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ABSTRACT

Investigating flat minima on loss surfaces in parameter space is well-documented
in the supervised learning context, highlighting its advantages for model gener-
alization. However, limited attention has been paid to the reinforcement learning
(RL) context, where the impact of flatter reward landscapes in policy parameter
space remains largely unexplored. Beyond merely extrapolating from supervised
learning, which suggests a link between flat reward landscapes and enhanced gen-
eralization, we aim to formally connect the flatness of the reward surface to the
robustness of RL models. In policy models where a deep neural network deter-
mines actions, flatter reward landscapes in response to parameter perturbations
lead to consistent rewards even when actions are perturbed. Moreover, robustness
to action perturbations further enhances robustness against other variations, such
as changes in state transition probabilities and reward functions. We extensively
simulate various RL environments, confirming the consistent benefits of flatter
reward landscapes in enhancing the robustness of RL under diverse conditions,
including action selection, transition dynamics, and reward functions. The code
for these experiments is available at https://github.com/HK-05/flatreward-RRL.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful strategy for optimizing sequential
decision-making tasks, with applications ranging from robotics to game playing and beyond (Mnih
et al., 2015; Silver et al., 2016). Despite its great success, one of the critical challenges in RL
remains its susceptibility to variations in the environment, which can significantly degrade perfor-
mance (Peng et al., 2018). This challenge has driven interest in Robust Reinforcement Learning
(RRL), a subfield focused on enhancing the generalization and resilience of RL algorithms against
such environmental variabilities (Morimoto & Doya, 2005b; Rajeswaran et al., 2017; Pattanaik et al.,
2018). Traditional RRL approaches, such as robust policy optimization and action robust reinforce-
ment learning, have made strides in this direction. However, these methods often involve complex
implementations and limited algorithmic diversity, especially when considering the broader land-
scape of RL (Pinto et al., 2017; Tessler et al., 2019).

In contrast, recent advancements in supervised learning have highlighted the importance of the land-
scape of loss values in the model parameter space. Specifically, flatter minima—with smooth vary-
ing loss values around them—are preferred as they exhibit strong generalization capabilities and are
less sensitive to perturbations in the input distribution (Keskar et al., 2017; Hochreiter & Schmidhu-
ber, 1997; Dinh et al., 2017; Foret et al., 2021). This raises a natural question: Does a flat reward
landscape imply robustness in RL against environmental changes?

While a few works have begun to explore this question, finding that optimization for flatter reward
maxima sometimes shows meaningful gains against varying environments (Lee et al., 2024), and
that RL methods with flatter reward surfaces tend to exhibit robust performance (Sullivan et al.,
2022), these prior studies often rely on a naive transfer of benefits observed in supervised settings
to RL optimization. Moreover, they primarily provide empirical evidence without establishing a
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rigorous link between flat rewards and robustness. To the best of our knowledge, the potential of flat
reward landscapes in RL remains largely unexplored.

To illustrate the practical significance of this concept, consider the following preliminary experi-
ment. We ran a 2D navigation task where an agent must move from a fixed start position to a goal
position, with a very narrow path between two obstacles (see Fig. 1). In this action-critical setting,
slight action perturbations can severely deteriorate performance. We compare a standard Proxi-
mal Policy Optimization (PPO) algorithm with our variant of PPO enhanced with Sharpness-Aware
Minimization (SAM), denoted as ‘SAM+PPO,’ which pursues flatter reward maxima.

Figure 1: Trajectories of agents in the 2D nav-
igation task: (a) PPO tends to take the short-
est path, risking collision with obstacles; (b)
SAM+PPO maintains a safer margin, demon-
strating robustness to action perturbations.
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(b) SAM+PPO

As shown in Fig. 1, the paths generated by mul-
tiple trials are depicted in orange. The standard
PPO agent tends to follow the shortest path, bring-
ing it dangerously close to the obstacles. This be-
havior makes the agent susceptible to failure when
actions are slightly perturbed, as minor deviations
can result in collisions. In contrast, the SAM+PPO
agent maintains a safer margin from the obstacles,
avoiding the narrow path and demonstrating more
robust decision-making in the presence of action
perturbations. This preliminary experiment high-
lights how pursuing flatter reward maxima can lead
to enhanced robustness in RL agents.

In this paper, we delve deeper into the concept of
flat reward landscapes and their implications for robust reinforcement learning. Our main claim is
that flatter reward maxima rigorously lead to robustness against action perturbations (Proposition 1).
We also provide insights into how this robustness extends beyond action robustness to encompass
transition probability and reward robustness. To validate our claims, we conduct extensive exper-
iments in various MuJoCo environments (Todorov et al., 2012), including Hopper, Walker2d, and
HalfCheetah, by varying actions, transition probabilities, and rewards.

Our work is outlined as follows: Section 2 reviews related prior works, and Section 3 presents the
preliminaries with a focus on Robust Markov Decision Processes and SAM. In Section 4, we intro-
duce our definition of flat reward maxima and establish the rigorous link between flat rewards and
action robustness. Section 5 presents extensive simulations and analyses that validate the effect of
flatness on the reward surface in various RL benchmarks. We further compare our flat reward policy
with existing robust RL methods, emphasizing gains in performance and computational efficiency
(see also Appendix E). Finally, Section 6 concludes the paper.

2 RELATED WORK

2.1 ROBUST REINFORCEMENT LEARNING

Robust Reinforcement learning (RRL) focuses on developing agents that maintain high performance
despite uncertainties in the environment. Early approaches in this domain were predominantly
model-based, leveraging explicit models of the environment to account for uncertainties. Mori-
moto & Doya (2005a) utilized H∞ control theory to formulate RL as a zero-sum game between the
agent and nature, providing robustness through worst-case scenario optimization. Similarly, Iyen-
gar (2005) and Nilim & El Ghaoui (2005) introduced Robust Markov Decision Processes (RMDPs)
that model uncertainties in transition probabilities and reward functions, enabling the derivation of
robust policies with theoretical guarantees. Several studies have proposed model-based robust RL
algorithms in the tabular domain, with a strong emphasis on improving sample efficiency (Yang
et al., 2022; Zhou et al., 2021; Panaganti & Kalathil, 2022).

However, model based methods often face scalability issues due to the computational complexity
involved in high-dimensional spaces (Xu & Mannor, 2010; Wiesemann et al., 2013; Mannor et al.,
2016; Goyal & Grand-Clement, 2023). To overcome these limitations, the focus gradually has been
shifted towards model-free approaches, which do not require explicit environmental models, making
it more scalable and applicable to complex tasks.
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Recent research has explored model-free robust RL in settings with unknown uncertainty sets, where
the agent pursues robustness without precise knowledge of the environmental uncertainties. Tessler
et al. (2019) proposed Action Robust Reinforcement Learning, which models uncertainties in the
action space and learns policies robust to adversarial action perturbations. Mankowitz et al. (2019)
introduced Robust Reinforcement Learning via Regularized Policy Optimization, applying regular-
ization techniques to improve robustness without explicit adversarial training. Derman et al. (2021)
developed the TWICE algorithm, a model-free method that achieves robustness by accounting for
both variance and bias in policy evaluation. Roy et al. (2017) introduced a method for robust Q-
learning that accounts for uncertainties in transition dynamics by optimizing the worst-case perfor-
mance over an ambiguity set, which is estimated online without prior knowledge (Wang & Zou,
2021; Badrinath & Kalathil, 2021).

