
RP1M: A Large-Scale Motion Dataset for Piano
Playing with Bimanual Dexterous Robot Hands

Yi Zhao ∗†1 Le Chen ∗2 Jan Schneider 2 Quankai Gao 3

Juho Kannala 1,4 Bernhard Schölkopf 2 Joni Pajarinen 1 Dieter Büchler 2

1Aalto University, Finland 2Max Planck Institute for Intelligent Systems, Germany
3University of Southern California, USA 4University of Oulu, Finland

Abstract: It has been a long-standing research goal to endow robot hands with
human-level dexterity. Bimanual robot piano playing constitutes a task that com-
bines challenges from dynamic tasks, such as generating fast while precise motions,
with slower but contact-rich manipulation problems. Although reinforcement
learning-based approaches have shown promising results in single-task perfor-
mance, these methods struggle in a multi-song setting. Our work aims to close
this gap and, thereby, enable imitation learning approaches for robot piano playing
at scale. To this end, we introduce the Robot Piano 1 Million (RP1M) dataset,
containing bimanual robot piano playing motion data of more than one million
trajectories. We formulate finger placements as an optimal transport problem, thus,
enabling automatic annotation of vast amounts of unlabeled songs. Benchmarking
existing imitation learning approaches shows that such approaches reach promising
robot piano playing performance by leveraging RP1M ⋄.

Keywords: Bimanual dexterous robot hands, dataset for robot piano playing,
imitation learning, robot learning at scale

1 Introduction

Empowering robots with human-level dexterity is notoriously challenging. Current robotics research
on hand and arm motions focuses on manipulation and dynamic athletic tasks. Manipulation, such
as grasping or reorienting [1], requires continuous application of acceptable forces at moderate
speeds to various objects with distinct shapes and weight distributions. Environmental changes, like
humidity or temperature, alter the already complex contact dynamics, which adds to the complexity
of manipulation tasks. Dynamic tasks, like juggling [2] and table tennis [3] involve making and
breaking contact, demanding high precision and tolerating less inaccuracy due to rarer contacts. High
speeds in these tasks necessitate greater accelerations and introduce a precision-speed tradeoff.

Robot piano playing combines various aspects of dynamic and manipulation tasks: the agent is
required to coordinate multiple fingers to precisely press keys for arbitrary songs, which is a high-
dimensional and rich control task. At the same time, the finger motions have to be highly dynamic,
especially for songs with fast rhythms. Well-practiced pianists can play arbitrary songs, but this level
of generalization is extremely challenging for robots. In this work, we build the foundation to develop
methods capable of achieving human-level bi-manual dexterity at the intersection of manipulation
and dynamic tasks, while reaching such generalization capabilities in multi-task environments.

While reinforcement learning (RL) is a promising direction, traditional RL approaches often struggle
to achieve excellent performance in multi-task settings [4]. The advent of scalable imitation learning
techniques [5] enables representing complex and multi-modal distributions. Such large models

∗ Equal contribution. Correspondence to yi.zhao@aalto.fi, le.chen@tuebingen.mpg.de.
† Work done during an internship at Max Planck Institute for Intelligent Systems.
⋄ Project website: https://rp1m.github.io/

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://rp1m.github.io/

RP1M

TH FF MF RF LF

Key 1 0.2 0.3 0.5 0.6 0.8

Key 2 0.4 0.4 0.5 0.7 0.8

Key 3 0.3 0.3 0.3 0.3 0.5

Cost Matrix

Hands Piano
MIDI Fingering

Action

 Agent
Collect

Action

Figure 1: Overview of RP1M. (Left) RP1M is a large-scale motion dataset for piano playing with
bi-manual dexterous robot hands. The dataset includes ∼1M expert trajectories collected by ∼2k RL
specialist agents. (Right) To collect a diverse motion dataset of playing sheet music available on the
Internet, we lift the requirement of human-annotated fingering by formulating the finger placement as
an optimal transport problem such that the robot hands play piano in an energy-efficient way.

are most effective when trained on massive datasets that combine the state evolution with the
corresponding action trajectories. So far, creating large datasets for robot piano play is problematic
due to the time-consuming fingering annotations. Fingering annotations map which finger is supposed
to press a particular piano key at each time step. With fingering information, the reward is less
sparse, making the training significantly more effective. These labels usually require expert human
annotators [6], preventing the agent from leveraging the large amounts of unlabeled music pieces on
the internet [7]. Besides, human-labeled fingering may be infeasible for robots with morphologies
different from human hands, such as different numbers of fingers or distinct hand dimensions.

In this paper, we propose the Robot Piano 1 Million dataset (RP1M). This dataset comprises the
motion data of high-quality bi-manual robot piano play. In particular, we train RL agents for each of
the 2k songs and roll out each policy 500 times with different random seeds. To enable the generation
of RP1M, we introduce a method to learn the fingering automatically by formulating finger placement
as an optimal transport (OT) problem [8, 9]. Intuitively, the fingers are placed in a way such that
the correct keys are pressed while the overall moving distance of the fingers is minimized. Agents
trained using our automatic fingering match the performance of agents trained with human-annotated
fingering labels. Besides, our method is easy to implement with almost no extra training time. The
automatic fingering also allows learning piano playing with different embodiments, such as robots
with four fingers only. With RP1M, it is now possible to train and test imitation learning approaches
at scale. We benchmark various behavior cloning approaches and find that using RP1M, existing
methods perform better in terms of generalization capabilities in multi-song piano play. This work
contributes in various ways:

• To facilitate the research on dexterous robot hands, we release RP1M, a dataset of piano playing
motions that includes more than 2k music pieces with expert trajectories generated by our agents.

• We formulate fingering as an optimal transport problem, enabling the generation of vast amounts
of robot piano data with RL, as well as allowing variations in the embodiment.

• Using RP1M, we benchmark various approaches to robot piano playing, whereby existing imitation
learning approaches reach promising results in motion synthesis on novel music pieces due to
scaling with RP1M.

2 Related Work

Piano Playing with Robots Piano playing with robot hands has been investigated for decades. It
is a challenging task since bimanual robot hands should precisely press the right keys at the right
time, especially considering its high-dimensional action space. Previous methods require specific
robot designs [10, 11, 12, 13, 14, 15] or trajectory pre-programming [16, 17]. Recent methods enable
piano playing with dexterous hands through planning [18] or RL [19] but are limited to simple music
pieces. RoboPianist [4] introduces a benchmark for robot piano playing and demonstrates strong
RL performance, but requires human fingering labels and performs worse in multi-task learning.

2

Table 1: Existing datasets on dexterous or bimanual robotic manipulation.

Dataset Task Dexterous
hands Bimanual Dynamic

tasks
Demonstra-

tions

DexGraspNet [28] grasping � 1.3M

RealDex [31] grasping � 2.6K

UniDexGrasp [30] grasping � 1.1M

ALOHA [33] manipulation � 825

Bi-DexHands [34] manipulation � � partially ∼20K

D4RL [32] (Adroit) manipulation � 30K

RP1M (ours) piano � � � 1M

Yang et al. [20] improves the policy training performance by considering the bionic constraints of the
anthropomorphic robot hands.

