
Published in Transactions on Machine Learning Research (10/2024)

Self-supervised Color Generalization in Reinforcement Learn-
ing

Matthias Weissenbacher wbmatthias@gmail.com
Riken Center for Advanced Intelligence Project
Pyr-SAI Labs
Japan

Evangelos Routis evangelos_routis@alumni.brown.edu
Causaly
London
United Kingdom

Yoshinobu Kawahara
Riken Center for Advanced Intelligence Project
Osaka University
Japan

Reviewed on OpenReview: https: // openreview. net/ forum? id= 4On0PLRI8H

Abstract

A challenge in reinforcement learning lies in effectively deploying trained policies to handle
out-of-distribution data and environmental variations. Agents observing pixel-based image
data are generally sensitive to background distractions and color changes. Commonly, color
generalization is achieved through data augmentation. In contrast, we propose a color-
invariant neural network layer that adopts distinct color symmetries in a self-supervised
fashion. This allows for color sensitivity while achieving generalization. Our approach is
based on dynamic-mode decomposition, which also accommodates spatial and temporal
symmetries; we discuss the controlled breaking of the latter. We empirically evaluate our
method in the Minigrid, Procgen, and DeepMind Control suites and find improved color
sensitivity and generalisation.

1 Introduction

Reinforcement learning has seen tremendous success, but ensuring it works well on unfamiliar data is still
a challenge. The original approach to generalisation in image-based RL, which used randomized image
augmentations (Laskin et al., 2020; Yarats et al., 2021b), was remarkably successful despite its brute-
force nature. However, using image-based data augmentation can lead to over-regularisation to specific
augmentations and thus may perform poorly when applied to certain environments. The more evolved
methodology of selecting specific image augmentations in a self-supervised way leads to increased performance
and alleviates some aspects of over-regularisation (Raileanu et al., 2020; Hansen & Wang, 2021).

However, finding the balance between color sensitivity and color generalisation remains an open challenge,
which is not addressed by the above-mentioned methods. Color sensitivity refers to the agent’s ability to take
action based on specific colors of objects in the environment, such as whether to stop or go at a red or green
traffic light, see Figure (1). In contrast, it is imperative that the agent’s decision-making process remains
invariant to color changes in certain environmental factors, e.g., the color of houses, trees, or non-emergency
vehicles in the context of autonomous vehicles.

An alternative to data augmentation is utilizing symmetries in RL to improve generalization (Tang & Ha, 2021;
van der Pol et al., 2020; Weissenbacher et al., 2022). Specifically, reinforcement learning may benefit from

1

https://openreview.net/forum?id=4On0PLRI8H

Published in Transactions on Machine Learning Research (10/2024)

both local and global symmetries, which preserve a particular structure or property within a neighborhood
of a point and throughout the entire space, respectively. In the above example, a house or other vehicles
are generally local, that is, they occupy a small area of the entire visual field of the agent. Enforcing local
symmetries through data augmentation becomes impractical as the sample size required grows exponentially
with the number of image patches under consideration. This makes the approach highly inefficient and
computationally expensive.

Our approach introduces the capability to develop a self-supervised understanding of these local and global
color symmetries. Our Color-invariant Layer (CiL) is based on the Dynamic-mode-decomposition, which
theoretically incorporates spatial and temporal permutation invariance (PI). We do not make use of spatial
PI in our model and break temporal symmetries in the case of frame-stacks as inputs, so that the time-wise
order of frames is relevant.

In this work, we introduce a novel framework of self-supervised selection of features. We apply the above-
mentioned paradigm of symmetries to self-supervised selection of color features to replace image augmentation
with random-conv and color-jitter filters. Consider the conventional training of an agent with randomly
color-augmented images (see Figure (1). Depending on the task, one could select a subset of these images
that are more suitable. Our method effectively performs this selection of ’useful’ color augmentations in
a self-supervised manner. CiL admits different inductive biases categories (I)-(III) admitting an increased
amount of trainable parameters corresponding to specific subsets of augmented images. The most suitable
bias is selected during training in a self-supervised fashion.

In section 3 we introduce both the architecture for the CiL layer as well as provide formal propositions which
validate its symmetry properties. In section 4.1, we show that in the simple example of adding a safe blue
river (water) to the mini-grid LavaCrossing environment data augmentation - random-conv and color-jitter -
is detrimental to learning, while CiL is able to navigate the color-sensitive environment. Moreover, we find
improved color generalisation compared to the baseline. In section 4.2 we perform our main experiments on
the Procgen environment. The code is made public at GitHub.

2 Background

2.1 Reinforcement Learning & Symmetries

Reinforcement Learning. A Markov Decision Process (MDP) is a mathematical framework for modeling
decision-making problems in stochastic environments. MDPs are characterized by a tuple (S,A,P,R, γ),
where S is a finite set of states, A is a finite set of actions, P is the transition probability function, R
is the reward function, and γ ∈ [0, 1) is the discount factor. In RL, one aims to learn optimal decision-
making policies in MDPs. A policy, denoted as π : S → A, is a mapping from states to actions. The
optimal policy π∗ maximizes the expected cumulative discounted reward, given by the value function
V π(s) = E [

∑∞
t=0 γ

tR(st, at) | s0 = s, at ∼ π(|st)], where the expectation is taken over the sequence of
states and actions encountered by following the policy π. The optimal policy π∗ is the one that satisfies
V π∗(s) ≥ V π(s) for all s ∈ S and any other policy π.

Symmetry groups. Symmetry transformations are special cases of mathematical groups, i.e. sets that
contain the identity element and are closed under multiplication and inverses. In this work we encounter
the group of orthogonal matrices, in particular the three-dimensional rotation group SO3, i.e. the special
orthogonal group in dimension 3. Any element of the latter can be written in terms of three independent
parameters i.e. the rotation angles along the x,y and z-axis, respectively, called the Euler angles.

Invariance. Invariance is a foundational concept in understanding how functions respond to symmetries of
their inputs. Before defining these concepts, we introduce some notation. Let f be a function that maps
elements from space S to space S ′. Let G be a symmetry group acting on S and let us denote by g an
individual transformation in G. We shall denote the action of the transformation g on an element s of S by
g · s. A function f is invariant with respect to a set of transformations (symmetry group G) if the application
of any transformation from this set to its input does not change the function’s output. Mathematically, this
is expressed as f(g · s) = f(s) for every transformation g ∈ G.

2

https://github.com/matthias-weissenbacher/CiL

Published in Transactions on Machine Learning Research (10/2024)

Seen / Training Unseen / Testing Generalisation vs. Sensitivity

Seen - Color Augmentations

Generalistation Color-Sensitivity

OURS : Self-supervised Color Symmetries (Unseen)

Symmetry Color Identifications

Fe
at

ur
e-

w
is

e
Sy

m
m

et
rie

s

Color-Sensitivity

Generalistation

Observation

Figure 1: Top: Overview of the balance of color generalisation vs. color sensitivity required for RL tasks, in the
example of the Jumper environment of the Procgen suite. Bottom: Conventional random color-augmentation i.e.
color-jitter (left) compared to OUR self-supervised learning of color-symmetries (right), in the example of Category II
color symmetries -horizontal axis- per each feature of the model - vertical axis-. The vertical axis shows different
features-wise choices of Category II symmetries. The horizontal axis shows identical images under the particular
Category II symmetry. In other words, CiL produces the same feature-wise output if the input image varies according
to horizontal axis.

