lattice quantizers. The
first is called granular quantization error, and is related
to the second moment of the lattice Voronoi region. A
common way to measure the granular error corresponding
to a lattice Λ ⊂ Rd is via the normalized second moment
(NSM) defined as

G(Λ) =
1

vol(VΛ)1+
2
d

1

d

∫
x∈VΛ

∥x∥2dx. (5)

This quantity corresponds to the MSE when Λ is normalized
to have unit covolume and is then used as a quantizer. It
is well known that the optimal (smallest) NSM among all
lattices in Rd approaches 1

2πe from above as d increases (Za-
mir, 2014). Furthermore, for d = 1 we get G(Z) = 1

12 .
Consequently, in terms of granular error, by using high-
dimensional lattices instead of the simple scalar quantizer
based on Z we can already gain a factor of 2πe

12 ≈ 1.42329
in performance (the Gosset lattice achieves 1.16 gain).

Notice, however, that representing x as QΛ(x), the nearest
lattice point in Λ, requires infinitely many bits, since the
lattice is infinite. Since we only have 2dR bitstrings to
allocate, we need to select a subset of Λ that will be actually
used. Selection of a body S ⊂ Rd so that |Λ ∩ S| = 2dR is
called shaping. If QΛ(x) ∈ S, then the quantization error
x − QΛ(x) will be in VΛ and we will only suffer from a
granular error. However, when QΛ(x) /∈ S the quantization
error is no longer in VΛ and may be have much greater
magnitude than a typical granular error. We refer to those
type of errors, where QΛ(x) /∈ S, as overload errors.

Generally speaking, in order to achieve a small quantization
error, one must keep the probability of overload very small.
This can be attained by scaling up the codebook to βC =
βΛ ∩ βS with a large enough β > 0 such that overload
becomes very rare. However, increasing β also increases
the squared granular error by a factor of β2. Thus, one

would like to use the smallest possible β for which overload
is rare. In order to allow for smaller β, we would like to
choose S ⊂ Rn such that βS captures as much Gaussian
mass as possible.

Denote by µ = N (0, Id) the standard Gaussian measure.
Since we need 2dR = |Λ ∩ S| ≈ vol(S)

covol(Λ) , a good shaping
region S maximizes µ(S), which in turn minimizes the over-
load probability that is approximated by 1− µ(S), under a
volume constraint. Clearly, the optimal S under this crite-
rion is rB where B = {x ∈ Rd : ∥x∥ ≤ reff(1)} is a Eu-
clidean ball with radius reff(1) chosen such that vol(B) = 1,
and r is chosen such that vol(rB) = rd satisfies the required
volume constraint. Unfortunately, for d > 1 the codebook
C = Λ ∩ rB loses much of the lattice structure, and does
not admit an efficient enumeration, and consequently en-
coding and decoding require using a lookup table (LUT).
QuIP# used this approach with Λ = E8 (same as we do)
and S = rB. However, this seems to only be possible for
quantizing weights and not activations as complexity makes
runtime implementation too slow.2

Using int8-multipliers: One often mentioned advantage
of uniform quantization compared to other approaches is
the fact that it approximates any matrix as a product of
diagonal matrix (of norms) and an integer matrix. Thus,
during multiplication one can leverage faster int-cores rather
than floating-point multiplication. Note that if there exists a
scaling coefficient α > 0 such that αΛ ⊂ Zd, then one can
still use int-multipliers even for lattice-quantized vectors.

Voronoi codes/nested lattice codes: In Voronoi codes (Con-
way & Sloane, 1983) the same lattice Λ is used for both
quantization and shaping. In particular, the shaping region
is taken as S = qVΛ, where q = 2R is an integer. As elabo-
rated below, if QΛ(x) admits an efficient implementation,
one can efficiently perform encoding and decoding to the
codebook C = Λ ∩ (2RVΛ) ∼= Λ/2RΛ. Moreover, in stark
contrast to ball-based shaping, the encoding and decoding
complexity does not depend on R.

In summary, a good choice of lattice Λ should therefore
have: 1) efficient lattice decoding algorithm; 2) small NSM;
3) large µ(VΛ); 4) be a subset of standard integer lattice Zd.

In this work, we use the Gosset lattice (E8) that satisfies
all these properties. It has a fast decoding algorithm (Al-
gorithm 5), its NSM is ≈ 0.0716821 ≈ 1.2243 1

2πe (Agrell
& Allen, 2023), and its Gaussian mass µ(rVE8) is very
close to µ(rB) (the Gosset lattice has unit covolume, so
vol(rVE8

) = vol(rB)). The last point is illustrated in

2We note that QuIP# cleverly exploits symmetries of E8 to
show that an R = 2 bit quantizer can be implemented using an
LUT of size 2d

R
2 = 28, but we believe this is still too slow, and

furthermore does not naturally extend to different quantization
rates.
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Figure 5, where the large loss for cubic shaping with re-
spect to lattice shaping is also evident. The gap between
Voronoi/Ball shaping and cubic shaping becomes much
more significant as the dimension increases. This follows
since for large d we have that for X ∼ µ = µd the
ℓ∞ norm ∥X∥∞ concentrates around

√
2 ln d. Thus, for

r < 2
√
2 ln d we have that µ(rCUBE) → 0, whereas for

any r >
√
d

reff(1)
=
√
2πe(1+o(1)) we have that µ(rB)→ 1.

Note that SpinQuant uses high-dimensional cubic shaping,
and therefore its MSE distortion suffers a O(ln d) multi-
plicative gap with respect to the optimal distortion.

