
Generation with Dynamic Vocabulary

Anonymous ACL submission

Abstract
Vocabulary is a crucial component of language001
models. Traditional language models generate002
text by selecting tokens from a fixed vocabulary.003
In this paper, we introduce a novel dynamic004
setting for the vocabulary. Under this setting,005
vocabulary can include arbitrary text spans on006
demand. These text spans act as basic bricks,007
akin to tokens in referredthe fixed vocabulary.008
Our proposed model can be deployed in a way009
of plug-and-play. Extensive experimental re-010
sults demonstrate that our approach yields supe-011
rior generation quality. For instance, compared012
to the standard language model, the MAUVE013
metric increases from 20.47 % to 25.69%. We014
also demonstrate that dynamic vocabulary can015
be effectively applied to different domains in a016
training-free manner, and it also helps to gen-017
erate reliable citations in question answering018
tasks (substantially enhancing citation results019
without compromising answer accuracy).020

1 Introduction021

Vocabulary, which defines basic bricks (tokens)022

for composing new sentences, bridging different023

languages (Stahlberg, 2020; Lample and Conneau,024

2019; Liu et al., 2020; Koehn and Knowles, 2017),025

and alleviating harmful generations (Kirk et al.,026

2022; Weidinger et al., 2021; Banko et al., 2020),027

is essential for language models. In modern devel-028

opment, vocabularies are often obtained by train-029

ing tokenizers with a pre-defined vocabulary size030

on the specific corpus (Sennrich et al., 2015; Rad-031

ford et al., 2019), and once built, they are kept un-032

changed in the following model construction and033

deployment(Dagan et al., 2024).034

Although it is enough for basic language model-035

ing, this static setting makes vocabulary be quietly036

ignored (Dagan et al., 2024) in advanced generation037

tasks (Gao et al., 2023; Rozière et al., 2024; Fried038

et al., 2023). For example, it can not be augmented039

with new phrases for better adapting an unseen do-040

main (Koehn and Knowles, 2017; Jin et al., 2020;041

In 2006 , Boulter starred alongside Whishaw in the play
Citizenship, . He appeared on a
2006 episode of the television series , Doctors , followed
by a role in the 2007

Token 1
Token 2

…
…
…

written by Mark Ravenhill
theatre production
was performed at

Language Model…
…
…
…

Token 50257

Fixed token vocabulary

Phrase Table

Input Token Embedding Layer

Output Token Embedding Layer

theatre production
Next Token/Phrase Generation

Dynamic vocabulary constructed
based on input text

written by Mark Ravenhill

Figure 1: Generation process of our proposed dy-
namic vocabulary. The model’s vocabulary dynamically
changes based on the input text, with phrases serving as
basic blocks that are directly input and output.

Chen et al., 2022) or verbatim reference text spans 042

for better inline evidence generation (Menick et al., 043

2022; Gao et al., 2023). To bring vocabulary back 044

to the stage, it is natural to ask whether prior con- 045

straints posted by tokenization corpus and fixed 046

vocabulary size can be relaxed. 047

Here, we explore vocabulary in a new dynamic 048

setting. Instead of being a fixed token table, dy- 049

namic vocabulary is required to be able to include 050

arbitrary text spans on demand. This setup brings 051

new challenges to the language model. On the 052

input side, using a single embedding layer is no 053

longer feasible as the full table can not be enu- 054

merated. On the output side, the model needs a 055

stronger next-token predictor as the model allows 056

multiple oracles (tokenized to different granularity) 057

for a single string. 058

In this work, we build a dynamic vocabulary by 059

building a dynamic phrase encoder. Akin to the 060

embedding layer, the encoder maps arbitrary text 061

spans (called phrases in the following sections) 062

to the input space of language models. It can be 063

trained with existing language models in the same 064

1

self-supervised manner, despite that multiple to-065

kens (in the original static vocabulary) can be input066

or output at a single step. Though the paradigm067

is almost unchanged, supporting dynamic tokens068

needs non-trivial modification on data curation.069

Specifically, we find that, to prevent the learned070

model from either biased towards full static token071

outputs or towards full new phrase outputs, it is072

crucial to make the two properly interleaved in073

training samples. We also show that without in-074

formative negative samples, the token encoder is075

hard to learn. We thus develop two retrieval-based076

and generation-based methods for accelerating the077

learning of the dynamic phrase encoder.078

The obtained dynamic vocabulary can be de-079

ployed in a way of plug-and-play: the underlying080

architecture of language models are kept, and those081

new on-demand phrases can be used as ordinary082

tokens during the generation. To evaluate the dy-083

namic vocabulary, we investigate three exemplar084

applications, including basic language modeling,085

domain adaptation, and generating citations for086

question answering. Results show that the new087

flexibility of vocabulary both improve basic gen-088

eration performances (e.g., stronger fluency and089

diversity scores on WikiText-103 (Merity et al.,090

2016) with lower latency) and provide a new tool091

to handle advanced language modeling tasks (e.g.,092

generating more accurate citations with QA scores093

also increased).094

2 The Approach095

2.1 Problem Definition096

Given a language model LM, denote V as its vo-097

cabulary, and x = x1, x2, ..., xn as a tokenized098

sentence according to V (xi is a token in V). A099

dynamic vocabulary V ′ = V ∪ P augments V100

with arbitrary phrases (text spans) P . The same101

sentence x now can be tokenized to a different se-102

quence x′1, x
′
2, ..., x

′
m, where x′i ∈ V ′. The usage103

of dynamic vocabulary V ′ is identical to the vanilla104

static vocabulary V : the language model LM can105

accept any token in V ′ as input and choose output106

tokens from V ′.107

Supporting arbitrary phrase set P and integrating108

V ′ with language models are two cruxes to imple-109

ment dynamic vocabularies. For the first one, it is110

possible to support new phrases by fine-tuning the111

language model with V ′, but it requires updating112

the model when P changes which can hardly be113

used in real applications. We will also see that,114

for the second crux, simply replacing V with V ′ 115

fails to learn the language model due to the decod- 116

ing ambiguity introduced by P . We elaborate our 117

solutions in the following sections. 118

2.2 Dynamic Phrase Encoder 119

Instead of fine-tuning the language model for ev- 120

ery possible P to support arbitrary phrase sets, 121

we build a parametric encoder for those dynamic 122

phrases. Once the encoder is learned, it can be 123

deployed with the model. 124

Specifically, the dynamic phrase encoder is built 125

with a casual Transformer. To get the represen- 126

tation of a phrase p ∈ P , it first tokenizes p = 127

w1, w2, ..., ws according to the static vocabulary V , 128

and after going through several casual Transformer 129

layers followed by an MLP, the hidden vector of 130

the last token hs is the vector representation of p. 131

The above setting is different from existing 132

works in three ways (Lan et al., 2023; Teehan et al., 133

2024). First, it is common to use Transformer en- 134

coder (full attention) to build the phrase encoder, 135

while we apply Transformer decoders (casual mask- 136

ing). The choice is mainly guided by efficient neg- 137

ative sampling (see Section 2.4 for further details). 138

Second, the dynamic phrase encoder adopts the 139

same tokenizer of LM (which is used to build the 140

static vocabulary V). Sharing tokenizers means 141

the language model doesn’t need to load additional 142

vocabularies and tokenizers during inference. 1 143

Third, following the same idea of consistent 144

treatment, we also use a non-contextualized repre- 145

sentation of phrases, which makes the new phrases 146

more like the original tokens in V . Contextualized 147

representations can also be used (Joshi et al., 2020; 148

Lan et al., 2023), but it means that, besides the 149

phrases themselves, the contexts of them should 150

also be included in the dynamic vocabulary. 151

To summarize, the considerations above aim to 152

make the dynamic phrase encoder aligns with the 153

embedding layer as much as possible: both of them 154

map tokens (phrases) into the input space of the 155

language model, one by lookup operations, and 156

another by running the phrase encoder. 157

2.3 Inference with Dynamic Vocabulary 158

In testing time, the new dynamic vocabulary can 159

be used as the ordinary vocabulary. We take an 160

1As a comparison, the phrase encoder in COG (Lan et al.,
2023) is BERT, and one should load both the BERT vocabulary
and GPT-2 vocabulary when testing.