2.2 Dynamic Mode Representation

The dynamic-mode-decomposition (DMD) algorithm fits a linear operator K that advances the state of a
system, s ∈ Rn forward in time (Schmid, 2010; Tu et al., 2013; Kutz et al., 2016; Rowley et al., 2009; Williams
et al., 2015). Thus, the linear dynamical system is given by

sti+1 ≈ K sti
, for i = 1, . . . , N (1)

The operator K is an approximation of the Koopman operator restricted to observables given by direct
measurements of the state s. In practice, the operator K is computed from a collection of snapshot pairs
of the system {sti+1 , sti

}i=1,...,N . In principle, for DMD the times need not be sequential or evenly spaced,
however this is the case for most RL settings. These snapshots are arranged into two data matrices, S and S′

as
S = (st1 , st2 . . . , stN

) , and S′ =
(
st2 , st3 . . . , stN+1

)
(2)

thus equation 1 may be rewritten as S′ ≈ KS. The computation of operator K from given transition dynamics
data can be reformulated as an optimization problem

K = arg min
K

|S′ − K S|F = S′ S† (3)

where | · |F is the Frobenius norm and † denotes the pseudo-inverse. The pseudo-inverse may be computed by
applying a singular value decomposition (SVD). In the case of image data with color features we stack them
in the time-direction as

S = (st1 , st1 , st1 , . . . , stN
, stN

, stN
)

S′ =
(
st2 , st2 , st2 , . . . , stN+1 , stN+1 , stN+1

)
(4)

3

Published in Transactions on Machine Learning Research (10/2024)

Category I

General Color Symmetry per Feature

Category II

Specific Color Continuous Spectrum Symmetry per Feature

Category III

Specific Color Symmetry per Feature

Figure 2: Three categories of the feature-wise color symmetries of CiL in the example of the Jumper environment of
the Procgen Suite (Cobbe et al., 2020).

A time sequence of data is very commonly modified by an invertible linear transformation acting on each
state as well as an invertible linear transformation acting on the time-series as

S → RS , S → SL (5)

∀i = 1, . . . , N and where R ∈ Rn×n and L ∈ R3N×3N . We restrict ourselves to orthogonal transformations
i.e. R−1 = RT and L−1 = LT .

2.2.1 Leading Rank Representation

Since the matrix operator K typically admits n2 elements, for high-dimensional data, it is intractable to
represent this operator. Instead, one may compute its leading spectral decomposition. In particular, for time
series pixel data, the sequence length N is much shorter (in the context of RL) than the number of pixels in
the 2D image, thus the matrices S and S′ have far more rows than columns. It follows that the size of the
set of eigenvectors of K corresponding to its nonzero eigenvalues is at most N times the number of colors
(input channels of each image). In practice, the effective rank r of the data matrices S and S′ and hence the
operator K , generically is even lower.

The algorithm of the leading order rank approximation (rDMD) can be outlined as follows. Instead of
computing K in equation 3, we may project the latter onto its first r singular vectors. With Ur,Σr, Vr the
rank-r restricted singular value decomposition of S one can approximate the pseudo-inverse as S ≈ Ur Σr V

∗
r .

Then the operator Kr can be defined as

rDMD: Kr := U∗
r KUr = U∗

r S′ Vr Σ−1
r . (6)

The leading spectral decomposition of K may be approximated from the spectral decomposition of the much
smaller Kr as KrW = WΛ 1. The diagonal matrix Λ contains the DMD eigenvalues, which correspond to
eigenvalues of the high-dimensional matrix K.

3 An Adaptive Color Invariant Layer

In this section, we delve into the architecture of our color-invariant layer (CiL), offering a detailed technical
overview. Subsequently, in section 3.1, we provide its theoretical underpinning. Central to CiL is the strategy
of partitioning the image into patches, drawing parallels with vision transformers (Dosovitskiy et al., 2020).
For each of these patches, we then compute the Singular Value Decomposition (SVD), or in some cases, the
mean over adjacent patches, as depicted in Figure (3). This approach is twofold: firstly, it minimizes the
computational demands of SVD; secondly, it paves the way for achieving local color invariance.

Conceptually, we divide color symmetries, both local and global, into three distinct mathematical categories
(I)-(III). Very general invariance (I); (II) the model can in a self-supervised way learn a specific color spectrum

1The eigenvectors of Kr are not the same as the eigenvectors of K- there is a precise relation between the two (Brunton, 2019)

4

Published in Transactions on Machine Learning Research (10/2024)

- per each 3-channel2 - for which it is invariant, see Figure (1) and Figure (2); for type (III) the model in
a self-supervised fashion learns a pair of color-transformation which it understands to be the same, i.e is
invariant under- per each 3-channel -. Category (I) is comparable to random-conv and color-jitter filters in
that it is not color-sensitive. Categories (II)-(III) increasingly trade off generalisation to gain more color
sensitivity.

For simplicity, let us discuss the single frame case first i.e. N = 1 for which the core functionality of the CiL
layer is given by

CiL : S 7→ S W V (7)

where V is computed by the SVD of S, and W is a 3x3 matrix of trainable weights.3 The choice of the latter
results in the following categories:

• Category I : W is the identity matrix i.e without any trainable parameters, equation 7 is invariant
under general orthogonal transformations.

• Category II : For W ∈ SO3, i.e. in the general rotations group equation 7 is invariant under a
continuous one-parameter family of color transformations. For a given element in SO3 corresponds
to a rotation in three-dimensional color space and the layer is symmetric w.r.t. any other oration
along the same axis. The specific axis is chosen by setting the three Euler angles i.e. independent
parameters in W.

• Category III : For W a symmetric (real) 3 × 3 matrix , equation 7 is invariant under a set of 4 (or
8) specific color transformations which are chosen by setting the parameters in W.

For a visualisation see Figure 2. For multiple frames i.e. N > 1 we need to take into account the time-series
nature according to equation 4.

CiL-Stack : S′, S 7→ S′
τi Tττ ′τ ′′ Wij V (S)jkτ ′τ ′′ (8)

where for notional simplicity we split S′ a color and stack dimension, and we have used Einstein summation
convention with i, j, k = 1, . . . , 3, and V (S) is computed via the SVD. We introduce trainable weights T which
are unconstrained an break the time-reversal symmetry of the expression equation 8; τ, τ ′, τ ′′ = 1, . . . , N − 1.

3.1 Theoretical Aspects

Proposition 1 (CiL Symmetry Invariance). Our approach equation 7 is invariant under:

• right matrix multiplication by orthogonal L equation 5 if W = 1 i.e. equal to the identity matrix -
Category I -.

• by a one-parameter family of (special) orthogonal Ls equation 5 if W ∈ SO(3). The specific L depend
on the details of weights in W, see the appendix section (B.1) and (C.2.1) for exact relations -
Category II -.

• by 3 (6 4) symmetric L1,L2,L3 equation 5 iff W is symmetric. The specific L depend on the details
of weights in W, see the proof section (B.1) and (C.2.1) for exact relations - Category III -.

Proposition 2 (rDMD Symmetry Invariance). The rDMD approach equation 6 is invariant under left and
right matrix multiplication by orthogonal L, R equation 5, respectively.

2We refer to 3-channel as the input color-channels which are duplicated in our layer.
3As for color-channels V and Vr are mostly identical we use them synonymously from here one.
4The expression in the parenthesis in proposition (1) refer to the case when we do not normalise V by its determinant. In the

default case we use V → V/det(V).