Overload avoidance via union of Voronoi codes: Be-
cause we rely on lattice quantizers of relatively small di-
mension (d = 8), even if µ(rVΛ) is very close to µ(rB),
overload events are unavoidable. This follows because
in small dimension the norm of a iid Gaussian vector is
not sufficiently concentrated. Thus, if one is restricted to
C = β(Λ ∩ (2RVΛ)) the parameter β must be taken quite
large in order to keep the overload probability small. This in
turn, incurs a significant penalty in the obtained distortion.
As a remedy, rather than using a Voronoi code, we take C as
a union of (a small number) of Voronoi codes in different
scales. Namely, we take C = ∪kt=1βt(Λ ∩ (2RVΛ)), where
β1 < · · · < βk. The smallest values of βt are set such that
overload is not too common but not extremely rare, such that
for most realizations of a Gaussian vector X ∈ Rd the dis-
tortion is close to the fundamental limit D(R). Whenever X
is atypically large, there will be overload in βt(Λ∩ (2RVΛ))
for small t, but not for large t, such that the quantization
error will be in βtVΛ for one of the larger values of {βt}.

The details of choosing k and values of βt are described in
Section F. Here we only note that the overall compression
rate becomes R + 1

d log2 k. In some cases, we are using
nvcomp (NVIDIA Corporation, 2025) for compressing a
vector of n/8 chosen betas, in which case rate penalty is
reduced below 1

d log2 k. We note that in our comparisons,
including Table 1, we always use this effective rate for a fair
comparison with other algorithms.

NestQuant, SpinQuant and theory: As mentioned above,
the use of nested lattice codes is rooted in theory. In (Or-
dentlich & Polyanskiy, 2024) it was shown that nested lat-
tice quantizers of high-dimensions attain the optimal rate-
distortion tradeoff for matrix multiplication. Since the lat-
tices used for proving that result do not admit efficient lat-
tice decoding, here we resort to n-dimensional lattices con-
structed as the Cartesian product of n/d copies of the Gosset
lattice, whose dimension is d = 8. To understand how much
loss in efficiency this leads to, Fig. 3 compares NestQuant,
SpinQuant (uniform quantization with cubic shaping) and
information-theoretic lower bound (1), for synthetic data.
Details of this experiment can be found in Section 5.1. We
can see that NestQuant is reasonably close to the fundamen-

Figure 3. RMSE for quantized matrix multiplication for iid
N (0, 1) matrices. NestQuant algo is optimized over q and multiple
β’s. Also shown is information-theoretic lower bound from (1).

tal limit and significantly outperforms SpinQuant.

4. Detailed Method
4.1. Nested lattice codebook

In this section, we describe the construction for a Vector
Quantization (VQ) codebook of size qd for quantizing a
d-dimensional vector, where q is an integer parameter. This
construction is based on Voronoi codes (Conway & Sloane,
1983) and admits efficient encoding and decoding algo-
rithms, whenever the base lattice has an efficient closest lat-
tice vector algorithm. Another appealing feature of Voronoi
codes is that the encoding/decoding complexity is indepen-
dent of the quantozation rate R = log2(q).

Definition 4.1 (Voronoi code (Conway & Sloane, 1983)).
The Voronoi codebook with base lattice Λ ⊂ Rd and nesting
ratio q ∈ N, corresponding to rate R = log2(q) bits/entry, is
defined as C = Λ ∩ VqΛ = Λ ∩ (qVΛ) ⊂ Rd. In particular
λ ∈ Λ belongs to codebook C iff λ ∈ VqΛ, and |C| = qd.

The Voronoi code consists of the minimum energy represen-
tative of each coset in Λ/qΛ ∼= (Z/qZ)d. Consequently, we
can represent each coset, and hence, each codeword in C,
as an element of Zd

q (Conway & Sloane, 1983).

Assuming we have access to an oracle QΛ(x), which maps
x ∈ Rd to its closest point in Λ, the quantization (encoding)
and dequantization (decoding) of a Voronoi code are de-
scribed in Algorithm 1 and Algorithm 2, respectively. Here,
G ∈ Rd×d is a generator matrix of Λ. The encoder first
maps x ∈ Rd to its nearest lattice point p = QΛ(x). Since
it only has a budget of dR bits for describing p, it only
describes the coset of Λ/qΛ it belongs to. This is done by
sending v mod q, where v ∈ Zd is the integer vector for
which p = Gv, referred to as the coordinates of p. Upon
receiving v mod q, the decoder knows that QΛ(x) ∈ p+qΛ,
and has to choose one point in this coset as the reconstruc-
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Figure 4. The quantization scheme of multi-head attention. H is
Hadamard rotation described in 4.3. Q is the quantization function
described in 4.2

tion x̂ ∈ Rd. It chooses x̂ as the minimum energy vector in
p+ qΛ, corresponding to the unique point in p+ qΛ ∩ VqΛ.
We have that x̂ = QΛ(x) iff QΛ(x) ∈ VqΛ = qVΛ. When
QΛ(x) /∈ qVΛ the quantizer is in overload.

Algorithm 1 Encode

Input: x ∈ Rd, QΛ

p← QΛ(x)
v ← G−1p ▷ coordinates of p
return v mod q ▷ quantized representation of p

Algorithm 2 Decode

Input: c ∈ Zd
q , QΛ

p← Gc ▷ equivalent to answer modulo qΛ
return p− q QΛ

(
p
q

)
In our experiments for this paper, we used the Gosset (E8)
lattice as Λ with d = 8. This lattice is a union of D8 and
D8 +

1
2 , where D8 contains elements of Z8 with even sum

of coordinates. There is a simple algorithm for finding
the closest point in the Gosset lattice, first described in
(Conway & Sloane, 1982). We provide the pseudocode for
this algorithm together with the estimation of its runtime in
Appendix C.

4.2. Matrix quantization

When quantizing a matrix, we normalize its rows, and quan-
tize each block of d entries using the codebook. The algo-
rithm 3 describes the quantization procedure for each row
of the matrix.

We can take dot products of quantized vectors without com-
plete dequantization using algorithm 4. We use it in the
generation stage on linear layers and for querying the KV
cache.

