
Memorize Step by Step: Efficient Long-Context Prefilling with Incremental
Memory and Decremental Chunk

Anonymous ACL submission

Abstract

The evolution of Large Language Models001
(LLMs) has led to significant advancements,002
with models like Claude and Gemini capa-003
ble of processing contexts up to 1 million to-004
kens. However, efficiently handling long se-005
quences remains challenging, particularly dur-006
ing the prefilling stage when input lengths ex-007
ceed GPU memory capacity. Traditional meth-008
ods often segment sequence into chunks and009
compress them iteratively with fixed-size mem-010
ory. However, our empirical analysis shows011
that the fixed-size memory results in wasted012
computational and GPU memory resources.013
Therefore, we introduces Incremental Memory014
(IM), a method that starts with a small mem-015
ory size and gradually increases it, optimiz-016
ing computational efficiency. Additionally, we017
propose Decremental Chunk based on Incre-018
mental Memory (IMDC), which reduces chunk019
size while increasing memory size, ensuring020
stable and lower GPU memory usage. Our021
experiments demonstrate that IMDC is consis-022
tently faster (1.45x) and reduces GPU memory023
consumption by 23.3% compared to fixed-size024
memory, achieving comparable performance025
on the LongBench Benchmark.026

1 Introduction027

The evolution of Large Language Models (LLMs)028

has reached new frontiers, with models like Claude029

(Anthropic, 2024) and Gemini (Reid et al., 2024)030

capable of processing contexts spanning up to a 1031

million tokens. However, the efficiency of process-032

ing long sequences with LLM still faces significant033

challenges.034

The inference of LLM can be divided into two035

parts: Prefilling and Decoding. LLM inference036

for long documents faces significant challenges in037

both stages. In the prefill stage, the model needs038

to read long sequences and endure the quadratic039

complexity of attention calculations with respect040

to the sequence length. During the decoding stage,041

5 10 15 20 25 30
Chunk

0.6

0.8

1.0

1.2

1.4

Av
g 

At
te

nt
io

n 
Sc

or
e 

of
 M

em
or

y

1e 4

SnapKV
StreamingLLM

(a) Memory Attention

0 10 20 30
Chunk

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

SnapKV
StreamingLLM

(b) Memory Distribution

Figure 1: (a): The average attention scores of memory
at each step. (b): The distribution of memory content
across chunks, where we count the number of key-value
pairs in memory originating from each chunk. For both
Figure (a) and (b), we used KV Cache pruner (SnapKV
(Li et al., 2024) and StreamingLLM (Xiao et al., 2023))
to compress memory and chunk.

decoding each token requires accessing the sub- 042

stantial Key-Value (KV) Cache generated in the 043

prefill stage. Most efforts to optimize the efficiency 044

of LLM for long sequence focus on the decoding 045

stage, particularly on compressing the KV Cache 046

(Xiao et al., 2023; Zhang et al., 2023; Liu et al., 047

2024c; Hooper et al., 2024; Liu et al., 2024a; Sun 048

et al., 2024). However, when the input length 049

during the prefilling stage exceeds the maximum 050

length supported by GPU memory capacity, even 051

prefilling cannot proceed. Existing works (Bulatov 052

et al., 2023a,b; Ge et al., 2023b; Liu et al., 2020; 053

Munkhdalai et al., 2024) tackle this problem by 054

dividing the sequence into chunks and iteratively 055

compress these chunks with a fixed-size buffer as 056

memory. 057

Our anlysis on the memory displayed in Figure 1 058

reveals that: 1) the attention scores of memory 059

starts at a relatively low value and gradually in- 060

creases throughout the prefill process (Figure 1a.), 061

which suggests that early-stage memory has min- 062

imal influence on the next-step computation; 2) 063

once the prefill phase concludes, the memory dis- 064

tribution is primarily concentrated at the end of the 065

sequence (Figure 1b), implying that most of the 066

1



early-stage memory is not retained by the end of067

the prefill.068

Overall, our finding suggest that the early-stage069

memory in the prefill phase is less impactful com-070

pared to the later-stage memory. Therefore, it is071

unnecessary to maintain a large memory size at072

the early stage of prefilling. This implies that ap-073

proaches (Bulatov et al., 2023a,b; Ge et al., 2023b;074

Munkhdalai et al., 2024) that maintain a fixed-size075

buffer to compress long sequences may result in076

wasted computational and memory resources.077

To avoid computational waste during the early078

stage of prefilling, we propose Incremental Mem-079

ory (IM), which starts with a small memory size080

and gradually increases it until the end of the pre-081

filling phase. During this growth phase, the mem-082

ory size of IM remains smaller than the maximum083

length, resulting in greater efficiency compared to084

the commonly used fixed-size memory.085

While analyzing memory distribution across dif-086

ferent layers1, we observed that higher layers ex-087

hibit a more uniform memory distribution com-088

pared to lower layers. Consequently, we propose089

an adaptive memory growth strategy to set mem-090

ory sizes for each layer based on the proportion091

of memory retained after compression, with lay-092

ers retaining more memory being allocated larger093

memory sizes.094

Although IM is faster than fixed-size memory, it095

does not significantly reduce peak GPU memory096

usage, as the memory size of IM is the same as097

that of fixed-size memory at the end of the prefill-098

ing phase. Therefore, we propose Decremental099

Chunk based on Incremental Memory (IMDC),100

which starts with a large chunk size that decreases101

as memory size increases. When the memory size102

is small, the chunk size is large, and vice versa. The103

incremental memory and decremental chunk strate-104

gies complement each other, maintaining stable105

GPU memory usage that is lower than fixed-size106

memory, which is illustrated in Figure 2.107

Our experiments show that IMDC is consistently108

faster (1.45x) than fixed-size memory and con-109

sumes less GPU memory (23.3% reduction) during110

the prefill stage, yielding comparable results on111

LongBench Benchmark (Bai et al., 2023).112

Our main contributions are as follows:113

• Our analysis on memory reveals that, the114

early-stage memory in the prefilling is less115

impactful than the later-stage memory.116

1The results are shown in Figure 6

Figure 2: The illustration of Fixed-Size Memory, In-
cremental Memory (IM) and Incremental Memory with
Decremental Chunk (IMDC).

• Based on this finding, we propose the In- 117

cremental Memory and Decremental Chunk 118

(IMDC) approach, which dynamically in- 119

creases memory size while decreasing chunk 120

size. 121

• Our experiments demonstrate that IMDC is 122

1.45 times faster than the commonly used 123

fixed-size memory and consumes 23.3% less 124

GPU memory during the prefill stage, with- 125

out sacrificing performance on long-context 126

benchmarks. 127

2 Related Works 128

The long-context efficiency of LLM has been 129

widely studied, which can be classified into two 130

categories: prefilling and decoding. 131

Prefilling The prefilling of LLM encounters 132

quadratic complexity in attention calculations with 133

respect to sequence length. Numerous research 134

efforts have sought to reduce this quadratic com- 135

plexity through methods such as low-rank approx- 136

imation (Wang et al., 2020; Peng et al., 2021; 137

Choromanski et al., 2020) and sparsification (Child 138

et al., 2019; Vyas et al., 2020; Kitaev et al., 2020). 139

Tay et al. (2023) provided a comprehensive re- 140

view of these approaches. These methods mod- 141

ify the computation mode of attention, often re- 142

sulting in a trade-off with model performance. In 143

contrast, flash attention (Dao et al., 2022) identi- 144

fied that the efficiency bottleneck lies primarily in 145

input/output (I/O) operations rather than compu- 146

tational processes. By implementing CUDA op- 147

erations, they significantly accelerated attention 148

calculations without altering the fundamental com- 149

putation of attention. RMT (Bulatov et al., 2023a) 150

proposed an iterative compression scheme for long 151

texts, maintaining and dynamically updating a 152

fixed-size memory, which is followed by (Bula- 153

tov et al., 2023b; Ge et al., 2023b; Liu et al., 2020; 154

Munkhdalai et al., 2024). AutoCompressors (Liu 155

2



Figure 3: The illustration of iterative compression with Fixed-Size Memory (FM), Incremental Memory (IM) and
Decremental Chunk based on Incremental Memory (IMDC). The iterative compression involves multiple steps of
compression on the KV cache of memory and chunk.