5

Published in Transactions on Machine Learning Research (10/2024)

VV
V

INPUT

Divided into P
patches

For each of the P patches attach
the neighbouring patches within

a certain window size

SVD SVD

 Pairs of Neighbourhood and Center Patch

mean over
patches

mean over
patches

SVD

mean over
patches

SVD

mean over
patches

SVD

mean over
patches

SVD

mean over
patches

V1 V V

VV
V

V2 V

VV
V

V3 V

VV
V

V13 V

VV
V

V14 V

VV
V

V25
Duplicate Patch & Vi=1,..,25

WW
WW

WW
WW

WW
WW

WW
WW

WW
WW

1
4

WW
WW

Weights of Category I, II or III

Reconstruct Image from Patches

Locally Calor Symmetry invariant
under Category I, II or III , respectively

Figure 3: Architecture diagram of CiL for N = 1, i.e. no frame stacking.

Controlling spatial and temporal symmetries of rDMD. Among other symmetries, equation 3 and
equation 6 admit permutation invariance and general rotation of pixels as long as the operation acts on
each time step in the frame stack of input images alike, see Figure (4) (c) and (d). It is evident that those
invariances admit no practical use case. It is this desirable to remove those symmetries while keeping the
useful ones e.g. Figure (4) (b). In (Weissenbacher et al., 2024) recently a graph symmetric approach to
symmetry breaking in pixel data was discussed. We define

Kbreak
r = U∗

r K Ur = U∗
r G S′ T Vr Σ−1

r . (9)

where G is the graph matrix discussed in (Weissenbacher et al., 2024) and is such that
[

G , R
]

= G R −R G =
0 i.e. they commute if R is a simple left right rotation or flip of the patch. In particular, for general permutation
of pixels in the patch they do not commute. The matrices G ∈ Rn×n, T ∈ RN×N and W ∈ R3×3 contain
trainable weights. While we do not directly use equation 9 involving a graph matrix in this work our formalism
can be extended to include the latter.
Proposition 3 (rDMD - Spatial Symmetry Breaking). Eq. (9) is invariant under left and right matrix
multiplication by orthogonal L, R equation 5, which commute with G. Be G ∈ Rn × Rn is given by the
symmetric graph-matrix, i.e. entries have shared weights if the distance between patches is the same. Then
the symmetries of rotations, flips are preserved while the symmetry of undesirable general pixel permutations
and orthogonal transformations is broken.

Proposition 4 (CiL-Stack Imposing Time-order). By adding the weights T ∈ RN×N of the frame stack
version of CiL equation 8 one imposes a time-ordering of the frames, i.e. one generally breaks the orthogonal
symmetries applied to the stack-dimension.

3.2 On the importance of reducing an abundance of symmetry
In the previous section we have laid the theoretical basis of how specific symmetries of CiL may be broken. In
this concluding section we informally highlight some of the findings of section 3.1. In Figure (4) we illustrate
patch-wise and global transformation of spatial and color. We proof in the appendix C.2.4 that CiL is not
invraint under regional color changes Figure (4) (a). This property is crucial to be able to identify color
sensitive feature e.g. teh red vs green traffic light.

6

Published in Transactions on Machine Learning Research (10/2024)

(a) Regional color
changes. Broken by CiL,
see appendix (C.2.4).

(b) Orthogonal color
changes i.e. global
application of L.

(c) Patchwise pixel per-
mutations and blurrs (spa-
tial transformation).

(d) Patchwise orthogonal
matrix multiplication by
R.

Figure 4: Comparison of symmetries which aid learning (a) and (b) contrasted to those impeding the ability to learn
crucial features (c) and (d).

Seen / Training Lava & Water

River (water)
Safe Path

Lava
Fatal Path

Agent Goal

(a) Modified Lavacrossing, River (blue) are safe passage
through Lava stream (orange). (b) Training rewards, averaged over 4 random seeds.

Figure 5: Modified lava-crossing environment overview and empirical evaluation of CiL. Comparison of CiL to
Color-jitter and Random-conv data augmentation, the latter are detrimental for learning.

In Figure (4) (b) global color-transformations by distinct symmetric matrices L are shown. Global refer to
the choice of the local neighborhood of SVD in Figure (3) to be the entire image, i.e. the same V is the
shared across all patches.

In Figure (4) (c) and (d) we highlight patch-wise spatial transformation e.g. pixel-permutations and general
orthogonal transformation. Those result in apparent non-useful symmetry properties. A model with those
too abundant symmetries fails to learn relevant features necessary for the agent to navigate the environment.

In Figure 3, the different patch colors are for illustration only. The patches are not independent; the same
color invariance is learned for each feature across all patches, as CiL’s weights are shared among them. One
might wonder if patch-wise color augmentation could yield similar results to CiL. However, empirical tests on
Minigrid show that patch-wise augmentations, like global color augmentations, also fail to learn effectively.
Additionally, to achieve the same invariance properties as CiL, the model would require an impractical number
of patch-wise augmentations, namely: (#local color augmentations)#patches.

4 Empirical evaluation

4.1 Modified Minigird Lavacrossing to Test Color-sensitivity & Generalisation

The LavaCrossing environment, a standard in the MiniGrid toolkit (Chevalier-Boisvert et al., 2019), requires
agents to navigate to a goal (green square) without falling into lava (orange squares). We modify the
environment by adding:

7

Published in Transactions on Machine Learning Research (10/2024)

Seen / Training with Berries & Crops

Berries (reward = 0.4) Crops (reward = 0.15)

Agent gains reward by picking up berries or crops

Figure 6: Modified Lava-crossing with additional option for the agent to collect rewards by harvesting berries (purple)
and crops (green).

1. a safe river (water) to the environment which constitutes the only safe pathway through the lava
stream, see Figure (5a). Thus the agent must learn to take a "swim" in the river which is a color
sensitive choice as the lava needs to be avoided.

2. optionally to point (1) we introduce berry-fields and crop-fields see Figure (6) upon collecting them
the agent receives a additional rewards.

Thus depending on the colors blue and orange of river vs. lava (purple and green of berries and crops) see
Figure (6) opposing actions need to be taken by the agent to successfully reach the green goal. In other
words, this modified environment is an ideal test-ground for an agent’s ability of developing color-sensitivity,
see Figure (10).

Although MiniGrid setups are usually partially observable, we adjust ours for full observability and increase
the default observation size from 9 × 9 to 14 × 14 pixels. In particular, we render the environment and
subsequently down-scale it.The experiments with deep Q-learning (IMPALA (Espeholt et al., 2018)) focus on
difficulty level 1 of our modified Lava-crossing environment.

We evaluated the CNN baseline against configurations using color-jitter or random-conv data augmentation.
These methods were unsuccessful in learning the desired behavior as they hindered the agent’s capacity for
color-sensitive decision-making. In contrast, when we incorporated CiL with the CNN for color-symmetry
categories I, II, and III, learning proceeded without obstruction. Refer to Figure (5b) for the training rewards.
Our findings suggest that not only does CiL achieve inherent generalization, but it also equips the model
with color-sensitive decision-making skills.

Furthermore, Figure (5b) and (7a) illustrates the enhanced performance and sample efficiency of CiL +
CNN, for both environment versions, respectively. Moreover, Figure (7b) shows improved color generalisation
of CiL. Notably, this improvement is observed without any adjustments to the hyper-parameters of the RL
algorithm.

