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Abstract. We present a differentiable rendering framework for material
and lighting estimation from multi-view images and a reconstructed ge-
ometry. In the framework, we represent scene lightings as the Neural In-
cident Light Field (NeILF) and material properties as the surface BRDF
modelled by multi-layer perceptrons. Compared with recent approaches
that approximate scene lightings as the 2D environment map, NeILF is a
fully 5D light field that is capable of modelling illuminations of any static
scenes. In addition, occlusions and indirect lights can be handled natu-
rally by the NeILF representation without requiring multiple bounces of
ray tracing, making it possible to estimate material properties even for
scenes with complex lightings and geometries. We also propose a smooth-
ness regularization and a Lambertian assumption to reduce the material-
lighting ambiguity during the optimization. Our method strictly follows
the physically-based rendering equation, and jointly optimizes material
and lighting through the differentiable rendering process. We have inten-
sively evaluated the proposed method on our in-house synthetic dataset,
the DTU MVS dataset, and real-world BlendedMVS scenes. Our method
outperforms previous methods by a significant margin in terms of novel
view rendering quality, setting a new state-of-the-art for image-based
material and lighting estimation.

Keywords: differentiable rendering, physically-based rendering, BRDF
estimation, incident light field

1 Introduction

Material estimation from a set of sparse images is a challenging task in both
computer vision and computer graphics. The problem is usually approached by
inverse rendering, where the spatially-varying bidirectional reflectance distribu-
tion functions (SV-BRDFs) and lightings of the scene are jointly optimized by
minimizing the rendering loss. However, the problem is hard to solve due to
the complex form of the BRDF and the high-dimensional nature of scene illu-
minations. To mitigate the problem, previous methods usually apply simplified
material and lighting models. For example, non-spatially varying BRDF [47]
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is applied for certain types of objects; approximated illuminations, such as co-
located flash lights [4, 5, 26, 32] and environment maps [6, 7, 25, 47, 49], are
applied to reduce the complexity of the scene lighting. In most scenarios, special
capturing devices or environments are required to assist the estimation, limit-
ing these methods to real-world applications. As the result, a practical material
estimator is still missing.

On the other hand, recent progress on neural representation has shown
promising results for lighting modelling. NeRF [23] jointly optimizes a neural
radiance field and a density field, which has demonstrated great success for
novel view synthesis. The surface light field is applied to model the outgoing
light from the surface, which has been widely applied to neural surface recon-
structions [42, 46]. Other methods further decompose observed lights into neural
material properties and environmental lightings. However, similar to classical
methods, they either use simplified lighting representations [4, 6, 7, 25], or apply
approximated occlusion and indirect light handling [34, 49]. Until now, lighting
modelling is still an open problem in image-based material estimation.

In this work, we address this long-standing problem by representing scene
lightings as the neural incident light field. Without losing generality, the pro-
posed NeILF is capable of modelling lighting conditions of any static scenes.
Also, occlusions and indirect lights could be naturally handled in the proposed
framework without tracing multiple bounces of rays. For material properties, we
consider a simplified Disney BRDF model [8] consisting of base color, roughness
and metallic. Implementation-wise, we use multi-layer perceptrons (MLPs) to
represent both the incident light field and the BRDF. The NeILF network takes
a 5D vector of location and incident direction as inputs, and returns as output
a RGB value of the incident light; the material network takes a 3D location
as input, and outputs a 5D vector of surface BRDF properties. Meanwhile, to
reduce the ambiguity between the material and the scene lighting, we propose
two regularization terms, namely the bilateral smoothness and the Lambertian
assumption, to constrain the optimization of roughness and metallic. Finally, we
analyze similarities between NeILF for material estimation and NeRF for novel
view synthesis [23], providing readers an intuitive explanation of the complexity
and solvability of the problem.

We demonstrate in several datasets that our method significantly outper-
forms previous SOTA methods in terms of novel view rendering accuracy. Our
method is able to recover the surface BRDF even for scenes with complex light-
ings and geometries, which cannot be handled by previous environment map
based methods. To summarize, main contributions of the paper include:

– Representing scene lightings by the neural incident light field, where occlu-
sions and indirect lights of the scene can be naturally handled.

– A differentiable framework for joint material and lighting estimation, which
significantly outperforms previous state-of-the-art methods in various datasets.

– A bilateral smoothness and a Lambertian assumption to constrain the rough-
ness and the metallic, reducing the material-lighting ambiguity during the
network optimization.
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2 Related Works

2.1 The Rendering Equation

The rendering equation [14] computes the emitted radiance from a surface point
x along a viewing direction ωo:

Lo(ωo,x) =

∫
Ω

f(ωo,ωi,x)Li(ωi,x)(ωi · n)dωi, (1)

where n is the normal of the surface, Li is the incoming light from direction ωi,
and f is the BRDF function to describe the reflectance property, which is usually
decomposed into a diffuse term and a specular term f = fd+fs. The integration
is performed over all incident direction ωi on the hemisphere Ω where ωi ·n > 0.