et al., 2020) also introduced incremental memory,156

but different from our method, they increase mem-157

ory size to enhance the model performance, which158

results in significant overhead. We demonstrate the159

superiority of our method compared to AutoCom-160

pressors empirically in Appendix B.2.161

Decoding Most efforts to optimize the efficiency162

of long-context decoding have focused on KV163

Cache compression. Research in this area can164

be categorized into KV Cache Pruning (Zhang165

et al., 2023; Xiao et al., 2023; Liu et al., 2023),166

low-rank approximation (Shazeer, 2019; Ainslie167

et al., 2023; Shao et al., 2024), quantization (Liu168

et al., 2024c; Hooper et al., 2024; Liu et al., 2024b),169

and layer sharing (Liu et al., 2024a; Sun et al.,170

2024; Brandon et al., 2024). Key works in KV171

Cache pruning include H2O (Zhang et al., 2023)172

and StreamingLLM (Xiao et al., 2023). H2O se-173

lects important KVs based on cumulative attention174

scores, while StreamingLLM retains only the KVs175

closest to the end of the sequence. Subsequent176

works (Oren et al., 2024; Ge et al., 2023a; Dong177

et al., 2024; Ren and Zhu, 2024; Li et al., 2024)178

proposed several improvements to H2O, all of179

which determine KV importance based on attention180

scores. Notable approaches for low-rank approx-181

imation include multi-query attention (Shazeer,182

2019) and grouped query attention (Ainslie et al.,183

2023), where different queries share the same KVs.184

Layer sharing methods (Liu et al., 2024a) identify185

redundancy among the KV Caches of different lay-186

ers, retaining only the KVs of certain layers. Quan- 187

tization compression (Liu et al., 2024c) reduces KV 188

Cache precision from fp16 to int8 through various 189

quantization methods (Dettmers et al., 2022). 190

In this paper, we adopted the iterative compres- 191

sion method from RMT. However, unlike RMT 192

(Bulatov et al., 2023a), which compresses se- 193

quences into Soft Tokens, we used StreamingLLM 194

and SnapKV to compress KV Cache, because they 195

do not require training and can maintain a constant 196

memory size during the iteration. 197

3 Method 198

3.1 Iterative Compression 199

When the input sequence length during the prefill 200

stage exceeds the maximum length supported by 201

the GPU memory limit, the sequence is segmented 202

into multiple chunks and compressed iteratively, as 203

illustrated in Figure 3. In each iteration, the LLM 204

reads the memory as the KV cache for attention. 205

After the attention computation, the newly gener- 206

ated KV cache is sent to the compressor, which 207

updates the memory. 208

The process of iterating through chunks is simi- 209

lar to a recurrent neural network, while the compu- 210

tation within each chunk operates in parallel, akin 211

to a transformer. 2 212

2The intriguing intersection between KV Cache Pruning
and recurrent neural networks is also discussed in Oren et al.
(2024).

3



3.2 Incremental Memory213

Based on the finding from Figure 1 that it is un-214

necessary to keep a large memory size at the early215

stage of prefilling, we propose Incremental Mem-216

ory (IM), which increases memory size during the217

iteration of compression. We explore various incre-218

mental functions to increase memory size: Linear219

Function (Section 3.2), Adaptive Function (Sec-220

tion 3.2), and other increasing functions detailed in221

Appendix A.1.222

Linear Function Suppose the number of chunks223

is n, the memory size increase from m0 to mmax224

linearly:225

mi =
(mmax −m0)i

n− 1
+m0, (1)226

where n denotes the number of chunks. The middle227

section of Figure 3 illustrates the linear increase of228

memory size.229

Adaptive Function By visualizing the memory230

distribution across layers 3, we observed signifi-231

cant differences in memory usage between high232

and low layers. Consequently, we propose Adap-233

tive Function to allocate appropriate memory sizes234

for different layers. We record the memory reten-235

tion ratio (the proportion of memory retained after236

the compression) of various layers. Suppose the237

memory of the j-th layer at the i-th step is Mj
i ,238

the memory retention ratio corresponding to that is239

defined as:240

pji =
|Mj

i−1 ∩Mj
i |

|Mj
i |

. (2)241

Intuitively, the more memory retained from the242

compression, the larger the memory size should be,243

and vice versa. Therefore, we can determine the244

memory size of each layer based on its memory245

retention ratio. We take the linear function as the246

basis, and scale it with the normalized memory247

retention ratio. Suppose that the number of layers248

is N , the memory size of the linear incremental249

memory of the j-th layer at the i-th step is bji , then250

the memory size for adaptive incremental memory251

is:252

mj
i =

{
bj0 if i = 0
pj∑
pj
Nbji if i > 0

(3)253

3The visualization is shown in Figure 6

3.3 Decremental Chunk 254

Although incremental memory (IM) is faster than 255

fixed-size memory, it does not significantly reduce 256

peak GPU memory usage. To address this issue, 257

we propose Decremental Chunk based on Incre- 258

mental Memory (IMDC). IMDC begins with a 259

large chunk size and decreases it as the memory 260

size increases. 261

Regardless of changes in memory size and chunk 262

size, IMDC maintains a constant average chunk 263

size: 264∑n−1
i=0 ci
n

= c, (4) 265

where ci represents the chunk size at the i-th step, n 266

is the number of chunks, and c denotes the average 267

chunk size. Since the memory is not involved in the 268

attention computation at the first step, the chunk 269

size of IMDC at the first step is set to the average 270

chunk size (c0 = c). 271

At the i-th step, the attention key-value (KV) 272

is the concatenation of the chunk at the i-th step 273

and the memory at the i − 1-th step. Therefore, 274

the length of the attention KV at the i-th step is 275

ci +mi−1. We set the chunk size to ensure that the 276

attention KV length remains constant: 277

ci +mi−1 =

∑n−1
i=1 (c+mi−1)

n− 1
(i > 0), (5) 278

where mi−1 is the memory size at the i − 1-th 279

step, and
∑n−1

i=1 (c+mi−1)
n−1 is the average length of 280

the attention KV across all steps except the first 281

step. Therefore, the chunk size of IMDC at the i-th 282

step is: 283

ci =

{
c if i = 0

c+ m̂−mi−1 if i > 0
(6) 284

where m̂ =
∑n−2

i=0 mi

n−1 . 285

IMDC is illustrated on the bottom section of Fig- 286

ure 2, where the memory size increases while the 287

chunk size decreases. When the memory size is 288

small, the chunk size is large, and vice versa. The 289

incremental memory and decremental chunk strate- 290

gies complement each other, maintaining stable 291

GPU memory usage. The attention KV length of 292

IMDC remains constant at c+ m̂ (except for step 293

0), whereas for fixed-size memory it is c+mmax. 294

Since the memory size is incremental, we have 295

mmax > m̂. Therefore, IMDC consumes less GPU 296

memory than fixed-size memory. 297

4



256 512 1024
Memory size

8

10

12

14

TT
FT

8.15

10.05

15.07

7.43
8.25

10.39

7.49
8.22

10.05

SnapKV (A800)