4.3. LLM quantization

Recall that we apply a rotation matrix H to every weight-
activation pair of a linear layer without changing the output

Algorithm 3 NestQuant

Input: A — a vector of size n = db, q, array of k scaling
coefficients β1, . . . , βk

QA — n integers in {0, 1 . . . , q − 1} ▷ quantized
representation
B — b integers in {1, . . . , k} ▷ scaling coefficient
indices
s← ∥Ai∥2 ▷ normalization coefficient
A← A

√
n

s
for j = 0 to b− 1 do

err =∞
for p = 1 to k do

v ← A[dj + 1..dj + d]

enc← Encode
(

v
βp

)
recon← Decode(enc) · βp

if err > |recon− v|22 then
err ← |recon− v|22
QA[dj + 1..dj + d]← enc
Bj ← p

end if
end for

end for
Output: QA, B, s

Algorithm 4 Dot product

Input: QA1, B1, s1 and QA2, B2, s2 — representations
of two vectors of size n = db from Algorithm 3, array β
ans← 0
for j = 0 to b− 1 do

p1 ← Decode(QA1[dj + 1..dj + d])
p2 ← Decode(QA2[dj + 1..dj + d])
ans← ans+ (p1 · p2)βB1[j]βB2[j]

end for
return ans

of the network. Let n be the number of input features to the
layer. Following (Tseng et al., 2024a; Liu et al., 2024; Lin
et al., 2024):

• If n = 2k, we set H to be Hadamard matrix obtained
by Sylvester’s construction

• Otherwise, we decompose n = 2km, such that m is
small and there exists a Hadamard matrix H1 of size
m. We construct Hadamard matrix H2 of size 2k using
Sylvester’s construction, and set U = H1 ⊗H2.

Note that it’s possible to multiply an r × n matrix by H
in O(rn log n) in the first case and O(rn(log n + m)) in
the second case, which is negligible to other computational
costs and can be done online.

7
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In NestQuant, we quantize all weights, activations, keys,
and values using Algorithm 3. We merge the Hadamard
rotation with the weights and quantize them. We also apply
the Hadamard rotation and quantization to the activations
before linear layers. We also apply rotation to keys and
queries, because it will not change the attention scores, and
we quantize keys and values before putting them in the KV
cache. Figure 4 illustrates the procedure for multi-head
attention layers.

When quantizing a weight, we modify the NestQuant al-
gorithm by introducing corrections to unquantized weights
when a certain vector piece is quantized via the QA-LDLQ
mechanism, described in section 4.5. It is based on LDLQ
algorithm, described in section 4.1 of (Tseng et al., 2024a).

4.4. Optimal scaling coefficients

One of the important parts of the algorithm is finding the
optimal set of βi. Given the distribution of d-dimensional
vectors that are quantized via a Voronoi codebook, it is
possible to find an optimal set of given size exactly using
a dynamic programming approach, which is described in
Appendix F.

4.5. LDLQ with quantized activations (QA-LDLQ)

We note that in the presence of activation quantization, the
LDLQ and GPTQ algorithms for weight quantization be-
come significantly suboptimal 3, thus necessitating a correc-
tion (QA-LDLQ) that we describe here.

Let W be the weight (shape a×n), X be a random original
(unquantized) activation vector (shape n × 1), and Z be
X’s quantization error, which we model as random zero-
mean noise (shape n× 1) independent of X . Then, if U is
the quantized weight, the output quantization error becomes
δ(U) := WX−U(X+Z), so that the loss to be minimized
is E[∥δ(U)∥2] instead of E[∥(W −U)X∥2] that LDLQ and
GPTQ minimize.
Lemma 4.2. Suppose Z is independent from X , E[Z] = 0,
and let H = E[XX⊤] and J = E[ZZ⊤]. Then for any set
CQ ⊂ Ra×n

U∗ = argmin
U∈CQ

E[∥δ(U)∥2]

= argmin
U∈CQ

(W̃ − U)(H + J)(W̃ − U)⊤, (6)

where W̃ = WH(H + J)−1.

Thus, QA-LDLQ consists of a) computing W̃ ; b) running
the standard LDLQ but with matrix W̃ as input and Hessian
set to H + J . More details, practical aspects of QA-LDLQ,
as well as proof of the lemma are found in Appendix B.

3In fact, using original LDLQ on Llama-3-70B produces ∞
perplexity at W4A4 setting due to significant outliers in layer 0.

4.6. Algorithm summary

Here we describe the main steps of NestQuant.

1. Collect the statistics for LDLQ via calibration data.
For each linear layer with in-dimension d, we compute
a d× d “Hessian” matrix H .

2. We choose an initial set of scaling coefficients β̂, and
for each weight we simulate LDLQ quantization with
these coefficients, getting a set of 8-dimensional vec-
tors to quantize.

3. We run a dynamic programming algorithm described
in Appendix F on the 8-vectors to find the optimal
β-values for each weight matrix.

4. We also run the dynamic programming algorithm for
activations, keys, and values for each layer. To get the
distribution of 8-vectors, we run the model on a small
set of examples.

5. We quantize the weights using QA-LDLQ and precom-
puted β.

6. During inference, we quantize any activation before it
is passed to the linear layer, and any KV cache entry
before it is saved.

Note that we do not undertake any expensive (but surely
useful) fine-tuning, such as optimizing rotation matrices
or post-quantization training, as in (Liu et al., 2024) and
(Tseng et al., 2024a), since our goal is demonstrating the
basic primitive, not obtaining the absolute SOTA numbers.

5. Experiments
5.1. Simulated Data

We compared the mean L2 loss per entry of SpinQuant to
the uniform L∞-scaling quantizer (used in SpinQuant and
other methods). The mean L2 loss per entry for the product
of two matrices A ∈ Rn×k, B ∈ Rm×k is computed as
∥ABT−ÂB̂T ∥2

nm . We set n = k = m = 4096 and sampled
two matrices A,B with unit normal distribution Aij , Bij ∼
N (0, 1). We compare to the lower bound from (1).