The goal of material estimation is to recover continuous functions of the
scene lighting Li and the BRDF property f in the above equation. Due to the
complex form of the scene lighting and the material property, it is crucial to
select suitable representations for Li and f . In this paper, we propose to use a
neural incident light field to model Li (Sec. 3.1), and apply a simplified Disney
BRDF [8] model to approach the BRDF f (Sec. 3.2). Below we give a brief
review on the physically-based material estimation from multi-view images.

2.2 Differentiable Rendering

Unlike classical approaches that recover 3D scene parameters in a forward recon-
struction manner, differentiable rendering [2, 15] inverses the rendering process
in graphics, and optimizes all parameters by minimizing the difference between
rendered and input images.

Recently, the technique has been combined with neural representations and
has shown promising results for image-based 3D problems. NeRF [23] and follow-
up works [19, 22, 48] decouple a 3D scene into a density field and a radiance field.
Other methods also apply implicit functions to model different geometry [20,
21, 46] and appearance representations [27, 42]. In another line of works, the
received radiance is further decomposed into BRDF properties and input light
sources [6, 34, 47, 49]. Our method follows this practice and applies a neural
BRDF model to approach the material property of the surface.

2.3 Material and Lighting Estimation

Due to the difficulty of joint material and lighting estimation, previous methods
usually apply additional sensors or controlled lightings to facilitate the opti-
mization process. For example, additional sensors [3, 12, 30], co-located flash
lights [4, 5, 26, 32], or turn-table settings [11, 39] are applied to capture im-
ages or scene lightings. Moreover, simplified material and lighting models, e.g.,
the non-spatially varying BRDF [47] or approximated illuminations of environ-
ment maps [6, 9, 47, 49], are applied to reduce the complexity of the prob-
lem. NeRV [34] introduces the visibility field to model indirect lights. How-
ever, it requires environmental lightings to be known in advance. Nevertheless,
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Fig. 1: Illustrations of the proposed method and our material and lighting es-
timation results. NeILF is capable of modelling the joint illumination of di-
rect/indirect lights from different sources. Estimated incident lights at point x1

and point x2 well explain the mixed lighting of the scene, including an envi-
ronment map with high-radiance sun light, two near-range point lights, and two
near-range area lights.

such mitigations will inevitably limit these methods to real-world applications.
Nimier-David et al. proposed a method [28] for joint illumination and material
estimation. However, the method requires to trace the ray of multiple bounces.
In contrast, our method applies a unified incident light field to represent differ-
ent light sources in the scene, and is capable of estimating material under any
lighting conditions without the need of multi-bounce raytracing.

3 Method

3.1 Neural Incident Light Field

One of the keys to invert the rendering equation is to model the incoming light
Li in a correct way. Ideally, Li should take into account 1) direct lights from light
sources in the scene, 2) occlusions that block the surface point from receiving
direct lights, and 3) indirect lights that are reflected from other surface points.
However, each of the three components is hard to model. Previous methods [6,
18, 47, 49] usually approximate direct lights as an environment map and hardly
handle indirect lights as they require multi-bounce raytracing.

In contrast, we formulate incoming lights in the scene directly as a neural
incident light field, where an MLP takes a point location x and an incident
direction ω as inputs, and returns an incident light radiance L as output:

L : {x,ω} → L. (2)
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Without losing generality, the proposed NeILF representation is capable of
modelling the joint illumination effect of direct/indirect lights and occlusions of
any static scenes. An illustration is shown in Fig. 1. Compared with the com-
monly used environment map, NeILF is able to handle the spatially-varying
illumination effect, making it possible to estimate material for scenes with com-
plex geometries and lightings.

3.2 Simplified Disney BRDF

In this section, we describe the BRDF representation used in the proposed frame-
work. We apply a simplified Disney principled BRDF model, where the BRDF
of a surface point x is parameterized by a base color b(x) ∈ [0, 1]3, a roughness
r(x) ∈ [0, 1] and a metallic m(x) ∈ [0, 1], which is a subset of the full Disney
model [8]. Similar to the neural incident lighting field, BRDF parameters are
also stored using multi-layer perceptrons:

B : x → {b, r,m}, (3)

where the MLP takes a 3D surface point x as input, and returns the 5-channel
BRDF parameters as output. Note that other representations, e.g. UV atlas or
per-vertex BRDF parameters, can also be applied. Here we choose the neural
representation because it has been proven to be effective for modelling continuous
functions in 3D space [23, 47], and its derivative can be easily and analytically
derived for our regularization computation (Sec. 3.3).