128 256 512
Memory size

3.5

4.0

3.32

3.61

4.35

3.26
3.33

3.68

3.27

3.44

3.65

SnapKV (RTX-3090)

2048 4096 8192
Memory size

4

5

3.45

3.92

5.37

3.33

3.62

4.24

3.30

3.64

4.24

StreamingLLM (A800)

512 1024 2048
Memory size

2.2

2.4

2.6

2.23

2.35

2.65

2.19

2.27

2.50

2.17

2.28

2.45

StreamingLLM (RTX-3090)
FM IM IMDC

(a) TTFT Comparison (Seconds). TTFT (Time To First Token) refers to the time cost associated with the model encoding the
input sequence.

256 512 1024
Memory size

25

30

35

G
PU

 M
em

or
y 

U
sa

ge

24.70

28.40

37.70

24.60

28.10

36.70

23.20

24.90

28.90

SnapKV (A800)

128 256 512
Memory size

18

20

16.80

17.80

20.40

16.70

17.60

19.90

16.30

16.90

18.00

SnapKV (RTX-3090)

2048 4096 8192
Memory size

30

35

40

45

31.30

35.90

45.00

29.90

33.00

39.40

29.40

32.20

37.70

StreamingLLM (A800)

512 1024 2048
Memory size

18

20

17.90

19.10

21.30

17.60

18.30

19.90

17.50

18.10

19.50

StreamingLLM (RTX-3090)
FM IM IMDC

(b) GPU Memory Usage Comparison (GB).

Figure 4: TTFT and GPU Memory Usage of LLama2-7B with Fixed-Size Memory (FM) vs. that with our methods
(Incremental Memory (IM) and Incremental Memory with Decremetnal Chunk (IMDC)). The setting of sequence
length and chunk size followes Table 3. We use different memory sizes for SnapKV and Streaming LLM, because
SnapKV requires attention scores which does not support flash attention.

4 Experiments298

4.1 Experiment Settings299

Iterative Compression We divided the sequence300

into non-overlapping windows and encode position301

embedding for memory and chunk at each itera-302

tion independently instead of reusing the position303

embedding from the previous steps. Incremental304

Memory employs the linear increase, with the ini-305

tial memory size defined as mmax
n , where mmax is306

the maximum memory size and n is the number307

of chunks. Unless otherwise specified, the con-308

figurations of Incremental Memory adhere to this309

setup.310

KV Cache Compression We tried two prun-311

ing algorithms: SnaKV (Li et al., 2024) and312

StreamingLLM (Xiao et al., 2023). SnaKV fil-313

ters important key-value pairs based on attention314

scores, while StreamingLLM selects the most re-315

cent key-value pairs without relying on attention316

scores.317

Models We compared our methods with Fixed-318

Size Memory, abbreviated as FM. Our methods are319

labeled as IM (Incremental Memory) and IMDC320

(Incremental Memory with Decremental Chunk).321

Our experiments were conducted on LLaMA-2-322

7B (Touvron et al., 2023), Tiny-LLaMA (Zhang323

et al., 2024) (1.1B), and InternLM2 (Cai et al.,324

2024) (7B). We used Dynamic NTK (bloc97, 2023)325

to extend the context length of LLama2-7b and 326

Tiny-LLama. We used flash attention (Dao et al., 327

2022) to accelerate the attention calculation. How- 328

ever, SnapKV requires attention scores hence is not 329

compatible with flash attention. 330

Evaluation We used Collie (Lv et al., 2023) to 331

implement our methods and evaluate our methods 332

on LongBench (Bai et al., 2023) with OpenCom- 333

pass (Contributors, 2023). Our Perplexity evalu- 334

ation used the data collected by Liu et al. (2020), 335

which are sampled from the Github and Arxiv sub- 336

sets of Redpajama (Computer, 2023). 337

4.2 Efficiency Improvement 338

We evaluated the efficiency of our methods (IM 339

and IMDC) on both NVIDIA A800 and NVIDIA 340

RTX 3090 GPUs. The setting of chunk size and 341

sequence length is shown in Appendix B.1. The 342

results are shown in Figure 4. 343

Time Efficiency We compared the time effi- 344

ciency of our method versus FM in terms of the 345

time to first token (TTFT), the results of which are 346

shown in Figure 4a. We found that our IM and 347

IMDC consistently demonstrates greater efficiency 348

than FM, regardless of the pruners used and the 349

devices employed. Furthermore, the efficiency gap 350

between them widens as the memory size increases. 351

It is because that the larger memory size has a larger 352

impact on the computation time. 353

5



In the A800 experiments, IMDC achieved354

up to approximately 1.45x (SnapKV) and 1.26x355

(StreamingLLM) speedup over FM. In the RTX356

3090 experiments, the speedup of IM was 1.2x357

(SnapKV) and 1.08x (StreamingLLM). Increasing358

the memory size would make the speedup more359

significant.360

The acceleration of our methods on SnapKV is361

more significant than that on StreamingLLM. This362

is because that SnapKV cannot use flash attention,363

leading to a higher proportion of time spent on at-364

tention calculation. These empirical results align365

with our theoretical analysis in Appendix A.2: the366

acceleration of incremental memory is influenced367

by two factors—the memory size and the propor-368

tion of time spent on attention calculation relative369

to total computation time.370

GPU Memory Efficiency We evaluated the peak371

memory usage during model prefilling. The results,372

presented in Figure 4b, indicate that both IM and373

IMDC consume less GPU memory compared to374

FM. As the memory size increases, our method375

saves even more memory compared to the FM.376

In experiments conducted on the A800, the377

IMDC reduced GPU memory usage by up to 23.3%378

for SnapKV and 16.2% for StreamingLLM com-379

pared to FM. Similarly, on the RTX 3090, the380

reductions were 11% for SnapKV and 8% for381

StreamingLLM.382

IM also conserves GPU memory usage because383

the chunk at the i-th step is concatenated with the384

memory produced at the i− 1-th step for attention.385

Assuming the iteration involves n chunks (0, 1, ...,386

n − 1), the peak GPU memory is determined by387

the memory size at the (n− 2)-th step rather than388

the last step. However, the GPU memory reduction389

achieved by IM is not as significant as that achieved390

by IMDC, especially in the SnapkV experiment,391

where the number of chunks is large.392

4.3 Perplexity Comparison393

We compare the perplexity (PPL) of LLama2-7b394

when using different types of memory: FM, IM,395

and IMDC. The test data for perplexity is sampled396

from Redpajama and encompasses two domains397

(GitHub and ArXiv). The sequence length and398

chunk size configurations adhere to the A800 set-399

tings specified in Appendix B.1.400

The results shown in Figure 5 indicate that401

there is no significant difference in perplexity be-402

tween IM/IMDC and FM for either SnapKV or403

256 512 1024
Memory size

1.5

1.6

1.7

G
it

hu
b 

PP
L

1.61

1.57

1.54

1.61

1.57

1.53

1.61

1.57

1.53

SnapKV

256 512 1024
Memory size

1.5

1.6

1.7

1.61

1.57

1.54

1.61

1.57

1.53

1.61

1.57

1.53

StreamingLLM

2048 4096 8192
Memory size

5

10

15

20

A
rx

iv
 P

PL

4.23

17.62

20.00

3.31
4.06

7.45

3.21 3.80

10.37

2048 4096 8192
Memory size

5

10

15

20

4.23

17.62

20.00

3.31
4.06

7.45

3.21 3.80

10.37

Full Attention FM IM IMDC

Figure 5: Perplexity of LLama2-7B with Fixed-Size
Memory (FM) versus that with our methods (Incremen-
tal Memory (IM) and Incremental Memory with Decre-
mental Chunk (IMDC)).