For NestQuant, we do a grid search over (q, k). For given
q and k, we find the best subset in 1

2 · {1, 2, . . . , 50} of
scaling coefficients β of size k using the algorithm from
Appendix F. Then we calculate the expected bits per entry
computed as log2 q +

1
8

∑k
i=1 p(βi) log2 p(βi) where p(βi)

is the probability that the i’th beta is used in quantization.
In Figure 3, we plot the efficient frontier of bits per entry vs
root mean L2 loss.
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Bits (W-A-KV) Method Llama-2-7B Llama-2-13B Llama-2-70B Llama-3-8B Llama-3-70B

16-16-16 Floating point 5.47 4.88 3.32 6.14 2.86

4-16-16 QuaRot 5.60 5.00 3.41 - -
QuIP# 5.56 4.95 3.38 - -
OstQuant 5.64 4.94 3.41 6.53 3.19
NestQuant 5.53 4.93 3.38 6.31 3.14
NestQuantM 5.55 4.95 - 6.35 -

4-16-4 NestQuant 5.57 4.96 3.39 6.37 3.19
NestQuantM 5.59 4.99 - 6.49 -

4-4-16 SpinQuant 5.9 5.2 3.8 7.1 -
OstQuant 5.60 5.14 3.57 7.24 3.97
DuQuant 6.08 5.33 3.76 - -

4-4-4 QuaRot 6.10 5.40 3.79 8.16 6.66
SpinQuant 5.9 5.3 3.8 7.3 -
OstQuant 5.91 5.25 3.59 7.29 4.01
NestQuant 5.67 5.03 3.49 6.63 3.61
NestQuantM 5.73 5.07 - 6.82 -

Table 2. The wikitext2 perplexity at context window of 2048 for various quantization methods of Llama models.

5.2. Llama results

We quantize the Llama-3-8B model (Llama Team, AI @
Meta, 2024) using different values of q. We choose the num-
ber of scaling coefficients (k) to be equal to 4, the Section
H.1 explains the rationale behind this choice. More details
on the hyperparameter choice of the experiments are in Ap-
pendix G. For each experiment, we compute the number
of bits per entry similar to Section 5.1, but for the setup of
compressed β indices, we run the zstd compression algo-
rithm instead of using the entropy of the distribution. As our
evaluation metric, we use the perplexity on the validation
split of wikitext2 with context length 2048.

We also perform the evaluation of NestQuant on various
zero-shot benchmarks: ARC-Easy and ARC-Challenge
(Clark et al., 2018), Hellaswag (Zellers et al., 2019), (Bisk
et al., 2020), and Winogrande (Sakaguchi et al., 2020). The
results on 4-bit models with comparisons to other models
are summarized in Table 1.

5.3. Comparison to other methods

In comparisons to other methods, we focus on 4-bit setup,
choosing q = 14 and k = 4. We show the WikiText2
perplexity comparisons for multiple Llama models in ta-
ble 2, and other benchmark comparisons (for Llama-3-8B)
in table 1. The methods that we include in the table are
SpinQuant (Liu et al., 2024), QuIP# (Tseng et al., 2024a),
QuaRot (Ashkboos et al., 2024), DuQuant (Lin et al., 2024),
and OstQuant (Hu et al., 2025). On the WikiText2 dataset,
we computed the perplexity scores of the quantized models
on context size 2048.

q Bits Bits (no zstd) W W + KV W + KV + A

14 3.99 4.06 6.308 6.379 6.633
12 3.76 3.83 6.376 6.475 6.841
10 3.50 3.57 6.486 6.640 7.251
8 3.18 3.25 6.700 6.968 7.989

Table 3. Wikitext2 perplexity of NestQuant quantization of Llama-
3-8B at different rates. The ”bits” column is the bit rate per entry
with zstd compression of scaling coefficients, and ”bits (no zstd)”
is the bit rate without compression. The ”W”, ”W+KV”, and
”W+KV+A” describe the quantization regime (whether weights,
KV cache, or activations are quantized). The perplexity of non-
quantized model is 6.139

NestQuant consistently achieves better perplexity metrics
across different models for both weight-only regime and full
quantization. In fact, for all models we have tested, except
Llama-2-7B, NestQuant with W4A4KV4 (4-bit weights,
activations, and KV-cache) quantization even outperforms
previous works with W4A4KV16. On W4KV4A4 (4-bit
weights, KV-cache, and activations) quantization of Llama
3-8B we achieve a perplexity score of 6.6 compared to
7.3 in SpinQuant and OstQuant. Even without LDLQ, we
achieve a perplexity score of 6.8, which is still better. Fi-
nally, NestQuant outperforms QuIP# for weight-only Llama-
2 quantization.

In addition, we evaluate a simpler version of the algorithm
that is easier to run in hardware that is called NestQuantM.
More detailes on it can be found in section D.

We present ablation studies for our design choices in in
Appendix H.
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A. Figures

Figure 5. Complement Gaussian measure of a 8-dimensional cube (corresponding to shaping using an ℓ∞ ball), a Voronoi region of the
Gosset lattice E8 (corresponding to shaping using Voronoi codes with base lattice E8), and a Euclidean ball (corresponding to shaping
with a ball, which does not admit efficient implementation)

B. Details of QA-LDLQ
LDLQ details. We briefly mention the details of LDLQ (for more details we refer the reader to (Frantar et al., 2023) or (Chee
et al., 2023)). The main observation is that we want to minimize ∥(W − U)X∥2 where U is the quantized weight and X is
the matrix of activations. We observe that ∥(W−U)X∥2 = ∥(W−U)LX

√
DX∥2 where LXDXL⊤

X = H = E[XX⊤] and
LX is a uni-lower-triangular matrix and DX is diagonal. LDLQ proceeds by optimally quantizing the last column of U (for
example using the quantizer for NestQuant). It then recursively removes the feedback i, (W − U)LXEi from the rest of the
columns (here Ei is the zero matrix with the ii index set to 1). This may be written compactly as U = Q(W − (W −U)LX)
where Q quantizes each column separately.

Motivation. When quantizing Llama-3-70B with original LDLQ, we have noticed very poor (ppl ∼ 104) performance. We
have observed that the reason for this is quantization of activations for a small subset of linear layers (4 out of 560), and if
they are left in full precision, the perplexity becomes more reasonable (less than 4). We have found them by choosing the
layers with the largest amplification ratio — a concept we define next.