The rendering equation Given the BRDF parameterization, we now de-
scribe the concrete formulation of f in Equation 1. In the following equations,
we omit notations of surface point x and normal n as the geometry of the scene
is assumed to be given. The diffuse term can be calculated as fd = 1−m

π ·b, and
the specular term as:

fs(ωo,ωi) =
D(h; r) · F (ωo,h;b,m) ·G(ωi,ωo,h; r)

4 · (n · ωi) · (n · ωo)
, (4)

where h is the half vector between the incident direction ωi and the viewing
direction ωo. The first term D is the normal distribution function of the mi-
crofacets in the surface. It is related to the roughness r and we use Spherical
Gaussians to model this function as in previous methods [36, 47]. The second
Fresnel term F models the portion of light that can be reflected from the surface,
which is determined by the surface metallic m and the base color b. The final
geometry term G handles the shadow and occlusion of the microfacets, which is
parameterized on the roughness r and is approximated using the GGX distribu-
tion [35]. Details of D, F and G are provided in the supplementary material.

3.3 Material-Lighting Ambiguity and Regularizations

While the Disney BRDF and incident light field are capable of representing ma-
terials and lightings of different scenes, jointly optimizing both would inevitably
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lead to ambiguous solutions between them. One degenerate case could be that
we can force a pure reflective BRDF to all surface points, and then only opti-
mize the incident lights to adjust the input image. Theoretically, we can still
find a perfect solution that fits the given BRDF and input images: for each 3D
point, whenever there is a visible camera, we set its mirror symmetric incident
light equal to the viewing out-going light, and set other incident lights equal to
zero. It is also reported in previous work [31] that even human observers cannot
distinguish the two confounded components from only image observations.

In the proposed framework, we can still manage to recover reasonable ma-
terial and lighting results as MLPs can implicitly enforce a spatial smoothness
constraint [48] on the two components. However, for robust material and lighting
estimation, additional regularizations are desired. In this paper, we propose two
regularizations for roughness r and metallic m:

Bilateral Smoothness We encourage r and m not to change rapidly in
space, and the gradient of the input image I can be used as a hint to guide the
smoothing process. Thus, we define the bilateral smoothness cost of r and m as:

lsmooth =
1

|SI |
∑
p∈SI

(∥∇xr(xp)∥+ ∥∇xm(xp)∥)e−∥∇pI(p)∥, (5)

where SI is the set of all sampled pixels and xp is the corresponding 3D point
of the sampled pixel p. The image gradient ∇pI(p) can be pre-calculated from
the input image, and the roughness gradient ∇xr(xp) and metallic gradient
∇xm(xp) can be derived analytically by back-propagating the neural network.

Lambertian Assumption We also assume that all surfaces tend to be Lam-
bertian if no view-dependent lighting is observed, which leads to high roughness
and low metallic, and we define the Lambertian cost as:

llambertian =
1

|SI |
∑
p∈SI

(|r(xp)− 1|+ |m(p)|). (6)

The proposed two regularizations will be minimized during network training.
It is noteworthy that the two losses may not necessarily improve quantitative
results as they are heuristically defined for robust material and lighting estima-
tion. We show in a later ablation study that the bilateral smoothness will lead
to visually much more pleasing results for real-world reconstructions.

3.4 Loss

Similar to other differentiable rendering frameworks, we compute the L1 loss
between the rendered image and the input image:

limage =
1

|SI |
∑
p∈SI

∥I(p)− Lo(xp,ωo)∥1. (7)

The final loss of the proposed system is a weighted sum of the image loss and the
two regularization losses: l = limage + wslsmooth + wlllambertian, where the two
weights are empirically set to ws = 10−4 and wl = 10−3 in all our experiments.
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4 Implementations

4.1 Sphere Sampling

To compute Lo using a finite number of incident lights, we need to discretize
Equation 1 as: Lo(ωo,x) =

∑
i∈SL

f(ωo,ωi,x)Li(ωi,x)(ωi · n) · A(ωi), where
SL is the set of incident lights sampled for point x and A(ωi) is the solid angle
that corresponds to the incident light. In computer graphics, randomized Monto-
Carlo Samplings are usually applied in ray-tracing, and the solid angle A(ωi) is
approximated by the probability distribution P (ωi) of ray samples.