2

auto-regressive language model LM as an exam-161

ple. For a set of new phrases P , 2 we run the162

learned dynamic phrase encoder to get representa-163

tions of its phrases, denoted by a matrix P. The164

language model’s input and output embedding ma-165

trices Wemb,in,Wemb,out are expanded with these166

embeddings,167

W′
emb,in = [Wemb,in,P],168

W′
emb,out = [Wemb,out,P].169

At each auto-regressive decoding step, the lan-170

guage model LM outputs a hidden vector h<i rep-171

resenting current prefix x′<i, the probability of next172

token is173

P(x′i = k|x′<i) = Z−1 exp(h<i · ekout) (1)174

Z =
∑
k′∈V

exp(h<i · ek
′

out) +
∑
k′∈P

exp(h<i · ek
′

out),175

where ekout is the k-th column of W′
emb,out. When176

the i-th token is selected, no matter whether it is177

a token in V or a phrase in P , its embedding is178

looked up from W′
emb,in as the input of the next179

decoding step. 3180

2.4 Training with Dynamic Vocabulary181

Building Samples To train the dynamic phrase182

encoder, we follow the same self-supervision183

regime as the training of language models. The184

key difference here is that, besides tokens in V , we185

need to organize phrases (text spans) in a training186

sample for learning the phrase encoder. In partic-187

ular, 1) the diversity of training time in-domain188

phrases would influence the generalization of the189

learned phrase encoder, and 2) the distribution of190

phrases in samples would influence the how the lan-191

guage model switches between tokens and phrases.192

For building phrases, we test the following two193

methods.194

• “real” phrases. We can use classical chunking195

algorithms to recognize phrases in a sentence.196

The result phrases can recognized as a single197

2The phrase set P can change at each decoding step. Here,
for simplicity, we assume it is kept unchanged during testing,
and we can run the dynamic phrase encoder only once.

3When decoding a phrase, another option adopted by (Joshi
et al., 2020; Lan et al., 2023) is to unfold tokens in the phrase
and input them individually. Despite the inconsistency be-
tween input and output vocabulary (our experiments indicate
a negative influence on performances), this setting may also
slow the decoding speed (or generate shorter texts given a
fixed length budget) even if it can predict a phrase.

grammatical unit or as a common word colloca- 198

tion. Here, we follow Lan et al. (2023) to use an 199

unsupervised chunker forward maximum match- 200

ing (FMM). Basically, FMM recognizes phrases 201

that frequently appear in a support corpus and as 202

long as possible. The algorithm (and other exter- 203

nal chunkers) may need additional time costs to 204

compile samples (e.g., in our experiments, FMM 205

needs ≈ 15 hours to build its phrase table). 206

• Ngrams. Another candidate set of phrases is 207

ngrams, which is much simpler to build than in- 208

volving external chunkers. Though a ngram may 209

not carry a meaning, it could be a stronger learn- 210

ing target for the phrase encoder: the connec- 211

tions between ngrams and its contexts are more 212

complex than “real” phrases (as they usually fol- 213

low the simple patterns which are used to extract 214

them). We study two settings, ngrams of words 215

and ngrams of tokens (denoted by N-words and 216

N-ids respectively). Taking N-words as an ex- 217

ample, a word tokenizer 4 first recognizes words 218

in a sentence, then randomly sequences of 2-5 219

consecutive words are grouped into phrases. 220

Next, given a sentence and a set of candidate 221

phrases, we need to determine the distribution of 222

phrases. One may build samples with full ngrams 223

phrases, but they could be both hard to learn (the 224

learning ignores the prior knowledge of original 225

vocabulary V in the model), and hard to apply (the 226

setting is rare in applications). In our practice, to 227

accelerate learning and prevent unnecessary data 228

bias, it is crucial to make phrases and tokens prop- 229

erly interleaved in training samples. Therefore, we 230

control the interval between two phrases to be at 231

least five tokens. 232

Negative Phrases After building training sam- 233

ples, we can directly optimize the log-probability 234

defined in Equation 1, which requires the correct 235

next token in V ′ = V ∪ P has the largest logit 236

than other tokens in V and P (negative tokens). 237

However, the number of phrases in the training 238

set would be large, and it is prohibitive to include 239

all of them in the loss function. 5 A common 240

workaround is to include only in-batch and pre- 241

batch phrases in P (Gao et al., 2021). Unfortu- 242

4N-words uses the word tokenizer in the NLTK toolkit,
and N-ids uses GPT-2’s tokenizer.

5It is worth noting that all training time phrases are dropped
after learning the encoder. For ngram phrases (N-words and
N-ids), phrases are built on the fly in the batching process, and
there is no global training time P .

3

Retrieval documents

Phrase Encoder

Retrieval-based

Generation-based

Mark Ravenhill Mark Ravenhill
wrote the play

Boulter starred in the play Citizenship written by Mark Ravenhill. He appeared on a 2006 episode of the television series , Doctors , followed by a role in the 2007
theatre production of How to Curse directed by Josie Rourke. How to Curse was performed at Bush Theatre in the London Borough of Hammersmith and Fulham.

Retrieval documents
… And Mark Ravenhill

is the writer of the play ..

Source Text Corpus
corpus-retrieval

self-retrieval

LM

Mark Raven
Mark Ravenhill.
Mark Ravenhill. He
Mark Ravenhill. He appeared

Mark Raven
Mark Ravenhill is
Mark Ravenhill is the
Mark Ravenhill is the writer

Mark Raven
Mark Ravenhill wrote
Mark Ravenhill wrote the
Mark Ravenhill wrote the play

Negative samples of Mark Ravenhill

Transformer Layers

Prefix: Boulter starred in the play Citizenship written by

prefix embedding

Sim.

Token 1

Token V
Mark Ravenhill

Mark Ravenhill wrote

Token Embedding Layer

Phrase EncoderToken Embedding Layer

Input Embedding Layer

Phrase Encoder

Phrase

Phrase embedding

Generation

…
…

Boulter starred in the play Citizenship written
by Mark Ravenhill. He appeared on …

Output Embedding Layer

Figure 2: The overall architecture of our proposed dynamic vocabulary. During training, there are four sources of
negative phrases: pre-batch, corpus-retrieval, self-retrieval, and generation. Phrases are embedded by the dynamic
phrase encoder with an additional linear layer. The hidden layer of the last token serves as the phrase embedding. In
the model input layer, phrases are treated as a basic brick without splitting into tokens.

nately, it doesn’t help learning the phrase encoder.243

Specifically, we find that the model struggles to244

correctly transit from a phrase token to an ordinary245

token and vice versa. More concretely, when pre-246

dicting a phrase p = w1, w2, ..., ws, the dynamic247

phrase encoder has trouble on distinguish p from248

1) phrases which are prefixes of that phrase (e.g.,249

w1w2 and w1w2w3) and 2) phrases which have p as250

their prefix (e.g., pws+1 and pws+1ws+2). There-251

fore, we also manually add the above phrases to P252

in each batch (we call them informative negative253

phrases).254

For the first type, we can simply enumerate all255

prefixes of p. For the second type, we develop256

retrieval-based and generation-based methods for257

getting successor tokens of p,258

• retrieval-based continuation finds appearances of259

p in a support corpus and takes p and its suc-260

cessor tokens there as negative phrases (corpus-261

retrieval). 6 One simplification is only consid-262

ering p’s successor tokens in the current sample263

(self-retrieval).264

• generation-based continuation, instead of search-265

ing corpus, tries to get synthetic negative phrases266

by employing a language model. 7 The model is267

6Due to the time complexity of matching phrases, we only
adopt corpus-retrieval when phrases are obtained by FMM,
and keep the efficiency of Ngram phrases.