Human fingering informs the agent of the correspondence between fingers and pressed keys at each
time step. These labels require expert annotators and are, therefore, expensive to acquire in practice.
Several approaches learn fingering from human-annotated data with different machine learning
methods [6, 21, 22]. Moryossef et al. [23] extract fingering from videos to acquire fingering labels
cheaply. Ramoneda et al. [24] proposes to treat piano fingering as a sequential decision-making
problem and use RL to calculate fingering but without considering the model of robot hands. Shi
et al. [25] automatically acquires fingering via dynamic programming, but the solution is limited
to simple tasks. Concurrent work [26] obtains fingering labels from YouTube videos and trains a
diffusion policy to play hundreds of songs. In our paper, we do not introduce a separate fingering
model, instead, similar to human pianists, fingering is discovered automatically while playing the
piano, hereby largely expanding the pool of usable data to train a generalist piano-playing agent.

Datasets for Dexterous Robot Hands Most large-scale datasets of dexterous robot hands focus on
grasping various objects. To get suitable grasp positions, some methods utilize planners [27, 28, 29],
while others use learned grasping policies [30], or track grasping motions of humans and imitate
these motions on a robot hand [31]. Compared to the abundance of datasets for grasping, there exist
relatively few datasets for object manipulation with dexterous robot hands. The D4RL benchmark [32]
provides small sets of expert trajectories for four such tasks, consisting of human demonstrations
and rollouts of trained policies. Zhao et al. [33] provides a small object manipulation dataset that
utilizes a low-cost bimanual platform with simple parallel grippers. Chen et al. [34] collects offline
datasets for two simulated bimanual manipulation tasks with dexterous hands. Furthermore, Fan et al.
[35] proposes a large-scale dataset for bimanual hand-object manipulation with human hands rather
than robot hands. Table 1 summarizes the characteristics of these existing datasets. To the best of our
knowledge, our RP1M dataset is the first large-scale dataset of dynamic, bimanual piano playing with
dexterous robot hands.

We further discuss related work on dexterous robot hands and generalist agents in Appendix A.

3 Background

Task Setup The simulated piano-playing environment is built upon RoboPianist [4]. It includes a
robot piano-playing setup, an RL-based agent for playing piano with simulated robot hands, and a
multi-task learner. To avoid confusion, we refer to these components as RoboPianist, RoboPianist-RL,
and RoboPianist-MT, respectively. The piano playing environment features a full-size keyboard with
88 keys driven by linear springs, two Shadow robot hands [36], and a pseudo sustain pedal.

Sheet music is represented by Musical Instrument Digital Interface (MIDI) transcription. Each time
step in the MIDI file specifies which piano keys to press (active keys). The goal of a piano-playing
agent is to press active keys and avoid inactive keys under space and time constraints. This requires
the agent to coordinate its fingers and place them properly in a highly dynamic scenario such that

3

0.0 2.5 5.0 7.5
Environment Steps (1e6)

0.00

0.25

0.50

0.75

1.00

F
1

S
co

re

Piano sonata no.232 mov

OT (Ours)
RoboPianist­RL
No Fingering

0.0 2.5 5.0 7.5
Environment Steps (1e6)

0.00

0.25

0.50

0.75

1.00

F
1

S
co

re

French suite no.5 sarabande

0.0 2.5 5.0 7.5
Environment Steps (1e6)

0.00

0.25

0.50

0.75

F
1

S
co

re

Intermezzo in b minor op.117 no.2

0.0 2.5 5.0 7.5
Environment Steps (1e6)

0.2

0.4

0.6

0.8

F
1

S
co

re

Fleurs de varsovie op.57

Figure 2: Comparison of the RL performance with our OT fingering, human-annotated fingering, and
no fingering. Our method matches the performance of RoboPianist-RL, which is trained with human
fingering. We also outperforms the baseline without any fingering information by a large margin. The
plots show the mean over 3 random seeds and the shaded areas represent the 95% confidence interval.

target keys, at not only the current time step but also the future time steps, can be pressed accurately
and timely. The original RoboPianist uses MIDI files from the PIG dataset [6] which includes human
fingering information annotated by experts. However, as mentioned earlier, this limits the agent to
only play human-labeled music pieces, and the human annotation may not be suitable for robots due
to the different morphologies.

The observation includes the state of the two robot hands, fingertip positions, piano sustain state,
piano key states, and a goal vector, resulting in an 1144-dimensional observation space. The goal
includes 10-step active keys and 10-step target sustain states obtained from the MIDI file, represented
by a binary vector. RoboPianst further includes 10-step human-labeled fingering in the observation
space but we remove this observation in our method since we do not need human-labeled fingering.
For the action space, we remove the DoFs that do not exist in the human hand or are used in most
songs, resulting in a 39-dimensional action space, consisting of the joint positions of the robot
hands, the positions of forearms, and a sustain pedal. We evaluate the performance of the trained
agent with an average F1 score calculated by F1 = 2 · precision·recall

precision+recall . For piano playing, recall and
precision measure the agent’s performance on pressing the active keys and avoiding inactive keys
respectively [4].

Playing Piano with RL We use RL to train specialist agents per song to control the bimanual
dexterous robot hands to play the piano. We frame the piano playing task as a finite Markov
Decision Process (MDP). At time step t, the agent πθ(at|st), parameterized by θ, receives state
st and takes action at to interact with the environment and receives new state st+1 and reward rt.
The state and action spaces are described above and the reward rt gives an immediate evaluation
of the agent’s behavior. We will introduce reward terms used for training in Section 4.1. The
agent’s goal is to maximize the expected cumulative rewards over an episode of length H , defined as
J = Eπθ

[∑H
t=0 γ

trt(st, at)
]
, where γ is a discount factor ranging from 0 to 1.

4 Large-Scale Motion Dataset Collection

In this section, we describe our RP1M dataset in detail. We first introduce how to train a specialist
piano-playing agent without human fingering labels. Removing the requirement of human fingering
labels allows the agent to play any sheet music available on the Internet (under copyright license). We
then analyze the performance of our specialist RL agent as well as the learned fingering. Lastly, we
introduce our collected large-scale motion dataset, RP1M, which includes ∼1M expert trajectories
for robot piano playing, covering ∼2k pieces of music.

4.1 Piano Playing without Human Fingering Labels

To mitigate the hard exploration problem posed by the sparse rewards, RoboPianist-RL adds dense
reward signals by using human fingering labels. Fingering informs the agent of the “ground-truth”
fingertip positions, and the agent minimizes the Euclidean distance between the current fingertip posi-
tions and the “ground-truth” positions. We now discuss our OT-based method to lift the requirement
of human fingering.

4

Although fingering is highly personalized, generally speaking, it helps pianists to press keys timely
and efficiently. Motivated by this, apart from maximizing the key pressing rewards, we also aim to
minimize the moving distances of fingers. Specifically, at time step t, for the i-th key ki to press, we
use the j-th finger f j to press this key such that the overall moving cost is minimized. We define the
minimized cumulative moving distance between fingers and target keys as dOT

t ∈ R+, given by

dOT
t =min

wt

∑
(i,j)∈Kt×F

wt(k
i, f j) · ct(ki, f j), s.t., i)

∑
j∈F

wt(k
i, f j) = 1, for i ∈ Kt,

ii)
∑
i∈Kt

wt(k
i, f j) ≤ 1, for j ∈ F, iii) wt(k

i, f j) ∈ {0, 1}, for (i, j) ∈ Kt × F.
(1)

Kt represents the set of keys to press at time step t and F represents the fingers of the robot hands.
ct(k

i, f j) represents the cost of moving finger f j to piano key ki at time step t calculated by their
Euclidean distance. wt(k

i, f j) is a boolean weight. In our case, it enforces that each key in Kt will be
pressed by only one finger in F , and each finger presses at most one key. The constrained optimization
problem in Eq. (1) is an optimal transport problem. Intuitively, it tries to find the best ”transport”
strategy such that the overall cost of moving (a subset of) fingers F to keys Kt is minimized. We
solve this optimization problem with a modified Jonker-Volgenant algorithm [37] from SciPy [38]
and use the optimal combinations (i∗, j∗) as the fingering for the agent. The fingering is calculated
on the fly based on the hands’ state, so during the RL training, the fingering adjusts according to the
robot hands’ state.