Next, we extend the empirical results on our custom LavaCrossing environment and present evaluations of
point (2) below. We modify the environment5 by adding we introduce berry-fields as well as crop-fields upon
collecting them the agent receives additional rewards.

In evaluating the performance of CiL on the environment option (2), which includes both berries and crops,
we observe results that are consistent with those obtained in environment option (1). This can be seen in
Figure (7a), which presents a visual representation of the findings.

5The LavaCrossing environment, a standard in the MiniGrid toolkit (Chevalier-Boisvert et al., 2019), requires agents to
navigate to a goal (green square) without falling into lava (orange squares).

8

Published in Transactions on Machine Learning Research (10/2024)

(a) Training rewards, averaged over 4 random seeds.

(b) Color Generalisation: rewards, averaged over 4 random seeds
and 50 evaluation episodes; we plot the standard error bars,
respectively. Augmentation parameter are from left to right as
in Figure 6.

Figure 7: Empirical evaluation of CiL on modified lava-crossing environment (2) with berries and crops. Comparison
of CiL to color-jitter and random-convolution data-augmentation, the latter are detrimental for learning. Comparison
of Categories I vs. II, with feature-concatenated as the input of the CNN - I&II - and batch-concatenated i.e. used
simultaneously - I × II -. Both Figure 7a and 7b show mean and standard error.

Figure 8: Modified Lava-crossing color variations for Figure 7b visualizing the augmentation parameter from left to
right [0, 1.8]

When data-augmentation is applied, we notice a detrimental effect on the training process. This is in line with
our observations from environment option (1), suggesting that data-augmentation might not be beneficial for
this specific task.

Furthermore, we observe that the CiL category II demonstrates superior performance when compared to
the CNN baseline when no data augmentation is applied. This performance advantage is more pronounced
in environment option (2) than what was observed in environment option (1), as depicted in Figure (5b).
This indicates that the benefits of using CiL category II become more evident when the complexity of the
environment increases, showcasing its robustness and effectiveness in more challenging scenarios.

We evaluate our trained models on a color varied version of the environment, see Figure (8); comparing
CNN to CNN + CiL for categories I,II, and II, respectively. We find improved generalisation of CiL, see
Figure (7b).

4.2 Procgen Benchmark & Distracted Deepmind Control suite

We evaluate our model on both the Procgen generalization benchmark (Cobbe et al., 2020) which consists
of 16 procedurally generated environments with visual observations; as well as the Deepmind Control suite
(DMControl) (Tassa et al., 2018) with additional visual background video distraction (Hansen & Wang, 2021).

The Procgen benchmark consists of sixteen procedurally generated games. Each game corresponds to a
distribution of partially observable Markov decision processes (POMDPs) q(m), and each level of a game
corresponds to a POMDP sampled from that game’s distribution m ∼ q. The POMDP m is determined
by the seed (i.e. integer) used to generate the corresponding level. Following the setup from (Cobbe et al.,
2020), agents are trained on a fixed set of n = 200 levels (generated using seeds from 1 to 200) and tested
on the full distribution of levels (generated by sampling seeds uniformly at random from all computer

9

Published in Transactions on Machine Learning Research (10/2024)

Figure 9: Comparison of CiL to random-conv augmentation on top of PPO backbone.

integers).We evaluate our method with PPO/DrAC (Schulman et al., 2017; Raileanu et al., 2020) with added
crop augmentation.

Moreover, we evaluate our method with SAC (Haarnoja et al., 2018) with standard hyper-parameter settings,
and simply add CiL as a preliminary layer. To evaluate generalization of our method and baselines, we test
methods under challenging distribution shifts from by adding background videos (Hansen & Wang, 2021). We
provide a proof-of-concept for CiL’s ability to generalize to background videos in DMControl. This successful
test is significant to us, as SVD/DMD can be highly sensitive to dynamic changes introduced by background
videos. The DMControl test demonstrates CiL’s effective generalization to new data distributions relevant
for real-world tasks, rather than aiming to outperform state-of-the-art (SOTA) methods.

Based on the Procgen and DM-Control (DMC) results in Tables (1) and (3), and the Procgen ablations in
Table (2), we can draw three main conclusions:

• First, CiL can scale to Procgen and DMC tasks.

• Second, CiL may be simply added as a preliminary layer to existing architectures; across a variety
of domains and tasks and does not require any hyper-parameter tuning to achieve comparable - or
improved - generalisation performance. The performance gains are significant for environments where
color-sensitivity is required e.g. StarPilot and BigFish, in particular compared to rand-conv and
color-jitter data augmentations.

• Third, the ablation study of CiL on Procgen finds that its performance is consistent across a wide
range of settings.

In Figure (9), we juxtapose CiL with random-conv augmentations. Specifically for the Starpilot and Bigfish
environments, the use of random-conv (Rand-FM) hinders learning. In contrast, CiL offers advantages
over both PPO and DrAC+ Crop, especially in these environments. This aligns with our main results
Table 1 where random-conv (as well as color-jitter) are added to DrAC. The training curves show comparable
sample-efficiency of CiL, see Figure (11).

The primary conclusion of the paper is that a mixture of different categories yields the best performance. The
general principle is that by incorporating all categories—each with distinct inductive biases—the network is
better equipped to select the most appropriate features.

4.3 Limitations

CiL is CPU extensive by employing SVD as existing GPU implementation of SVD barely bring speed-ups,
and rather lead to bottle-necks. Repeating input data (refer to Figure (3)) to assign different symmetry
weights across channels can be demanding in terms of memory and computation. Particularly, using SVD
locally in CiL increases runtime by a factor of 3-5 compared to the CNN baseline. This work serves as a

10

Published in Transactions on Machine Learning Research (10/2024)

Table 1: We experiment on the Procgen environments. We compare to the PPO baseline and to Rand-FM (Lee et al.,
2020) with a ResNet architecture. We report min-max normalised scores averaged over the testing steps 23M-25M,
and 4 seeds, respectively. We use DrAC + crop augmentation for our model in which we use a preliminary CiL and
the same subsequent ResNet. The CiL used local neighbourhood of 5 patches both vertically and horizontally and
categories I, II and III. Both random convolution and color-jitter augmentations are added (for Conv&Jitter with equal
likelihood). The standard error for CNN+CiL as well as baseline is <≈ 0.2% for each game individually.

Procgen
Algorithm Model StarPilot FruitBot BigFish Coinrun Jumper Average

PPO CNN 35.6% 85.9% 7.8% 65.4% 53.3% 49.6%
DrAC (Crop) CNN 50.0% 86.5% 21.6 % 64.5% 52.4% 55.0%
DrAC (Crop+RandConv) CNN 47.3% 84.8% 14.2% 64.9% 56.5% 53.5%
DrAC (Crop+ColorJitter) CNN 52.2% 85.9% 13.4% 64.9% 53.8% 54.1%
DrAC (Crop+Conv&Jitter) CNN 44.8% 84.0% 9.4% 65.0% 56.2% 51.9%
DrAC (Crop) CNN+CiL 55.4% 86.9% 26.6% 64.4% 53.4% 57.3%
Rand-FM CNN 10.1% 79.7% -1.1% 71.2% 47.8% 41.5%

Table 2: Procgen ablation study comparing categories I, II, and III as well as different local neighborhood sizes.
The superscript refers to the weight categories used in CiL. The subscript 1, 3, 5, ∗ refer to the size of the local
neighborhood used to compute the SVD; where ∗ denotes the global CiL, i.e., the mean is computed over patches of
the entire image.