StreamingLLM. When the memory size is 1024, 404

IM/IMDC even performs slightly better than FM. 405

This may be because IM/IMDC selects KV pairs 406

more concentrated towards the end of the sequence, 407

which is beneficial for lowering PPL. 408

When the chunk size is 1024, a larger mem- 409

ory size results in a lower perplexity. However, 410

when the chunk size is increased to 8192, the trend 411

reverses, with a larger memory size leading to a 412

higher perplexity. This is because 8192 exceeds 413

the model’s maximum supported length, and even 414

with Dynamic NTK (bloc97, 2023), the PPL for 415

Full Attention is high (GitHub PPL: 7.56, Arxiv 416

PPL: 11.09). IM and IMDC consistently achieve 417

lower PPL than FM and Full Attention. This is 418

because the memory length of IM and IMDC in- 419

creases gradually. 420

When comparing SnapKV and StreamingLLM, 421

we observe that SnapKV achieves significantly 422

lower perplexity than StreamingLLM under identi- 423

cal conditions. 424

4.4 Benchmark Comparison 425

We compared the performance of our methods (IM 426

and IMDC) versus FM on LongBench. As shown 427

in Table 1, the performance differences between IM 428

and FM are minimal (<=0.5) under any settings. In 429

most experiments, the performance differences be- 430

tween IM and FM are within 0.15. On InternLM2 431

and Tiny-LLaMA, IMDC is even better than FM. 432

6



Model Pruner Memory Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Code Avg

LLaMA2-7b

Full-Attn NA 16.4 7.89 11.61 50.58 3.68 63.34 28.15

SnapKV
FM 15.63 8.78 11.83 48.17 3.50 63.57 27.85
IM 15.53 8.75 11.74 48.70 4.41 63.51 27.99
IMDC 15.64 8.47 11.95 46.78 4.58 63.32 27.65

StreamingLLM
FM 12.89 7.90 10.96 45.86 3.40 61.65 26.32
IM 13.22 7.92 10.90 44.47 3.86 61.44 26.14
IMDC 12.95 8.19 10.78 44.88 3.90 61.23 26.15

InternLM2-7b

Full-Attn NA 40.93 34.79 22.78 57.78 33.23 59.44 42.56

SnapKV
FM 23.50 21.39 17.88 46.60 6.92 59.87 31.64
IM 22.36 21.54 17.41 45.90 6.05 59.62 31.13
IMDC 23.38 22.38 17.66 48.67 8.45 59.66 32.24

StreamingLLM
FM 23.14 21.49 16.79 46.34 4.88 59.31 31.00
IM 22.42 21.00 16.22 47.07 5.21 59.95 30.99
IMDC 23.06 20.89 16.61 47.31 5.73 59.88 31.25

Tiny-LLaMA

Full-Attn NA 2.77 0.99 5.76 2.12 0.59 18.06 5.78

SnapKV
FM 16.06 9.43 16.91 33.60 2.95 50.27 23.50
IM 16.22 9.41 15.74 31.09 2.85 50.75 22.98
IMDC 17.59 9.94 17.25 33.16 3.27 49.58 23.69

StreamingLLM
FM 16.31 10.07 16.77 31.46 2.96 51.92 23.60
IM 16.32 9.85 17.07 30.37 3.33 51.81 23.45
IMDC 16.99 10.27 17.38 31.52 2.41 52.11 23.81

Table 1: The performance comparison on LongBench. Full-attn: Full Attention; FM: Fixed-Size Memory; IM:
Incremental Memory (ours); IMDC: Incremental Memory with Decremental Chunk (ours). For all models, both the
chunk size and memory size are set to 1024.

This may be because the uneven Chunk Size is433

more closed to the full attention. An extreme case434

is that a sequence of length n is divided into two435

chunks with length n− 1 and 1.436

Overall, SnapKV performs better than437

StreamingLLM, especially on LLaMA2-7B. There438

is no difference in performance between SnapKV439

and StreamingLLM on Tiny-LLaMA, indicating440

that the attention scores of smaller models cannot441

reflect the importance of KV pairs.442

We also found that the average score of Full At-443

tention on Tiny-LLaMA is only 5.78, even with444

the Dynamic NTK. This is because the maximum445

sequence length that Tiny-LLaMA supports is lim-446

ited to 2048 tokens. In contrast, the average scores447

of all iterative compression methods (FM, IM, and448

IMDC) exceed 20, indicating the superiority of it-449

erative compression over full attention. We further450

compare the performance and efficiency between it-451

erative compression and full attention in Appendix452

B.3.453

4.5 Optimal Incremental Strategy454

In this experiment, we explored different func-455

tions to increase memory size and compared456

their impact on the performance and efficiency457

of the InternLM2-7b. We used InternLM2-7b for458

evaluation because the performance gap between459

IM/IMDC and FM on InternLM2-7b is more sig-460

Pruner Incremental Function Single-Doc QA TTFT Time

SnapKV LINEAR 22.35 5.11
SQRT 23.35 5.83
SQUARE 21.90 4.49
SQUARE-SQRT 23.24 5.15
ADAPTIVE 23.20 5.13

Streaming LLM LINEAR 22.41 2.34
SQRT 22.27 2.42
SQUARE 22.08 2.27
SQUARE-SQRT 21.97 2.35
ADAPTIVE 22.36 2.36

Table 2: Performance comparison of different incre-
mental functions. LINEAR: linear growth; SQRT:
fast initial growth that slows down, in the form of
x1/2; SQUARE: slow initial growth that speeds up,
in the form of x2; SQUARE-SQRT: growth in the form
of SQUARE in low layers and SQRT in high layers;
ADAPTIVE: set the memory size based on the mem-
ory retention ratio in each layer. The specific formulas
for the SQRT and SQUARE functions are described in
Appendix A.1, and the implementation details of the
ADAPTIVE function are provided in Section 3.2.We set
both Chunk Size and Memory Size to 1024.