Advancements in policy-based methods have further propelled robust RL (Kumar et al., 2024; Li
et al., 2022; Grand-Clément & Kroer, 2021). Pinto et al. (2017) introduced Robust Adversarial Re-
inforcement Learning (RARL), where an adversary is trained alongside the agent to perturb the en-
vironment, enhancing the agent’s robustness. By directly parameterizing and optimizing the policy,
these methods offer advantages in handling continuous and high-dimensional action spaces. Wang
& Zou (2022) developed a model-free robust RL algorithm that utilizes a worst-case policy gradient
approach to handle unknown uncertainties in the environment. Li et al. (2022) proposed First-Order
Constrained Optimization in Policy Space (FOCOPS), which ensures robustness by enforcing safety
constraints during policy updates.

Our work aligns with this progression, focusing on model-free, policy-based RL to enhance robust-
ness through the optimization of flat reward surfaces. To the best of our knowledge, the flat reward
surface of policy-based RL has not yet been deeply explored in the view of robustness.

2.2 FLAT MINIMA AND FLATNESS IN REINFORCEMENT LEARNING

The concept of flat minima in the loss landscape has been extensively studied in supervised learn-
ing, where flatter regions are associated with better generalization and robustness to perturba-
tions (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017; Dinh et al., 2017; Dziugaite & Roy,
2017; Petzka et al., 2021; Andriushchenko et al., 2023). Several methods have been proposed to
find flat minima, including Entropy-SGD (Chaudhari et al., 2019), Stochastic Weight Averaging
(SWA) (Izmailov et al., 2018), and SWA with Densely (SWAD) (Cha et al., 2021).

Among the prior works, Foret et al. (2021) introduced Sharpness-Aware Minimization (SAM),
which directly embeds the loss flatness into the objective function, enabling the search for min-
ima with flatter surrounding regions. SAM has shown significant improvements in generalization
performance across various supervised learning scenarios, including domain generalization (Cha
et al., 2021) and federated learning (Qu et al., 2022; Caldarola et al., 2022; Sun et al., 2023).

Lee et al. (2024) applied SAM to policy gradient methods, observing empirical improvements in
policy robustness. However, the prior work shows the following limitations: It primarily focuses
on exhibiting partial empirical evidence without a formal bridge between the flatness in the reward
landscape and the robustness in RL. Also, the effects of reward flatness are not carefully scrutinized
in the multiple key perspectives of RL, i.e., action, transition probability, and reward.

Our work is also based on the SAM-based policy gradient methods, but we do not focus on further
pursuing algorithmic advances. Our work distinguishes itself by providing a further understanding
of how the flatter reward maxima contribute to the robustness of RL agents, which remains unknown
yet. Also, we tested how flatness improves the robustness of RL against the perturbations of actions,
transition probabilities, and rewards.

2.3 REWARD SURFACE VISUALIZATION

Ilyas et al. (2020) is among the first to visualize reward surfaces to characterize problems with
policy gradient estimates. They plotted policy gradient estimates versus uniform random directions,
demonstrating through striking visual examples that low-sample estimates of the policy gradient
often guide the policy in directions no better than random ones. This work emphasizes the need to
better understand the optimization landscape of rewards.

3



Published as a conference paper at ICLR 2025

With the visualization methods by Li et al. (2018), Bekci & Gümüş (2020) utilized loss landscape
visualizations to study Soft Actor-Critic (SAC) agents (Haarnoja et al., 2018) trained on inventory
optimization tasks. They investigated the impact of policy stochasticity and action smoothing on the
curvature of the loss landscapes in several MuJoCo environments, providing empirical evidence of
how different factors influence the optimization landscape in RL.

Ota et al. (2024) utilized loss landscape visualization methods to compare shallow and deep net-
works in RL. It demonstrates that deeper models perform poorly due to increased complexity and
curvature in loss landscapes. With the visual intuitions, they developed methods to effectively train
deeper networks for RL tasks. Notably, their work plotted the loss function of SAC agents, which
includes an entropy regularization term (Haarnoja et al., 2018). Recently, it is observed that an RL
method with a flatter reward surface tends to show robust performance (Sullivan et al., 2022).

In our work, we also visualize the surface of rewards to confirm the flatness of reward functions. In
addition, we compute the flatness metric to provide quantitative results.

3 PRELIMINARIES

This section outlines the key preliminaries that underpin our work, including the basics of Markov
Decision Process (MDP), Policy Gradient Methods, Robust MDP, and Action Robust MDP. In ad-
dition, we briefly introduce Sharpness-Aware Minimization (SAM), which is a widely-documented
optimization method to pursue flatter minima in loss surface for the supervised learning case.

3.1 MARKOV DECISION PROCESSES (MDP) AND POLICY GRADIENT METHODS

As well-documented in many works, MDP and policy gradient methods are formalized as follows.
Our description mainly refers to (Sutton & Barto, 2018; Sutton et al., 1999; Williams, 1992).

Markov Decision Process (MDP) is defined by a tuple (S,A, P, r, γ), where S represents the set
of states, A represents the set of actions, P : S × A × S → [0, 1] is the state transition probability
function, r : S × A → R is the reward function that assigns a real value to each state-action pair,
and γ ∈ [0, 1] is the discount factor that models the decreasing importance of future rewards.

The objective in an MDP is to find a policy π : S → A that maximizes the expected return. The
expected return from a state s under a policy π is given by:

V π(s) = E
[∑∞

t=0
γtr(st, at) | s0 = s, π

]
,

where st and at denote the state and action at time t, respectively, and the expectation is over the
distribution of possible trajectories generated by following π.

Policy Gradient Methods are a crucial class of algorithms in deep reinforcement learning used
to optimize policies directly. These methods employ gradients of the expected return with respect
to the policy parameters to perform optimization (Sutton et al., 1999). In this case, the policy is
commonly a parameterized model, i.e., πθ(a|s), with learnable weights θ. According to the policy
gradient theorem, the gradient of the expected return with respect to the policy parameters θ is:

∇θV
π(s) = Eπ

[∑∞

t=0
γt∇θ log πθ(at|st)Rt

]
,

where Rt =
∑∞

k=t γ
k−tr(sk, ak) denotes the cumulative reward from time t onwards. This ex-

pression facilitates the application of gradient ascent methods to iteratively improve the policy by
adjusting parameters in the direction that maximizes the expected return (Williams, 1992).

3.2 ROBUST MDPS AND ACTION ROBUST MDP

Robust MDPs extend the classical Markov Decision Process framework to handle uncertainties in
transition probabilities and rewards (Nilim & El Ghaoui, 2005). In a robust MDP, instead of a single
deterministic transition probability, the model allows for a range of possible outcomes defined by an
uncertainty setP . This set encapsulates all plausible variations in the transition dynamics under real-
world conditions, and is defined as: P = {{ps,a}s∈S,a∈A | ps,a ∈ Ps,a, ∀s ∈ S, ∀a ∈ A}, where
each Ps,a represents a compact subset of ∆S , the simplex of probability distributions over the state
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space S, which is defined as: ∆S =
{
p ∈ R|S|

∣∣ p(s′) ≥ 0 for all s′ ∈ S,
∑

s′∈S p(s′) = 1
}

. The
optimization problem in a robust MDP is framed as follows:

max
π

min
p∈P

Ep,π

[∑∞

t=0
γtr(st, at)

]
, (1)

focusing on a Max-Min strategy to ensure the policy is resilient against the worst-case scenario of
transition probabilities within P (Iyengar, 2005).

Action Robust MDP specifically targets robustness in the context of actions taken within the MDP
framework (Tessler et al., 2019). It considers the worst-case scenario where actions taken deviate
from those chosen by the policy, potentially due to errors or external disturbances. Thus, the goal is
to devise a policy that yields the highest minimum reward possible under any allowable perturbation
of actions. Formally, the objective is as follows:

max
π

min
∥δt∥≤β

Ep,π

[∑∞

t=0
γtr(st, at + δt)

]
, (2)

where δt denotes allowable deviations in action space, upper bounded by β ≥ 0, and γ is the
discount rate. This setup not only enhances the resilience of the strategy under practical conditions
where perfect action execution is unfeasible but also shows the formulation with that used in Robust
MDPs by maintaining the Max-Min structure across transition probability p and reward function r.