However, in differentiable rendering, it is critical to accurately compute the
solid angle A(ωi) for each light sample as we need to correctly pass loss gradients
to network parameters. We found that using random sampling and approximat-
ing A(ωi) as the probability distribution P (ωi) will lead to erroneous BRDF
results. Thus, we apply a fixed Fibonacci sampling over the half sphere to get
all samples. In this case, A(ωi) =

2π
|SL| and the rendering equation becomes:

Lo(ωo,x) =
2π

|SL|
∑
i∈SL

f(ωo,ωi,x)Li(ωi,x)(ωi · n). (8)

4.2 Learned HDR-LDR Mapping

For real-world datasets with low dynamic range (LDR) images, we need to con-
vert the high dynamic range (HDR) output from our renderer to LDR before
computing the image loss. As such transformation is unavailable in previous
MVS datasets, we apply a learned HDR-LDR mapping to mimic the conversion
in our network. Note that linear transformations, including exposure and white
balance, can be embedded into the incident light. Thus, we only explicitly model
the gamma correction with a learnable parameter:

LLDR
o = (LHDR

o )γ . (9)

4.3 Training Details

We use an 8-layer Siren [33] with feature size of 512 and a skip connection in
the middle to represent the BRDF MLP. Also, the positional encoding [22] is
applied to further strengthen the network. The NeILF MLP shares the same
implementation as BRDF, except that 1) the feature size is downsized to 128 to
reduce the VRAM usage and 2) the last layer activation function is changed from
tanh to exp in order to guarantee non-negative and unbounded light intensities.

In the experiment, we use |SL| = 128 incident lights to compute the output
radiance during training, and use |SL| = 256 incident lights to evaluate the
rendered image during testing. For each training iteration, we randomly sample
16000 pixels from all images, and the network is optimized for a total of 15000
iterations. The Adam optimizer [17] with an initial learning rate of 10−3 is
applied in our network, and the learning rate is scaled down by

√
0.1 at 5000

and 10000 iterations. The training process takes around 1.5 hours to finish on a
Tesla V100 GPU and the VRAM consumption is around 30 GB.
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5 Experiments

5.1 Baseline Methods

We compare our method with the following baselines:

PhySG∗ Firstly, we consider the recent PhySG [47] for material estimation.
The original PhySG jointly optimizes the non-spatially varying BRDF, the en-
vironment map, and the geometry of the object. To fairly compare with the
method, we fix the given geometry and optimize only the uniform BRDF and
the environment map.

SG-Env This baseline is another variant of PhySG [47]. Compared with
PhySG∗, SG-Env applies a SV-BRDF model and a slightly different render-
ing formulation (the same fd, D and G as ours). We use this baseline to directly
compare NeILF with the SG environment map representation.

NeRFactor∗ This baseline is a variant of NeRFactor [49] with the ground
truth geometry input. In the setting, we follow NeRFactor to represent the scene
lighting as a 2D environment map of resolution 32×16. The ground truth geom-
etry are fixed during the training and we use the online raytracing to compute
the ground truth visibilities of each ray.

Ne-Env Lastly, we compare our method with the neural environment map
representation. This baseline shares the same implementation of the proposed
NeILF, except that the positional input in the incident light field is omitted such
that the incident light is only related to the incoming direction: {ω} → L.

5.2 Benchmark on Synthetic Scenes

To quantitatively evaluate our method under different lighting conditions, we
generate a set of synthetic data and compare our method with the above base-
lines.

Data Preparation The synthetic dataset contains three objects and their
combinations: a single rough metallic sphere, a single rough metallic cube, and
a helmet with spatially variant materials. The objects are placed on a plane to
model the real-world object capture. We also create six lighting conditions to lit
the objects, including three environment maps and three mixed lightings:

– Env–city : an environment map of a city;
– Env–studio: an environment map of a studio;
– Env–castel : an environment map of a castel;
– Mix–city : Env–city plus two point lights and two area lights;
– Mix–studio: Env–studio plus two point lights and two area lights;
– Mix–castel : Env–castel plus two point lights and two area lights.

Each scene contains 96 images, where images {9, 18, 30, 41, 50, 62, 73, 82, 94} are
used for evaluation and the remaining 87 images are used for training. The image
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Fig. 2: Comparative results on BRDF estimation and novel view synthesis on the
synthetic dataset. From left to right are images of base color, roughness, metal-
lic and synthesized testing views. Our method is able to generate high-quality
BRDF and novel view synthesis results under different lighting conditions. In
contrast, the environment map based SG-ENV [47] produces noisy BRDF out-
puts especially in occluded regions. And also, highlights are wrongly recovered
in novel view renderings if mixed lightings occur.
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Table 1: Quantitative results on Synthetic scenes. We compare the proposed
NeILF with four baseline methods described in Sec. 5.1 using PSNR scores. Our
method generates consistently the best novel view rendering for all scenes. Also,
our method produces significantly better BRDF results than other methods if
multiple objects and mixed lightings are given.