nificant than that on LLama-7b. 461

The results are shown in Table 2. The outcomes 462

for SnapKV matched our expectations. The SQRT 463

function achieved the best performance, signifi- 464

cantly outperforming the LINEAR function, but 465

it was also the slowest among the five functions. 466

This is reasonable because the memory size of the 467

SQRT function is larger than that of the other func- 468

7



0 4 8 12 16 20 24 28
Chunk

0
4

8
12

16
20

24
28

32
La

ye
r

LLama2-7b

0 4 8 12 16 20 24 28
Chunk

0
4

8
12

16
20

24
28

32
La

ye
r

Internlm2-7b

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Figure 6: The memory distribution across different
chunks in various layers for LLaMA2-7b and Internlm2-
7b. The horizontal axis represents the Chunk ID, while
the vertical axis represents the Layer ID. The intensity
of the color reflects the proportion of memory distribu-
tion, with brighter colors indicating a higher proportion
of memory within a given chunk. We have excluded the
last column, as the majority of memory key-value pairs
are concentrated in the final chunk.

tions. Both SQUARE-SQRT and ADAPTIVE are469

designed to set the appropriate memory size for dif-470

ferent layers. They exhibited the same performance471

as the SQRT function and the same efficiency as472

the LINEAR function. The SQUARE function was473

the most efficient among the five functions, but its474

performance was the worst.475

As for the experiments on StreamingLLM, the476

impact of incremental functions was minimal. LIN-477

EAR and ADAPTIVE functions achieved the best478

performance. Overall, considering both perfor-479

mance and efficiency, the ADAPTIVE function480

is the optimal incremental function.481

4.6 Analysis482

Visualization of Memory Map We conducted483

a statistical analysis of the memory distribution484

across chunks by recording the chunk ID of each485

key-value pair in the memory. The data for this486

evaluation is the same as that used for the PPL487

Comparison (Section 4.3). For this analysis, we488

utilized fixed-size memory instead of incremen-489

tal memory. The results, illustrated in Figure 1,490

indicate that the majority of the memory is con-491

centrated in the last few chunks, irrespective of the492

models or pruners used.493

We further investigated memory distribution494

across different layers for both LLaMA2-7b and495

InternLM2-7b. The results are shown in Figure 6.496

We found significant variation in memory distribu-497

tion across different layers of LLaMA2-7b, with498

higher layers exhibiting a more uniform distribu-499

tion than lower layers. Conversely, for InternLM2-500

7b, the differences in memory distribution across501

layers are minimal. Inspired by this observation,502

5 10 15 20 25 30
Chunk

0.10

0.12

0.14

0.16

0.18

0.20

0.22

M
em

or
y 

R
et

en
tio

n 
R

at
io

LLama2-7b
Internlm2-7b
Tiny-LLama-1b

Figure 7: The variation of the Memory Retention Ratio
during the iteration. The Memory Retention Ratio is
defined as the proportion of memory retained after com-
pression, see Equation 2. The higher Memory Retention
Ratio indicates the less memory being forgotten after
compression. The pruner used is SnapKV.

we propose adaptive Incremental Memory in Sec- 503

tion 3.2. 504

Incremental Long-Term Memory The test data 505

was sampled from the Github and Arxiv subsets 506

of RedPajama, with each sample containing 32k 507

tokens. During the iteration, the memory is con- 508

tinuously updating. We visualized the memory 509

retention ratio defined in Equation 2 in Figure 7. 510

We observed that the memory retention ratio for 511

LLaMA2-7b and Tiny-LLaMA increases linearly 512

with iterations, whereas the memory retention rate 513

for Internlm2-7b exhibits fluctuations. The increas- 514

ing memory retention ratio suggests that as the 515

model undergoes more iterations, it tends to retain 516

more long-term memory. 517

5 Conclusion 518

In this paper, we addressed the inefficiencies in 519

long-context prefilling of LLM by introducing two 520

novel techniques: Incremental Memory and Decre- 521

mental Chunk. Incremental Memory optimizes 522

memory usage by dynamically increasing the mem- 523

ory size during prefilling, avoiding unnecessary 524

computational overhead. Decremental Chunk com- 525

plements this approach by dynamically adjusting 526

the chunk size, maintaining stable and lower GPU 527

memory usage. Our experimental results show that 528

the combination of these methods significantly im- 529

proves efficiency, with less prefilling times and 530

GPU memory consumption compared to traditional 531

fixed-size memory approaches. 532

8



Limitations533

1. In our experiments, we tested the performance534

and efficiency of our methods using sequences535

with length of 32k tokens. However, iterative536

compression can support inputs of unlimited537

length. We have not yet validated the effec-538

tiveness of our method on longer sequences,539

such as those with one million tokens.540

2. We have evaluated our methods on LLama2-541

7b, InternLM2-7b, and Tiny-LLama. How-542

ever, due to limitations in computational re-543

sources, we have not tested our model on the544

larger models, such as LLama2-70b. Never-545

theless, we believe our method is more suit-546

able for larger models because the memory547

bottleneck is more pronounced in these cases.548

Ethics Statement549

This paper honors the EMNLP Code of Ethics.550

The dataset used in the paper does not contain any551

private information. The code will be are open-552

sourced under the MIT license.553

References554

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury555
Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.556
2023. GQA: training generalized multi-query trans-557
former models from multi-head checkpoints. In Pro-558
ceedings of the 2023 Conference on Empirical Meth-559
ods in Natural Language Processing, EMNLP 2023,560
Singapore, December 6-10, 2023, pages 4895–4901.561
Association for Computational Linguistics.562

AI Anthropic. 2024. The claude 3 model family: Opus,563
sonnet, haiku. Claude-3 Model Card.564

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,565
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao566
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,567
and Juanzi Li. 2023. Longbench: A bilingual, mul-568
titask benchmark for long context understanding.569
CoRR, abs/2308.14508.570

bloc97. 2023. Dynamically scaled rope further in-571
creases performance of long context llama with zero572
fine-tuning.573

William Brandon, Mayank Mishra, Aniruddha574
Nrusimha, Rameswar Panda, and Jonathan Ragan575
Kelly. 2024. Reducing transformer key-value cache576
size with cross-layer attention. arXiv preprint577
arXiv:2405.12981.578

Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burtsev.579
2023a. Scaling transformer to 1m tokens and beyond580
with RMT. CoRR, abs/2304.11062.581

Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burtsev. 582
2023b. Scaling transformer to 1m tokens and beyond 583
with RMT. CoRR, abs/2304.11062. 584

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, 585
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi 586
Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, 587
Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya Gu, Yuzhe 588
Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, 589
Yingfan Hu, Ting Huang, Tao Jiang, Penglong Jiao, 590
Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, 591
Linyang Li, Shuaibin Li, Wei Li, Yining Li, Hong- 592
wei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, 593
Kuikun Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, 594
Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang 595
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai 596
Shang, Yunfan Shao, Demin Song, Zifan Song, Zhi- 597
hao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, 598
Guoteng Wang, Jiaqi Wang, Jiayu Wang, Rui Wang, 599
Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen 600
Weng, Fan Wu, Yingtong Xiong, and et al. 2024. 601
Internlm2 technical report. CoRR, abs/2403.17297. 602

Rewon Child, Scott Gray, Alec Radford, and Ilya 603
Sutskever. 2019. Generating long sequences with 604
sparse transformers. CoRR, abs/1904.10509. 605

Krzysztof Choromanski, Valerii Likhosherstov, David 606
Dohan, Xingyou Song, Jared Davis, Tamás Sarlós, 607
David Belanger, Lucy J. Colwell, and Adrian Weller. 608
2020. Masked language modeling for proteins via 609
linearly scalable long-context transformers. CoRR, 610
abs/2006.03555. 611