Procgen Task CiLI & II
∗ CiLI & III

∗ CiLI−III
∗ CiLI−III

1 CiLI−III
3 CiLI−III

5

StarPilot 53.0% 44.8% 47.8% 51.2% 50.7% 55.4%
FruitBot 86.6% 86.3% 88.0% 86.7% 87.6% 86.9%
BigFish 21.6% 14.0% 21.3% 11.7% 23.7% 26.6%
Coinrun 63.5% 60.8% 53.7% 64.2% 64.9% 64.4%
Jumper 53.0% 46.6% 48.3% 54.7% 54.4% 53.4%
Average 55.5% 50.5% 51.8% 53.7% 56.3% 57.3%

Table 3: DM-control with background video distraction as well as color changes. We evaluate the trained models
after 100k steps over 10 episodes, respectively, and report the mean and standard deviation over 2 seeds.

DMControl
Domain-Task Distraction CNN CiLI & II

5

Walker-Walk video-easy 493.1 ± 125.0 497.9 ± 118.8
video-hard 137.5 ± 72.6 112.6 ± 48.1

Cheetah-Run video-easy 167.3 ± 99.9 169.2 ± 58.5
video-hard 41.1 ± 26.1 61.8 ± 44.6

proof of principle, highlighting a new research direction with scope for future technical enhancements. We
effectively reduced overhead by incorporating the SVD of the input frame-stack into the replay-buffer, as
demonstrated in our DMC experiments.

5 Related Work

Symmetry is a prevalent implicit approach in deep learning for designing neural networks with established
equivariances and invariances. The literature on symmetries in Vision Transformers (ViTs) (Fuchs et al.,
2020; Romero & Cordonnier, 2021) is relatively limited compared to CNNs (Zhang & Sejnowski, 1988; LeCun
et al., 1989; Zhang, 1990), recurrent neural networks (Rumelhart et al., 1986; Hochreiter & Schmidhuber,
1997), graph neural networks (Maron et al., 2019; Satorras et al., 2021), and capsule networks (Sabour et al.,
2017). Permutation invariance in ViTs and attention mechanisms has been examined in (Lee et al., 2019),
demonstrating improved out-of-distribution generalization in RL from pixel data (Tang & Ha, 2021). CiL
may be added on top of ViTs as well as CNNs.

11

Published in Transactions on Machine Learning Research (10/2024)

Conventionally sample efficiency is enhanced by data augmentation (Krizhevsky et al., 2012). Simple image
augmentations, such as random crop (Laskin et al., 2020) or shift (Yarats et al., 2021a; 2022), can improve
RL generalisation performance; in particular when combined with contrastive learning (Agarwal et al., 2021).
CiL is complementary to data-augmentation.

3D rotations, described by the SO(3) group, have found their place in various areas of vision-based AI tasks,
however applied on the spatial and not color-features. From 3D medical imaging (Vieweg et al., 2015) over
3D object recognition (Qi et al., 2017; Coors et al., 2018) to transferring neural networks from simulations to
real-world robotics (Tobin et al., 2017). Furthermore, deep learning on Lie Groups, encompassing SO(3), has
evolved with architectures like the Spherical CNNs (Cohen et al., 2018), inherently managing rotations.

Symmetry-based representation learning (Balaraman & Andrew, 2004; van der Pol et al., 2020; Higgins
et al., 2018) refers to the study of symmetries of the environment manifested in the latent representation
and was extended to environmental interactions in (Caselles-Dupré et al., 2019). In (Weissenbacher et al.,
2022), symmetries of the dynamics are inferred in a self-supervised manner. More recent works equivariant
methods in RL include (van der Pol & Welling, 2019; Wang & Walters, 2022). These approaches are mostly
complimentary to CiL.

6 Conclusions

In the context of reinforcement learning, we introduced CiL, a neural network layer capable of self-supervised
adaptation to various color symmetries. Empirical evaluations show that CiL outperforms both random-conv
and color-jitter data augmentations in environments where color sensitivity is pivotal. Furthermore, CiL
maintains performance in other environments without necessitating hyperparameter tuning for the associated
RL algorithms.

Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential
societal consequences of our work. In particular, while improved color-sensitivity while maintaining color-
generalisation is desirable for many tasks , there are risks, such as an agent learning to make decisions based
on an individual’s skin color. However, we conclude that such a behavior would likely arise from biases in the
training dataset or environment, rather than from our method itself.

Acknowledgments

Matthias Weissenbacher would like express his gratitude to Rishabh Agarwal (Deepmind) for initial collabo-
ration and helpful comments on the draft. And, we would like to thank Y. Nishimura for technical support.
This work was supported by JSPS KAKENHI Grant Number JP22H00516 and JP22H05106 JST CREST
Grant Number JPMJCR1913.

References
Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive behavioral

similarity embeddings for generalization in reinforcement learning. arXiv preprint arXiv:2101.05265, 2021.

Ravindran Balaraman and G. Barto Andrew. Approximate homomorphisms: A framework for non-exact
minimization in markov decision processes. In In International Conference on Knowledge Based Computer
Systems, 2004.

Steven L. Brunton. Notes on koopman operator theory. 2019. URL https://api.semanticscholar.org/
CorpusID:229348032.

Hugo Caselles-Dupré, Michael Garcia Ortiz, and David Filliat. Symmetry-based disentangled representation
learning requires interaction with environments. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-

12

https://api.semanticscholar.org/CorpusID:229348032
https://api.semanticscholar.org/CorpusID:229348032

Published in Transactions on Machine Learning Research (10/2024)

Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Rémi Lebret. Babyai: First steps towards grounded language learning with a human in the
loop. International Conference on Learning Representations, 2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to benchmark
reinforcement learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 2048–2056.
PMLR, 13–18 Jul 2020.

Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. In International Conference
on Learning Representations (ICLR), 2018.

Benjamin Coors, Martin Roser, and Andreas Geiger. Spherenet: Learning spherical representations for
detection and classification in omnidirectional images. In Proceedings of the European Conference on
Computer Vision (ECCV), 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
An image is worth 16x16 words: Transformers for image recognition at scale, 2020.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se(3)-transformers: 3d roto-translation
equivariant attention networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1970–1981. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
15231a7ce4ba789d13b722cc5c955834-Paper.pdf.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas Krause (eds.),
Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 1861–1870. PMLR, 10–15 Jul 2018.

Nicklas Hansen and Xiaolong Wang. Generalization in reinforcement learning by soft data augmentation. In
International Conference on Robotics and Automation, 2021.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende, and Alexander
Lerchner. Towards a definition of disentangled representations, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Zhengyao Jiang, Pasquale Minervin, Minqi Jiang, and Tim Rocktäschel. Grid-to-graph: Flexible spatial
relational inductive biases for reinforcement learning. In AAMAS 2021, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, pp. 1097–1105, 2012.

J Nathan Kutz, Xing Fu, and Steven L Brunton. Dynamic mode decomposition for big data: A reduced-order
model with interpolative decomposition. SIAM Journal on Applied Dynamical Systems, 15(2):1327–1344,
2016.

13

https://proceedings.neurips.cc/paper_files/paper/2020/file/15231a7ce4ba789d13b722cc5c955834-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/15231a7ce4ba789d13b722cc5c955834-Paper.pdf

Published in Transactions on Machine Learning Research (10/2024)

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-
can, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 19884–
19895. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
e615c82aba461681ade82da2da38004a-Paper.pdf.

Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard,
and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation,
1(4):541–551, 1989.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set transformer:
A framework for attention-based permutation-invariant neural networks. In Proceedings of the 36th
International Conference on Machine Learning. PMLR, 2019. URL https://proceedings.mlr.press/
v97/lee19d.html.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple technique for
generalization in deep reinforcement learning. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=HJgcvJBFvB.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph networks.
In International Conference on Learning Representations, 2019.

Charles R. Qi et al. Pointnet: Deep learning on point sets for 3d classification and segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Roberta Raileanu, Max Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic data augmentation
for generalization in deep reinforcement learning. arXiv preprint arXiv:2006.12862, 2020.

David W. Romero and Jean-Baptiste Cordonnier. Group equivariant stand-alone self-attention for vision. In
International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
JkfYjnOEo6M.

Clarence W Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter, and Dan S Henningson. Spectral analysis
of nonlinear flows. Journal of fluid mechanics, 641:115–127, 2009.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating
errors. Nature, 323(6088):533–536, 1986.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In Advances in
Neural Information Processing Systems, pp. 3856–3866, 2017.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n)-equivariant graph neural networks. In
International Conference on Learning Representations, 2021.

Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of fluid mechanics,
656:5–28, 2010.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms, 2017.

G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley, MA, 3 edition, 2003.

Yujin Tang and David Ha. The sensory neuron as a transformer: Permutation-invariant neural networks for
reinforcement learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=wtLW-Amuds.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller. Deepmind
control suite. CoRR, abs/1801.00690, 2018. URL http://arxiv.org/abs/1801.00690.

14

https://proceedings.neurips.cc/paper/2020/file/e615c82aba461681ade82da2da38004a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e615c82aba461681ade82da2da38004a-Paper.pdf
https://proceedings.mlr.press/v97/lee19d.html
https://proceedings.mlr.press/v97/lee19d.html
https://openreview.net/forum?id=HJgcvJBFvB
https://openreview.net/forum?id=JkfYjnOEo6M
https://openreview.net/forum?id=JkfYjnOEo6M
https://openreview.net/forum?id=wtLW-Amuds
http://arxiv.org/abs/1801.00690

Published in Transactions on Machine Learning Research (10/2024)

Josh Tobin et al. Domain randomization for transferring deep neural networks from simulation to the real
world. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2017.

Jonathan H Tu, L Scott Griffin, and Clarence W Rowley. Dynamic mode decomposition: An automated
procedure for on-the-fly identification of dynamically relevant structures in complex flows. Journal of
Computational Dynamics, 1(2):371–380, 2013.

Elise van der Pol and Max Welling. On the benefits of invariance in neural networks. In International
Conference on Learning Representations, 2019.

Elise van der Pol, Daniel Worrall, Herke van Hoof, Frans Oliehoek, and Max Welling. Mdp homomorphic
networks: Group symmetries in reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 4199–4210.
Curran Associates, Inc., 2020.

M. W. A. Vieweg et al. Data augmentation of 3d medical images. In Proceedings of the Third International
Workshop on Medical Computer Vision, 2015.

Dian Wang and Robin Walters. So (2) equivariant reinforcement learning. In International Conference on
Learning Representations, 2022.

Matthias Weissenbacher, Samarth Sinha, Animesh Garg, and Yoshinobu Kawahara. Koopman q-learning:
Offline reinforcement learning via symmetries of dynamics. In International Conference on Machine
Learning, pp. 23645–23667. PMLR, 2022.

Matthias Weissenbacher, Rishabh Agarwal, and Yoshinobu Kawahara. Sit: Symmetry-invariant transformers
for generalisation in reinforcement learning, 2024. URL https://arxiv.org/abs/2406.15025.

Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. Data-driven forecasting of high-
dimensional chaotic systems with long short-term memory networks. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 471(2179):20150469, 2015.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Data-efficient reinforcement learning with momentum predictive
representations. In International Conference on Learning Representations, 2021a.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International Conference on Learning Representations, 2021b. URL
https://openreview.net/forum?id=GY6-6sTvGaf.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control: Improved
data-augmented reinforcement learning. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=_SJ-_yyes8.

Kun Zhang. Interpreting the internal vector representation of an analogical neural network. In Proceedings of
the 12th annual conference of the Cognitive Science Society, pp. 684–691. Lawrence Erlbaum Associates,
1990.

Kun Zhang and Terrence J Sejnowski. Parallel distributed processing: Explorations in the microstructure of
cognition, vol. 1. In Foundations. MIT Press, 1988.

15

https://arxiv.org/abs/2406.15025
https://openreview.net/forum?id=GY6-6sTvGaf
https://openreview.net/forum?id=_SJ-_yyes8

Published in Transactions on Machine Learning Research (10/2024)

Seen / Training Lava & Water

River (water)
Safe Path

Lava
Fatal Path

Agent Goal

Seen / Training with Berries & Crops

Berries (reward = 0.4) Crops (reward = 0.15)

Agent gains reward by picking up berries or crops

Figure 10: Modified Lava-crossing with additional option for the agent to collect rewards by harvesting berries
(purple) and crops (green).

A Modified Lavacrossing Environment - Add-On

In this section we extend the empirical results on our custom LavaCrossing environment and present evaluations
of point (2) below. We modify the environment6 by adding:

1. a safe river (water) to the environment which constitutes the only safe pathway through the lava
stream, see Figure (5a). Thus the agent must learn to take a "swim" in the river which is a color
sensitive choice as the lava needs to be avoided.

2. optionally to point (1) we introduce berry-fields as well as crop-fields upon collecting them the agent
receives additional rewards.

In evaluating the performance of CiL on the environment option (2), which includes both berries and crops,
we observe results that are consistent with those obtained in environment option (1).

When data-augmentation is applied, we notice a detrimental effect on the training process. This is in line with
our observations from environment option (1), suggesting that data-augmentation might not be beneficial for
this specific task.

Furthermore, we observe that the CiL category II demonstrates superior performance when compared to
the CNN baseline when no data augmentation is applied. This performance advantage is more pronounced
in environment option (2) than what was observed in environment option (1), as depicted in Figure (5b).
This indicates that the benefits of using CiL category II become more evident when the complexity of the
environment increases, showcasing its robustness and effectiveness in more challenging scenarios.

A.1 Color Generalisation

We evaluate our trained models on a color varied version of the environment, see Figure (10); comparing
CNN to CNN + CiL for categories I,II, and II, respectively. We find improved generalisation of CiL, see
Figure (7b).

6The LavaCrossing environment, a standard in the MiniGrid toolkit (Chevalier-Boisvert et al., 2019), requires agents to
navigate to a goal (green square) without falling into lava (orange squares).

16

Published in Transactions on Machine Learning Research (10/2024)

W =

cosϕ cos θ cosϕ sin θ sinψ − sinϕ cosψ cosϕ sin θ cosψ + sinϕ sinψ
sinϕ cos θ sinϕ sin θ sinψ + cosϕ cosψ sinϕ sin θ cosψ − cosϕ sinψ

− sin θ cos θ sinψ cos θ cosψ

 , (10)

B Technical Details

B.1 Implementation of Symmetry Groups

B.1.1 SO(3) group - Category II

The group SO(3) represents the group of rotations in three dimensions, and any rotation in this group can
be represented using three Euler angles. Euler angles are three angles introduced by Leonhard Euler to
describe the orientation of a body/vector. They can describe arbitrary rotations in three dimensions. The
three rotations are often referred to as roll, pitch, and yaw, especially in the context of aviation and robotics.