We define a reward rOT
t to encourage the agent to move the fingers close to the keys Kt. which is

defined as:

rOT
t =

{
exp(c · (dOT

t − 0.01)2) if dOT
t ≥ 0.01,

1.0 if dOT
t < 0.01.

(2)

c is a constant scale value as used in Tassa et al. [39] and dOT
t is the distance between fingers and

target keys obtained by solving Eq. (1). rOT
t increases exponentially as dOT

t decreases and is set as 1
once dOT

t is smaller than a pre-defined threshold (0.01). The overall reward function is defined as:

rt = rOT
t + rPress

t + rSustain
t + α1 · rCollision

t + α2 · rEnergy
t (3)

rPress and rSustain
t represent the reward for correctly pressing the target keys and the sustain pedal.

rCollision
t encourages the agent to avoid collision between forearms and rEnergy

t prefers energy-saving
behaviors. α1 and α2 are coefficient terms, and α1 = 0.5 and α2 = 5 ·10−3 are adopted. Our method
is compatible with any RL methods, and we use DroQ [40] in our paper.

4.2 Analysis of Specialist RL Agents

The performance of the specialist RL agents decides the quality of our dataset. In this section, we
investigate the performance of our specialist RL agents. We are interested in i) how the proposed OT-
based finger placement helps learning, ii) how the fingering discovered by the agent itself compares
to human fingering labels, and iii) how our method transfers to other embodiments.

Results In Fig. 2, we compare our method with RoboPianist-RL both with and without human
fingering. We use the same DroQ algorithm with the same hyperparameters for all experiments.
RoboPianist-RL includes human fingering in its inputs, and the fingering information is also used in
the reward function to force the agent to follow this fingering. Our method, marked as OT, removes
the fingering from the observation space and uses OT-based finger placement to guide the agent
to discover its own fingering. We also include a baseline, called No Fingering, that removes the
fingering entirely. The first two columns of Fig. 2 show that our method without human-annotated
fingering matches RoboPianst-RL’s performance on two different songs. Our method outperforms
the baseline without human fingering by a large margin, showing that the proposed OT-based finger
placement boosts the agent learning. The proposed method works well even on challenging songs.
We test our method on Flight of the Bumblebee and achieve 0.79 F1 score after 3M training steps. To

5

OT
Human

OT
Human

Five-finger
Hands

Thumb First Finger Middle Finger Ring Finger Little Finger

OT
Human

OT
Human

Four-finger
Hands

Thumb First Finger Middle Finger Ring Finger Little Finger

Figure 3: Comparison of fingering discovered by the agent itself and human annotations.

the best of our knowledge, we are the first to play the challenging song Flight of the Bumblebee with
general-purpose bimanual dexterous robot hands.

Analysis of the Learned Fingering We now compare the fingering discovered by the agent itself
and the human annotations. In Fig. 3, we visualize the sample trajectory of playing French Suite
No.5 Sarabande and the corresponding fingering. We found that although the agent achieves strong
performance for this song (the second plot in Fig. 2), our agent discovers different fingering compared
to humans. For example, for the right hand, humans mainly use the middle and ring fingers, while our
agent uses the thumb and first finger. Furthermore, in some cases, human annotations are not suitable
for the robot hand due to different morphologies. For example, in the second time step of Fig. 3, the
human uses the first finger and ring finger. However, due to the mechanical limitation of the robot
hand, it can not press keys that far apart with these two fingers, thus mimicking human fingering will
miss one key. Instead, our agent discovered to use the thumb and little finger, which satisfies the
hardware limitation and accurately presses the target keys.

Cross Emboidments Labs usually have different robot platforms, thus having a method that works
for different embodiments is highly desirable. We test our method on a different embodiment. To
simplify the experiment, we disable the little finger of the Shadow robot hand and obtain a four-finger
robot hand, which has a similar morphology to Allegro [41] and LEAP Hand [42]. We evaluate
the modified robot hand on the song French Suite No.5 Sarabande (first 550 time steps), where our
method achieves a 0.95 F1 score, similar to the 0.96 achieved with the original robot hands. In the
bottom row of Fig. 3, we visualize the learned fingering with four-finger hands. The agent discovers
different fingering compared to humans and the original hands but still accurately presses active keys,
meaning our method is compatible with different embodiments.

4.3 RP1M Dataset

To facilitate the research on dexterous robot hands, we collect and release a large-scale motion dataset
for piano playing. Our dataset includes ∼1M expert trajectories covering ∼2k musical pieces. For
each musical piece, we train an individual DroQ agent with the method introduced in Section 4.1
for 8 million environment steps and collect 500 expert trajectories with the trained agent. We chunk
each sheet music every 550 time steps, corresponding to 27.5 seconds, so that each run has the same
episode length. The sheet music used for training is from the PIG dataset [6] and a subset (1788
pieces) of the GiantMIDI-Piano dataset [7].

In Fig. 4, we show the statistics of our collected motion dataset. The top plot shows the histogram of
the pressed keys. We found that keys close to the center are more frequently pressed than keys at the
corner. Also, white keys, taking 65.7%, are more likely to be pressed than black keys. In the bottom
left plot, we show the distribution of the number of active keys over all time steps. It roughly follows

6

A0
A#0 B0 C1

C#1 D1
D#1 E1 F1

F#1 G1
G#1 A1

A#1 B1 C2
C#2 D2

D#2 E2 F2
F#2 G2

G#2 A2
A#2 B2 C3

C#3 D3
D#3 E3 F3

F#3 G3
G#3 A3

A#3 B3 C4
C#4 D4

D#4 E4 F4
F#4 G4

G#4 A4
A#4 B4 C5

C#5 D5
D#5 E5 F5

F#5 G5
G#5 A5

A#5 B5 C6
C#6 D6

D#6 E6 F6
F#6 G6

G#6 A6
A#6 B6 C7

C#7 D7
D#7 E7 F7

F#7 G7
G#7 A7

A#7 B7 C8

Key

0

25000

50000

75000

K
ey

 P
re

ss
 C

ou
nt

Histogram of Pressed Keys

Key Color
white
black

1000 2000 3000 4000 5000 6000 7000
Num of Keys

0

20

40

60

N
um

 o
f M

us
ic

al
 P

ie
ce

s Num of Active Keys over All Time Steps

0.5 0.6 0.7 0.8 0.9 1.0
F1 Score

0

25

50

75

N
um

 o
f M

us
ic

al
 P

ie
ce

s

0.00

0.25

0.50

0.75

1.00

C
D

F

Histogram of F1 Scores

Figure 4: Statistics of our RP1M dataset. (Top) Histogram of pressed keys in our RP1M dataset.
(Bottom Left) Distribution of the number of active keys over all time steps. (Bottom Right)
Distribution of F1 scores in our dataset.

a Gaussian distribution, and 90.70% musical pieces in our dataset include 1000-4000 active keys. We
also include the distribution of F1 scores of trained agents used for collecting data. We found most
agents (79.00%) achieve F1 scores larger than 0.75, and 99.89% of the agents’ F1 scores are larger
than 0.5. The distribution of F1 scores reflects the quality of the collected dataset. We empirically
found agents with F1 score ≥ 0.75 are capable of playing sheet music reasonably well with only
minor errors. Agents with ≤ 0.5 F1 scores usually have notable errors due to the difficulty of songs
or the mechanical limitations of the Shadow robot hand. We also include the F1 scores for each piece
in our dataset so users can filter the dataset according to their needs.