3.3 SHARPNESS-AWARE MINIMIZATION (SAM)

Sharpness-Aware Minimization (SAM) aims to search loss minima that are not only high-
performing but also demonstrating the minimal sensitivity to perturbations in the parameter
space (Foret et al., 2021). The objective function of SAM is given by:

min
θ

max
∥ϵ∥≤ρ

L(θ + ϵ), (3)

where L(θ) is the loss function for a given batch of samples, θ represents the model parameters,
and ϵ is the parameter perturbations within a sphere by the norm ρ. The Max operation inside the
objective function seeks the worst-case performance within the perturbation boundary, and the outer
Min operation attempts to find the model parameters that are most robust against such perturbations.

The gradient of the Min-Max problem can be approximated by four steps of computations. A de-
tailed optimization procedure is provided in Appendix C.: i) Compute the gradient at θ, which
maximally increases the loss values, ii) Perturb model parameter θ to become θ + ϵ, where ϵ is
pointing to the previously computed gradient direction. iii) Compute the gradient at the perturbed
parameter θ + ϵ. iv) Update θ by using the gradient computed at θ + ϵ.

4 LINKING FLAT REWARD TO ACTION ROBUSTNESS

For a reward function r(s, a) with a given state-action pair (s, a), we here define the E-flat reward
maxima by rehearsing the definition of loss flatness of the supervised learning case (Shi et al., 2021).

Definition 1 (E-flat reward maxima) For a reward function r(s, a) and a policy model πθ(a|s)
parameterized by θ, a maximum θ∗ is E-flat reward maxima when the following constraints hold:

For all ϵ ∈ Rm s.t. ∥ϵ∥ ≤ E , Es∼p,a∼πθ∗+ϵ(a|s)

[∑∞

t=0
γtr(st, at)

]
= r∗

There exists ϵ ∈ Rm s.t. ∥ϵ∥ > E , Es∼p,a∼πθ∗+ϵ(a|s)

[∑∞

t=0
γtr(st, at)

]
< r∗ (4)

where r∗ := Es∼p,a∼πθ∗ (a|s) [
∑∞

t=0 γ
tr(st, at)] and E is a positive real number.

Based on the objective of the action robustness, we further define ∆-action robust policy as follows:

Definition 2 (∆-action robust policy) For a reward function r(s, a), a policy model πθ∗(a|s) pa-
rameterized by θ∗ is ∆-action robust when the following constraints hold:

For all δt ∈ R|A| s.t. ∥δt∥ ≤ ∆, Es∼p,a∼πθ∗

[∑∞

t=0
γtr(st, at + δt)

]
= r∗

There exists δt ∈ R|A| s.t. ∥δt∥ > ∆, Es∼p,a∼πθ∗

[∑∞

t=0
γtr(st, at + δt)

]
< r∗, (5)

where r∗ := Es∼p,a∼πθ∗ [
∑∞

t=0 γ
tr(st, at)] and ∆ is a positive real number.
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Figure 2: Illustration of Definitions 1 and 2. (a) E-flat reward maxima as defined in Definition 1,
highlighting the E-flat reward r∗ region around θ∗. (b) ∆-action robust policy as defined in Defini-
tion 2, demonstrating how the policy maintains r∗ within perturbations of size ∆.

Built upon the definitions, we here address how the flat reward maxima link to the action robust
policy. To formalize the rigorous link, we provide a mathematical statement as follows.

Proposition 1 (Flat reward links to action robustness) If θ∗ is an E-flat reward maximum, then the
policy πθ∗ is ∆∗-action robust, where:

∆∗ ≤ ∥J(θ∗)∥E +O(E2), (6)

and J(θ∗) := ∇θµθ(s)
∣∣
θ=θ∗ is the Jacobian matrix of the mean action µθ(s) with respect to θ,

evaluated at θ∗.

The proof of the proposition is in Appendix A.

Remark 1.1 (A link to Max-Min problem of action robustness) For ∆∗-action robust policy de-
rived by E-flat reward maxima θ∗, the policy directly satisfies the objective of action robust MDP:

θ∗ = argmax
θ

min
∥δt∥≤∆∗

Es∼p,a∼πθ

[∑∞

t=0
γtr(st, at + δt)

]
, (7)

which implies that flatter reward yields the robustness against action perturbations.

Remark 1.2 (An informal link to other factors) We here provide an intuition that the reward sur-
face flatness also links to the robustness against the perturbations of other factors, including reward
function and transition probability. i) For reward function perturbations, i.e., r(s, a) → r̃(s, a), it
directly corresponds to the perturbations of loss function in the supervised learning case. Thus,
when a reward function has merely slight perturbations, a maximum located at flatter surface
tends to retain higher rewards. ii) When the MDP’s transition probability has perturbations, i.e.,
P (s′|s, a) → P̃ (s′|s, a), even the same action-state pair results in the different transition to other
states. When the state transition changes, it gives different reward values, thus it relates to the
undesired perturbation of rewards even with the same state-action pair. Consequently, it implies
that reward flatness also promotes the robustness against the transition probability changes, which
eventually links to the reward changes.

5 EXPERIMENTAL RESULTS

MuJoCo tasks: We conduct extensive experiments across three continuous control tasks from the
MuJoCo environment (Todorov et al., 2012): HalfCheetah-v3, Hopper-v3, and Walker2d-v3.

Algorithms to be considered: The evaluations are mainly for comparing the standard PPO algo-
rithm and our SAM-enhanced PPO, which is called SAM+PPO. SAM+PPO’s objective is:

min
θ

max
∥ϵ∥≤ρ

Ep,πθ+ϵ

[∑∞

t=0
−γtr(st, at)

]
, (8)

where it solves the Min-Max problem with the perturbation ϵ that maximally worsens the re-
ward, i.e., maximizing the minus-signed reward. Our SAM+PPO refers to the prior works (Lee

6



Published as a conference paper at ICLR 2025

et al., 2024). Also, we add a recent baseline of robust reinforcement learning: Robust Natu-
ral Actor-Critic (RNAC) (Zhou et al., 2024) and Robust Adversarial Reinforcement Learning
(RARL) (Pinto et al., 2017).

Experiments to be done: We evaluate PPO, RNAC, RARL, and SAM+PPO under various pertur-
bations, including action noise, transition probability changes, and reward function variations. Also,
we visualize the reward surfaces to analyze the flatness achieved by PPO and SAM+PPO and com-
pare our method with existing robust reinforcement learning algorithms. Additional evaluations of
other RL algorithms and SAM-enhanced version are presented in Appendix D.2

5.1 EXPERIMENTAL SETUP

For PPO, SAM+PPO, RNAC, and RARL, we use a multi-layer perceptron (MLP) architecture with
three layers for their policy networks. Also, for each experimental case, PPO and SAM+PPO are
trained in the nominal (unperturbed) environment using identical hyperparameters for a fair com-
parison. For RNAC and RARL, we tune the hyperparameters to achieve the performance reported
in (Zhou et al., 2024), and (Pinto et al., 2017) respectively, specified in the original RNAC and RARL
implementation for the environments. Each experiment was conducted over five independent trials,
each initialized with a different random seed to ensure statistical significance. Furthermore, for each
evaluation, we performed 100 evaluation runs and averaged the results to enhance the stability and
accuracy of our findings. We added the detailed hyperparameters and settings in Appendix B.