Any element of ρ ∈ SO(3), i.e., any rotation matrix, can be expressed in terms of Euler angles. There are
multiple sequences of axes about which the rotations can take place (like "XYZ", where the rotation is first
about X, then about Y, and lastly about Z), and the choice of sequence can change the specific angles.

For a rotation in 3D space, a common sequence is the "Z-Y-X" sequence (yaw, pitch, and roll, respectively):

1. A rotation ϕ (yaw) about the Z-axis.

2. Followed by a rotation θ (pitch) about the new Y-axis.

3. Followed by a rotation ψ (roll) about the new X-axis.

Given these angles, the overall rotation matrix ρ in the "Z-Y-X" sequence can be given as ρ = ρx(ψ)ρy(θ)ρz(ϕ)
where:

ρz(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

ρy(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

ρx(ψ) =

1 0 0
0 cosψ − sinψ
0 sinψ cosψ

When expanded, the combined rotation matrix written as in the weight notation W is:7 with the bounds for
the Euler angles:

• Yaw (ϕ): 0 ≤ ϕ < 2π

• Pitch (θ): − π
2 ≤ θ ≤ π

2

• Roll (ψ): 0 ≤ ψ < 2π

We employ the definition equation 10 to incorporate SO(3) rotation of color-space i.e. category II, where the
Euler angles are given by three trainable weights. the bounds are enforces by using the Tangent-Hyperbolic
function e.g. 0 ≤ ϕ < 2π by ϕ = π + π ∗ Tanh(θ), where θ is a trainable parameter.

7Note: While Euler angles are intuitive, they are not without problems. The most notorious one is "gimbal lock," where
you lose one degree of freedom, and it’s not possible to represent all 3D orientations. This is why other representations like
quaternions are sometimes preferred in applications like computer graphics and robotics.

17

Published in Transactions on Machine Learning Research (10/2024)

B.1.2 Symmetric Weight Matrices - Category III

For category III the weight matrices W are symmetric.8 This is accomplished by simple defining a 3 × 3
parameter matrix Θ and symmetrise i.e add the transpose as

W = 1
2

(
softmax

(
Θ

)
+ softmax

(
Θ

)T
)
. (11)

We add the softmax function is added to restrict the values of the weights.

Note that symmetric matrices do not form a group. The product of two symmetric matrices is symmetric if
and only if the matrices commute, meaning

AB = BA.

If matrices A and B are symmetric, then:

(AB)T = BTAT

Given that A and B are symmetric:
BT = B

AT = A

So,
(AB)T = BA

For AB to be symmetric, (AB)T must equal AB, so

AB = BA.

B.1.3 Numerical Invariance: torch.svd

In our implementation, we have opted for torch.svd over torch.linalg.svd for computing the singular
value decomposition (SVD). Our extensive testing indicates that torch.svd offers superior stability in
maintaining invariance under orthogonal transformations of the input, denoted as R and L.

However, it is important to highlight that numerical algorithms like SVD are prone to challenges associated
with sign ambiguity. This means that the columns of the output matrices can undergo multiplication by ±1.
To tackle this issue and achieve consistent results, we employ torch.abs on the results of equations 7 and
8. This step is imperative to address the sign ambiguity introduced by torch.svd, ensuring that the final
output is consistent and unaffected by potential sign changes.

In essence, the adoption of torch.svd and the application of torch.abs contribute to the stability and
reliability of our implementation, especially in scenarios involving orthogonal transformations of the input.

B.2 Normalized Rewards in Procgen

See Figure (11) for test curves or Procgen during training.

To compute normalized scores, we leverage a simple yet effective rescaling technique. By using the observed
minimum and maximum rewards in the dataset, we ensure that the scores are bounded between 0 and 1.
Specifically, given a reward value rwd, the normalized score is calculated using the formula:

normalized score = reward − minimal reward
maximal reward − minimal reward

8We incorporate symmetric matrices in our work which is not to be confused with a related concept to orthogonal groups the
symmetric group. The symmetric group on three elements, often denoted S3, is a mathematical structure that encapsulates
all possible permutations of three distinct objects. This group has 3! (i.e., 6) distinct elements, each representing a unique
permutation. When considering matrices, a natural representation of S3 is as 3 × 3 permutation matrices where each matrix has
a single “1” in every row and column, with all other entries being “0”. Each of these matrices represents a permutation of the
standard basis vectors in R3. All permutations are orthogonal thus S3 is a sub-group of SO(3).

18

Published in Transactions on Machine Learning Research (10/2024)

Figure 11: Sample-efficiency of CiL: Procgen testing curves during DrAC training of baselines and CiL, see Table 1.
We average over all 5 environments and 4 seeds. We show the mean and the mean of the standard error of the
individual tasks.

Game Min Max
BigFish 1 40

StarPilot 2.5 64
FruitBot -1.5 32.4
CoinRun 0.5 13
Jumper 1 10

Table 4: Min-max rewards for Procgen environments used to compute normalized scores in Table (1) and (2).

Here, minimal reward represents the smallest observed reward in the dataset, and maximal reward represents
the largest observed reward. This normalization approach ensures that rewards are set relative to their
observed range, providing a standardized perspective on their values.

All experiments were performed on NVIDIA GPU A-100 or V-100.

B.3 Hyperparameters

We summarize the hyperparameter choices in Table (5).

C Proofs of Invariance

The goal of this section is to prove the invariance of the quantities defined in equations (3),(7),(6). We start
by giving some necessary definitions and proving some preliminary results in section (C.1).

C.1 Preliminary steps

Given n,N > 0, we define the following subset of Rn×N × Rn×N × RN×N × RN×N

Tn,N := {(S, S′,Λ, U)|S′S†]

19

Published in Transactions on Machine Learning Research (10/2024)

Table 5: Architecture and hyper-parameter choices for CiL on Procgen, DMControl, Minigrid based on (Raileanu
et al., 2020), (Hansen & Wang, 2021), and (Jiang et al., 2021), respectively. Channels refer to the category channels.
We use the algorithms in the code-base without any hyper-parameter changes except for reduction of hidden-dim of
the actor-critic networks to 64. The patch size follows the convention in Vision Transformers; for a 64x64 pixel input,
we use 8x8 patches. In Figure 3, the neighborhood sizes are chosen as odd numbers (3, 5) to ensure a central patch
with an equal number of neighboring patches on all sides.

Suite Model Patch Size CiL Channels [I,II,III] Activation Hidden Dim.

Procgen
(Raileanuet al., 2020)

CNN 3 ResNet ((Raileanu et al., 2020)) [0,0,0] N/A 64
CiLI&II

∗ 8x8 pixel (64 patches) [1,20,0] selu 64
CiLI&III

∗ 8x8 pixel (64 patches) [1,0,20] selu 64
CiLI−III

∗ 8x8 pixel (64 patches) [1,10,10] selu 64
CiLI−III

1 8x8 pixel (64 patches) [1,10,10] selu 64
CiLI−III

3 8x8 pixel (64 patches) [1,10,10] selu 64
CiLI−III

5 8x8 pixel (64 patches) [1,10,10] selu 64
DMControl

(Hansen&Wang, 2021) CiLI&II
5 8x8 pixel (144 patches) [1,1,0] selu 64

Minigrid
(Jianget al., 2021)

CiLI
∗ 7x7 pixel (4 patches) [1,0,0] selu 32

CiLII
∗ 7x7 pixel (4 patches) [0,1,0] selu 32

CiLIII
∗ 7x7 pixel (4 patches) [0,0,1] selu 32

is diagonalizable and
(Λ, U) is an eigendecomposition ofS′S†}.