5 Benchmarking Results

The analysis in the previous section highlighted the diversity of highly dynamic piano-playing motions
in the RP1M dataset. In this section, we assess the multi-task imitation learning performance of
several widely used methods on our benchmark. To be specific, the objective is to train a single
multi-task policy capable of playing various music pieces on the piano. We train the policy on a
portion of the RP1M dataset and evaluate its in-distribution performance (F1 scores on songs included
in the training data) and its generalization ability (F1 scores on songs not present in the training data).

Baselines We evaluated Behavior Cloning (BC) [43], Behavior Transformer (BeT) [44], Diffusion
Policy [5] with U-Net (DP-U) [45] and with Transformer (DP-T) [46]. BC directly learns a policy by
using supervised learning on observation-action pairs from expert demonstrations. BeT clusters con-
tinuous actions into discrete bins using k-means, allowing it to model high-dimensional, continuous,
multimodal action distributions as categorical distributions [44]. Diffusion Policy learns to model
the action distribution by inverting a process that gradually adds noise to a sampled action sequence.
We evaluated both the CNN-based (U-Net) Diffusion Policy (DP-U) and the Transformer-based
Diffusion Policy (DP-T) with DDPM [47]. We use the same code and hyperparameters as Chi et al.
[5]. Detailed descriptions of the baselines as well as hyperparameters are given in Appendix C.1.

Experiment Setup We train the policies on subsets of the RP1M dataset with different sizes: 12,
25, 50, 100, 150. We then evaluate the trained policies on both i) 12 in-distribution songs: music
pieces that overlap with the training sets, and ii) 20 out-of-distribution (OOD) songs: music pieces
that do not overlap with the training songs. The selected songs are very challenging and contain
diverse motions and long horizons. In the experiment, we report zero-shot evaluation results without
fine-tuning. We report the average F1 scores of each group of music pieces for policies trained with
each baseline method. We list the selected songs for evaluation in Appendix C.2.

Discussion We present the benchmarking performance of multi-task agents in Table 2. For the
in-distribution evaluation, compared to F1 scores obtained with our RL specialist agents in Fig. 4,
we notice a performance gap across all baselines. This gap widens as the data size increases. When

7

Table 2: Comparison results of multi-task imitation learning.

In-disribution Out-of-distribution
music 12 25 50 100 150 12 25 50 100 150

BC-MLP 0.529 0.315 0.319 0.193 0.250 0.079 0.119 0.100 0.108 0.187
BeT 0.062 0.080 0.065 0.078 0.088 0.094 0.110 0.111 0.120 0.125

DP-U 0.539 0.541 0.546 0.505 0.454 0.181 0.189 0.198 0.215 0.256
DP-T 0.357 0.304 0.297 0.301 0.318 0.186 0.210 0.230 0.291 0.316

trained on a smaller dataset with 12 training songs, DP-U performs comparably to BC-MLP and
slightly outperforms DP-T, while BeT experiences a significant performance drop. This decline may
be attributed to hyperparameter choices, such as the number of action bins. Although we used the
same number of action bins as the official implementation, the complexity of our tasks suggests that
this configuration may be inadequate, and increasing the number of bins could improve performance.

As the dataset size increases, we observe that Diffusion Policy outperforms the other baselines. DP-U
and DP-T show performance drops of 15.77% and 10.92%, respectively, while BC-MLP suffers a
more significant decline of 52.74%. Similar performance gaps have been noted in previous work [4]
and concurrent research [26] suggests a hierarchical policy structure, although it still lags behind RL
specialists. This highlights the need for future research to address the performance gap between RL
specialists and multi-task agents.

In the zero-shot out-of-distribution evaluation, we find that performance improves for all evaluated
baselines as the training data size increases. Specifically, the F1 scores for DP-U and DP-T rise from
0.181 to 0.256 and from 0.186 to 0.316, respectively, when the number of training songs is increased
from 12 to 150. This suggests that larger datasets enhance the generalization capabilities of multi-task
agents. We hope that releasing our large-scale RP1M dataset will contribute to the development of
robust generalist piano-playing agents within the research community.

6 Limitations & Conclusion

Limitations Our paper has limitations in several aspects. Firstly, although our method lifts the
requirement of human-annotated fingering, enabling RL training on diverse songs, our method
still fails to achieve strong performance on challenging songs due to fast rhythms and mechanical
limitations of the robot hands. Improving the RL method and hardware design could help address
this. Secondly, the evaluation metric, F1 score, may not adequately capture musical performance and
the position-based controller missing the target velocity would hinder the performance. Thirdly, our
dataset includes only proprioceptive observations, whereas humans play piano using multi-modal
inputs like vision, touch, and hearing; incorporating these could enhance the agent’s capabilities.
Furthermore, there are several challenges to deploying the learned agent on a real-world robot. This
includes the challenges of obtaining the state of the piano and the hands (e.g., tracking the precise
fingertip positions), optimizing a precise position controller at high speed as well as the sim-to-real
gap for the highly dynamic piano-playing task, etc. Lastly, although we demonstrate better zero-shot
generalization performance than RoboPianist-MT [4], there is still a gap between our best multi-task
agent and RL specialists, which requires future investigation.

Conclusion In this paper, we propose a large-scale motion dataset named RP1M for piano playing
with bimanual dexterous robot hands. RP1M includes 1 million expert trajectories for playing 2k
musical pieces. To collect such a diverse dataset for piano playing, we lift the need for human-
annotated fingering in the previous method by introducing a novel automatic fingering annotation
approach based on optimal transport. On single songs, our method matches the baselines with
human-annotated fingering and can be adopted across different embodiments. Furthermore, we
benchmark various imitation learning approaches for multi-song playing. We report promising results
in motion synthesis for novel music pieces when increasing the data size and identify the gap to
achieving human-level piano-playing ability. We believe the RP1M dataset, with its scale and quality,
forms a solid step towards empowering robots with human-level dexterity.

8

Acknowledgments

We thank the support of the Max Planck Institute for Intelligent Systems, Tübingen (Germany). We
acknowledge CSC – IT Center for Science, Finland, for awarding this project access to the LUMI
supercomputer, owned by the EuroHPC Joint Undertaking, hosted by CSC (Finland) and the LUMI
consortium through CSC. Yi Zhao, Juho Kannala, and Joni Pajarinen acknowledge funding by the
Research Council of Finland (345521 353138, 327911). We thank Yuxin Hou and Wenyan Yang for
the insightful discussion. We thank all reviewers for their detailed and constructive comments.

References
[1] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. Pachocki,

A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng,
and W. Zaremba. Learning Dexterous In-Hand Manipulation. The International Journal of
Robotics Research (IJRR), 2020.