5.2 ACTION ROBUSTNESS EVALUATION

We first evaluate the action robustness, which seems to be the most highly related factor to flat
rewards. To simulate the perturbed actions, we add zero-mean Gaussian noise with varying standard
deviations σa ranging from 0.0 to 0.5 to the agent’s actions. The noisy action anoisy is computed as:
anoisy = a + N (0, σ2

a), where a is the original action output by the agent’s policy. If the addition
of noise results in actions outside the valid range, we clip the actions to the allowable bounds of the
environment.
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Figure 3: Action robustness evaluation across different environments. The average return is plotted
against the action noise standard deviation σa.

Figure 3 presents the results of the action robustness evaluation across three distinct environments:
HalfCheetah-v3, Hopper-v3, and Walker2d-v3. In all three environments, the performance of all
agents gradually decreases as the action noise increases, which is expected due to the increased
uncertainty in action execution. Importantly, SAM+PPO consistently outperforms PPO and RNAC
across all noise levels, and the rate of performance degradation is much slower compared to PPO
and RNAC. RARL demonstrates competitive robustness performance, maintaining relatively higher
returns compared to PPO and RNAC under moderate noise levels. These results indicate that the
flat reward achieved by SAM+PPO makes the policy less sensitive to action perturbations, thus
coinciding with our claim.

5.3 TRANSITION PROBABILITY ROBUSTNESS EVALUATION

We perturb the transition dynamics by modifying the physical parameters of the environment. By
tailoring to the given three environments, we vary the torso mass and friction coefficients.

7



Published as a conference paper at ICLR 2025

Variation in Torso Mass: We scale the torso mass of the agent by factors ranging from 0.5 to 1.5
times its nominal value in increments of 0.1. This tests the agent’s ability to adapt to changes in its
own dynamics, such as carrying additional weight or structural modifications.
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Figure 4: Robustness evaluation under torso mass variations. The average return is plotted against
the mass scaling factor. The nominal torso mass factor is 1.0.

As shown in Figure 4, the performance of all agents decreases as the torso mass deviates from the
nominal. However, SAM+PPO consistently achieves higher returns than others. RNAC generally
shows better performance than PPO but worse than SAM+PPO. RARL demonstrates competitive
performance, maintaining relatively higher returns compared to PPO and RNAC under moderate
mass scaling factors. These results suggest that the policies learned by SAM+PPO are more robust
to changes in the agent’s dynamics, likely due to the flatter reward surface that reduces sensitivity to
such perturbations.

Variation in Friction Coefficient: We vary the friction coefficients between the agent’s feet and
the ground from 0.4 to 1.6. The nominal friction coefficient is 1.0. This simulates different ground
conditions, such as slippery or rough surfaces, which affect the agent’s ability to move and balance.
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Figure 5: Robustness evaluation under friction coefficient variations. The average return is plotted
against the friction scaling factor.

Figure 5 presents the friction robustness evaluation. SAM+PPO shows a clear advantage over PPO,
maintaining higher performance as the friction coefficient varies. SAM+PPO generally outperforms
RNAC. RNAC shows strong performance with larger friction factors for Walker2d-v3, but it severely
degrades when the friction decreases (less friction makes the ground surface slippery). RARL main-
tains relatively stable performance across a range of friction coefficients, particularly excelling in
environments with extreme cases of friction where other methods experience significant degrada-
tion. These results indicate that the policies learned by SAM+PPO are more adaptable to different
surface conditions, which is critical for real-world applications where ground properties can change
unpredictably.

Mass and Friction Joint Variations: Herein, we focus on evaluating the agents’ performance
across the joint variations of mass and friction, which shows a comprehensive view of robustness.

Figure 6 presents the reward heatmaps for three environments. The widely highlighted regions of
SAM+PPO demonstrate that it is robust compared to others across a broader spectrum of environ-
mental variations. While SAM+PPO shows slightly lower performance in scenarios with extremely
high friction, it significantly outperforms others in environments with lower friction, such as slip-
pery surfaces. RARL exhibits competitive performance in certain regions, particularly maintaining
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better performance than PPO and RNAC under specific combined perturbations of mass and fric-
tion. Surprisingly, RNAC shows marginal gains over PPO. It underscores the superior robustness of
SAM+PPO in adapting to compounded changes in mass and friction over others.
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Figure 6: Reward heatmaps for combined mass and friction variations across different environments.
Yellow to dark blue indicates better to worse performance, respectively.

Table 1 summarizes the performance of PPO, SAM+PPO, RNAC and RARL under various perturba-
tion scenarios across different environments. These results collectively demonstrate that SAM+PPO
enhances the agent’s ability to withstand simultaneous environmental perturbations in mass and
friction, providing a more robust and reliable performance compared to others.

Table 1: Performance comparison under various perturbations.
Perturbation Metric HalfCheetah-v3 Hopper-v3 Walker2d-v3

Nominal Perturbed Nominal Perturbed Nominal Perturbed

Action Noise σ = 0.2
PPO 4758 1469(−3289) 3217 1467(−1750) 4883 607(−4276)
RNAC 5484 2014(−3470) 3445 1321(−2124) 4147 652(−3495)
RARL 4996 3412(−1584) 2819 1645(−1174) 4020 764(−3256)
SAM+PPO 6523 4949(−1574) 3766 2312(−1454) 5129 2033(−3096)

Mass Scale Factor 1.2
PPO 4837 3865(−972) 3215 1556(−1659) 4957 782(−4175)
RNAC 5485 4844(−641) 3303 1759(−1544) 4373 741(−3632)
RARL 6561 6016(−545) 3136 3078(−58) 4393 4343(−50)
SAM+PPO 6562 6210(−352) 3499 3508(+9) 5205 5284(+79)

Friction Coefficient 0.88
PPO 4723 4774(+51) 3075 1580(−1495) 4996 4756(−240)
RNAC 5446 5422(−24) 3653 679(−2974) 4438 3844(−594)
RARL 6560 6516(−44) 3136 2161(−975) 4426 2828(−1598)
SAM+PPO 6562 6539(−23) 3500 2728(−772) 5073 5134(+61)

(−/+) values mean the performance degradation from ‘Nominal’ to ‘Perturbed.’,
Boldface is used for highest performance in ’Nominal’, smallest performance degradation in ’Perturbed’

5.4 REWARD FUNCTION ROBUSTNESS EVALUATION

For testing reward function robustness, a notable difference of this part is that reward perturbations
are added during training. As done in the previous testing, when the training is done with nominal
rewards and then perturbed during testing, the policy thus yields the expectation of the perturbed
rewards, leading to a trivial message. Therefore, we adopt noise rewards during training to confirm
how different agents are trained against the reward perturbations. Specifically, we introduced zero-
mean Gaussian noise with a standard deviation of σr = 0.1 to the rewards. After training, we
evaluated the policies in the nominal environment.

Table 2: Performance comparison of agents trained with and without reward noise (σr = 0.1)

Algorithm HalfCheetah-v3 Hopper-v3 Walker2d-v3
Nominal Noisy Nominal Noisy Nominal Noisy

PPO 4820 3688(−1132) 3150 2945(−205) 4780 2204(−2576)
RNAC 5423 4088(−1335) 3211 3035(−176) 4184 3172(−1012)
RARL 5620 4617(−1003) 3124 2993(−131) 4388 3085(−1303)
SAM+PPO 6530 5990(−540) 3505 3377(−128) 5120 4226(−894)

(−) values means the performance degradation from ‘Nominal’ to ‘Noisy.’

As shown in Table 2, the degradation of SAM+PPO is significantly less than that of PPO across all
cases. SAM+PPO is less sensitive to variations of rewards, leading to better stability. It is critical
when the reward may not always be accurate or consistent in real-world settings.

9



Published as a conference paper at ICLR 2025

5.5 REWARD SURFACE VISUALIZATIONS AND FLATNESS MEASUREMENTS

We visualize the reward surface by using the method in (Sullivan et al., 2022). Also, we first compute
the flatness metrics, including the maximum eigenvalue of the Hessian, i.e., λmax and the Low-Pass
Filter (LPF) flatness measure (Keskar et al., 2017; Bisla et al., 2022).