Together Computer. 2023. Redpajama: an open dataset 612
for training large language models. 613

OpenCompass Contributors. 2023. Opencompass: 614
A universal evaluation platform for foundation 615
models. https://github.com/open-compass/ 616
opencompass. 617

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, 618
and Christopher Ré. 2022. Flashattention: Fast and 619
memory-efficient exact attention with io-awareness. 620
In Advances in Neural Information Processing Sys- 621
tems 35: Annual Conference on Neural Information 622
Processing Systems 2022, NeurIPS 2022, New Or- 623
leans, LA, USA, November 28 - December 9, 2022. 624

Tim Dettmers, Mike Lewis, Younes Belkada, and 625
Luke Zettlemoyer. 2022. Llm.int8(): 8-bit ma- 626
trix multiplication for transformers at scale. CoRR, 627
abs/2208.07339. 628

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang 629
Wang, Yuejie Chi, and Beidi Chen. 2024. Get more 630
with LESS: synthesizing recurrence with KV cache 631
compression for efficient LLM inference. CoRR, 632
abs/2402.09398. 633

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, 634
Jiawei Han, and Jianfeng Gao. 2023a. Model tells 635
you what to discard: Adaptive KV cache compression 636
for llms. CoRR, abs/2310.01801. 637

9

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://doi.org/10.48550/ARXIV.2308.14508
https://doi.org/10.48550/ARXIV.2308.14508
https://doi.org/10.48550/ARXIV.2308.14508
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://doi.org/10.48550/ARXIV.2304.11062
https://doi.org/10.48550/ARXIV.2304.11062
https://doi.org/10.48550/ARXIV.2304.11062
https://doi.org/10.48550/ARXIV.2304.11062
https://doi.org/10.48550/ARXIV.2304.11062
https://doi.org/10.48550/ARXIV.2304.11062
https://doi.org/10.48550/ARXIV.2403.17297
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2006.03555
https://arxiv.org/abs/2006.03555
https://arxiv.org/abs/2006.03555
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2208.07339
https://doi.org/10.48550/ARXIV.2208.07339
https://doi.org/10.48550/ARXIV.2208.07339
https://doi.org/10.48550/ARXIV.2402.09398
https://doi.org/10.48550/ARXIV.2402.09398
https://doi.org/10.48550/ARXIV.2402.09398
https://doi.org/10.48550/ARXIV.2402.09398
https://doi.org/10.48550/ARXIV.2402.09398
https://doi.org/10.48550/ARXIV.2310.01801
https://doi.org/10.48550/ARXIV.2310.01801
https://doi.org/10.48550/ARXIV.2310.01801
https://doi.org/10.48550/ARXIV.2310.01801
https://doi.org/10.48550/ARXIV.2310.01801


Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu638
Wei. 2023b. In-context autoencoder for context639
compression in a large language model. CoRR,640
abs/2307.06945.641

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,642
Michael W. Mahoney, Yakun Sophia Shao, Kurt643
Keutzer, and Amir Gholami. 2024. Kvquant: To-644
wards 10 million context length LLM inference with645
KV cache quantization. CoRR, abs/2401.18079.646

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.647
2020. Reformer: The efficient transformer. In 8th648
International Conference on Learning Representa-649
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-650
30, 2020. OpenReview.net.651

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat652
Venkitesh, Acyr F. Locatelli, Hanchen Ye, Tianle Cai,653
Patrick Lewis, and Deming Chen. 2024. Snapkv:654
Llm knows what you are looking for before genera-655
tion. ArXiv, abs/2404.14469.656

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholam-657
reza Haffari, and Bohan Zhuang. 2024a. Minicache:658
Kv cache compression in depth dimension for large659
language models.660

Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian661
Tang, and Jieping Ye. 2020. Autocompress: An auto-662
matic DNN structured pruning framework for ultra-663
high compression rates. In The Thirty-Fourth AAAI664
Conference on Artificial Intelligence, AAAI 2020, The665
Thirty-Second Innovative Applications of Artificial666
Intelligence Conference, IAAI 2020, The Tenth AAAI667
Symposium on Educational Advances in Artificial In-668
telligence, EAAI 2020, New York, NY, USA, February669
7-12, 2020, pages 4876–4883. AAAI Press.670

Ruikang Liu, Haoli Bai, Haokun Lin, Yuening Li, Han671
Gao, Zhengzhuo Xu, Lu Hou, Jun Yao, and Chun672
Yuan. 2024b. Intactkv: Improving large language673
model quantization by keeping pivot tokens intact.674
CoRR, abs/2403.01241.675

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao676
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-677
lidis, and Anshumali Shrivastava. 2023. Scis-678
sorhands: Exploiting the persistence of importance679
hypothesis for LLM KV cache compression at test680
time. In Advances in Neural Information Processing681
Systems 36: Annual Conference on Neural Informa-682
tion Processing Systems 2023, NeurIPS 2023, New683
Orleans, LA, USA, December 10 - 16, 2023.684

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,685
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and686
Xia Hu. 2024c. KIVI: A tuning-free asymmetric 2bit687
quantization for KV cache. CoRR, abs/2402.02750.688

Kai Lv, Shuo Zhang, Tianle Gu, Shuhao Xing, Ji-689
awei Hong, Keyu Chen, Xiaoran Liu, Yuqing Yang,690
Honglin Guo, Tengxiao Liu, Yu Sun, Qipeng Guo,691
Hang Yan, and Xipeng Qiu. 2023. Collie: Collabora-692
tive training of large language models in an efficient693
way. In Proceedings of the 2023 Conference on694

Empirical Methods in Natural Language Processing, 695
EMNLP 2023 - System Demonstrations, Singapore, 696
December 6-10, 2023, pages 527–542. Association 697
for Computational Linguistics. 698

Tsendsuren Munkhdalai, Manaal Faruqui, and Sid- 699
dharth Gopal. 2024. Leave no context behind: 700
Efficient infinite context transformers with infini- 701
attention. CoRR, abs/2404.07143. 702

Matanel Oren, Michael Hassid, Yossi Adi, and Roy 703
Schwartz. 2024. Transformers are multi-state rnns. 704
CoRR, abs/2401.06104. 705

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy 706
Schwartz, Noah A Smith, and Lingpeng Kong. 707
2021. Random feature attention. arXiv preprint 708
arXiv:2103.02143. 709

Machel Reid, Nikolay Savinov, Denis Teplyashin, 710
Dmitry Lepikhin, Timothy P. Lillicrap, Jean-Baptiste 711
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan 712
Firat, Julian Schrittwieser, Ioannis Antonoglou, Ro- 713
han Anil, Sebastian Borgeaud, Andrew M. Dai, Katie 714
Millican, Ethan Dyer, Mia Glaese, Thibault Sotti- 715
aux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, 716
Yuanzhong Xu, James Molloy, Jilin Chen, Michael 717
Isard, Paul Barham, Tom Hennigan, Ross McIl- 718
roy, Melvin Johnson, Johan Schalkwyk, Eli Collins, 719
Eliza Rutherford, Erica Moreira, Kareem Ayoub, 720
Megha Goel, Clemens Meyer, Gregory Thornton, 721
Zhen Yang, Henryk Michalewski, Zaheer Abbas, 722
Nathan Schucher, Ankesh Anand, Richard Ives, 723
James Keeling, Karel Lenc, Salem Haykal, Siamak 724
Shakeri, Pranav Shyam, Aakanksha Chowdhery, Ro- 725
man Ring, Stephen Spencer, Eren Sezener, and et al. 726
2024. Gemini 1.5: Unlocking multimodal under- 727
standing across millions of tokens of context. CoRR, 728
abs/2403.05530. 729