[2] K. Ploeger, M. Lutter, and J. Peters. High acceleration reinforcement learning for real-world
juggling with binary rewards. In Conference on Robot Learning, pages 642–653. PMLR, 2021.

[3] D. Büchler, S. Guist, R. Calandra, V. Berenz, B. Schölkopf, and J. Peters. Learning to play table
tennis from scratch using muscular robots. IEEE Transactions on Robotics, 38(6):3850–3860,
2022.

[4] K. Zakka, P. Wu, L. Smith, N. Gileadi, T. Howell, X. B. Peng, S. Singh, Y. Tassa, P. Florence,
A. Zeng, et al. RoboPianist: Dexterous Piano Playing with Deep Reinforcement Rearning. In
Conference on Robot Learning (CoRL), 2023.

[5] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. Robotics: Science and Systems (RSS), 2023.

[6] E. Nakamura, Y. Saito, and K. Yoshii. Statistical Learning and Estimation of Piano Fingering.
Information Sciences, 2020.

[7] Q. Kong, B. Li, J. Chen, and Y. Wang. GiantMIDI-Piano: A large-scale midi dataset for classical
piano music. Transactions of the International Society for Music Information Retrieval, 2022.

[8] C. Villani et al. Optimal transport: Old and new, volume 338. Springer, 2009.

[9] G. Peyré, M. Cuturi, et al. Computational optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

[10] I. Kato, S. Ohteru, K. Shirai, T. Matsushima, S. Narita, S. Sugano, T. Kobayashi, and E. Fujisawa.
The Robot Musician ‘wabot-2’(waseda robot-2). Robotics, 1987.

[11] J.-C. Lin, H.-H. Huang, Y.-F. Li, J.-C. Tai, and L.-W. Liu. Electronic Piano Playing Robot. In
International Symposium on Computer, Communication, Control and Automation (3CA), 2010.

[12] A. Topper, T. Maloney, S. Barton, and X. Kong. Piano-Playing Robotic Arm. Worcester MA,
2019.

[13] J. Hughes, P. Maiolino, and F. Iida. An Anthropomorphic Soft Skeleton Hand Exploiting
Conditional Models for Piano Playing. Science Robotics, 2018.

[14] R. Castro Ornelas. Robotic Finger Hardware and Controls Design for Dynamic Piano Playing,
2022.

[15] D. Zhang, J. Lei, B. Li, D. Lau, and C. Cameron. Design and Analysis of a Piano Playing Robot.
In International Conference on Information and Automation, 2009.

9

[16] Y.-F. Li and L.-L. Chuang. Controller Design for Music Playing Robot—Applied to the
Anthropomorphic Piano Robot. In International Conference on Power Electronics and Drive
Systems (PEDS), 2013.

[17] A. Zhang, M. Malhotra, and Y. Matsuoka. Musical Piano Performance by the ACT Hand. In
International Conference on Robotics and Automation (ICRA), 2011.

[18] B. Scholz. Playing Piano with a Shadow Dexterous Hand, 2019.

[19] H. Xu, Y. Luo, S. Wang, T. Darrell, and R. Calandra. Towards Learning to Play Piano with
Dexterous Hands and Touch. In International Conference on Intelligent Robots and Systems
(IROS), 2022.

[20] Y. Yang, Z. Wang, D. Xing, and P. Wang. Learning playing piano with bionic-constrained
diffusion policy for anthropomorphic hand. Cyborg and Bionic Systems, 5:0104, 2024.

[21] P. Ramoneda, D. Jeong, E. Nakamura, X. Serra, and M. Miron. Automatic Piano Fingering from
Partially Annotated Scores using Autoregressive Neural Networks. In International Conference
on Multimedia, 2022.

[22] D. A. Randolph, B. Di Eugenio, and J. Badgerow. Modeling Piano Fingering Decisions with
Conditional Random Fields. 2023.

[23] A. Moryossef, Y. Elazar, and Y. Goldberg. At Your Fingertips: Extracting Piano Fingering
Instructions from Videos. arXiv preprint arXiv:2303.03745, 2023.

[24] P. Ramoneda, M. Miron, and X. Serra. Piano Fingering with Reinforcement Learning. arXiv
preprint arXiv:2111.08009, 2021.

[25] W. Shi, Y. Li, Y. Guan, X. Chen, S. Yang, and S. Mo. Optimized Fingering Planning for
Automatic Piano Playing Using Dual-Arm Robot System. In International Conference on
Robotics and Biomimetics (ROBIO), 2022.

[26] C. Qian, J. Urain, K. Zakka, and J. Peters. Pianomime: Learning a generalist, dexterous piano
player from internet demonstrations. arXiv preprint arXiv:2407.18178, 2024.

[27] M. Liu, Z. Pan, K. Xu, K. Ganguly, and D. Manocha. Deep differentiable grasp planner for
high-dof grippers. Robotics: Science and Systems, 2020.

[28] R. Wang, J. Zhang, J. Chen, Y. Xu, P. Li, T. Liu, and H. Wang. DexGraspNet: A large-
scale robotic dexterous grasp dataset for general objects based on simulation. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages 11359–11366. IEEE,
2023.

[29] L. F. C. Murrilo, N. Khargonkar, B. Prabhakaran, and Y. Xiang. MultiGripperGrasp: A
dataset for robotic grasping from parallel jaw grippers to dexterous hands. arXiv preprint
arXiv:2403.09841, 2024.

[30] Y. Xu, W. Wan, J. Zhang, H. Liu, Z. Shan, H. Shen, R. Wang, H. Geng, Y. Weng, J. Chen,
et al. UniDexGrasp: Universal Robotic Dexterous Grasping via Learning Diverse Proposal
Generation and Goal-Conditioned Policy. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

[31] Y. Liu, Y. Yang, Y. Wang, X. Wu, J. Wang, Y. Yao, S. Schwertfeger, S. Yang, W. Wang, J. Yu,
et al. RealDex: Towards human-like grasping for robotic dexterous hand. arXiv preprint
arXiv:2402.13853, 2024.

[32] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4RL: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

10

[33] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. Robotics: Science and Systems, 2023.

[34] Y. Chen, Y. Geng, F. Zhong, J. Ji, J. Jiang, Z. Lu, H. Dong, and Y. Yang. Bi-DexHands: Towards
human-level bimanual dexterous manipulation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023.

[35] Z. Fan, O. Taheri, D. Tzionas, M. Kocabas, M. Kaufmann, M. J. Black, and O. Hilliges. Arctic:
A dataset for dexterous bimanual hand-object manipulation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12943–12954, 2023.

[36] ShadowRobot. ShadowRobot Dexterous Hand. https://www.shadowrobot.com/

products/dexterous-hand/, 2005.

[37] D. F. Crouse. On implementing 2d rectangular assignment algorithms. IEEE Transactions on
Aerospace and Electronic Systems, 52(4):1679–1696, 2016.

[38] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, et al. Scipy 1.0: fundamental algorithms for scientific
computing in python. Nature methods, 17(3):261–272, 2020.

[39] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[40] T. Hiraoka, T. Imagawa, T. Hashimoto, T. Onishi, and Y. Tsuruoka. Dropout Q-functions for
doubly efficient reinforcement learning. International Conference on Learning Representations,
2022.

[41] Allegro. https://www.wonikrobotics.com/research-robot-hand.