(a) PPO - HalfCheetah-v3 (b) PPO - Hopper-v3 (c) PPO - Walker-v3

(d) SAM+PPO - HalfCheetah-v3 (e) SAM+PPO - Hopper-v3 (f) SAM+PPO - Walker-v3

Figure 7: Reward surface visualizations of agents. The x and y axes represent perturbations along
random directions in the parameter space, and the z-axis represents the average return.

Figure 7 shows the reward surfaces for PPO and SAM+PPO in the HalfCheetah-v3 environment.
Similar patterns are observed in Hopper-v3 and Walker2d-v3. The SAM+PPO reward surface is
noticeably flatter, meaning that the agent’s performance is less sensitive to parameter changes. This
supports that SAM yields flatter reward maxima, and it is strongly correlated to more robust policies.

As shown in Table 3, SAM+PPO generally achieves lower flatness metrics compared to PPO, indi-
cating that SAM+PPO converges to flatter minima in the policy parameter space.

Table 3: Flatness metrics for PPO and SAM+PPO (↓: indicates that lower is better).
Metrics λmax ↓ (Keskar et al., 2017) LPF ↓ (Bisla et al., 2022)

Environment HalfCheetah-v3 Hopper-v3 Walker2d-v3 HalfCheetah-v3 Hopper-v3 Walker2d-v3
PPO 15192.95 131.07 7239.59 0.0385 0.00034 0.0269

SAM+PPO 275.93 80.86 271.91 0.00097 0.00018 0.00028

6 CONCLUSION

In this paper, we aim to unravel the meaning of flat reward maxima from the perspective of the
robustness of reinforcement learning. Theoretically, we provide a formal link between flatness and
robustness. Empirically, we broadly confirm our claim, showing that SAM+PPO outperforms stan-
dard PPO and existing robust RL algorithms like RARL and RNAC, validating the efficacy of flat
rewards. This work emphasizes the importance of flatness in RL’s policy space. We believe that it
can broaden new avenues for developing robust RL algorithms by combining with prior robust RL
methodologies to pursue a strongly robust RL in real-world applications.
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A PROOF OF PROPOSITION 1

We aim to show that an E-flat reward maximum θ∗ (as per Definition 1) corresponds to a ∆∗-action
robust policy πθ∗ (as per Definition 2), with:

∆∗ ≤ ∥J(θ∗)∥E +O(E2), (9)

where J(θ∗) = ∇θµθ(s)
∣∣
θ=θ∗ is the Jacobian matrix of the mean action µθ(s) with respect to θ,

evaluated at θ∗.

Consider a stochastic policy πθ(a|s) parameterized by θ, assumed to be a Gaussian policy with mean
action µθ(s) and fixed covariance matrix Σ:

πθ(a|s) = N (a;µθ(s),Σ). (10)

Let ϵ ∈ Rm be a perturbation such that ∥ϵ∥ ≤ E . Performing a first-order Taylor expansion around
θ∗:

µθ∗+ϵ(s) = µθ∗(s) + J(θ∗)ϵ+O(∥ϵ∥2). (11)

Define the action perturbation:

δt = µθ∗+ϵ(st)− µθ∗(st) = J(θ∗)ϵ+O(∥ϵ∥2). (12)

Then,
∥δt∥ ≤ ∥J(θ∗)∥∥ϵ∥+O(∥ϵ∥2) ≤ ∥J(θ∗)∥E +O(E2). (13)

From Definition 1, for ∥ϵ∥ ≤ E :

Es∼p,a∼πθ∗+ϵ

[ ∞∑
t=0

γtr(st, at)

]
= r∗. (14)

Noting that shifting the mean of the Gaussian policy is equivalent to shifting the action variable, we
have:

πθ∗+ϵ(at|st) = πθ∗(at − δt|st). (15)

Thus, the expected cumulative reward under the perturbed policy becomes:

Es∼p,a∼πθ∗+ϵ

[ ∞∑
t=0

γtr(st, at)

]
= Es∼p,at∼πθ∗+ϵ

[ ∞∑
t=0

γtr(st, at)

]
(16)

= Es∼p,at∼πθ∗

[ ∞∑
t=0

γtr(st, at + δt)

]
. (17)
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Since Es∼p,a∼πθ∗+ϵ
[
∑∞

t=0 γ
tr(st, at)] = r∗, it follows that:

Es∼p,a∼πθ∗

[ ∞∑
t=0

γtr(st, at + δt)

]
= r∗. (18)

This implies that for all ∥δt∥ ≤ ∆∗ with ∆∗ = ∥J(θ∗)∥E +O(E2), the expected cumulative reward
remains r∗, satisfying the first condition of a ∆∗-action robust policy as per Definition 2.

Moreover, since there exists ϵ with ∥ϵ∥ > E such that Es,a [
∑∞

t=0 γ
tr(st, at)] < r∗, the corre-

sponding δt satisfies ∥δt∥ > ∆∗, and thus the expected cumulative reward decreases below r∗ for
perturbations larger than ∆∗, fulfilling the second condition.

A.1 DISCUSSION ON THE BOUNDS OF THE JACOBIAN

In the proof of Proposition 1, we derive a bound on the action robustness parameter ∆∗ in terms of
the Jacobian ∥J(θ∗)∥ and the flatness parameter E :

∆∗ ≤ ∥J(θ∗)∥E +O(E2).

We acknowledge that in practical applications, especially when using deep neural networks for pol-
icy representations, it is challenging to guarantee that the Jacobian ∥J(θ∗)∥ is bounded. Deep neural
networks can have complex architectures and nonlinear activation functions that may lead to large
gradients and, consequently, large Jacobian norms.

However, several common practices during neural network training help control the magnitude of
the Jacobian:

• Weight Regularization: Techniques such as L2 regularization (weight decay) penalize
large weights, which indirectly constrains the Jacobian. By limiting the magnitude of the
weights, the sensitivity of the network outputs to changes in the inputs and parameters is
reduced.

• Gradient Clipping: Applying gradient clipping during optimization prevents the gradients
from becoming excessively large. This helps maintain the stability of parameter updates
and controls the growth of the Jacobian norm.

• Bounded Activation Functions: Using activation functions with bounded derivatives (e.g.,
hyperbolic tangent, sigmoid) limits the rate of change of the network outputs with respect
to the inputs and parameters, thus contributing to bounding the Jacobian.

• Normalization Techniques: Methods like batch normalization and layer normalization
can help stabilize the learning process and control the scale of activations and gradients,
affecting the Jacobian norm.

Regarding the SAM objective, SAM promotes convergence to flatter regions in the loss landscape
by considering adversarial perturbations of the network parameters during optimization with the
objective function in Equation 3,

where L(θ) is the loss function, and ρ defines the size of the neighborhood around the current pa-
rameters θ. By optimizing for the worst-case loss within a neighborhood, SAM discourages sharp
minima with high curvature, which are associated with large Hessian norms. This process inherently
suppresses large gradients and promotes smoother variations of the loss with respect to parameter
changes. While SAM primarily targets the curvature of the loss landscape (second-order informa-
tion), this effect also influences the Jacobian of the network outputs with respect to the parameters
(first-order information).

Our empirical results demonstrate that SAM+PPO leads to policies that are more robust to pertur-
bations in both the parameters and the environment dynamics. This supports the practical relevance
of our theoretical findings, suggesting that SAM effectively contributes to controlling the Jacobian
norm in practice.

While it may not be possible to guarantee a bounded Jacobian everywhere in the network, the combi-
nation of SAM and common training practices helps in maintaining the Jacobian within a reasonable
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range. This enhances the robustness of the learned policies and aligns with the conditions assumed
in our theoretical analysis.