Scene Geometry Single-helmet Combined-objects

Scene Lighting Env-city Env-studio Env-castel Env-city Env-studio Env-castel Mix-city Mix-studio Mix-castel

Base Color

PhySG∗[47] 13.43 14.87 13.95 15.01 16.96 16.13 14.16 12.43 14.29
SG-ENV[47] 20.61 18.45 15.99 22.38 20.74 22.21 16.92 13.16 16.69

NeRFactor∗[49] 13.02 11.73 11.98 8.09 13.60 7.37 8.64 11.63 8.03
Ne-ENV 13.43 12.65 12.45 11.68 11.98 7.66 11.87 10.90 9.54
Ours 16.36 16.36 18.28 15.59 15.48 12.95 17.39 16.88 17.37

Metallic

PhySG∗[47] 7.57 7.48 7.83 8.72 7.97 8.35 8.67 8.95 8.76
SG-ENV[47] 21.19 21.31 21.79 17.01 16.40 16.39 15.44 14.25 14.49

NeRFactor∗[49] 12.88 17.39 16.78 12.38 13.43 11.98 11.77 11.88 11.95
Ne-ENV 9.31 17.40 6.15 15.86 16.10 11.42 15.43 15.35 15.49
Ours 17.79 18.52 16.82 18.22 19.11 10.29 18.42 18.43 17.34

Roughness

PhySG∗[47] 6.91 11.88 6.75 6.62 11.29 6.22 6.27 6.83 6.14
SG-ENV[47] 14.77 15.87 9.64 9.61 17.64 9.74 8.77 12.58 9.14

NeRFactor∗[49] 12.84 11.59 12.89 9.21 17.95 9.02 9.12 12.62 8.54
Ne-ENV 11.95 14.84 9.26 15.56 14.48 12.94 16.20 14.43 14.14
Ours 16.13 16.19 17.16 17.48 18.30 13.40 17.05 16.27 16.44

Rendering

PhySG∗[47] 24.59 24.77 26.52 24.82 25.65 27.24 24.38 24.04 25.81
SG-ENV[47] 29.73 29.86 32.13 31.01 29.46 32.34 27.20 25.88 27.70

NeRFactor∗[49] 29.30 28.78 30.58 29.31 30.10 30.66 27.50 27.00 28.11
Ne-ENV 28.60 29.56 29.76 30.75 29.07 32.05 28.07 26.01 28.33
Ours 31.57 30.84 34.43 33.77 31.07 35.28 31.11 28.59 32.11

resolution is set to 1600× 1200. We use Blender [10] to render the HDR images
by ray tracing. Position maps and normal maps at all viewpoints are rendered to
serve as the geometry input for the system. Meanwhile, per-view ground truth
base color, metallic and roughness maps are provided for quantitative evaluation.

Results We use the PSNR score as our evaluation metric. Quantitative com-
parisons on 1) base color, 2) metallic, 3) roughness and 4) novel view synthesis
are shown in Table 1. Our method consistently outperforms other methods with
a large margin in terms of the novel view rendering quality. For material esti-
mation, we found that if single objects and environment map light sources are
given, SG-Env [47] is able to generate comparable results with ours. However, in
the case of multiple objects or mixed light sources, the estimation quality of SG-
Env will drop significantly. This is because the environment map representation
cannot model mixed light sources of point and area lights. Also, indirect lights
and occlusions within multiple objects are not handled by SG-Env. In contrast,
our NeILF representation can robustly deal with mixed lightings and complex
scene geometries. Qualitative results are shown in Fig. 2.

5.3 Test on Real-world Scenes

We then test our method on two real-world datasets, namely DTU [13] and
BlendedMVS [40] datasets. DTU dataset is captured in a lab setting with a fixed
lighting and camera trajectory, while BlendedMVS contains a variety of indoor
and outdoor scenes captured by different users. As the two datasets provide only
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Table 2: Quantitative results on DTU [13] and BlendedMVS [40] Datasets. The
table shows PSNR scores of novel view renderings of test images. Our method
consistently outperforms the other methods in terms of the rendering quality.

DTU [13] BlendedMVS [40]

scan-1 scan-11 scan-37 scan-75 scan-97 bull cam dog gold statue stone

PhySG∗ [47] 20.40 20.78 20.30 16.03 19.86 21.64 18.11 20.70 19.06 19.74 21.22
SG-ENV [47] 22.18 21.56 21.71 18.06 21.09 22.51 20.14 22.06 19.44 20.79 22.31

NeRFactor∗ [49] 23.68 23.43 23.86 19.89 22.10 21.87 20.03 21.54 19.47 20.51 22.98
Ne-ENV 23.77 23.79 22.87 19.52 21.51 22.17 20.17 21.73 19.66 20.55 23.08

NeILF (Ours) 24.79 24.33 24.44 23.46 23.96 24.93 22.10 22.36 20.80 21.51 24.22
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Fig. 3: Qualitative results on the real-world DTU and BlendedMVS datasets.
Our method successfully removes high lights in the base color and produces
visually plausible results of roughness and metallic.