[42] K. Shaw, A. Agarwal, and D. Pathak. Leap hand: Low-cost, efficient, and anthropomorphic
hand for robot learning. Robotics: Science and Systems, 2023.

[43] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

[44] N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k
modes with one stone. Advances in neural information processing systems, 35:22955–22968,
2022.

[45] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015:
18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18,
pages 234–241. Springer, 2015.

[46] A. Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[47] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. International Conference
on Learning Representations, 2021.

[48] D. Rus. In-Hand Dexterous Manipulation of Piecewise-Smooth 3-D Objects. The International
Journal of Robotics Research (IJRR), 1999.

[49] A. Bicchi and R. Sorrentino. Dexterous Manipulation through Rolling. In International
Conference on Robotics and Automation (ICRA), 1995.

[50] L. Han and J. C. Trinkle. Dextrous Manipulation by Rolling and Finger Gaiting. In nternational
Conference on Robotics and Automation (ICRA), 1998.

11

https://www.shadowrobot.com/products/dexterous-hand/
https://www.shadowrobot.com/products/dexterous-hand/
https://www.wonikrobotics.com/research-robot-hand

[51] Y. Bai and C. K. Liu. Dexterous Manipulation using both Palm and Fingers. In International
Conference on Robotics and Automation (ICRA), 2014.

[52] I. Mordatch, Z. Popović, and E. Todorov. Contact-Invariant Optimization for Hand Manipulation.
In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
2012.

[53] N. C. Dafle, A. Rodriguez, R. Paolini, B. Tang, S. S. Srinivasa, M. Erdmann, M. T. Mason,
I. Lundberg, H. Staab, and T. Fuhlbrigge. Extrinsic Dexterity: In-Hand Manipulation with
External Forces. In International Conference on Robotics and Automation (ICRA), 2014.

[54] N. Chavan-Dafle and A. Rodriguez. Sampling-Based Planning of In-Hand Manipulation with
External Pushes. In Robotics Research: The 18th International Symposium ISRR, 2020.

[55] V. Kumar, Y. Tassa, T. Erez, and E. Todorov. Real-Time Behaviour Synthesis for Dynamic
Hand-Manipulation. In International Conference on Robotics and Automation (ICRA), 2014.

[56] M. Li, Y. Bekiroglu, D. Kragic, and A. Billard. Learning of Grasp Adaptation through Expe-
rience and Tactile Sensing. In International Conference on Intelligent Robots and Systems,
2014.

[57] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning Quadrupedal Locomo-
tion over Challenging Terrain. Science robotics, 2020.

[58] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al. Solving Rubik’s Cube with a Robot Hand. arXiv
preprint arXiv:1910.07113, 2019.

[59] X. B. Peng, P. Abbeel, S. Levine, and M. Van de Panne. DeepMimic: Example-Guided Deep
Reinforcement Learning of Physics-Based Character Skills. ACM Transactions On Graphics
(TOG), 2018.

[60] V. Kumar, A. Gupta, E. Todorov, and S. Levine. Learning Dexterous Manipulation Policies
from Experience and Imitation. arXiv preprint arXiv:1611.05095, 2016.

[61] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine. Learn-
ing Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations.
Robotics: Science and Systems, 2018.

[62] I. Radosavovic, X. Wang, L. Pinto, and J. Malik. State-Only Imitation Learning for Dexterous
Manipulation. In International Conference on Intelligent Robots and Systems (IROS), 2021.

[63] R. Jeong, J. T. Springenberg, J. Kay, D. Zheng, Y. Zhou, A. Galashov, N. Heess, and F. Nori.
Learning Dexterous Manipulation from Suboptimal Experts. arXiv preprint arXiv:2010.08587,
2020.

[64] T. Lin, Y. Zhang, Q. Li, H. Qi, B. Yi, S. Levine, and J. Malik. Learning visuotactile skills with
two multifingered hands. arXiv preprint arXiv:2404.16823, 2024.

[65] T. Chen, J. Xu, and P. Agrawal. A System for General In-hand Object Re-Orientation. In
Conference on Robot Learning (CoRL), 2022.

[66] Z. Yang, K. Yin, and L. Liu. Learning to Use Chopsticks in Diverse Gripping Styles. 2022.

[67] Y. Chen, T. Wu, S. Wang, X. Feng, J. Jiang, Z. Lu, S. McAleer, H. Dong, S.-C. Zhu, and Y. Yang.
Towards Human-Level Bimanual Dexterous Manipulation with Reinforcement Learning. Ad-
vances in Neural Information Processing Systems (NeurIPS), 2022.

12

[68] A. Allshire, M. MittaI, V. Lodaya, V. Makoviychuk, D. Makoviichuk, F. Widmaier, M. Wüthrich,
S. Bauer, A. Handa, and A. Garg. Transferring Dexterous Manipulation from GPU Simulation
to a Remote Real-World Trifinger. In International Conference on Intelligent Robots and
Systems (IROS), 2022.

[69] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang. DexPoint: Generalizable Point Cloud
Reinforcement Learning for Sim-to-Real Dexterous Manipulation. In Conference on Robot
Learning (CoRL), 2023.

[70] T. Lin, Z.-H. Yin, H. Qi, P. Abbeel, and J. Malik. Twisting lids off with two hands. arXiv
preprint arXiv:2403.02338, 2024.

[71] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. Transactions on Machine
Learning Research (TMLR), 2022.

[72] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. RT-1: Robotics Transformer for Real-World Control at Scale.
Robotics: Science and Systems (RSS), 2023.

[73] H. Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani, and V. Kumar. Roboagent:
Generalization and efficiency in robot manipulation via semantic augmentations and action
chunking. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pages
4788–4795. IEEE, 2024.

[74] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, et al. RT-2: Vision-Language-Action Models Transfer Web Knowledge to
Robotic Control. Conference on Robot Learning (CoRL), 2023.

[75] H. Ha, P. Florence, and S. Song. Scaling up and distilling down: Language-guided robot skill
acquisition. In Conference on Robot Learning (CoRL), pages 3766–3777. PMLR, 2023.

[76] Y. Du, S. Yang, B. Dai, H. Dai, O. Nachum, J. Tenenbaum, D. Schuurmans, and P. Abbeel.
Learning universal policies via text-guided video generation. Advances in Neural Information
Processing Systems (NeurIPS), 36, 2024.

[77] R. Bonatti, S. Vemprala, S. Ma, F. Frujeri, S. Chen, and A. Kapoor. Pact: Perception-action
causal transformer for autoregressive robotics pre-training. in 2023 ieee. In RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3621–3627, 2022.

[78] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

[79] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models.
Advances in Neural Information Processing Systems, 35:8633–8646, 2022.

[80] J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole, M. Norouzi,
D. J. Fleet, et al. Imagen video: High definition video generation with diffusion models. arXiv
preprint arXiv:2210.02303, 2022.

[81] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall. DreamFusion: Text-to-3d using 2d diffusion.
International Conference on Learning Representations, 2023.

[82] Z. Liu, Y. Feng, M. J. Black, D. Nowrouzezahrai, L. Paull, and W. Liu. MeshDiffusion: Score-
based generative 3d mesh modeling. International Conference on Learning Representations,
2023.

[83] M. Reuss, M. Li, X. Jia, and R. Lioutikov. Goal-conditioned imitation learning using score-based
diffusion policies. Robotics: Science and Systems (RSS), 2023.

13

[84] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, T. Kreiman,
C. Xu, et al. Octo: An open-source generalist robot policy. Robotics: Science and Systems
(RSS), 2024.