B EXPERIMENTAL DETAILS

In this appendix, we provide detailed information about the hyperparameters and experimental set-
tings used in our experiments.

B.1 NETWORK ARCHITECTURE

For all agents, including PPO, SAM+PPO, and RNAC, we employ a multi-layer perceptron (MLP)
architecture for both the actor (policy network) and the critic (value network). The network consists
of an input layer matching the state dimension of the environment, followed by three fully connected
hidden layers, each with 64 neurons and Tanh activation functions. The output layer of the actor
network produces the parameters of the action distribution (mean and log standard deviation for
Gaussian policies), while the critic network outputs a single scalar value representing the state value
estimate. We apply orthogonal initialization to all layers to enhance training stability.

B.2 HYPERPARAMETERS AND TRAINING SETTINGS

We use identical hyperparameters for PPO, SAM+PPO, and RNAC to ensure a fair comparison. The
shared hyperparameters are as follows: the discount factor γ is set to 0.99, the GAE parameter λ is
0.95, and the PPO clip parameter ϵ is 0.2. Both the actor and critic learning rates are set to 3×10−4,
with the Adam optimizer used for optimization. The batch size is 2048, and the mini-batch size is
64, with 10 PPO epochs per update (Kepochs = 10). We employ gradient clipping with a maximum
norm of 0.5, learning rate decay, and state normalization for all agents.

For SAM+PPO, we introduce the SAM optimizer with ρ parameters of 0.008 for HalfCheetah-v3
and Walker2d-v3, and 0.01 for Hopper-v3, which control the neighborhood size for sharpness-aware
minimization. For RNAC, we adjust the uncertainty set to “IPM” to model uncertainties in the
transition dynamics and configure the number of next steps to 2, allowing the agent to consider
multiple potential future states.

For comparison with existing robust reinforcement learning algorithms, we trained Robust Adver-
sarial Reinforcement Learning (RARL) (Pinto et al., 2017) using the following hyperparameters
specific to the Hopper-v3 environment. The batch size was set to 4000 to align with the original
RARL implementation, and the mini-batch size remained at 64. The network’s hidden width was
increased to 100 neurons per layer to match the architecture used in RARL. Both the protagonist and
adversary actors and critics were trained with learning rates of 0.0003. The discount factor γ was set
to 0.995, and the GAE parameter λ was set to 0.97, consistent with the original RARL settings. The
entropy coefficient was maintained at 0.0, and weight regularization was applied with a parameter
of 0.00005. We set the adversarial fraction to 0.25 to control the adversary’s action strength and
configured the number of iterations for both the protagonist and adversary to 1. All other settings,
including gradient clipping, learning rate decay, state normalization, and orthogonal initialization,
were kept consistent with PPO, SAM+PPO, and RNAC to ensure a fair comparison.

C DETAILS AND ANALYSIS OF SAM INTEGRATED WITH PPO

In this appendix, we provide a detailed discussion on the integration of SAM with RL, especially
with PPO. We elaborate on the optimization process of the min-max objective, discuss the compu-
tational overhead introduced by SAM, and analyze the sensitivity to the perturbation radius ρ.

C.1 OPTIMIZATION OF THE MIN-MAX OBJECTIVE

The SAM optimization modifies the standard PPO objective by introducing a maximization over
parameter perturbations within an ℓ2 norm ball of radius ρ. For convenience, we restate the objective
as presented in Equation 3 from Section 3.3:
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min
θ

max
∥ϵ∥2≤ρ

L(θ + ϵ), (19)

where L(θ) is the PPO loss function, and θ represents the policy parameters.

C.1.1 LINKAGE TO ACTION ROBUST MDP

In PPO, the loss function L(θ) is inherently tied to the optimization of the expected cumulative re-
ward. Specifically, PPO aims to maximize the expected cumulative discounted reward by optimizing
the policy parameters θ. The PPO loss function can be expressed in relation to the reward function
r(s, a) as follows:

L(θ) = −Es∼p,a∼πθ

[ ∞∑
t=0

γtr(st, at)

]
, (20)

where the negative sign indicates that minimizing L(θ) is equivalent to maximizing the expected
cumulative reward. This formulation aligns with the reward-based learning paradigm of RL, where
the objective is to find a policy that yields the highest expected cumulative reward across all possible
state-action pairs.

With Equation 20, Equation 19 can be expressed as:

min
θ

max
∥ϵ∥≤ρ

−Es∼p,a∼πθ+ϵ

[ ∞∑
t=0

γtr(st, at)

]
, (21)

which aligns with Equation 8 in Section 5, incorporating the cumulative discounted reward into the
expectation. Both formulations aim to optimize the policy parameters θ by considering worst-case
perturbations within a specified norm bound.

Based on Proposition 1, Remark 1.1 of Section 4 and the corresponding proof in Appendix A, we
derive that the SAM+PPO objective function aims to find the E-flat reward maxima as defined in
Definition 1. Consequently, this leads to the formulation of a ∆-action robust policy as defined in
Definition 2. Therefore, the objective function aligns with Equation 2 of the main text:

max
π

min
∥δt∥≤β

Es∼p,a∼π

[ ∞∑
t=0

γtr(st, at + δt)

]
, (22)

where δt represents perturbations to the actions at time t, and β is a scaling factor analogous to
ρ. This formulation corresponds to an Action Robust MDP, where the policy seeks to maximize
the expected cumulative reward while minimizing the impact of worst-case perturbations to actions
within a specified norm bound.

C.1.2 OPTIMIZATION PROCEDURE

Optimizing the min-max objective in Equation 19 involves integrating the SAM approach with the
PPO framework. Below, we present the integrated algorithm and provide a detailed explanation of
each step.
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Algorithm 1 SAM Integrated with PPO

Require: Initial policy parameters θ0, perturbation radius ρ, learning rate α, clipping parameter ϵ
1: for each iteration do
2: Collect Trajectories: Use current policy πθ to collect trajectories by interacting with the

environment.
3: Compute Advantages: Calculate advantages Ât and returns based on collected trajectories.
4: Compute PPO Loss:

L(θ) = E
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
5: Compute Base Gradient: gθ = ∇θL(θ)
6: Apply SAM Perturbation:

ϵ∗ = ρ
gθ
∥gθ∥2

7: Compute Perturbed Loss: Lperturbed = L(θ + ϵ∗)
8: Compute Perturbed Gradient: gθ+ϵ∗ = ∇θL(θ + ϵ∗)
9: Update Policy Parameters: θ ← θ − αgθ+ϵ∗

10: end for=0

1. Collect Trajectories: πθ → Collect trajectories using πθ

Using the current policy parameters θ, we collect a batch of trajectories by interacting with
the environment. These trajectories are essential for estimating the PPO loss.

2. Compute Advantages: Ât = Calculate advantages based on collected trajectories
Advantages Ât are computed to reduce variance in the policy gradient estimates, enhancing
the stability of training.

3. Compute PPO Loss: L(θ) = E
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
The PPO loss function L(θ) incorporates a clipping mechanism to prevent large updates,
ensuring stable policy optimization.

4. Compute Base Gradient: gθ = ∇θL(θ)

We compute the gradient of the PPO loss with respect to the policy parameters θ. This
gradient indicates the direction in which the loss increases most rapidly.

5. Apply SAM Perturbation: ϵ∗ = ρ gθ
∥gθ∥2

While the inner maximization problem theoretically considers all possible directions within
the ρ-ball around θ, choosing ϵ in the direction of the gradient gθ is a first-order approxima-
tion that efficiently captures the worst-case perturbation. This approximation is rooted in
the Taylor expansion of the loss function, where the gradient direction signifies the direction
of maximum loss increase. By perturbing θ in this direction, we effectively approximate
the maximum increase in loss within the allowed perturbation magnitude ρ.