7Here we use GPT-2, stronger models can also be applied.

prompted with p and the following generations 268

are included in P (generation). 269

Finally, regarding getting embeddings of these 270

informative negative phrases, recall that we adopt 271

an causal Transformer as the phrase encoder and 272

use the hidden state of the final token to represent 273

p, the embeddings of negative phrases could be 274

efficiently obtained by feeding the longest phrase 275

to the encoder. 276

Loss Functions The first part of the training loss 277

is defined by Equation 1 (with negative samples 278

added to P), which we denote by Lp. We also 279

add a special setting of Lp in the loss (denoted by 280

Lt), in which P = ∅ (i.e., the vanilla language 281

modeling). It helps to maintain generation ability 282

with the static vocabulary V . 283

We can further align the above two settings by re- 284

quiring their next token distributions at each token 285

position are close (measured by KL divergence). 286

Concretely, given a sentence x, recall that (Section 287

2.1) the oracle of training Lp is x′1, x
′
2, ..., x

′
m, the 288

oracle of training Le is x1, x2, ..., xn. Assume a 289

function σ which aligns x′i to a token position in 290

Le’s oracle: if x′i is a token in V , it is mapped to 291

the same token position, otherwise, x′i is mapped 292

to its last token’s position. 293

Lkl =
1

m

m∑
i=0

KL(P(x′i|x′<i)||P(xσ(x′
i)
|x<σ(x′

i)
)). 294

4

The final loss function is L = Lp + Lt + Lkl.295

3 Experiments296

3.1 Setups297

Configurations As a default configuration, we298

use GPT-2 (Radford et al., 2019) as the initial299

model of both the language model and dynamic300

phrase encoder. In testing time, we construct301

phrases for each test sample. By default, we follow302

COG (Lan et al., 2023) to use DPR (Karpukhin303

et al., 2020) to retrieve the top-k (k = 32) relevant304

documents from the training set We consider all305

n-grams of top-k documents as candidate phrases.306

Please refer to Appendix B for more details.307

Baselines We compare the proposed method with308

the following state-of-the-art models as baselines:309

Transformer (Vaswani et al., 2023) is the stan-310

dard token-level language model. We fine-tune the311

pre-trained GPT2 in our experiments.312

KNN-LMs (Khandelwal et al., 2020) extends313

a pre-trained neural language model by linearly314

interpolating it with a k-nearest neighbors(KNN)315

model.316

RETRO (Borgeaud et al., 2022) is a retrieval-317

enhanced transformer that combines a frozen Bert318

retriever, a differentiable encoder, and a chunked319

cross-attention mechanism.320

COG (Lan et al., 2023) decomposes text genera-321

tion into a series of copy-and-paste operations. It322

first retrieves semantically relevant documents and323

then considers all n-grams within them as candidate324

phrases.325

MWT (Gee et al., 2023) propose to expand vo-326

cabulary with top-k frequent n-grams in support327

corpus. Rather than expanding vocabulary dynami-328

cally, it still focuses on building a static vocabulary.329

Metrics Following previous works (Lan et al.,330

2023; Cao et al., 2024), we utilize four automatic331

evaluation metrics to measure the quality of the332

generated texts: (i) MAUVE (Pillutla et al., 2021)333

measures the distribution similarity between the ref-334

erence text and generated text; (ii) Rep-n (Welleck335

et al., 2019) reflects the repetition at different n-336

gram levels in the generated text; (iii) Diversity337

(Welleck et al., 2019) evaluates the variety of gen-338

erated content; and (iv) Perplexity measure the339

difficulty in predicting the next word in a sequence.340

In addition, we also compare the average time cost341

of different methods to decode a continuation con-342

sisting of 128 tokens given a prefix of 32 tokens,343

referred to as latency. The details for these metrics 344

can be found in Appendix C 345

In the following experiments, we verify the ef- 346

fectiveness of our methods in three exemplar ap- 347

plications: basic language, domain adaptation, and 348

generating citations for question answering. 349

3.2 Basic Language Modeling 350

We employ the WikiText-103 (Merity et al., 2016) 351

dataset for training and conduct a language mod- 352

eling task using its test set to evaluate our model. 353

For each test sample, we provide the first 32 to- 354

kens as a context prefix, and both the baselines and 355

our proposed model are tasked with generating the 356

subsequent 128 tokens. For a fair comparison, we 357

specify that our method generates text of the same 358

length as other baselines (128 tokens after tokeniza- 359

tion by GPT2Tokenizer (Radford et al., 2019)). 360

The results are listed in Table 1. We find that, 361

• Notably, our model outperforms standard Trans- 362

former with 5.22% improvements in MAUVE, 363

indicating the high quality of the generated text. 364

While MWT gets 24.74% MAUVE, it is a static 365

vocabulary. Meanwhile, our model achieve 366

47.44% diversity, which significantly exceeds the 367

baselines. 368

• Additionally, we delve into the discussion of gen- 369

eration latency. Given that phrase representations 370

are pre-computed, encoding times are excluded. 371

As seen, our model exhibits a clear advantage 372

in faster text generation, nearly 0.99s to gener- 373

ate 128 ids. This is because a single phrase en- 374

compasses several tokens, translating to fewer 375

decoding steps for identical-length output. 376

• However, the perplexity of our model is 377

marginally higher than that of the Transformer. 378

This discrepancy could potentially stem from the 379

fact that during testing, the input prefixes are 380

strictly composed of tokens from a fixed vocabu- 381

lary, whereas the model is not subjected to such 382

constraints during training, which results in an in- 383

consistency between the training and testing data 384

distributions, potentially leading to the observed 385

difference in perplexity scores. 386

we also evaluate the generation results under 387

nucleus sampling (p = 0.95), with detailed metrics 388

provided in the appendix A. 389

5

Model MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 ↓ Diversity ↑ Latency(s)↓ PPL ↓
Transformer 20.47 41.96 36.82 33.74 24.30 1.10 3.60

RETRO 19.59 43.78 38.58 35.35 22.33 4.43 3.96
KMM-LM∗ 19.92 43.79 38.76 35.69 22.13 10.36 3.48

COG 21.61 34.77 30.67 28.35 32.41 1.04 7.89
MWT 24.74 33.78 26.72 22.76 37.48 1.13 5.58
Ours 25.69 27.77 20.80 17.08 47.44 0.99 8.03

Table 1: The automatic evaluation on the test set of WikiText-103. ∗ indicates that we directly utilize the results
from the COG paper for KNN-LM due to limited GPU memory. Additionally, our method retrieves only 32 text
documents for phrase segments during evaluation, whereas COG retrieves 1024. MWT Gee et al. (2023) apply
MWT to encoder-only model but we implement MWT with GPT-2

Comparison Better No Prefer Worse
Transformer 0.61 0.05 0.34

MWT 0.58 0.02 0.40
COG 0.58 0.08 0.34

Table 2: GPT evaluation on WikiText-103.

GPT4 Evaluation. To ensure the reliability of390

the aforementioned automated evaluation and the391

quality of the generated text, we employ GPT-4392

(gpt-4-0125-preview) (Achiam et al., 2023) for as-393

sessment. Although human evaluation is consid-394

ered the gold standard for assessing human pref-395

erences, it is slow and costly. Zheng et al. (2023)396

have demonstrated that strong LLMs, such as GPT-397

4, can match most human preferences well. Specif-398

ically, we randomly sample 100 cases and evaluate399

the results of the Baselines and our model. GPT-4400

is asked to evaluate the generated texts by con-401

sidering fluency, coherence, informativeness, and402

grammar. Detailed implementations and prompt403

can be found in Appendix D.404

As depicted in Table 2, our proposed method sig-405

nificantly outperforms the Transformer with Better406

cases of 61 and only 34 cases of slight inferiority,407

which suggests that our model possesses enhanced408

generation capabilities.409

Sequence Compression Sequence compression410

reflects the length of text that a model can accom-411

modate within the same window size. Following412

Dagan et al. (2024), we measure the two compres-413

sion metrics: Normalized Sequence Length (NSL)414

and the average number of Bytes per Token. For-415

mally, we define NSL as the token count of an416

encoded sequence from a tokenizer T . Given that417

our proposed model does not incorporate a genuine418

tokenizer, we record the tokens and phrases output419

of each sample and regard it as the tokenization420

result of our proposed method. We use tokenizers421

of both GPT and MWT on the textual outputs of 422

our model. 423

Model NLS ↓ UTF-8 Bytes ↑
Transformer 127.72 4.28

MWT 114.84 4.77
Ours 101.38 5.54

Table 3: Compression on WikiText-103. Since COG,
KNN-LM, and RETRO do not modify the model’s tok-
enizer or input vocabulary, the compression results are
the same with the Transformer.