[85] X. Huang, Y. Chi, R. Wang, Z. Li, X. B. Peng, S. Shao, B. Nikolic, and K. Sreenath. Diffuseloco:
Real-time legged locomotion control with diffusion from offline datasets. Conference on Robot
Learning (CoRL), 2024.

14

Appendix

A More Related Work

Dexterous Robot Hands The research of dexterous robot hands aims to replicate the dexterity
of human hands with robots. Many previous works [48, 49, 50, 51, 52, 53, 54, 55] use planning
to compute a trajectory followed by a controller, thus require an accurate model of the robot hand.
Closed-loop approaches have been developed by incorporating sensor feedback [56]. These methods
also require an accurate model of the robot hand, which can be difficult to obtain in practice, especially
considering the large number of active contacts between the hand and objects.

Due to the difficulty of actually modeling the dynamics of the dexterous robot hand, recent meth-
ods resort to learning-based approaches, especially RL, which has achieved huge success in both
robotics [57, 58, 1] and computer graphics [59]. To ease the training of dexterous robot hands with a
large number of degrees of freedom (DoFs), demonstrations are commonly used [60, 61, 62, 63, 64].
Due to the advance of both RL algorithms and simulation, recent work shows impressive results
on dexterous hand manipulation tasks without human demonstrations. Furthermore, the policy
trained in the simulator can further be deployed on real dexterous robot hands via sim-to-real
transfer [65, 66, 67, 30, 68, 69, 70].

Generalist Agents RL methods usually perform well on single tasks, however, as human beings, we
can perform multiple tasks. Generalist agents are proposed to master a diverse set of tasks with a
single agent [71, 57, 72, 73]. These methods typically resort to scalable models and large datasets [72,
74, 75, 76, 77]. Recently, diffusion models have achieved many state-of-the-art results across image,
video, and 3D content generation [78, 79, 80, 81, 82] In the context of robotics, diffusion models
have been used as policy networks for imitation learning in both manipulation [5, 75, 83, 84] and
locomotion tasks [85]. The same technique has also been investigated in multi-task learning [75, 84].
We investigate the application of diffusion policy in high-dimensional control tasks, that is, playing
piano with bimanual dexterous robot hands.

B RP1M Dataset Collection Details

B.1 Reward Formulation

In Eq. (3) , we give the overall reward function used in our paper. We now give details of each term.
rPress
t indicates whether the active keys are correctly pressed and inactive keys are not pressed. We

use the same implementation as [4], given as: rPress
t = 0.5 · (1

K

∑K
t g(||kis − 1||2)) + 0.5 · (1− 1fp).

K is the number of active keys, kit is the normalized key states with range [0, 1], where 0 means the
i-th key is not pressed and 1 means the key is pressed. g is tolerance from Tassa et al. [39], which is
similar to the one used in Equation (2). 1fp indicates whether the inactive keys are pressed, which
encourages the agent to avoid pressing keys that should not be pressed. rSustain

t encourages the agent
to press the pseudo sustain pedal at the right time, given as rSustain

t = g(st − starget
t). st and starget

t are
the state of current and target sustain pedal respectively. rCollision

t penalizes the agent from collision,
defined as rCollision

t = 1 − 1collision, where 1collision is 1 if collision happens and 0 otherwise. rEnergy
t

prioritizes energy-saving behavior. It is defined as rEnergy
t = |τjoints|⊺|vjoints|. τjoints and vjoints are joint

torques and joint velocities respectively.

B.2 Training Details

Observation Space Our 1144-dimensional observation space includes the proprioceptive state of
dexterous robot hands and the piano as well as L-step goal states obtained from the MIDI file. In our
case, we include the current goal and 10-step future goals in the observation space (L=11). At each
time step, an 89-dimensional binary vector is used to represent the goal, where 88 dimensions are for
key states and the last dimension is for the sustain pedal. The dimension of each component in the
observation space is given in Table 3.

15

Table 3: Observation space.

Observations Dim
Piano goal state L · 88

Sustain goal state L · 1
Piano key joints 88

Piano sustain state 1
Fingertip position 3 · 10

Hand state 46

Training Algorithm & Hyperparameters Although our proposed method is compatible with any
reinforcement learning method, we choose the DroQ [40] as Zakka et al. [4] for fair comparison.
DroQ is a model-free RL method, which uses Dropout and Layer normalization in the Q function to
improve sample efficiency. We list the main hyperparameters used in our RL training in Table 4.

Table 4: Hyperparameters used in our RL agent.

Hyperparameter Value
Training steps 8M
Episode length 550
Action repeat 1
Warm-up steps 5k
Buffer size 1M
Batch size 256
Update interval 2
Piano environment

Lookahead steps 10
Gravity compensation True
Control timestep 0.05
Stretch factor 1.25
Trim slience True

Agent
MLPs [256, 256, 256]
Num. Q 2
Activation GeLU
Dropout Rate 0.01
EMA momentum 0.05
Discount factor 0.88
Learnable temperature True

Optimization
Optimizer Adam
Learning rate 3e-4
β1 0.9
β2 0.999
eps 1e-8

16

B.3 Computational Resources

We train our RL agents on the LUMI cluster equipped with AMD MI250X GPUs, 64 cores AMD
EPYC “Trento” CPUs, and 64 GBs DDR4 memory. Each agent takes 21 hours to train. The overall
data collection cost is roughly 21 hours * 2089 agents = 43,869 GPU hours.

B.4 MuJoCo XLA Implementation

To speed up training, we re-implement the RoboPianist environment with MuJoCo XLA (MJX),
which supports simulation in parallel with GPUs. MJX has a slow performance with complex scenes
with many contacts. To improve the simulation performance, we made the following modifications:

• We disable most of the contacts but only keep the contacts between fingers and piano keys
as well as the contact between forearms.

• Primitive contact types are used whenever possible.

• The dimensionality of the contact space is set to 3.

• The maximal contact points are set to 20.

• We use Newton solver with iterations=2 and ls iterations=6.

After the above modifications, with 1024 parallel environments, the total steps per second is 159,376.

We use PPO implementation implemented with Jax to fully utilize the paralleled simulation. The PPO
with MJX implementation is much faster than the DroQ implementation, which only takes 2 hours and
7 minutes for 40M environment steps on the Twinkle Twinkle Little Star song while as a comparison,
DroQ needs roughly 21 hours for 8M environment steps. However, the PPO implementation fails to
achieve a comparable F1 score as the DroQ implementation as shown in Fig. 5. Therefore, we use
the DroQ implement with the CPU version of the RoboPianist environment.

0 20 40
Environment Steps (1e6)

0.00

0.25

0.50

0.75

1.00

F
1

S
co

re

Twinkle Twinkle Little Star

DroQ
PPO+MJX

Figure 5: Comparison of the RL performance between DroQ and PPO with the MJX implementation
of the RoboPianist environment. PPO+MJX is faster to run but has a worse performance than DroQ.
We use DroQ with the CPU-version RoboPianist environment when training our RL agents.

C Multitask Benchmarking Details

A single multi-task policy capable of playing various songs is highly desirable. However, playing
different music pieces on the piano results in diverse behaviors, creating a complex action distribution,
particularly for dexterous robot hands with a large number of degrees of freedom (DoFs). This section
introduces the baseline methods we have compared and the hyperparameters we have used. We also
talk about the details of our multitask training and evaluation.