Siyu Ren and Kenny Q. Zhu. 2024. On the efficacy of 730
eviction policy for key-value constrained generative 731
language model inference. CoRR, abs/2402.06262. 732

Zhihong Shao, Damai Dai, Daya Guo, and Bo Liu. 2024. 733
Deepseek-v2: A strong, economical, and efficient 734
mixture-of-experts language model. 735

Noam Shazeer. 2019. Fast transformer decoding: One 736
write-head is all you need. CoRR, abs/1911.02150. 737

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui 738
Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang, 739
and Furu Wei. 2024. You only cache once: Decoder- 740
decoder architectures for language models. arXiv 741
preprint arXiv:2405.05254. 742

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met- 743
zler. 2023. Efficient transformers: A survey. ACM 744
Comput. Surv., 55(6):109:1–109:28. 745

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 746
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 747
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 748
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton- 749
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 750

10

https://doi.org/10.48550/ARXIV.2307.06945
https://doi.org/10.48550/ARXIV.2307.06945
https://doi.org/10.48550/ARXIV.2307.06945
https://doi.org/10.48550/ARXIV.2401.18079
https://doi.org/10.48550/ARXIV.2401.18079
https://doi.org/10.48550/ARXIV.2401.18079
https://doi.org/10.48550/ARXIV.2401.18079
https://doi.org/10.48550/ARXIV.2401.18079
https://openreview.net/forum?id=rkgNKkHtvB
https://api.semanticscholar.org/CorpusID:269303164
https://api.semanticscholar.org/CorpusID:269303164
https://api.semanticscholar.org/CorpusID:269303164
https://api.semanticscholar.org/CorpusID:269303164
https://api.semanticscholar.org/CorpusID:269303164
https://api.semanticscholar.org/CorpusID:269982665
https://api.semanticscholar.org/CorpusID:269982665
https://api.semanticscholar.org/CorpusID:269982665
https://api.semanticscholar.org/CorpusID:269982665
https://api.semanticscholar.org/CorpusID:269982665
https://doi.org/10.1609/AAAI.V34I04.5924
https://doi.org/10.1609/AAAI.V34I04.5924
https://doi.org/10.1609/AAAI.V34I04.5924
https://doi.org/10.1609/AAAI.V34I04.5924
https://doi.org/10.1609/AAAI.V34I04.5924
https://doi.org/10.48550/ARXIV.2403.01241
https://doi.org/10.48550/ARXIV.2403.01241
https://doi.org/10.48550/ARXIV.2403.01241
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2402.02750
https://doi.org/10.48550/ARXIV.2402.02750
https://doi.org/10.48550/ARXIV.2402.02750
https://doi.org/10.18653/V1/2023.EMNLP-DEMO.48
https://doi.org/10.18653/V1/2023.EMNLP-DEMO.48
https://doi.org/10.18653/V1/2023.EMNLP-DEMO.48
https://doi.org/10.18653/V1/2023.EMNLP-DEMO.48
https://doi.org/10.18653/V1/2023.EMNLP-DEMO.48
https://doi.org/10.48550/ARXIV.2404.07143
https://doi.org/10.48550/ARXIV.2404.07143
https://doi.org/10.48550/ARXIV.2404.07143
https://doi.org/10.48550/ARXIV.2404.07143
https://doi.org/10.48550/ARXIV.2404.07143
https://doi.org/10.48550/ARXIV.2401.06104
https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.48550/ARXIV.2402.06262
https://doi.org/10.48550/ARXIV.2402.06262
https://doi.org/10.48550/ARXIV.2402.06262
https://doi.org/10.48550/ARXIV.2402.06262
https://doi.org/10.48550/ARXIV.2402.06262
https://api.semanticscholar.org/CorpusID:269613809
https://api.semanticscholar.org/CorpusID:269613809
https://api.semanticscholar.org/CorpusID:269613809
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://doi.org/10.1145/3530811


Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,751
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-752
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan753
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,754
Isabel Kloumann, Artem Korenev, Punit Singh Koura,755
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-756
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-757
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-758
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-759
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,760
Ruan Silva, Eric Michael Smith, Ranjan Subrama-761
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-762
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,763
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,764
Melanie Kambadur, Sharan Narang, Aurélien Ro-765
driguez, Robert Stojnic, Sergey Edunov, and Thomas766
Scialom. 2023. Llama 2: Open foundation and fine-767
tuned chat models. CoRR, abs/2307.09288.768

Apoorv Vyas, Angelos Katharopoulos, and François769
Fleuret. 2020. Fast transformers with clustered atten-770
tion. In Advances in Neural Information Processing771
Systems 33: Annual Conference on Neural Informa-772
tion Processing Systems 2020, NeurIPS 2020, De-773
cember 6-12, 2020, virtual.774

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,775
and Hao Ma. 2020. Linformer: Self-attention with776
linear complexity. CoRR, abs/2006.04768.777

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song778
Han, and Mike Lewis. 2023. Efficient stream-779
ing language models with attention sinks. CoRR,780
abs/2309.17453.781

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and782
Wei Lu. 2024. Tinyllama: An open-source small783
language model. CoRR, abs/2401.02385.784

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong785
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,786
Yuandong Tian, Christopher Ré, Clark W. Barrett,787
Zhangyang Wang, and Beidi Chen. 2023. H2O:788
heavy-hitter oracle for efficient generative inference789
of large language models. In Advances in Neural790
Information Processing Systems 36: Annual Confer-791
ence on Neural Information Processing Systems 2023,792
NeurIPS 2023, New Orleans, LA, USA, December 10793
- 16, 2023.794

11

https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://proceedings.neurips.cc/paper/2020/hash/f6a8dd1c954c8506aadc764cc32b895e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f6a8dd1c954c8506aadc764cc32b895e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f6a8dd1c954c8506aadc764cc32b895e-Abstract.html
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
https://doi.org/10.48550/ARXIV.2309.17453
https://doi.org/10.48550/ARXIV.2309.17453
https://doi.org/10.48550/ARXIV.2309.17453
https://doi.org/10.48550/ARXIV.2401.02385
https://doi.org/10.48550/ARXIV.2401.02385
https://doi.org/10.48550/ARXIV.2401.02385
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html