As shown in the table 3, our proposed model 424

holds the highest information content per token, 425

averaging 101.38 tokens or phrases per sequence 426

and 5.54 UTF-8 bytes per token, and necessitates 427

fewer tokens or phrases to generate the same text. 428

This is a natural consequence of the fact that the 429

dynamically added phrases inherently consist of at 430

least two tokens. 431

Negative Samples As mentioned above, we have 432

designed four different negative sampling strategies 433

to investigate the influence of negative examples 434

on the generation results. The results shown in 435

Table 4 indicate that the choice of negative sam- 436

pling method significantly impacts the fluency and 437

quality of the generated text. 438

• Specifically, compared with the other negative 439

sampling methods, the in-batch and pre-batch 440

negative sampling methods result in a markedly 441

higher PPL, approximately 10 and 3 points higher 442

in the FMM setting, irrespective of the phrase 443

segment method used. This observation suggests 444

that increasing the phrases that are prefixes of 445

gold phrase or vice versa is crucial for generating 446

fluent text. 447

• Furthermore, for any given negative sampling 448

method, the PPL in the FMM setting is con- 449

6

Negative Samples MAUVE ↑ Diversity ↑ PPL
FMM

in-batch 21.95 57.92 16.48
pre-batch 22.28 48.91 9.02
generation 22.87 42.19 6.34
corpus-retrieval 21.98 41.32 6.40
self-retrieval 21.65 41.67 6.39
self-retrieval + generation 21.25 42.40 6.62

N-words
in-batch 25.42 64.82 18.04
pre-batch 23.98 61.80 14.60
generation 24.99 49.03 8.51
self-retrieval 24.83 48.46 8.13
self-retrieval + generation 25.69 47.44 8.03

N-ids
in-batch 25.69 67.53 22.25
pre-batch 23.66 61.16 14.83
generation 23.91 46.40 8.07
self-retrieval 23.64 48.38 8.36
self-retrieval + generation 24.85 47.08 8.21

Table 4: The automatic evaluation on different negative
samples and training samples. During testing, each
phrase is constrained to 2-8 tokens. Here, the pre-batch
method contains prefixes of gold phrases as well and
the number of preceding batches is set to 1.

sistently lower than that of the N-words and N-450

ids methods. This phenomenon occurs because451

phrases obtained through FMM possess a rela-452

tively well-defined meaning.453

• Interestingly, the average MAUVE values for454

the N-words and N-ids are approximately 1%455

higher than that of FMM. The result indicates456

that sample building has a substantial influence457

on the text quality Cao et al. (2024).458

3.3 Domain Adaptation459

The plug-and-play property of our proposed model460

motivates us to explore the model’s performance on461

a specific domain in a training-free manner. Specif-462

ically, we investigate the performance of the model463

trained on the WikiText-103 dataset but tested on464

another one. The LawMT (Koehn and Knowles,465

2017) dataset is an English-German translation466

dataset in the legal domain. Consistent with prior467

work (He et al., 2021a; Alon et al., 2022; Lan et al.,468

2023), we utilize the English portion of this dataset.469

Results. As shown in table 5, our model achieves470

26.35 % MAUVE score and 82.99 % Diversity471

score and even outperforms the transformer fur-472

ther fine-tuned on LawMT datasets with 3.29 % on473

MAUVE, indicating that our model can generate474

high-quality text in the specific domain without475

further fine-tuning.476

Model MAUVE ↑ Diversity ↑ Latency(s)↓ PPL
Transformer w/o FT 22.97 72.12 1.03 3.21
Transformer w/ FT 23.06 80.21 1.02 3.54

RETRO 19.07 72.68 5.72 3.78
KMM-LM∗ 23.32 19.85 - -

COG 19.46 81.93 1.39 6.74
MWT 24.55 77.45 1.10 5.38
Ours 26.35 82.99 1.09 7.61

Table 5: The automatic evaluation on Law-MT. In this
experiment, we retrieve 512 documents for each sample.
To guarantee a fair comparison, we also evaluate the
performance of the Transformer model both with and
without further fine-tuning on LawMT.

In addition, we evaluate the sequence com- 477

pression ratio and conduct a GPT Evaluation on 478

LawMT. The details can be found in Appendix D, 479

E. 480

3.4 Generation with Citations 481

Given that we can customize our dynamically ex- 482

panding vocabulary as needed, and that the phrases 483

always have a corresponding document, a straight- 484

forward downstream task would be citation genera- 485

tion. ASQA (Stelmakh et al., 2022) is a long-form 486

QA dataset and we utilize the dataset processed by 487

Gao et al. (2023), where potential candidate docu- 488

ments have already been provided for each query. 489

We extract phrases from the provided documents. 490

We first label each document with a unique ID 491

marker starting from 1 and add the corresponding 492

marker to each phrase, such as "dynamic vocab- 493

ulary[1]". Therefore, during generation, we can 494

easily know which document the generated phrase 495

belongs to, thereby solving the citation task. 496

Results We evaluate the generated results from 497

two perspectives: citation quality and QA answer 498

accuracy. The detailed definitions of the metrics 499

can be found in Gao et al. (2023). We provide 500

the model with the top-k articles and leverage in- 501

context learning to instruct it to cite accordingly. 502

The experimental outcomes demonstrate a signif- 503

icant boost in the citation capability of our model 504

with citation recall and precision surpassing TinyL- 505

lama baseline by 9.14% and 27.76%, respectively. 506

However, phrase collections have a significant im- 507

pact on the citation results. The phenomenon oc- 508

curs potentially due to the property of the n-grams 509

approach, which yields an extensive collection of 510

phrases. Consequently, there is a higher likelihood 511

of encountering suitable phrases that align with the 512

context compared with the parsing method. 513

Furthermore, our model exhibits a superior QA 514

7

Model(shot-1) Citation_rec Citation_prec QA-EM QA-F1 Rouge-L
TinyLlama 0.62 1.54 6.00 8.78 25.43
ours

w/ n-grams 9.76 29.30 8.88 11.83 30.06
w/ parsing 2.94 9.17 9.87 13.06 30.16
w/o phrases 0.00 0.00 8.81 11.81 29.60

Table 6: The automatic evaluation on ASQA. In this experiment, we opt for TinyLlama as the language model to
imbue the model with in-context learning capabilities. All baseline models are configured in a one-shot setting, with
the number of candidate documents set to 3. Parsing denotes that we use Stanza parser (Qi et al., 2020) to extract
phrases from candidate documents, which ensures that the phrases possess a relatively complete and well-defined
meaning.