6. Compute Perturbed Loss: Lperturbed = L(θ + ϵ∗)

An additional forward pass is conducted using the perturbed parameters θ + ϵ∗ to evaluate
the loss under perturbed conditions. This step assesses how the loss behaves when the
parameters are subjected to the worst-case perturbation identified in the previous step.

7. Compute Perturbed Gradient: gθ+ϵ∗ = ∇θL(θ + ϵ∗)

We compute the gradient of the perturbed loss with respect to the policy parameters. This
gradient informs the parameter update step by indicating how to adjust θ to minimize the
worst-case loss.

8. Update Policy Parameters: θ ← θ − αgθ+ϵ∗

Where α is the learning rate. The policy parameters θ are updated using the gradient of
the perturbed loss, thereby incorporating the robustness introduced by SAM. This update
step moves the parameters in the direction that minimizes the worst-case loss, enhancing
the policy’s robustness against adversarial perturbations.
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This optimization procedure effectively seeks parameters that minimize the worst-case loss within a
neighborhood of radius ρ around the current parameters θ, thereby enhancing the robustness of the
policy.

C.2 COMPUTATIONAL OVERHEAD ANALYSIS

Integrating SAM with PPO introduces additional computational overhead due to the extra forward
and backward passes required to compute the perturbation and update the policy parameters using
the perturbed loss.

C.2.1 THEORETICAL ANALYSIS

In standard PPO, each optimization step involves one forward pass and one backward pass to com-
pute the gradient∇θL(θ). With SAM, the optimization step involves:

• First Forward and Backward Pass: Compute gθ = ∇θL(θ).

• Second Forward Pass: Compute L(θ + ϵ∗) with perturbed parameters.

• Second Backward Pass: Compute gθ+ϵ∗ = ∇θL(θ + ϵ∗).

This effectively doubles the number of forward and backward passes per optimization step. In Big
O notation, the per-iteration computational complexity increases fromO(N) for PPO toO(2N) for
SAM+PPO, where N is the number of parameters.

C.2.2 EMPIRICAL ANALYSIS

We empirically measured the training time per iteration for both PPO and SAM+PPO. The results
are summarized in Table 4.

Table 4: Comparison of agents Training Time (sec) per Iteration across Environments

Algorithm HalfCheetah-v3 Hopper-v3 Walker2d-v3
PPO 1.22 0.13 0.2
SAM+PPO 1.5(×1.83) 0.23(×1.76) 0.24(×1.20)

The results show that SAM+PPO incurs approximately a 61% increase in training time per iteration
compared to PPO. Considering the significant gains in robustness, this overhead is a reasonable
trade-off. While the per-iteration training and update times for SAM+PPO are higher compared
to standard PPO, the overall training time presents a more favorable comparison. Specifically, as
shown in Table 9, SAM+PPO achieves comparable or slightly increased overall training times while
converging faster and attaining rewards more efficiently. This indicates that SAM+PPO not only
enhances robustness and generalization but also maintains efficient training dynamics.

C.3 SENSITIVITY TO HYPERPARAMETER ρ

The perturbation radius ρ introduced by SAM is a critical hyperparameter that controls the extent
of parameter perturbations during optimization. Selecting an appropriate value for ρ is crucial for
balancing robustness and training stability.

• Large ρ: Encourages the optimizer to find flatter maxima, potentially enhancing robustness. How-
ever, if ρ is too large, it may lead to training instability or convergence issues.

• Small ρ: May result in less robustness gain, as the perturbations are insufficient to promote sig-
nificant flatness in the parameter space.

We conducted experiments by varying ρ within a practical range to assess its impact on performance.
The values tested were ρ ∈ {0.001, 0.005, 0.01, 0.05, 0.1}. Figure 8 illustrates the performance of
SAM+PPO with different values of ρ on the Hopper-v3 environment.
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Figure 8: Sensitivity of SAM+PPO performance to the perturbation radius ρ in Hopper-v3 environ-
ment.

• Optimal Range: A value of ρ = 0.01 provided the best results of robustness and training stability.

• Small ρ: At ρ = 0.001, 0.005, the robustness gains were minimal compared to standard PPO.

• Large ρ: At ρ = 0.05, 0.1, training became unstable, and performance degraded significantly.

C.3.1 EFFECT ON PPO HYPERPARAMETERS

The integration of SAM into PPO modifies the optimization process by adding an outer loop that
seeks parameters robust to perturbations within a specified radius ρ. This outer loop operates in-
dependently of PPO’s internal mechanisms. Since SAM’s perturbation process focuses on finding
flatter regions in the parameter space without altering PPO’s update equations or loss function struc-
ture, it does not inherently change the role or sensitivity of PPO’s original hyperparameters.

The perturbation radius ρ is a pivotal hyperparameter in SAM+PPO that directly influences the
balance between robustness and training stability. Through our sensitivity analysis, we identified
ρ = 0.05 as the optimal value that offers significant robustness gains without compromising training
stability. Additionally, integrating SAM does not necessitate retuning of PPO’s existing hyperpa-
rameters, making the combination both effective and practical.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 EXPERIMENTS ON DISCRETE ACTION ENVIRONMENTS

In the main text, our experiments focused on continuous control environments. To validate the appli-
cability and reliability of our SAM-enhanced method in a broader context, we extended our experi-
ments to discrete action environments provided by OpenAI Gym: CartPole-v1 and LunarLander-v2.
These environments allow us to assess the performance of SAM+PPO in settings with discrete action
spaces and different reward structures.

D.1.1 EXPERIMENTAL SETUP

Similar to the experiments in the main text, we compared the standard PPO algorithm with our
SAM+PPO. Except for the SAM-specific parameter ρ, all hyperparameters were kept identical be-
tween PPO and SAM+PPO to ensure a fair comparison. The network architecture for both agents
consisted of three fully connected layers with 64 neurons each, and the output layer used a softmax
activation function to produce a probability distribution over the possible discrete actions.We set
the learning rate to 3 × 10−4, the discount factor γ to 0.99, and used the Adam optimizer. The
perturbation radius ρ for SAM+PPO was set to 0.05.
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In CartPole-v1 and LunarLander-v2, there are no common elements that allow for changing the
transition probabilities (e.g., mass or friction adjustments), so we focused on evaluating robustness
to action and reward perturbations.

D.1.2 ACTION ROBUSTNESS EVALUATION

To evaluate action robustness, we introduced action perturbations by adding zero-mean Gaussian
noise with standard deviation σa = 0.2 to the logits of the policy network before the softmax
activation during evaluation, similar to the action noise added in the main text experiments.

Table 5: Action robustness evaluation across discrete action environments. The average return is
reported over 100 evaluation episodes.

Algorithm CartPole-v1 LunarLander-v2
Nominal Perturbed Nominal Perturbed

PPO 500 464 (−36) 200 175 (−25)
SAM+PPO 500 481 (−19) 200 188 (−12)

As shown in Table 5, both PPO and SAM+PPO achieve the maximum average return in the nom-
inal setting for both environments. Under action perturbations, SAM+PPO consistently outper-
forms PPO, exhibiting smaller performance degradation. In CartPole-v1, PPO’s average return de-
creases by 36 points, whereas SAM+PPO’s average return decreases by only 19 points. Similarly, in
LunarLander-v2, PPO’s performance drops by 25 points, while SAM+PPO’s performance drops by
only 12 points. These results indicate that SAM+PPO enhances robustness to action perturbations
in discrete action environments.

D.1.3 REWARD ROBUSTNESS EVALUATION

For the reward robustness evaluation, we introduced zero-mean Gaussian noise with a standard
deviation of σr = 0.1 to the rewards during training. After training, we evaluated the agents in the
nominal environment without reward noise.

Table 6: Performance comparison of agents trained with and without reward noise (σr = 0.1).