A Supplementary Method Details795

A.1 Alternative Incremental Functions796

We present several alternatives to the linear func-797

tion for increasing memory size, namely the SQRT798

and the SQUARE:799

m
square
i =

(mmax −m0)i
2

(n− 1)2
+m0 (7)800

m
sqrt
i =

(mmax −m0)
√
i√

n− 1
+m0 (8)801

The growth rate of the SQRT is initially slow but802

accelerates over time, whereas the SQUARE func-803

tion exhibits the opposite behavior. The memory804

size of the SQUARE function is smaller than that805

of the LINEAR, which in turn is smaller than that806

of the SQRT function.807

Based on the memory distribution visualization808

in Section 4.6, we observed that the memory distri-809

bution in the higher layers of LLaMA2-7b is more810

uniform compared to the lower layers. Therefore,811

we propose a new increase function, SQUARE-812

SQRT, which combines the SQUARE and SQRT813

function: using SQUARE function for the lower814

layers, and SQRT function for the higher layers.815

The integral of the sum of SQUARE and SQRT816

function (mhigh
i +mlow

i ) over the interval [0, n− 1]817

equals n(mmax +m0)/2, which is the same as that818

of linear function. Therefore, theoretically, the819

computational cost of SQUARE-SQRT is equiva-820

lent to that of LINEAR.821

A.2 Time Complexity Analysis822

The acceleration of IM over fixed-size Memory is823

determined by two factors: 1) the relative sizes of824

the memory size and chunk size; 2) the proportion825

of the total computation time occupied by the atten-826

tion calculation. Assuming the maximum memory827

size is mmax, the memory size at the i step is mi,828

the chunk size is c, the number of chunks is n , then829

the acceleration of IM over fixed-size Memory is830

given by:831

r(
mmax + c

m̂+ c
− 1) + 1, (9)832

where m̂ =
∑n−2

i=0 mi

n−1 . Therefore, when mmax ≫ c833

and r is close to 1, incremental memory achieves834

an ideal acceleration ratio: mmax
m̂ .835

Device Pruner Chunk Size Sequence Length

A800 SnapKV 1024 32k
StreamingLLM 8192 32k

RTX 3090 SnapKV 512 8k
StreamingLLM 2048 8k

Table 3: Setting of Chunk Sizes and Sequence Lengths
for Different Devices and Pruners

IM reduces the time complexity of the attention 836

calculation from O(ms+ s2) to O(f(m, s) + s2), 837

where f depends on the specific incremental func- 838

tion. If f is a power function, the time complexity 839

is O(ms). If f is a reciprocal function, the time 840

complexity is O(log(s)m+ s2). 841

B Supplementary Experiments 842

B.1 Experiment Setting of Chunk size and 843

Sequence Length 844

Since the GPU memory of A800 is much larger 845

than that of RTX 3090, we set a larger sequence 846

length and chunk size for the experiment on A800. 847

Furthermore, SnapKV does not support flash atten- 848

tion, hence the chunk size and sequence of which 849

is larger than that of StreamingLLM. We report the 850

detail setting in Table 3. Both the experiments of 851

Efficiency Comparison (4.2) and PPL Comparison 852

(4.3) follow this setting. 853

B.2 Incremental Fixed Memory Versus 854

Incremental Dynamic Incremental 855

AutoCompressors (Liu et al., 2020) also dynami- 856

cally increases the memory size while iterating over 857

chunks. Although their memory size grows incre- 858

mentally, they do not compress the existing mem- 859

ory; instead, they append the compressed chunks to 860

the existing memory. In other words, their memory 861

consists entirely of long-term memory that is nei- 862

ther updated nor forgotten. Conversely, our method 863

updates the memory content through compression 864

at each step. 865

Which kind of incremental memory is better? 866

We compared the performance of them by evalu- 867

ating the perplexity of LLaMA2-7b. The exper- 868

imental setup is consistent with that in Section 869

subsection 4.3, and the results are shown in Fig- 870

ure Figure 8. We refer to AutoCompressors (Liu 871

et al., 2020) as Incremental Fixed Memory, and our 872

method as Incremental Dynamci Memory. 873

According to Figure 8, the perplexity of Dy- 874

namic Incremental Memory is significantly lower 875

12



256 512 1024
Memory size

1.5

1.6

1.7

1.8

G
it

hu
b 

PP
L 1.79

1.75

1.71

1.61

1.57
1.53

SnapKV

256 512 1024
Memory size

1.5

1.6

1.7

1.8 1.79
1.75

1.71

1.61

1.57
1.53

StreamingLLM

2048 4096 8192
Memory size

4

6

8

A
rx

iv
 P

PL

3.47

4.51

8.95

3.31

4.06

7.45

2048 4096 8192
Memory size

4

6

8

3.47

4.51

8.95

3.31

4.06

7.45

Incremental Fixed Memory Incremental Dynamic Memory

Figure 8: Incremental Fixed Memory (Liu et al., 2020)
versus Incremental Dynamic Memory (ours). The data
for evaluation is the same as that used in PPL Compar-
ison (Section 4.3). Both approaches increase memory
size linearly during iterative compression. For both
methods, the chunk size and the maximum memory size
are set to 1024.

GPU Method Save Logits Max length

RTX 3090
Full Attention Yes 8192

Iterative Compression Yes 65536
Iterative Compression No infinity

A800
Full Attention Yes 65536

Iterative Compression Yes 262144
Iterative Compression No infinity

Table 4: The maximum input length supported by Full
Attention and Interative Compression on A100 and RTX
3090 was evaluated. "Save Logits" refers to whether the
model’s output logits should be saved. We use IM for
iterative compression which utilizes the StreamingLLM
Pruner, both the chunk size and memory size of which
are set to 1024.

than that of Fixed Incremental Memory in almost876

all configurations, which demonstrates the supe-877

riority of our method and suggests that memory878

needs to be updated, i.e., long-term memory alone879

is insufficient.880

B.3 Why Iterative Compression?881

To verify the advantages of iterative compression882

over Full Attention, we compared the maximum883

sequence length that iterative compression and Full884

Attention support at the prefilling stage. we set the885

memory size and chunk size to 1024 for IMDC and886

use the StreamingLLM pruner as the compresser.887

The results are shown in the Table 4. Whether888

on the A800 or 3090, the maximum sequence889

Method Memory Size Single-Doc QA Time (seconds)

Iterative Compression

1024 22.36 3181.7
2048 27.34 3187.2
4096 34.88 3693.2
8192 39.16 3802.9

Full Attention NA 40.93 12101.4

Table 5: The performance and inference time of Full
Attention Versus Iterative Compression with different
memory sizes evaluated on a subset of LongBench
(Single-Document QA). We use IM for iterative com-
pression and LLama2-7b for the test model.

length supported by iterative compression is far 890

greater than that supported by Full Attention (4 891

times greater). If we do not save model’s logits, 892

or only save the logits of the last chunk, iterative 893

compression can support infinite sequence lengths. 894

In Table 1, the performance of InternLM2-7B 895

with full attention is much better than iteractive 896

compression (FM, IM, IMDC), particularly in QA 897

tasks. We hypothesize that the small memory size 898

is the primary cause of this discrepancy. Conse- 899

quently, we conducted a comparative study of it- 900

erative compression and Full Attention with an 901

increased Memory Size. 902

The results are shown in Table 5, where we can 903

observe that increasing memory size is beneficial 904

to narrow the gap between iterative compression 905

and full attention. If the memory size is set to 906

8192, the performance of iterative compression on 907

Single-Document QA is comparable with that of 908

full attention, while requiring only 31% inference 909

time. 910

13


	Introduction
	Related Works
	Method
	Iterative Compression
	Incremental Memory
	Decremental Chunk

	Experiments
	Experiment Settings
	Efficiency Improvement
	Perplexity Comparison
	Benchmark Comparison
	Optimal Incremental Strategy
	Analysis

	Conclusion
	Supplementary Method Details
	Alternative Incremental Functions
	Time Complexity Analysis

	Supplementary Experiments
	Experiment Setting of Chunk size and Sequence Length
	Incremental Fixed Memory Versus Incremental Dynamic Incremental
	Why Iterative Compression?