performance compared to Tinyllama, with an Exact515

Match score of 9.87% and an F1 of 13.06%. Due516

to our model’s further training on the WikiText-517

103 dataset, which is derived from a subset of518

Wikipedia articles and the property of ASQA tasks519

that necessitate Wikipedia-based information, our520

model’s QA performance is expected to be superior521

when not utilizing phrases (i.e., ours w/o phrases)522

as compared to directly employing TinyLLama.523

4 Related Work524

Tokenizer Tokenizer is an essential component525

of language models (Dagan et al., 2024; Mielke526

et al., 2021), responsible for transforming raw text527

into a sequence of tokens. Byte-Pair Encoding528

(BPE) is commonly used to build tokenizer (Rad-529

ford et al., 2019; Liu et al., 2019; Lewis et al., 2019;530

He et al., 2021b) and, there exist other tokeniza-531

tion algorithms, such as Unigram (Kudo, 2018)532

and WordPiece tokenization used in BERT (De-533

vlin et al., 2019). However, these tokenizations are534

limited to subwords or whole words. Kumar and535

Thawani (2022) and Gee et al. (2023) generalize536

the BPE algorithm to multi-words and multi-tokens537

separately. Whereas these approaches necessitate538

training the tokenizer and remain static.539

COG (Lan et al., 2023), which employs a "dy-540

namic vocabulary", retrieves related documents541

based on the input text and expanded vocabulary542

with phrases extracted from these documents. How-543

ever, COG only employs dynamic vocabulary in the544

output module and splits phrases into tokens in the545

input. In this paper, we treated phrases as atomic546

units same as tokens, and dynamically expanded547

vocabulary both in input and output layers.548

Sequence Compression Language models are549

constrained by the limited length of input se-550

quences they can process. Increasing this length551

results in a prohibitive computational overhead. A552

series of techniques have been proposed to com- 553

press sentences into one or a few tokens or latent 554

representations (Qin and Van Durme, 2023; Cheva- 555

lier et al., 2023; Bulatov et al., 2022; Mu et al., 556

2024). MWT (Gee et al., 2023) enhances compres- 557

sion by retraining the tokenizer, incorporating the 558

most frequent n-grams of a support corpus into the 559

vocabulary. In contrast to the static vocabulary of 560

MWT, our method dynamically adapts the model’s 561

vocabulary to the input text, resulting in a more 562

flexible and efficient adaptation. 563

5 Conclusion 564

In this paper, we propose a novel approach for dy- 565

namically adjusting the model’s vocabulary based 566

on input text. It is a plug-and-play approach that 567

can be performed simultaneously with pre-training 568

tasks. We investigated standard language modeling, 569

domain adaptation, and citation generation, and 570

discussed the impact of different training samples 571

and negative phrase construction methods on the 572

quality of generated text. Our experimental results 573

show that our proposed model can rapidly generate 574

high-quality, high-compression text compared to 575

baselines. 576

6 Limitations 577

In this paper, we propose a method to dynami- 578

cally expand the vocabulary based on the input text. 579

While our approach can improve generation speed 580

and increase the effective length of the generated 581

text, our model does not modify the underlying 582

tokenizer. As a result, it cannot reduce the token 583

numbers for known input information like prompts 584

or questions. The dynamic vocabulary is, therefore, 585

limited to the subsequent content generated by the 586

model. 587

Furthermore, to obtain embedding representa- 588

tions for phrases, a dynamic phrase encoder is nec- 589

8

essary. This encoder has a more intricate structure590

compared to the model’s linear embedding layer591

and requires additional memory allocation during592

implementation.593

Lastly, our method relies on external techniques,594

such as a retriever, to obtain relevant documents595

and extract phrases from them during testing. This596

adds complexity to the preparation process.597

References598

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama599
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,600
Diogo Almeida, Janko Altenschmidt, Sam Altman,601
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.602
arXiv preprint arXiv:2303.08774.603

Uri Alon, Frank F. Xu, Junxian He, Sudipta Sen-604
gupta, Dan Roth, and Graham Neubig. 2022.605
Neuro-symbolic language modeling with automaton-606
augmented retrieval. Preprint, arXiv:2201.12431.607

Michele Banko, Brendon MacKeen, and Laurie Ray.608
2020. A unified taxonomy of harmful content. In609
Proceedings of the Fourth Workshop on Online Abuse610
and Harms, pages 125–137, Online. Association for611
Computational Linguistics.612

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,613
Trevor Cai, Eliza Rutherford, Katie Millican, George614
van den Driessche, Jean-Baptiste Lespiau, Bogdan615
Damoc, Aidan Clark, Diego de Las Casas, Aurelia616
Guy, Jacob Menick, Roman Ring, Tom Hennigan,617
Saffron Huang, Loren Maggiore, Chris Jones, Albin618
Cassirer, Andy Brock, Michela Paganini, Geoffrey619
Irving, Oriol Vinyals, Simon Osindero, Karen Si-620
monyan, Jack W. Rae, Erich Elsen, and Laurent Sifre.621
2022. Improving language models by retrieving from622
trillions of tokens. Preprint, arXiv:2112.04426.623

Aydar Bulatov, Yuri Kuratov, and Mikhail Burtsev. 2022.624
Recurrent memory transformer. In Advances in Neu-625
ral Information Processing Systems.626

Bowen Cao, Deng Cai, Leyang Cui, Xuxin Cheng, Wei627
Bi, Yuexian Zou, and Shuming Shi. 2024. Retrieval628
is accurate generation. Preprint, arXiv:2402.17532.629

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena630
Shah, Iana Borova, Dylan Langdon, Reema Moussa,631
Matt Beane, Ting-Hao Huang, Bryan Routledge, and632
William Yang Wang. 2022. Finqa: A dataset of633
numerical reasoning over financial data. Preprint,634
arXiv:2109.00122.635

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and636
Danqi Chen. 2023. Adapting language models to637
compress contexts. Preprint, arXiv:2305.14788.638

Gautier Dagan, Gabriel Synnaeve, and Baptiste Roz-639
ière. 2024. Getting the most out of your tokenizer640
for pre-training and domain adaptation. Preprint,641
arXiv:2402.01035.642

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 643
Kristina Toutanova. 2019. Bert: Pre-training of deep 644
bidirectional transformers for language understand- 645
ing. Preprint, arXiv:1810.04805. 646

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, 647
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen tau Yih, 648
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder: 649
A generative model for code infilling and synthesis. 650
Preprint, arXiv:2204.05999. 651

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. 652
SimCSE: Simple contrastive learning of sentence em- 653
beddings. In Proceedings of the 2021 Conference 654
on Empirical Methods in Natural Language Process- 655
ing, pages 6894–6910, Online and Punta Cana, Do- 656
minican Republic. Association for Computational 657
Linguistics. 658

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen. 659
2023. Enabling large language models to generate 660
text with citations. Preprint, arXiv:2305.14627. 661

Leonidas Gee, Leonardo Rigutini, Marco Ernandes, and 662
Andrea Zugarini. 2023. Multi-word tokenization for 663
sequence compression. In Proceedings of the 2023 664
Conference on Empirical Methods in Natural Lan- 665
guage Processing: Industry Track. Association for 666
Computational Linguistics. 667

Leonidas Gee, Andrea Zugarini, Leonardo Rigutini, and 668
Paolo Torroni. 2022. Fast vocabulary transfer for 669
language model compression. In Proceedings of the 670
2022 Conference on Empirical Methods in Natural 671
Language Processing: Industry Track, pages 409– 672
416, Abu Dhabi, UAE. Association for Computa- 673
tional Linguistics. 674

Junxian He, Graham Neubig, and Taylor Berg- 675
Kirkpatrick. 2021a. Efficient nearest neighbor lan- 676
guage models. Preprint, arXiv:2109.04212. 677

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and 678
Weizhu Chen. 2021b. Deberta: Decoding- 679
enhanced bert with disentangled attention. Preprint, 680
arXiv:2006.03654. 681

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, 682
Hanyi Fang, and Peter Szolovits. 2020. What dis- 683
ease does this patient have? a large-scale open do- 684
main question answering dataset from medical exams. 685
Preprint, arXiv:2009.13081. 686

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, 687
Luke Zettlemoyer, and Omer Levy. 2020. Span- 688
BERT: Improving pre-training by representing and 689
predicting spans. Transactions of the Association for 690
Computational Linguistics, 8:64–77. 691

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick 692
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 693
Wen-tau Yih. 2020. Dense passage retrieval for open- 694
domain question answering. In Proceedings of the 695
2020 Conference on Empirical Methods in Natural 696
Language Processing (EMNLP), pages 6769–6781, 697
Online. Association for Computational Linguistics. 698