Consider a weight W (shape a× n), where n is the number of in-features, and a is the number of out-features. We define
amplification of a random vector X (n × 1) by W as α(W,X) :=

E[∥WX∥2]

E[∥X∥2]
. Then, if X is the distribution of input

activations, and Z is a random Gaussian vector, we define the amplification ratio for W as α(W,Z)
α(W,X) . We note that if a layer

has large amplification ratio, its activations are harder to quantize, because the magnitude of quantization noise will be
increased much more significantly than the magnitude of the activations themselves. One extreme example of this issue is
the value projection of the attention of the first transformer block in Llama-3-70B. This layer has an amplification ratio of
∼ 157, as computed from 10 wikitext2 sequences of length 2048. This makes naive 4-bit quantization of activations nearly
impossible, as even small perturbations of the input of the layer are greatly amplified in the output.

We have developed QA-LDLQ to mitigate the issue of large amplification ratio. We model quantization noise as a random
Gaussian vector with mean 0 and covariance matrix J = ε2I , where ε2 depends on the quantization rate and the statistics of
X . For large values of ε2 the modified weight matrix W̃ = WH(H + ε2I)−1 is more robust to random perturbations of the
input (thus, decreasing the amplification ratio), but on the other hand, large ε2 results in a larger bias, as expressed in the
term C(W,H, J) below. Figure 6 demonstrates this tradeoff for the value projection layer mentioned earlier.

Proof of Lemma 4.2. Recalling the definition of W̃ = WH(H + J)−1, that X and Z are statistically independent, and Z
has zero mean, and that H,J are positive semi-definite symmetric matrices, we have

E∥δ(U)∥2 = E∥(W − U)X − UZ∥2 = (W − U)H(W − U)⊤ + UJU⊤ (7)

= (W̃ − U)(H + J)(W̃ − U) + C(W,H, J), (8)
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Figure 6. We run QA-LDLQ for value projection layer of the first transformer block of Llama-3-70B. We try different values of ε on
logarithmic scale from 10−5 to 1. For each ε, we find modified weight W̃ , and plot the amplification ratio for W̃ in y-axis, as well as how
close the outputs of the weight W̃ to the outputs of weight W . The value on x axis is defined as 1− R2 := E∥WX−W̃X∥2

Var(WX)
, where X

contains activation inputs from 10 sequences of length 2048 from wikitext2. The right plot is bottom right corner of the left plot, zoomed
in. We note that by paying a small price in the accuracy of the weight, we can reduce the amplification ratio dramatically.

where

C(W,H, J) = W (H −H(H + J)−1H)W⊤, (9)

is independent of U , and therefore does not affect the minimization.

C. Gosset oracle
In this section, we discuss the algorithm for finding the nearest neighbour in E8 lattice and estimate its performance in
FLOPs (Floating Point Operations). We note that E8 = D8 ∪D8 +

1
2 , where D8 contains vectors in Z8 with even sum of

coordinates. To compute VE8
(x), we compute two candidate points: x1 = VD8

(x) and x2 = VD8+
1
2
(x), and choose the

one that has smaller L2 distance to x.

To get VD8
(x), we can round each coordinate to the nearest integer. If the sum of rounded coordinates is odd, we need to

”flip” the rounding direction of the coordinate for which the flip would cost the least. Note that finding the closest point in
VD8+

1
2

works the same, but the rounding grid now contains half-integers, not integers.

In algorithm 5, we first round our vector down (getting d) and compute the mask (g) of whether it’s optimal to round up for
D8. We note that the optimal rounding for D8 +

1
2 is d+ 0.5, while the optimal rounding for D8 is d+ g.

We want to understand whether rounding to D8 or D8 +
1
2 is better. Let disti be the absolute distance from the i-th entry

xi ∈ [di, di+1] to the middle of this integer segment di+0.5 = x2,i. We note that the contribution of this point to the MSE
for D8 is (0.5− disti)

2, while for D8 +
1
2 is dist2i . The difference is: 0.25− disti + dist2i − dist2i = 0.25− disti. If the

sum of this value over i is negative (i.e.
∑

disti > 2), it’s optimal to quantize to D8, otherwise to D8 +
1
2 . In pseudocode,

we store
∑

disti as ∆

We note that we should check the constraint that the sum of coordinates in D8 is even, and if it is not, “flip” one of the
rounding directions. The optimal coordinate to flip can be determined through dist, and the new value of flipped coordinate
— through g. We also need to update ∆ given that the MSE difference changes.

The full pseudocode of the algorithm is in Algorithm 5.
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Algorithm 5 Oracle for the Gosset lattice

1: Input: x ∈ R8

2: d← floor(x)
3: x2 ← d+ 0.5
4: g ← (x > x2)
5: s← 2 · g − 1
6: x1 ← d+ g
7: dist← (x− x2) · s
8: ∆←

∑
i disti

9: if
∑

i x1,i is odd then
10: pos = argmin dist
11: x1,pos ← x1,pos − s1,pos
12: ∆← ∆+ 2 · distpos − 1
13: end if
14: if

∑
i x2,i is odd then

15: pos = argmax dist
16: x2,pos ← x2,pos + g2,pos
17: ∆← ∆+ 1− 2 · distpos
18: end if
19: if ∆ > 2 then
20: return x1

21: else
22: return x2

23: end if

D. NestQuantM algorithm
Due to the high complexity of argmin and argmax operations in algorithm 5 for the fast hardware implementation, we
propose a different, more simple version of NestQuant decoding. Instead of using argmax and argmin on lines 10 and 15,
we always assign pos to be equal to 1 (thus, indicating that we always ”flip” the rounding direction of the first coordinate to
fix the parity). Note that this change is only applied in the decoding stage, while during encoding we use the full version of
the algorithm, which keeps the granular error the same. Let’s denote our modified Gosset oracle as f : R8 → R8.