Algorithm CartPole-v1 LunarLander-v2
Nominal Noisy Nominal Noisy

PPO 500 432 (−68) 200 165 (−35)
SAM+PPO 500 458 (−42) 200 182 (−18)

Table 6 shows that SAM+PPO is less sensitive to reward noise during training compared to PPO.
In CartPole-v1, PPO’s performance decreases by 68 points when trained with reward noise, while
SAM+PPO’s performance decreases by only 42 points. In LunarLander-v2, PPO’s performance
drops by 35 points, whereas SAM+PPO’s performance drops by 18 points. This suggests that the
flatter reward maxima achieved by SAM+PPO contribute to better robustness against reward pertur-
bations.

D.2 SAM ENHANCED WITH OTHER POLICY GRADIENT ALGORITHMS

To investigate the applicability of our SAM-enhanced approach to other policy gradient algorithms,
we conducted experiments by integrating SAM with Trust Region Policy Optimization (TRPO),
resulting in SAM+TRPO.
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D.2.1 EXPERIMENTAL SETUP

We used the same experimental setup as in the main text, with hyperparameters and network archi-
tectures kept consistent between TRPO and SAM+TRPO, except for the SAM-specific parameter ρ.
The perturbation radius ρ for SAM+TRPO was set to 0.006.

Algorithms to be considered: We compared TRPO and SAM+TRPO.

Experiments to be done: We evaluated the robustness of the agents under action perturbations and
transition probability perturbations (mass and friction variations) in the same manner as in the main
text.

D.2.2 PERFORMANCE EVALUATION

We report the overall performance of TRPO and SAM+TRPO under various perturbation scenarios
in Table 7.

Table 7: Performance comparison under various perturbations for TRPO and SAM+TRPO.

Perturbation Metric HalfCheetah-v3 Hopper-v3 Walker2d-v3
Nominal Perturbed Nominal Perturbed Nominal Perturbed

Action Noise σ = 0.2
TRPO 4805 1502 (−3303) 3118 1452 (−1666) 4975 603 (−4372)
SAM+TRPO 5502 3975 (−1527) 3547 2313 (−1234) 5097 2052 (−3045)

Mass Scale Factor 1.2 TRPO 4837 3865 (−972) 3215 1556 (−1659) 4957 782 (−4175)
SAM+TRPO 5562 5210 (−352) 3499 3508 (+9) 5205 5284 (+79)

Friction Coefficient 0.88 TRPO 4723 4774 (+51) 3075 1580 (−1495) 4996 4756 (−240)
SAM+TRPO 5562 5539 (−23) 3498 2728 (−770) 5073 5134 (+61)

(−) values means the performance degradation from ‘Nominal’ to each perturbations

The results in Table 7 show that SAM+TRPO outperforms standard TRPO in both nominal and
perturbed settings across all environments and perturbation types. Under action noise, SAM+TRPO
exhibits significantly less performance degradation compared to TRPO. Similarly, under mass and
friction perturbations, SAM+TRPO maintains higher returns, indicating enhanced robustness. In-
tegrating SAM with TRPO introduces additional computational overhead due to the extra gradient
computations required for the SAM optimization step. However, the overall training time remains
reasonable, and the robustness gains justify the additional computational cost. The positive results
with SAM+TRPO suggest that our SAM-enhanced approach can be applied to other policy gradient
and actor-critic algorithms, such as A2C and SAC. The key requirement is that the algorithm must
be amenable to gradient-based optimization, allowing for the incorporation of the SAM perturbation
step.

E COMPARISON WITH EXISTING ROBUST RL ALGORITHMS

We compare SAM+PPO with other robust RL, mainly focusing on the performance and computa-
tional costs. To further validate the robustness of our approach, we compare SAM+PPO with two
state-of-the-art robust reinforcement learning algorithms: RARL and RNAC. We selected RARL
and RNAC for comparison because they represent prominent approaches in robust reinforcement
learning and have demonstrated effectiveness in enhancing robustness to uncertainties.

E.1 ALGORITHM PRINCIPLES

RARL introduces an adversary during training that applies perturbations to the environment (Pinto
et al., 2017). RNAC, on the other hand, leverages natural gradient methods to achieve robustness un-
der the worst-case distribution within a specified uncertainty set. (Zhou et al., 2024). By comparing
with these algorithms, we aim to highlight the effectiveness of our approach in achieving robustness
while training solely in the nominal environment, without requiring adversarial training or explicit
uncertainty modeling.

Existing RRL algorithms like RARL and RNAC improve robustness by training the agent under un-
certainty sets or adversarial conditions. RNAC uses distributional robustness, optimizing the policy
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to perform well under the worst-case distribution within a specified uncertainty set. RARL involves
training an adversarial agent alongside the protagonist, introducing perturbations during training to
simulate worst-case scenarios. In contrast, SAM+PPO trains solely in the nominal environment
without explicitly modeling uncertainties or adversaries. Despite this, SAM+PPO achieves compa-
rable or superior robustness.

RRL algorithms require knowledge of the uncertainties or adversarial models during training, which
may not always be available or accurate. SAM+PPO does not rely on such information. RRL
algorithms often involve more complex training procedures, such as training adversarial agents or
solving min-max optimization problems. SAM+PPO introduces minimal overhead by incorporating
SAM into the optimization process. SAM+PPO is more readily applicable in real-world scenarios
where modeling uncertainties is challenging. It enhances robustness without additional assumptions
or modifications to the environment.

E.2 BETTER ROBUSTNESS BY SAM+PPO

Table 8 summarizes the performance of each algorithm under specific perturbations in Hopper-v3.
SAM+PPO outperforms PPO and the RRL algorithms, demonstrating its effectiveness in enhanc-
ing robustness without requiring specialized training conditions. We used PPO as an underlying
algorithm in RARL, in which TRPO was used in the original paper, to ensure consistency in our
comparison and elaborate on how SAM bring benefits in comparison to the other approaches

Table 8: Performance comparison under the perturbations in Hopper-v3.

Algorithm Nominal Action Noise σ = 0.2 Mass Scale 1.3 Friction coefficient 1.24
PPO 3169 1467(−1702) 1400(−1769) 581(−2588)
RNAC 3467 1321(−2146) 1411(−2056) 822(−2645)
RARL 3030 1645(−1385) 1304(−1726) 887(−2143)
SAM+PPO 3588 2312(−1276) 3513(−75) 1571(−2017)

(−) values means the performance degradation from ‘Nominal’ to each perturbations

E.3 LOWER COMPUTATIONAL COSTS

We compared the computational efficiency of each algorithm by measuring the total training time
and total training steps each algorithm required to reach an average reward of 3000 on the Hopper-
v3 environment. All experiments were conducted on the same hardware setup, and each algorithm
was evaluated every 5000 environment steps. As shown in Table 9, SAM+PPO requires less training
time than RARL and RNAC to converge while achieving better robustness. For the training time,
SAM+PPO shows the comparative costs with PPO, with emphasis on even lower total steps than
PPO. However, the early work, RARL, shows immense costs, which is ×4.41 of PPO in time and
×3.84 in the total counts of total steps. Although the recent work, RNAC, significantly reduces the
costs, but SAM+PPO shows much smaller costs in training.

Table 9: Computational costs comparison to achieve convergence (done with NVIDIA RTX 3090)

Algorithm Overall Training Time (sec) ↓ Overall Iterations Counts ↓ Overall (action selection) Step Counts ↓
PPO 546.6 1790 4.30× 105

RNAC 781.2(×1.43) 5335(×2.98) 6.40× 105(×1.49)
RARL 2411.4(×4.41) 4288(×2.40) 1.65× 106(×3.84)
SAM+PPO 590.0(×1.08) 2103(×1.17) 3.65× 105(×0.85)
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