9

https://arxiv.org/abs/2201.12431
https://arxiv.org/abs/2201.12431
https://arxiv.org/abs/2201.12431
https://doi.org/10.18653/v1/2020.alw-1.16
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2112.04426
https://openreview.net/forum?id=Uynr3iPhksa
https://arxiv.org/abs/2402.17532
https://arxiv.org/abs/2402.17532
https://arxiv.org/abs/2402.17532
https://arxiv.org/abs/2109.00122
https://arxiv.org/abs/2109.00122
https://arxiv.org/abs/2109.00122
https://arxiv.org/abs/2305.14788
https://arxiv.org/abs/2305.14788
https://arxiv.org/abs/2305.14788
https://arxiv.org/abs/2402.01035
https://arxiv.org/abs/2402.01035
https://arxiv.org/abs/2402.01035
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://arxiv.org/abs/2305.14627
https://arxiv.org/abs/2305.14627
https://arxiv.org/abs/2305.14627
https://doi.org/10.18653/v1/2023.emnlp-industry.58
https://doi.org/10.18653/v1/2023.emnlp-industry.58
https://doi.org/10.18653/v1/2023.emnlp-industry.58
https://doi.org/10.18653/v1/2022.emnlp-industry.41
https://doi.org/10.18653/v1/2022.emnlp-industry.41
https://doi.org/10.18653/v1/2022.emnlp-industry.41
https://arxiv.org/abs/2109.04212
https://arxiv.org/abs/2109.04212
https://arxiv.org/abs/2109.04212
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2009.13081
https://arxiv.org/abs/2009.13081
https://arxiv.org/abs/2009.13081
https://arxiv.org/abs/2009.13081
https://arxiv.org/abs/2009.13081
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke699
Zettlemoyer, and Mike Lewis. 2020. Generalization700
through memorization: Nearest neighbor language701
models. Preprint, arXiv:1911.00172.702

Hannah Kirk, Abeba Birhane, Bertie Vidgen, and Leon703
Derczynski. 2022. Handling and presenting harmful704
text in NLP research. In Findings of the Associa-705
tion for Computational Linguistics: EMNLP 2022,706
pages 497–510, Abu Dhabi, United Arab Emirates.707
Association for Computational Linguistics.708

Philipp Koehn and Rebecca Knowles. 2017. Six chal-709
lenges for neural machine translation. Preprint,710
arXiv:1706.03872.711

Taku Kudo. 2018. Subword regularization: Improv-712
ing neural network translation models with multiple713
subword candidates. Preprint, arXiv:1804.10959.714

Dipesh Kumar and Avijit Thawani. 2022. Bpe beyond715
word boundary: How not to use multi word expres-716
sions in neural machine translation. In Proceedings717
of the Third Workshop on Insights from Negative Re-718
sults in NLP, pages 172–179.719

Guillaume Lample and Alexis Conneau. 2019. Cross-720
lingual language model pretraining. Preprint,721
arXiv:1901.07291.722

Tian Lan, Deng Cai, Yan Wang, Heyan Huang, and723
Xian-Ling Mao. 2023. Copy is all you need.724
Preprint, arXiv:2307.06962.725

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan726
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,727
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-728
noising sequence-to-sequence pre-training for natural729
language generation, translation, and comprehension.730
Preprint, arXiv:1910.13461.731

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey732
Edunov, Marjan Ghazvininejad, Mike Lewis, and733
Luke Zettlemoyer. 2020. Multilingual denoising pre-734
training for neural machine translation. Preprint,735
arXiv:2001.08210.736

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-737
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,738
Luke Zettlemoyer, and Veselin Stoyanov. 2019.739
Roberta: A robustly optimized bert pretraining ap-740
proach. Preprint, arXiv:1907.11692.741

Ilya Loshchilov and Frank Hutter. 2019. De-742
coupled weight decay regularization. Preprint,743
arXiv:1711.05101.744

Jacob Menick, Maja Trebacz, Vladimir Mikulik,745
John Aslanides, Francis Song, Martin Chadwick,746
Mia Glaese, Susannah Young, Lucy Campbell-747
Gillingham, Geoffrey Irving, and Nat McAleese.748
2022. Teaching language models to support answers749
with verified quotes. Preprint, arXiv:2203.11147.750

Stephen Merity, Caiming Xiong, James Bradbury, and751
Richard Socher. 2016. Pointer sentinel mixture mod-752
els. Preprint, arXiv:1609.07843.753

Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky, 754
Colin Raffel, Manan Dey, Matthias Gallé, Arun Raja, 755
Chenglei Si, Wilson Y. Lee, Benoît Sagot, and Sam- 756
son Tan. 2021. Between words and characters: A 757
brief history of open-vocabulary modeling and tok- 758
enization in nlp. Preprint, arXiv:2112.10508. 759

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2024. 760
Learning to compress prompts with gist tokens. 761
Preprint, arXiv:2304.08467. 762

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, 763
John Thickstun, Sean Welleck, Yejin Choi, and Zaid 764
Harchaoui. 2021. Mauve: Measuring the gap be- 765
tween neural text and human text using divergence 766
frontiers. Preprint, arXiv:2102.01454. 767

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and 768
Christopher D. Manning. 2020. Stanza: A Python 769
natural language processing toolkit for many human 770
languages. In Proceedings of the 58th Annual Meet- 771
ing of the Association for Computational Linguistics: 772
System Demonstrations. 773

Guanghui Qin and Benjamin Van Durme. 2023. Nugget: 774
neural agglomerative embeddings of text. In Proceed- 775
ings of the 40th International Conference on Machine 776
Learning, ICML’23. JMLR.org. 777

Alec Radford, Jeff Wu, Rewon Child, David Luan, 778
Dario Amodei, and Ilya Sutskever. 2019. Language 779
models are unsupervised multitask learners. 780

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 781
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 782
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy 783
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna 784
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron 785
Grattafiori, Wenhan Xiong, Alexandre Défossez, 786
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar- 787
tin, Nicolas Usunier, Thomas Scialom, and Gabriel 788
Synnaeve. 2024. Code llama: Open foundation mod- 789
els for code. Preprint, arXiv:2308.12950. 790

Rico Sennrich, Barry Haddow, and Alexandra Birch. 791
2015. Neural machine translation of rare words with 792
subword units. arXiv preprint arXiv:1508.07909. 793

Felix Stahlberg. 2020. Neural machine translation: A 794
review. Journal of Artificial Intelligence Research, 795
69:343–418. 796

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming- 797
Wei Chang. 2022. ASQA: Factoid questions meet 798
long-form answers. In Proceedings of the 2022 Con- 799
ference on Empirical Methods in Natural Language 800
Processing, pages 8273–8288, Abu Dhabi, United 801
Arab Emirates. Association for Computational Lin- 802
guistics. 803

Ryan Teehan, Brenden Lake, and Mengye Ren. 2024. 804
College: Concept embedding generation for large 805
language models. arXiv preprint arXiv:2403.15362. 806

10

https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
https://doi.org/10.18653/v1/2022.findings-emnlp.35
https://doi.org/10.18653/v1/2022.findings-emnlp.35
https://doi.org/10.18653/v1/2022.findings-emnlp.35
https://arxiv.org/abs/1706.03872
https://arxiv.org/abs/1706.03872
https://arxiv.org/abs/1706.03872
https://arxiv.org/abs/1804.10959
https://arxiv.org/abs/1804.10959
https://arxiv.org/abs/1804.10959
https://arxiv.org/abs/1804.10959
https://arxiv.org/abs/1804.10959
https://arxiv.org/abs/1901.07291
https://arxiv.org/abs/1901.07291
https://arxiv.org/abs/1901.07291
https://arxiv.org/abs/2307.06962
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/2001.08210
https://arxiv.org/abs/2001.08210
https://arxiv.org/abs/2001.08210
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2203.11147
https://arxiv.org/abs/2203.11147
https://arxiv.org/abs/2203.11147
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/2112.10508
https://arxiv.org/abs/2112.10508
https://arxiv.org/abs/2112.10508
https://arxiv.org/abs/2112.10508
https://arxiv.org/abs/2112.10508
https://arxiv.org/abs/2304.08467
https://arxiv.org/abs/2102.01454
https://arxiv.org/abs/2102.01454
https://arxiv.org/abs/2102.01454
https://arxiv.org/abs/2102.01454
https://arxiv.org/abs/2102.01454
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/2022.emnlp-main.566
https://doi.org/10.18653/v1/2022.emnlp-main.566
https://doi.org/10.18653/v1/2022.emnlp-main.566