LDR images, the learned HDR-LDR mapping described in Sec. 4.2 is applied
for the loss computation. For each scene, we select 5 images {2, 12, 17, 30, 34} for
testing and the rest of the images for training.

It is noteworthy that unlike in the synthetic dataset, here we use multi-view
stereo methods to generate the geometry input rather than directly using the
ground truth. For DTU datatset, we use Vis-MVSNet [45] to generate the dense
3D point cloud and SPSR [16] to recover the mesh surface. For BlendedMVS
dataset, we use original images and the provided reference mesh geometry as
our inputs. By doing so, our method can be viewed as an extension to nowadays
3D reconstruction pipelines.
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Base color Roughness Metallic Base color Roughness Metallic

With Smoothness Without Smoothness

Input image

Fig. 4: Qualitative comparisons on with and without the proposed bilateral
smoothness regularization.

Quantitative results are shown in Table 2 and qualitative results compared
with SG-ENV are shown in Fig. 3. The proposed method produces both the best
rendering PSNR and the most visually pleasing BRDF in all selected scenes. We
believe the proposed method can be integrated into traditional 3D reconstruction
pipelines for relightable mesh model reconstruction.

5.4 Ablation Study

In this section, we analyze several design choices of the proposed framework.
The ablation studies are conducted on the synthetic dataset, and we report the
average scores over all scenes to compare different settings.

Ray Sample Number We first study the influence of the ray sample number
for material estimation quality. The ray sample number is decreased from SL =
128 to SL = 64 and SL = 32. As shown in Table 3, higher sampling number will
lead to better reconstruction results. In our default setting, we choose SL = 128
to better balance the quality and the VRAM/runtime consumption.

Random Sample Next, we compare the fixed Fibonacci sample described in
Sec. 4.1 with the random uniform sample commonly used in computer graphics.
It is shown in Table 3 that the random sample would lead to worse results,
showing that it is crucial to precisely discretize the rendering equation in the
differentiable rendering.

Regularizations We also study the effectiveness of the two regularizations
proposed in Sec. 3.3. We find that the bilateral smoothness is essential for ma-
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terial estimation of real-world scenes, where the roughness and metallic will be
significantly improved if the smoothness is applied (Fig. 4).

Learned Gamma Lastly, we compare the proposed learned gamma in Sec. 4.2
with the fixed γ = 1

2.2 . In BlendedMVS dataset, the learned gamma produces
a mean PSNR score of 22.65, which slightly outperforms the score of the fixed
gamma (22.51), showing that the learned adjustment might be a better choice.

On the other hand, we also find that
the two heuristics have limited influence to
quantitative results of the synthetic dataset.
We believe this is because the vanilla NeILF
already produces high-quality estimations
for synthetic scenes. In our default setting,
we keep the two regularizations for all scenes
but we encourage users to selectively apply
the two terms depending on different char-
acteristics of input scenes.

Base. Meta. Roug. Rend.

S = 128 16.30 17.22 16.49 32.09
S = 64 15.20 16.47 18.88 31.40
S = 32 13.40 16.27 19.49 30.57

Rand. Samp. 12.45 15.11 18.10 29.73

Table 3: Ablation studies. Aver-
age scores among all synthetic
scenes are reported.

6 Discussions

6.1 Comparison with NeRF Optimization

In this section, we compare the proposed NeILF with the neural radiance field [22].
We show that the two frameworks share similarities in many aspects, and thus
provide readers an intuitive explanation of why NeILF can successfully disen-
tangle the complex material and lighting in the joint optimization.

Lighting Representations NeRF [22] represents the scene appearance as the
neural radiance field. While the radiance is physically different with the incident
light, their complexities are completely the same: both NeILF and NeRF take a
3D position x and a direction ω as inputs, and returns a RGB value as output.

Spatially-varying Properties NeILF aims to recover surface materials as
BRDF properties, while NeRF jointly optimizes the scene geometry as a density
field. Both our BRDF and NeRF’s density MLPs take only a 3D position x
as input, and return different spatial properties as outputs. Implementation-
wise, the only difference is that our BRDF is consist of a 5D parameter vector,
while the density value is a 1D scalar. Nevertheless, the two spatially-varying
properties are very similar and their complexities are comparable.

Rendering Formulations Our method applies the surface rendering to com-
pute the reflected light from a surface point, while NeRF adopts the volume
rendering to get the accumulated color along a viewing ray. On the one hand,
NeILF requires the incident light integration over the hemisphere; on the other
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hand, NeRF requires alpha composition along the ray. To render a pixel, NeILF
needs to sample the BRDF MLP once and the incident light MLP for multiple
times, while NeRF does the same on the density and radiance MLPs.