Lemma D.1. For a vector x ∈ R8 and a vector v ∈ E8, f(x+ v) = f(x) + v.

Proof. Recall that D8 ⊂ Z8 contains all the integer vector with even sum of coordinates. The modified Gosset oracle f uses
modified D8 oracle g, and at input x constructs two candidate points c1(x) ∈ D8 and c2(x) ∈ D8 +

1
2 . Then, the algorithm

chooses the closest point among these candidates to x. Note that c1(x) = g(x) and c2(x) = g
(
x− 1

2

)
+ 1

2 .

We will prove that for u ∈ D8, g(x+ u) = g(x) + u for any x ∈ R8. Now, let’s show the original lemma. Note that since
we are choosing the closest candidate point, if the condition on candidate sets {c1(x+ v), c2(x+ v)} = {c1(x), c2(x)}+ v
holds, then f(x+ v) = f(x) + v. Now, consider two cases:

1. v ∈ D8. Then:

c1(x+ v) = g(x+ v) = g(x) + v = c1(x) + v

c2(x+ v) = g

(
x+ v − 1

2

)
+

1

2
= g

(
x− 1

2

)
+

1

2
+ v = c2(x) + v

2. v ∈ D8 +
1
2 . Then, we say that v = u− 1

2 = w + 1
2 for u, v ∈ D8.

14
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c1(x+ v) = g(x+ v) = g

(
x+ u− 1

2

)
= g

(
x− 1

2

)
+ u = g

(
x− 1

2

)
+

1

2
+ v = c2(x) + v

c2(x+ v) = g

(
x− 1

2
+ v

)
+

1

2
= g(x+ w) +

1

2
= g(x) + w +

1

2
= g(x) + v = c1(x) + v

Thus, in both cases the condition on candidate sets holds, and we get f(x+ v) = f(x) + v.

Now we show that if u ∈ D8, g(x+ u) = g(x) + u. Note that when evaluating g(x+ u), we will get the same rounding
directions as in g(x), since u is an integer vector. Since u has even sum of coordinates, the parity will also be the same.
Then, our decision to flip the rounding of the first coordinate will also match as well. Therefore, the vector between original
and rounded coordinates will be the same:

g(x)− x = g(x+ u)− x− u⇒ g(x+ u) = g(x) + u

Let v be the vector we obtain after rounding to E8, c be the lattice coordinates of v, and G be the generating matrix of the
lattice. The compressed representation is c mod q, which corresponds to a point v′ = G(c mod q). The reconstructed point
v̂ is defined to be v′ − qf(v′/q) by the decoding algorithm. Note that v − v′ ∈ qE8. Let’s assume that f(v/q) = 0. Then:

v̂ = v′ − qf

(
v′

q

)
= v′ − qf

(
v

q
+

v′ − v

q

)
= v′ − q

(
f

(
v

q

)
+

v′ − v

q

)
= v′ − q · v

′ − v

q
= v

We have used Lemma D.1 in the third equality and our assumption in the fourth equality. Given this fact, we conclude that
when using NestQuantM for decoding, the composition of encoding and decoding functions (for a fixed β) is similar to
the original NestQuant, except the shaping region has changed to the set of points v ∈ E8 such that f(v/q) = 0. Since f
is close to the original Gosset oracle, we expect this region to still capture Gaussian probability density well. In case of
overload errors, we are still able to choose a larger value of beta due to multi-beta strategy.

E. CUDA Kernel Implementation
The decoding algorithm 2 consists of a basis change p← Gc and a subsequent computation of the coset of p

q ,

p

q
−QΛ

(
p

q

)
.

We leverage the asymmetry between encoding and decoding choosing G which is fast to decode. In particular we use

G =



1 0 0 0 0 0 0 0
1 0 2 0 0 0 0 0
1 0 0 0 2 0 0 0
1 0 0 0 0 0 2 0
1 4 2 2 2 2 2 2
1 0 0 2 0 0 0 0
1 0 0 0 0 2 0 0
1 0 0 0 0 0 0 2


G is not a basis for E8 but for 2E8. We use G because we want to work in integer-lattice as half-integers cannot be
represented with integers. Moreover, we represent 8-vector x⃗ as two 32 bit integers each representing the two parts of the
vector x0, x1, x2, x3 and x4, x5, x6, x7.

For reference, the CUDA implementation of the implementation of p← Gc.
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1 __device__ void G_q_fast(
2 const uint32_t enc, uint32_t* out0, uint32_t* out1
3 )
4 {
5 uint32_t even = enc & 0x0F0F0F0F;
6 uint32_t odd = (enc & 0xF0F0F0F0) >> 4;
7

8 uint32_t two_even = even << 1;
9 uint32_t two_odd = odd << 1;

10 uint32_t x0 = even & 0xFF;
11 uint32_t concatenator = (1 << 24) | (1 << 16) | (1 << 8) | 1;
12 uint32_t x0_concat = x0 * concatenator;
13

14 uint32_t temp_even = __vadd4(two_even & 0xFFFFFF00, x0_concat);
15 uint32_t temp_odd = __vadd4(two_odd, x0_concat);
16

17 uint32_t s1 = __dp4a(two_even, (uint32_t)0x01010100, (uint32_t)0);
18 uint32_t s2 = __dp4a(two_odd, (uint32_t)0x01010101, s1);
19

20 *out0 = temp_even;
21 *out1 = temp_odd + s2;
22 }

The computation is done by decomposing G into a sum of different matrices.

G =



1 0 0 0 0 0 0 0
1 0 2 0 0 0 0 0
1 0 0 0 2 0 0 0
1 0 0 0 0 0 2 0
1 4 2 2 2 2 2 2
1 0 0 2 0 0 0 0
1 0 0 0 0 2 0 0
1 0 0 0 0 0 0 2


=



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0


+



0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



+



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 2


+



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


The next step is to compute p

q and the coset of p
q we merge both operations into one function.