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob807
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz808
Kaiser, and Illia Polosukhin. 2023. Attention is all809
you need. Preprint, arXiv:1706.03762.810

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,811
Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and812
Zhifang Sui. 2023. Large language models are not813
fair evaluators. Preprint, arXiv:2305.17926.814

Laura Weidinger, John Mellor, Maribeth Rauh, Conor815
Griffin, Jonathan Uesato, Po-Sen Huang, Myra816
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,817
Zac Kenton, Sasha Brown, Will Hawkins, Tom818
Stepleton, Courtney Biles, Abeba Birhane, Julia819
Haas, Laura Rimell, Lisa Anne Hendricks, William820
Isaac, Sean Legassick, Geoffrey Irving, and Iason821
Gabriel. 2021. Ethical and social risks of harm from822
language models. Preprint, arXiv:2112.04359.823

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily824
Dinan, Kyunghyun Cho, and Jason Weston. 2019.825
Neural text generation with unlikelihood training.826
Preprint, arXiv:1908.04319.827

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan828
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,829
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,830
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-831
ing llm-as-a-judge with mt-bench and chatbot arena.832
Preprint, arXiv:2306.05685.833

11

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2305.17926
https://arxiv.org/abs/2305.17926
https://arxiv.org/abs/2305.17926
https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/1908.04319
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Full Results834

We show the full results of our experiments in Ta-835

bles 7, 8, 9, 10.836

B More IMPLEMENTATION DETAILS837

The training of our proposed model was carried838

out on two NVIDIA RTX 3090 GPUs, each with839

24GB of memory, over a total of 400,000 training840

steps. During the training process, we implemented841

a gradient accumulation step of 2, with a batch size842

of 4. We also used a linear learning rate schedule843

with a warmup, alongside the AdamW optimizer844

(Loshchilov and Hutter, 2019), maintaining the de-845

fault beta values. The initial learning rate was set846

at 5e-5. Additionally, we applied gradient clipping847

with a clipping value of 1.0 to ensure training sta-848

bility. When conducting nucleus sampling, we set849

the p to 0.95.850

The experiments of MWT in paper (Gee et al.,851

2023) were conducted on encoder-only models852

such as BERT (Devlin et al., 2019) and RoBERTa853

(Liu et al., 2019). In our implementation, we854

modified the foundation model to GPT2 (Radford855

et al., 2019), a decoder-only model, and added the856

top 10000 most frequent 2-grams to the original857

GPT2 Tokenizer. The embeddings for newly added858

words were initialized using Fast Vocabulary Trans-859

fer(FVT) (Gee et al., 2022). MWT was trained for860

a total of 150000 steps on the WikiText103 dataset.861

C More Details of Automatic Evaluation862

In this section, we provide a detailed introduction863

to the automatic evaluation metrics.864

• MAUVE Pillutla et al. (2021) measures how865

closely the token distribution in the generated866

text matches that in human-written text across867

the entire test set. We follow prior work and868

leverage the GPT2-large model to generate869

the scores. In our implementation, the scaling870

factor is set as 2.0.871

• Rep-n Welleck et al. (2019) measures the rep-872

etition at different n-gram levels in the gen-873

erated text. It is defined as 100 × (1.0 −874
|uniquen−gram(x)|
|totaln−gram(x)|). Higher Rep-n represents875

the severe degeneration problem in genera-876

tions.877

• Diversity Welleck et al. (2019) evaluates the878

variety of generated content, which is formu-879

lated as
∏4

n=2(1−
Rep−n
100). More informative 880

generations get higher Diversity scores. 881

• Perplexity is a measure of the uncertainty or 882

difficulty in predicting the next word in a se- 883

quence. A lower perplexity score indicates 884

that the model is more certain about its predic- 885

tions. 886

D GPT4 Evaluation 887

Although human evaluation is considered the gold 888

standard for assessing human preferences, it is 889

slow and costly. Zheng et al. (2023) have demon- 890

strated that strong LLMs, such as GPT-4, can match 891

most human preferences well , achieving over 80% 892

agreement, which is the same level of agreement 893

between humans. Therefore, LLM-as-a-judge is 894

an interpretable approach to approximating human 895

preferences. We random sample 100 cases and 896

evaluate the results of the Baselines and our model. 897

GPT-4 is asked to evaluate the generated texts by 898

considering fluency, coherence, informativeness, 899

and grammar. Owing to GPT4’s sensitivity to the 900

order of the two candidate sentences (Wang et al., 901

2023), we adhere to the approach employed in 902

Wang et al. (2023) and determine the final result 903

by calculating the average of the outcomes from 904

interchanging the order of the candidate sentences. 905

Figure 3 shows the detailed prompt used for 906

GPT-4. Despite the template emphasizing that 907

the order should not affect the results (red text), 908

large language models still exhibit a significant po- 909

sitional bias. Therefore, for each triplet (prefix, 910

<generation_1>, <generation_2>), we include an- 911

other corresponding triplet (prefix, <generation_2>, 912

<generation_1>). This is done to mitigate the im- 913

pact of the order of the two generations on GPT 914

evaluation. 915

Here are the full results of our evaluation using 916

GPT-4 shown in Table 11. It can be seen that our 917

model is capable of producing generations that are 918

comparable or even superior to the baselines. 919

E Sequence Compression On LawMT 920

Analogous to the section 3.2, we calculate the com- 921

pression ratio of LawMT. The conclusion aligns 922

with those from section 3.2, indicating that our 923

model could yield the highest information density 924

per token. And for an equal number of tokens, our 925

model encompasses a longer effective text length. 926

12

Model Decoding MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 Diversity ↑ Latency(s)↓ PPL

Transformer greedy 20.47 41.96 36.82 33.74 24.30 1.10 3.60
nucleus 25.05 5.40 1.44 0.51 92.76 1.15 31.01

RETRO greedy 19.59 43.78 38.58 35.35 22.33 4.43 3.96
nucleus 20.77 5.83 1.91 0.83 91.61 5.43 39.74

KMM-LM∗ greedy 19.92 43.79 38.76 35.69 22.13 10.36 3.48
nucleus 22.50 3.33 0.69 0.21 95.8 10.42 78.01

COG greedy 21.61 34.77 30.67 28.35 32.41 1.04 7.89
nucleus 25.96 5.43 1.53 0.67 92.50 1.06 36.66

GPT+MWT greedy 24.74 33.78 26.72 22.76 37.48 1.13 5.58
nucleus 25.66 4.18 0.90 0.29 94.68 1.17 55.02

Ours greedy 25.69 27.77 20.80 17.08 47.44 0.99 8.03
nucleus 24.34 4.59 1.03 0.28 94.16 1.00 51.38

Table 7: The automatic evaluation on the test set of WikiText-103. ∗ denotes that the results are obtained from COG
(Lan et al., 2023) paper. For each sample, the first 32 tokens are provided and models are tasked with generating the
subsequent 128 tokens. We can observe that our proposed model achieves the best scores in most metrics.