Reconstruction Ambiguities The geometry-appearance ambiguity is ad-
dressed in NeRF++ [48]. Similarly, we analyze the material-lighting ambiguity
in the NeILF optimization. It has been reported that with proper geometry reg-
ularizations [29, 37, 41], NeRF is able to produce high-quality geometry outputs.
In contrast, we also show that the proposed bilateral smoothness can significantly
improve the roughness and metallic quality for real-world scenes (Fig. 4).

6.2 Limitations and Future Works

While the proposed method has already shown promising results for material
estimation, the current pipeline still contains several limitations that could be
further addressed in future works.

Geometry Optimization The major limitation of our method is that the
geometry is required to be given in advance. Although we have shown that
meshes from 3D reconstruction pipelines are qualified for real-world DTU and
BlendedMVS scenes, it is still desired that we can jointly optimize the scene
geometry during training. Possible directions include displacement/normal map
estimation and the differentiable surface refinement [42, 44, 46, 47].

High-intensity Singularities in Light Sources Rippled noises would some-
times occur in our estimation if direct lights contain high-intensity singularities.
One example is the metallic result of Mix-studio in Fig. 2. It is worth investi-
gating better training losses/strategies to mitigate this problem in the future.

Running Speed Similar to NeRF, our method requires frequent MLP sam-
plings and the training process is time consuming. Our current implementation
takes around 1.5 hours to estimate the BRDF of a given scene (details in Sec. 4.3).
We hope that in the future, explicit Octree [43], spherical harmonics [1, 38] or
neural hashing [24] can be applied to speed up the NeILF optimization.

7 Conclusions

We have presented a differentiable rendering framework for material and lighting
estimation. Compared with the environment map approximation, the proposed
neural incident light field is capable of modelling the lighting condition of any
static scenes, making it possible to estimate qualified material properties even for
scenes with complex lightings and geometries. The proposed method strictly fol-
lows the physically-based rendering equation, and jointly optimizes material and
lighting through the differentiable rendering process. We have intensively evalu-
ated our method on our in-house synthetic dataset, the DTU MVS dataset, and
the real-world BlendedMVS scenes. Our method is able to outperform previous
methods by a significant margin in terms of the novel view rendering quality,
setting a new state-of-the-art for image-based material and lighting estimation.
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[4] Bi, S., Xu, Z., Sunkavalli, K., Hašan, M., Hold-Geoffroy, Y., Kriegman, D.,
Ramamoorthi, R.: Deep reflectance volumes: Relightable reconstructions
from multi-view photometric images. In: ECCV (2020)

[5] Bi, S., Xu, Z., Sunkavalli, K., Kriegman, D., Ramamoorthi, R.: Deep 3d cap-
ture: Geometry and reflectance from sparse multi-view images. In: CVPR
(2020)

[6] Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.: Nerd:
Neural reflectance decomposition from image collections. In: ICCV (2021)

[7] Boss, M., Jampani, V., Braun, R., Liu, C., Barron, J., Lensch, H.P.:
Neural-pil: Neural pre-integrated lighting for reflectance decomposition. In:
NeurIPS (2021)

[8] Burley, B., Studios, W.D.A.: Physically-based shading at disney. In: ACM
SIGGRAPH (2012)

[9] Chen, W., Litalien, J., Gao, J., Wang, Z., Tsang, C.F., Khalis, S., Litany,
O., Fidler, S.: DIB-R++: Learning to predict lighting and material with a
hybrid differentiable renderer. In: NeurIPS (2021)

[10] Community, B.O.: Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam (2018),
http://www.blender.org

[11] Dong, Y., Chen, G., Peers, P., Zhang, J., Tong, X.: Appearance-from-
motion: Recovering spatially varying surface reflectance under unknown
lighting. TOG (2014)

[12] Guo, K., Lincoln, P., Davidson, P., Busch, J., Yu, X., Whalen, M., Harvey,
G., Orts-Escolano, S., Pandey, R., Dourgarian, J., et al.: The relightables:
Volumetric performance capture of humans with realistic relighting. TOG
(2019)

[13] Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-
view stereopsis evaluation. In: CVPR (2014)

[14] Kajiya, J.T.: The rendering equation. In: Proceedings of the 13th annual
conference on Computer graphics and interactive techniques (1986)

[15] Kato, H., Beker, D., Morariu, M., Ando, T., Matsuoka, T., Kehl,
W., Gaidon, A.: Differentiable rendering: A survey. arXiv preprint
arXiv:2006.12057 (2020)

[16] Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. TOG
(2013)



16 Yao et al.

[17] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In:
ICLR (2015)

[18] Li, Z., Xu, Z., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Learning
to reconstruct shape and spatially-varying reflectance from a single image.
TOG (2018)

[19] Liu, L., Gu, J., Lin, K.Z., Chua, T.S., Theobalt, C.: Neural sparse voxel
fields. NeurIPS (2020)