1 __device__ void decode_nestquant(
2 uint32_t *enc, int *B_local_decode, const int N = 8
3 )
4 {
5 uint32_t inp0, inp1;
6 unsigned int dist[2];
7

8 const uint32_t MASK_FRACPART = 0x1F1F1F1F;
9 const uint32_t MASK_INTPART = 0xE0E0E0E0;

10 const int HALF_CONCAT = 0x10101010;
11 const int TWO = 0x40;
12 const int ONE = 0x20;
13 const int HALF = 0x10;
14

15 G_q_fast(enc[0], &inp0, &inp1);
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16

17 int32_t fracPart0 = inp0 & MASK_FRACPART;
18 int32_t fracPart1 = inp1 & MASK_FRACPART;
19

20 int32_t integerPart0 = inp0 & MASK_INTPART;
21 int32_t integerPart1 = inp1 & MASK_INTPART;
22

23 int g0 = (fracPart0 & HALF_CONCAT) << 1;
24 int g1 = (fracPart1 & HALF_CONCAT) << 1;
25

26 int32_t change = ((g0 & ONE) - HALF);
27 int32_t sum1 = get_sum(integerPart0, integerPart1);
28 int32_t two_parity_1 = (sum1 & ONE) >> 4;
29 int32_t fracPart0_1 = __vsub4(fracPart0, (int32_t)(two_parity_1 * change) & 0xFF);
30

31 int32_t sum2 = get_sum(g0, g1) + sum1;
32 int32_t two_parity_2 = (sum2 & ONE) >> 4;
33 int32_t fracPart0_2 = __vadd4(fracPart0, (int32_t)(two_parity_2 * change) & 0xFF);
34

35 dist[0] = __vabsdiffs4(fracPart0, HALF_CONCAT);
36 dist[1] = __vabsdiffs4(fracPart1, HALF_CONCAT);
37 int Delta = get_sum(dist[0], dist[1]);
38

39 int32_t dist00 = (dist[0] & 0xFF);
40 Delta -= (two_parity_1 + two_parity_2) * dist00;
41 Delta += two_parity_1 << 4;
42

43 if (Delta <= TWO) {
44 B_local_decode[0] = __vsub4(fracPart0_1, HALF_CONCAT);
45 B_local_decode[1] = __vsub4(fracPart1, HALF_CONCAT);
46 } else {
47 B_local_decode[0] = __vsub4(fracPart0_2, g0);
48 B_local_decode[1] = __vsub4(fracPart1, g1);
49 }
50 }

Remember that for q = 16, we would need to divide p by 16. We used a basis for 2E8, and not E8 so every element is
doubled. This is why in our code 1

2 is represented by 16, 1 is represented by 32, and 2 is represented by 64. In order to avoid
using the round function explicitly (which is not parallelized in hardware) we compute the integer and fractional part of the
vector using masks (as can be seen in lines 17-21).

We compute g in two parts g0 and g1 (see lines 23 and 24). This is done by checking that the fractional part is greater or
equal to 1

2 (equivalently in our scaled basis, that the fractional part has the fourth LSB set to one). We leverage the fact that

x− (⌊x⌋+ 0.5) = {x} − 0.5

(lines 44 and 45) and
x− round(x) = ⌊x⌋+ {x} − (⌊x⌋+ g) = {x} − g

(lines 47 and 48). To compute the bitflip, we compute 2g1 − 1 (corresponding to the first element in the vector, see line 26
for reference). We add (subtract) it from fractional part based on the parity check we compute in lines 28 and 32 respectively.

To decode betas in our kernel, we encode the betas as indices to a predefined dictionary (of size 4). Thus, each beta can be
represented using 2 bits.

1 int beta1 = (beta_packed >> shift) & 0x3;
2 int beta2 = (beta_packed >> (shift + 2)) & 0x3;
3 int decoded_beta1 = beta_dict[beta1];
4 int decoded_beta2 = beta_dict[beta2];

Encoding and decoding kernels share the same logical structure so that the complex mapping defined for beta is shared (this
allows fast contiguous reads of multiple betas at once).
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E.1. Runtime comparison of GEMV

Table 4. Runtime comparison of GEMV kernels on an 8192× 8192 matrix using an NVIDIA A100 GPU.

Method Time (µs)

Baseline (16 bits) 97
NestQuantM (4.25 bits) 60
QuIP# (2 bits) 38
QuIP# (4 bits) ∼75
int4 uniform 31

The QuIP# computation involves invoking two calls to QuIP# (2 bits), so we extrapolate the running time based on QuIP# (2
bits).

F. Dynamic programming for optimal β
Recall that instead of using one instance of lattice codebook C, we use a union of codebooks C scaled to different coefficients.
Specifically, our final codebook C is parameterized by coefficients β1 ≤ β2 ≤ . . . ≤ βk, and is equal to:

C = β1C ∪ β2C ∪ . . . ∪ βkC

Given a set of 8-vectors to quantize, we can find the set of β that minimizes reconstruction error using a dynamic
programming algorithm, which is described in Appendix F.

When quantizing a vector to the i-th scaled codebook, we could either get a small granular error when the vector is in
VβiΛ(0), or a large overload error otherwise. If we use a codebook with smaller β, we have larger chance of overload error,
but the expected magnitude of granular error is smaller due to the volume of Voronoi region being smaller (Figure 7). We
can have two strategies for encoding:
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Figure 7. Granular and overload error for standard Gaussian vectors, q = 16

1. First-β: Use the smallest β, which does not result in an overflow error.

2. Opt-β: Try all the values of β, and choose the one that has the smallest reconstruction MSE.

Even though Opt-β should provide smaller error, the definition of First-β will be useful for us. We can note that the
difference between error for Opt-β and First-β is not very siginificant (Table 5). Moreover, First-β can be used to determine
the optimal set of βi to use.

Let we have n samples v1, v2, . . . , vn from the distribution of vectors we are quantizing, and a large set of betas B,
containing β1 < β2 < . . . < βm, from which we want to take the optimal subset of size k which minimizes the loss under

18



NestQuant: Nested Lattice Quantization for Matrix Products and LLMs

K 2 4 6 8 10

OPT-β 0.0878 0.0795 0.0708 0.0669 0.0646
FIRST-β 0.0878 0.0798 0.0712 0.0676 0.0656

Table 5. Mean RMSE for reconstructed iid standard Gaussian 8-vectors, q = 16, k betas are uniform on [0, 10].