17

C.1 Baselines and Hyperparameters

C.1.1 Behavior Cloning

Behavior Cloning (BC) [43] directly learns a policy using supervised learning on observation-action
pairs from expert demonstrations, one of the simplest methods to acquire robotic skills. Due to its
straightforward approach and proven efficacy, BC is popular across multiple fields. The method
employs a Multi-Layer Perceptron (MLP) as the policy network. Given expert trajectories, the
policy network learns to replicate expert behavior by minimizing the Mean Squared Error (MSE)
between predicted and actual expert actions. Despite its advantages, BC tends to perform poorly
in generalizing to unseen states from the expert demonstrations. The MLP we used features three
hidden layers, each with 512 units, followed by Layer Normalization and an Exponential Linear Unit
(ELU) activation function to stabilize training and introduce non-linearity.

Table 5: Hypermeters used in BC

Hyperparameter Value
Batch Size 1024
Optimizer Adam

Learning Rate 1e-4
Observation Horizon 1
Prediction Horizon 1

Action Horizon 1

C.1.2 BeT

Behavior Transformers (BeT) [44] uses a transformer-decoder based backbone with a discrete action
mode predictor coupled with a continuous action offset corrector to model continuous actions
sequences. It clusters continuous actions into discrete bins using k-means to model high-dimensional,
continuous multi-modal action distributions as categorical distributions without learning complicated
generative models. We adopted the implementation and hyperparameters from the Diffusion Policy
codebase [5].

Table 6: Hyperparamerters used in BeT

Hyperparameter Value
Batch Size 512
Optimizer AdamW

Learning Rate 1e-4
Num of bins 64

MinGPT n layer 8
MinGPT n head 8
MinGPT n embd 120

Observation Horizon 1
Prediction Horizon 1

Action Horizon 1

C.1.3 Diffusion Policy

Diffusion models have achieved many state-of-the-art results across image, video, and 3D content
generation [78, 79, 80, 81, 82]. In the context of robotics, diffusion models have been used as
policy networks for imitation learning in both manipulation [5, 75, 83, 84] and locomotion tasks [85],
showing remarkable performance across various robotic tasks. Diffusion Policy [5] proposed to learn

18

an imitation learning policy with a conditional diffusion model. It models the action distribution by
inverting a process that gradually adds noise to a sampled action sequence, conditioning on a state
and a sampled noise vector. We evaluated both the U-Net-based Diffusion Policy (DP-U) and the
transformer-based Diffusion Policy (DP-T). We build our diffusion policy training pipeline based on
the original Diffusion Policy [5] codebase, which provides high-quality implementations.

Table 7: Hyperparameters used in DP-U

Hyperparameter Value
Batch Size 1024
Optimizer AdamW

Learning Rate 1e-4
Weight Decay 1e-6

Diffusion Method DDPM
Number of Diffusion Iterations 100

EMA Power 0.75
U-Net Hidden Layer Sizes [256, 512, 1024]

Diffusion Step Embedding Dim. 256
Observation Horizon 1
Prediction Horizon 4

Action Horizon 4

Table 8: Hyperparameters used in DP-T

Hyperparameter Value
Batch Size 1024
Optimizer AdamW

Learning Rate 1e-3
Weight Decay 1e-4

Diffusion Method DDPM
EMA Power 0.75

n layer 8
n head 4
n emb 156

p drop emb 0.0
p drop attn 0.3

Observation Horizon 1
Prediction Horizon 4

Action Horizon 4

C.2 Training and Evaluation

We train the policies with 5 different sizes of expert data: 12, 25, 50, 100, and 150 songs, respectively.
Subsequently, we assess the trained policies using two distinct categories of musical pieces. The
first category, in-distribution songs, includes pieces that are part of the training datasets. Evaluating
with in-distribution songs tests the multitasking abilities of the policies and checks if a policy can
accurately recall the songs on which it was trained. The second group of songs for evaluation are
out-of-distribution songs: those music pieces do not overlap with the training songs. The selected
songs contain diverse motions and long horizons, making them challenging to play. This out-of-
distribution evaluation measures the zero-shot generalization capabilities of the policies. Analogous

19

to an experienced human pianist who can play new pieces at first sight, we aim to determine if it is
feasible to develop a generalist agent capable of playing the piano under various conditions.

Additionally, our framework is designed with flexibility in mind, allowing users to select songs not
included in our dataset for either training data collection or evaluation. Furthermore, users have the
option to assess their policies on specific segments of a song rather than the entire piece.

Table 9: In-distribution songs

RoboPianist-etude-12-FrenchSuiteNo1Allemande-v0
RoboPianist-etude-12-FrenchSuiteNo5Sarabande-v0
RoboPianist-etude-12-PianoSonataD8451StMov-v0
RoboPianist-etude-12-PartitaNo26-v0
RoboPianist-etude-12-WaltzOp64No1-v0
RoboPianist-etude-12-BagatelleOp3No4-v0
RoboPianist-etude-12-KreislerianaOp16No8-v0
RoboPianist-etude-12-FrenchSuiteNo5Gavotte-v0
RoboPianist-etude-12-PianoSonataNo232NdMov-v0
RoboPianist-etude-12-GolliwoggsCakewalk-v0
RoboPianist-etude-12-PianoSonataNo21StMov-v0
RoboPianist-etude-12-PianoSonataK279InCMajor1StMov-v0

Table 10: Out-of-distribution songs

GiantMIDI-IsmagilovTimurSpringSketches-v0
GiantMIDI-JohnsonCharlesLeslieGoldenSpiderRag-v0
GiantMIDI-JoseffyRafaelValseDesDames-v0
GiantMIDI-KiefertCarlPastoral-v0
GiantMIDI-KleberHenryTheFancyPolka-v0
GiantMIDI-KockKarlMelancholie-v0
GiantMIDI-LackTheodoreMenuetDuXviiimeSiecleOp36-v0
GiantMIDI-LecocqCharlesLeJourEtLaNuit-v0
GiantMIDI-LefebureWelyLouisJamesAlfredApresLaChass-v0
GiantMIDI-LindgreenCharlesFirstCourtship-v0
GiantMIDI-LisztFranzRomanceOublieeS527-v0
GiantMIDI-MacchiClaudioRomanzaSenzaParole1-v0
GiantMIDI-MarcouPaulLeCosaqueOp15-v0
GiantMIDI-MasonWilliamAPastoralNovelette-v0
GiantMIDI-MattheyUlissePensieroOstinato-v0
GiantMIDI-MayerlBillyJosephEgyptianSuite-v0
GiantMIDI-MendelssohnFelixScherzoWoo2-v0
GiantMIDI-MozartWolfgangAmadeusAllegroInCMajorK484-v0
GiantMIDI-NegriCesareAlemanaDamore-v0
GiantMIDI-OkellyJosephEn1795Op52-v0

20

	Introduction
	Related Work
	Background
	Large-Scale Motion Dataset Collection
	Piano Playing without Human Fingering Labels
	Analysis of Specialist RL Agents
	RP1M Dataset

	Benchmarking Results
	Limitations & Conclusion
	More Related Work
	RP1M Dataset Collection Details
	Reward Formulation
	Training Details
	Computational Resources
	MuJoCo XLA Implementation

	Multitask Benchmarking Details
	Baselines and Hyperparameters
	Behavior Cloning
	BeT
	Diffusion Policy

	Training and Evaluation