Negative Samples Decoding MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 Diversity ↑ Latency(s)↓ PPL
FMM

pre-batch
greedy 22.28 26.90 20.07 16.29 48.91 0.95 9.02
nucleus 20.59 4.62 1.07 0.35 94.03 0.88 56.28

generation
greedy 22.87 31.17 23.82 19.55 42.19 1.20 6.34
nucleus 20.33 4.35 1.01 0.31 94.39 1.06 49.51

corpus-retrieval
greedy 21.98 31.47 24.39 20.26 41.32 1.12 6.40
nucleus 20.52 4.36 1.00 0.32 94.38 1.08 51.60

self-retrieval
greedy 21.65 31.33 24.15 20.00 41.67 1.15 6.39
nucleus 20.63 4.37 1.00 0.35 94.34 1.04 49.93

self-retrieval + generation
greedy 21.25 30.89 23.73 19.57 42.40 1.16 6.62
nucleus 20.34 4.24 0.96 0.29 94.57 1.04 52.27

N-words

pre-batch
greedy 23.98 19.58 13.63 11.02 61.80 1.16 14.60
nucleus 23.60 5.71 1.82 0.92 91.73 1.11 47.17

generation
greedy 24.99 26.72 19.95 16.41 49.03 0.94 8.51
nucleus 24.85 4.64 1.07 0.31 94.04 0.94 50.65

self-retrieval
greedy 24.83 27.21 20.23 16.54 48.46 0.96 8.13
nucleus 24.51 4.57 1.05 0.33 94.12 0.94 51.85

self-retrieval + generation
greedy 25.69 27.77 20.80 17.08 47.44 0.99 8.03
nucleus 24.34 4.59 1.03 0.28 94.16 1.00 51.38

N-ids

pre-batch
greedy 23.66 19.81 13.96 11.36 61.16 1.12 14.83
nucleus 22.84 5.17 1.52 0.67 92.77 0.92 54.52

generation
greedy 23.91 28.12 21.45 17.82 46.40 0.99 8.07
nucleus 24.50 4.41 0.97 0.29 94.38 0.96 53.98

self-retrieval
greedy 23.64 27.29 20.33 16.49 48.38 1.02 8.36
nucleus 23.85 4.43 0.94 0.27 94.41 0.88 55.76

self-retrieval + generation
greedy 24.85 27.85 21.04 17.36 47.08 1.01 8.21
nucleus 23.91 4.41 0.96 0.28 94.40 0.98 53.03

Table 8: The automatic evaluation on different negative samples with greedy and nucleus sampling (top-p: 0.95)
decoding algorithms on the WikiText103 dataset. The constructions of training samples and negative phrases have a
significant influence on the generated text.

13

Model Decoding MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 Diversity ↑ Latency(s)↓ PPL

Transformer w/o FT greedy 22.97 13.36 9.69 7.84 72.12 1.03 3.21
nucleus 24.15 4.05 1.62 0.80 93.64 1.05 31.48

Transformer w/ FT greedy 23.06 9.74 6.45 5.00 80.21 1.02 3.54
nucleus 25.12 4.36 1.73 0.87 93.17 1.08 14.94

RETRO greedy 19.07 13.19 9.34 7.66 72.68 5.72 3.78
nucleus 21.26 3.30 1.18 0.55 95.03 5.54 57.40

KMM-LM∗ greedy 23.32 - - - 19.85 - -
nucleus 24.75 - - - 94.60 - -

COG greedy 19.46 9.29 5.68 4.24 81.93 1.39 6.74
nucleus 24.45 4.57 1.58 0.72 93.25 0.89 32.01

GPT+MWT greedy 24.55 11.59 7.34 5.46 77.45 1.10 5.38
nucleus 22.68 3.15 1.01 0.39 95.49 1.16 68.55

Ours greedy 26.35 9.26 5.21 3.52 82.99 1.09 7.61
nucleus 24.80 3.63 1.17 0.48 94.78 0.93 60.70

Table 9: The automatic evaluation on LawMT. We directly retrieve 512 documents for each sample in this experiment.
Our proposed model even outperforms the Transformer further fine-tuned on the LawMT corpus.

Negative Samples Decoding MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 Diversity ↑ Latency(s)↓ PPL
FMM

pre-batch
greedy 25.00 8.71 4.76 3.16 84.20 0.98 8.26
nucleus 23.19 3.71 1.19 0.50 94.66 0.83 60.34

generation
greedy 22.87 11.00 6.76 4.85 78.96 1.26 6.17
nucleus 22.50 3.50 1.13 0.48 94.95 1.07 65.26

Retrieval-samples
greedy 23.00 10.45 6.36 4.53 80.06 1.21 6.11
nucleus 23.24 3.43 1.01 0.46 95.07 1.02 68.26

self-retrieval
greedy 23.41 10.98 6.80 4.92 78.89 1.20 6.11
nucleus 23.22 3.48 1.05 0.43 95.10 0.98 67.14

self-retrieval + generation
greedy 24.15 10.50 6.31 4.49 80.08 1.22 6.24
nucleus 22.55 3.40 1.16 0.53 94.98 1.04 69.40

N-words

pre-batch
greedy 26.15 6.53 3.11 1.92 88.82 0.61 14.40
nucleus 25.15 4.07 1.41 0.61 94.00 0.53 45.79

generation
greedy 26.35 9.26 5.21 3.52 82.99 1.09 7.61
nucleus 24.66 3.53 1.16 0.48 94.89 0.92 62.58

self-retrieval
greedy 23.65 8.92 4.88 3.29 83.87 1.04 8.05
nucleus 24.71 3.54 1.09 0.42 95.00 0.81 62.51

self-retrieval + generation
greedy 26.35 9.26 5.21 3.52 82.99 1.09 7.61
nucleus 24.80 3.63 1.17 0.48 94.78 0.93 60.70

N-ids

pre-batch
greedy 25.08 6.70 3.14 1.87 88.68 0.62 14.49
nucleus 23.93 4.25 1.46 0.65 93.74 0.43 47.94

generation
greedy 22.55 9.24 5.21 3.55 82.98 1.04 8.03
nucleus 23.14 3.59 1.14 0.49 94.85 0.85 61.89

self-retrieval
greedy 24.63 9.46 5.43 3.71 82.44 1.05 7.86
nucleus 24.19 3.58 1.11 0.44 94.94 0.78 63.87

self-retrieval + generation
greedy 23.18 9.31 5.25 3.59 82.85 1.07 7.57
nucleus 24.63 3.57 1.10 0.46 94.93 0.87 60.32

Table 10: The automatic evaluation on different negative samples with greedy decoding and nucleus sampling(top-p:
0.95) on the LawMT dataset.

14

You are a helpful and precise assistant for checking the quality of the text.
[Prefix]
{prefix}
[The Start of Assistant 1's Generation]
{Generation_1}
[The End of Assistant 1's Generation]
[The Start of Assistant 2's Generation]
{Generation_2}
[The End of Assistant 2's Generation]
[System]

We would like to request your feedback on the performance of two AI assistants in response to the user prefix displayed
above.Please rate the fluency, coherence, informativeness, and grammar. Each assistant receives an overall score on a
scale of 1 to 10, where a higher score indicates better overall performance.
Please first provide a comprehensive explanation of your evaluation, avoiding any potential bias and ensuring that the
order in which the responses were presented does not affect your judgment. Then, output two lines indicating the scores
for Assistant 1 and 2, respectively.

Output with the following format:
Evaluation evidence: <your evluation explanation here>
Score of the Assistant 1: <score>
Score of the Assistant 2: <score>

Figure 3: The GPT evaluation template with three slot {prefix}, {Generation_1} and {Generation_2}.

Comparison (VS) Better No Prefer Worse
WikiText103

Transformer 0.61 0.05 0.34
MWT 0.58 0.02 0.40
COG 0.58 0.08 0.34

LawMT
Transformer 0.46 0.02 0.52
MWT 0.67 0.07 0.26
COG 0.50 0.05 0.45

Table 11: GPT evaluation on WikiText-103. Due to the
sensitivity of GPT-4 to the order of two candidates, we
got the final result by calculating the average scores by
changing the order of the two candidates.

Model NLS UTF-8 Bytes
WikiText103

Transformer 127.72 4.28
MWT 114.84 4.77
Ours 101.38 5.54

LawMT
Transformer 128.79 5.22
MWT 124.94 5.39
Ours 105.38 6.53

Table 12: Compression on WikiText-103 and LawMT.
Our model compresses text in a larger margin than
MWT in the specific domain.

15

	Introduction
	The Approach
	Problem Definition
	Dynamic Phrase Encoder
	Inference with Dynamic Vocabulary
	Training with Dynamic Vocabulary

	Experiments
	Setups
	Basic Language Modeling
	Domain Adaptation
	Generation with Citations

	Related Work
	Conclusion
	Limitations
	Full Results
	More IMPLEMENTATION DETAILS
	More Details of Automatic Evaluation
	GPT4 Evaluation
	Sequence Compression On LawMT