First-β strategy. For each vector vi and beta βj we compute mseij — the MSE if we use βj to quantize vi and overloadij
— whether an overload error occurs in this scenario.

We solve the optimization problem with dynamic programming. Let’s define dpij be the mimimum sum of MSE we can
get if we have to quantize all the vectors which do not yield an overload error for βi, using βi and j − 1 smaller betas and
First-β strategy. If i is large enough so that no vector has an overflow error on βi, dpik has the answer to the problem. To
compute the value of dpij , we can iterate over s — the index of second largest beta in the set (the largest being βi). Then,
the recalculation works in the following way:

dpij ← min

dpij , dps,j−1 +
∑

p,condp

msepi


where condp = overloadps ∧ ¬overloadpi

By following the transtions in this dynamic programming, we can reconstruct the optimal set of β.

Algorithm 6 Dynamic programming for finding the set of β

1: Input: vectors vi, beta set B, mseij , overloadij
2: dpi,j =∞ for i in 0 . . .m, j in 0 . . . k
3: fromi,j = null for i in 0 . . .m, j in 0 . . . k
4: dp0,0 = 0
5: for i = 1 to m do
6: for j = 1 to k do
7: for s = 0 to i− 1 do
8: condp = overloadps ∧ ¬overloadpi for p ∈ 1 . . . n
9: cost =

∑
p condp ·msepi

10: if dpij > dps,j−1 + cost then
11: dpij ← dps,j−1 + cost
12: fromij ← s
13: end if
14: end for
15: end for
16: end for
17: Let pos is chosen so that βpos has no overflow errors
18: result = []
19: for j = k downto 1 do
20: result.append(pos)
21: pos← frompos,j

22: end for

G. Llama experiment details
We choose the train split of the Wikitext2 (Merity et al., 2017) dataset as a calibration dataset for computing H , and
evaluate the model on the validation split, computing the perplexity metric. For step 2 in the algorithm (Section 4.6), we
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select β̂ = [3.5, 4.5, 6.0, 14.5, 25.0]/q, because it is the β we get when optimizing them for weight quantization without
consideration of LDLQ. The overall universe of betas contains values from 1 to 40 with spacing ranging from 0.25 to 2. For
running DP on activations, keys, and values, we run the model on a batch of 6 full-length sequences, which is sufficient for
this low-dimensional hyperparameter.

When choosing maximum beta for given distribution, we add a margin of 3.0
q for weights and 4.0

q to the maximum beta
needed to have 0 overload errors on known data to account for potential overload errors in unknown data. While small
number of overload error does not affect perplxity significantly, we still aim to minimize their probability.

When computing perplexity for Wikitext2 with given context length, we average the perplexities for all the positions, which
is standard for other works in quantization of LLMs.

H. Ablation studies
We found LDLQ to be useful in improving the quality of quantized model. In table 6, we compare the wikitext2 perplexity
of models with and without LDLQ.

Algorithm W W + KV W + KV + A

NestQuant 6.308 6.379 6.633
NestQuant (no LDLQ) 6.528 6.605 6.849

Table 6. Effect of LDLQ on NestQuant (q = 14 and k = 4) wikitext2 perplexity

While Hadamard matrices from Sylvester construction are commonly used in other works (QuIP#, Quarot), there are
multiple ways to construct a fast rotation for the case when dimension is not a power of 2 (such as the down projection in
MLP of Llama-3). We tested three possible options for rotation on q = 14, k = 4, W + KV + A quantization.

Algorithm W + KV + A

Fourier 6.773
S ⊗ H , S — orthogonal, H — Sylvester Hadamard 6.770
H1 ⊗ H , H1 — hardcoded Hadamard, H — Sylvester Hadamard 6.663

Table 7. Effect of rotation on NestQuant (q = 14 and k = 4) wikitext2 perplexity

H.1. The choice of k

The value of k, i.e. the number of scaling coefficients is an important hyperparameter of the algorithm. With an increase
of k, we decrease the quantization error by allowing each vector to be quantized to the lattice point with a proper scaling.
However, it increases the bitrate and makes the encoding slower, since we need to try a larger number of scaling coefficients.

We used k = 3, 4, 5, 8 to quantize Llama-3-8B across different values of q, plotting the resulting perplexity against bitrate in
Figure 8. We can see that using k = 3 leads to a suboptimal performance of the quantization scheme, while the performances
of k = 4, 5, 8 are comparable. In our experiments, we use k = 4, because lower having k results in faster encoding.

I. Results for Llama3.2-1B
Here, we show the results of NestQuant on the newer 1B parameter model LLama3.2-1B. We do experiments in the same
setups as for the Llama-3-8B model, computing the wikitext2 perplexity.

q Bits Bits (no zstd) W W + KV W + KV + A

14 3.99 4.06 10.061 10.529 11.197
12 3.76 3.837 10.178 10.862 11.910
10 3.50 3.57 10.377 11.552 14.191
8 3.18 3.25 10.850 13.309 18.710

Table 8. Wikitext2 perplexity of NestQuant quantization of Llama-3.2-1B. The format of the table is the same as in Table 3. The perplexity
of non-quantized model is 9.749
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Figure 8. The perplexity-bitrate scaling of NestQuant with different values of k, all components of the model (weights, KV cache,
activations) are quantized

J. Results for 3-bit model quantization
We publish the results for 3-bit quantization of weights and activations on small models (Llama-3-8B and Llama-2-7B). We
use q = 7 and k = 4, which results in 2.98 bits per entry.

Bits (W-A-KV) Method Llama-2-7B Llama-3-8B

16-16-16 Floating point 5.47 6.14
4-4-16 NestQuant 5.64 6.56
3-3-16 NestQuant 8.25 6.33
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