[20] Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., Cui, Z.: Dist: Rendering
deep implicit signed distance function with differentiable sphere tracing. In:
CVPR (2020)

[21] Liu, S., Saito, S., Chen, W., Li, H.: Learning to infer implicit surfaces with-
out 3d supervision. arXiv preprint arXiv:1911.00767 (2019)

[22] Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy,
A., Duckworth, D.: Nerf in the wild: Neural radiance fields for unconstrained
photo collections. In: CVPR (2021)

[23] Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi,
R., Ng, R.: Nerf: Representing scenes as neural radiance fields for view
synthesis. In: ECCV (2020)

[24] Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics prim-
itives with a multiresolution hash encoding. arXiv:2201.05989 (2022)

[25] Munkberg, J., Hasselgren, J., Shen, T., Gao, J., Chen, W., Evans, A.,
Mueller, T., Fidler, S.: Extracting Triangular 3D Models, Materials, and
Lighting From Images. arXiv:2111.12503 (2021)

[26] Nam, G., Lee, J.H., Gutierrez, D., Kim, M.H.: Practical svbrdf acquisition
of 3d objects with unstructured flash photography. TOG (2018)

[27] Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volu-
metric rendering: Learning implicit 3d representations without 3d supervi-
sion. In: CVPR (2020)

[28] Nimier-David, M., Dong, Z., Jakob, W., Kaplanyan, A.: Material and light-
ing reconstruction for complex indoor scenes with texture-space differen-
tiable rendering (2021)

[29] Oechsle, M., Peng, S., Geiger, A.: Unisurf: Unifying neural implicit surfaces
and radiance fields for multi-view reconstruction. In: ICCV (2021)

[30] Park, J.J., Holynski, A., Seitz, S.M.: Seeing the world in a bag of chips. In:
CVPR (2020)

[31] Pont, S.C., Te Pas, S.F.: Material—illumination ambiguities and the per-
ception of solid objects. Perception (2006)

[32] Schmitt, C., Donne, S., Riegler, G., Koltun, V., Geiger, A.: On joint esti-
mation of pose, geometry and svbrdf from a handheld scanner. In: CVPR
(2020)

[33] Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit
neural representations with periodic activation functions. NeurIPS (2020)

[34] Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron,
J.T.: Nerv: Neural reflectance and visibility fields for relighting and view
synthesis. In: CVPR (2021)



NeILF 17

[35] Walter, B., Marschner, S., Li, H., Torrance, K.: Microfacet models for re-
fraction through rough surfaces. In: EGSR (2007)

[36] Wang, J., Ren, P., Gong, M., Snyder, J., Guo, B.: All-frequency rendering
of dynamic, spatially-varying reflectance. In: ACM SIGGRAPH Asia (2009)

[37] Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus:
Learning neural implicit surfaces by volume rendering for multi-view recon-
struction (2021)

[38] Wizadwongsa, S., Phongthawee, P., Yenphraphai, J., Suwajanakorn, S.:
Nex: Real-time view synthesis with neural basis expansion. In: CVPR (2021)

[39] Xia, R., Dong, Y., Peers, P., Tong, X.: Recovering shape and spatially-
varying surface reflectance under unknown illumination. TOG (2016)

[40] Yao, Y., Luo, Z., Li, S., Zhang, J., Ren, Y., Zhou, L., Fang, T., Quan, L.:
Blendedmvs: A large-scale dataset for generalized multi-view stereo net-
works. In: CVPR (2020)

[41] Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural im-
plicit surfaces. arXiv preprint arXiv:2106.12052 (2021)

[42] Yariv, L., Kasten, Y., Moran, D., Galun, M., Atzmon, M., Ronen, B., Lip-
man, Y.: Multiview neural surface reconstruction by disentangling geometry
and appearance. NeurIPS (2020)

[43] Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for
real-time rendering of neural radiance fields. In: ICCV (2021)

[44] Zhang, J., Yao, Y., Li, S., Fang, T., McKinnon, D., Tsin, Y., Quan, L.:
Critical regularizations for neural surface reconstruction in the wild. In:
CVPR (2022)

[45] Zhang, J., Yao, Y., Li, S., Luo, Z., Fang, T.: Visibility-aware multi-view
stereo network. BMVC (2020)

[46] Zhang, J., Yao, Y., Quan, L.: Learning signed distance field for multi-view
surface reconstruction. In: ICCV (2021)

[47] Zhang, K., Luan, F., Wang, Q., Bala, K., Snavely, N.: Physg: Inverse ren-
dering with spherical gaussians for physics-based material editing and re-
lighting. In: CVPR (2021)

[48] Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: Analyzing and
improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020)

[49] Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron,
J.T.: NeRFactor: Neural Factorization of Shape and Reflectance Under an
Unknown Illumination. TOG (2021)