Let R ∈ Rn×n, L ∈ RN×N be orthogonal matrices; their orthogonality implies that

(RS′)(RS)† = RS′S†R−1 (12)

and
(S′L)(SL)† = S′LL−1S† = S′S† (13)

Therefore we arrive at the following lemma:
Lemma 1. Let (Λ, U) be an eigen-decomposition of S′S† and let R ∈ Rn×n, L ∈ RN×N be orthogonal
matrices. Then

1. The pair (Λ, RU) is an eigen-decomposition of (RS′)(RS)†.

2. The pair (Λ, U) is an eigen-decomposition of (S′L)(SL)†.

Proof. For the first part, using (12), we have

(RS′)(RS)†(RU) = RS′S†R−1(RU) = R(S′S†)U,

which is equal to R(UΛ) = (RU)Λ by the hypothesis. The second part follows immediately by (13) and the
hypothesis.

The above lemma allows us to define a left action of the group of orthogonal n× n matrices On on Tn,N

Φn,N : On × Tn,N → Tn,N(
R, (S, S′,Λ, U)

)
7→ (RS,RS′,Λ, RU)

as well as a right action of the group of orthogonal N ×N matrices ON on Tn,N

Ψn,N : ON × Tn,N → Tn,N(
L, (S, S′,Λ, U)

)
7→ (SL−1, S′L−1,Λ, U).

20

Published in Transactions on Machine Learning Research (10/2024)

We further define the functions

χ1 : Tn,N → Rn×n

(S, S′,Λ, U) 7→ diag
(
UTS′S†U

)
and

χ2 : Tn,N → Rn×N

(S, S′,Λ, U) 7→ UTS′

Proposition 5. 1. The function χ1 is invariant with respect to the group actions Φn,N and Ψn,N .

2. The function χ2 is invariant with respect to the group action Φn,N .

Proof. 1. For any (R, (S, S′,Λ, U)) ∈ On × Tn,N , we have

χ1 ◦ Φn,N

((
R, (S, S′,Λ, U)

))
(14)

= χ1
(
(RS,RS′,Λ, RU)

)
= diag

(
(RU)TRS′(RS)†(RU)

)
= diag

(
(UTRT)(RS′)(S†R−1)(RU)

)
= diag(UTS′S†U)

= χ1
(
(S, S′,Λ, U)

)
where we used the fact that R is orthogonal to write (RS)† = S†R−1 and RTR = I.

For any
(
L, (S, S′,Λ, U)

)
∈ ON × Tn,N , we have

χ1 ◦ Ψn,N

(
L, (S, S′,Λ, U)

)
(15)

= χ1
(
(SL−1, S′L−1,Λ, U)

)
= diag

(
UT (S′L−1)(SL−1)†U

)
= diag

(
UT (S′L−1)(LS†)U

)
= diag

(
UTS′S†U

)
= χ1

(
(S, S′,Λ, U)

)
(16)

where we used the orthogonality of L to write (SL−1)† = LS†.

21

Published in Transactions on Machine Learning Research (10/2024)

2. For any (R, (S, S′,Λ, U)) ∈ On × Tn,N , we have

χ2 ◦ Φn,N

((
R, (S, S′,Λ, U)

))
= χ2

(
(RS,RS′,Λ, RU)

)
= (RU)T (RS′)

= UTRTRS′

= UTS′

= χ2
(
(S, S′,Λ, U)

)
(17)

A singular value decomposition (U,Σ, V) of S is a factorization

S = UΣV ∗

where U, V are unitary matrices and Σ is rectangular diagonal with non-negative entries on its diagonal.
Given S, such a decomposition need not be unique, however the matrix Σ is unique up to an ordering of its
diagonal entries (singular values of S). We will consider singular value decompositions where the diagonal
entries of Σ appear in descending order. Then, for any r > 0 we define Ur to be the matrix formed by the
first r columns of U (also known as the modes).

Lemma 2. Let (U,Σ, V) be a singular value decomposition of S and let R ∈ Rn×n, L ∈ RN×N be orthogonal
matrices. Then

1. (RU,Σ, V) is a singular value decomposition of RS.

2. (U,Σ, L−1V) is a singular value decomposition of SL.

Proof. By the hypothesis we have S = UΣV ∗. Therefore, RS = (RU)ΣV ∗ and RU is orthogonal. Further,
SL = UΣV ∗L = UΣ(L−1V)∗ and L−1V is orthogonal.

Next, we introduce the following subset of Rn×N × Rn×N × Rn×n × Rn×N × RN×N

TSV D
n,N := {(S, S′, U,Σ, V)| (U,Σ, V)

is a singular value decomposition of S}. By Lemma 2 we are able to define a left action of the group of
orthogonal n× n matrices On on TSV D

n,N

ΦSV D
n,N : On × TSV D

n,N → TSV D
n,N(

R, (S, S′, U,Σ, V)
)

7→ (RS,RS′, RU,Σ, V)

as well as a right action of the group of orthogonal N ×N matrices ON on TSV D
n,N

ΨSV D
n,N : ON × TSV D

n,N → TSV D
n,N(

L, (S, S′, U,Σ, V)
)

7→ (SL−1, S′L−1, U,Σ, LV).

Further, we define the following function

kr : TSV D
n,N → Rr×r

(S, S′, U,Σ, V) 7→ U∗
r S

′S†Ur

22

Published in Transactions on Machine Learning Research (10/2024)

Proposition 6. The function kr is invariant with respect to the actions ΦSV D
n,N and ΨSV D

n,N .

Proof. We have

kr ◦ ΦSV D
n,N

(
R, (S, S′, U,Σ, V)

)
= kr(RS,RS′, RU,Σ, V)

= (RU)∗
r(RS′)(RS)†(RU)r

= (RUr)∗(RS′)(RS)†(RUr)

= (U∗
rR

∗)(RS′)(S†R−1)RUr

= U∗
r S

′S†Ur

= kr(S, S′, U,Σ, V) (18)

and

kr ◦ ΨSV D
n,N

(
L−1, (S, S′, U,Σ, V)

)
= kr(SL, S′L,U,Σ, L−1V)

= U∗
r (S′L)(SL)†Ur

= U∗
r (S′L)(L−1S†)Ur

= U∗
r S

′S†Ur

= kr(S, S′, U,Σ, V) (19)

C.2 Completion of proofs

To complete the proofs, as usual a 2D image is identified with a matrix whose entries correspond to pixel color
intensities. In our current setup, we further identify matrices with vectors by stacking together consecutive
rows of a matrix, that is

Ξ : Rm×k → Rmk

x11 x12 · · · x1k

x21 x22 · · · x2k

...
...

xm1 xm2 · · · xmk

 7→

x11
x12

...
x1k

x21
x22

...
x2k

...
xm1
xm2

...
xmk

Remark: A rotation and a flip are special cases of pixel permutations, which, under the above identification,
correspond to left multiplication by a permutation matrix, hence an orthogonal matrix.

23

Published in Transactions on Machine Learning Research (10/2024)

CiL-Stack : S′ L, S L 7→ S′
τi (L1)ij(L2)ττ ′ Tτ ′τ ′′ Wij (LT

1)jj′(LT
2)τ ′′τ ′′′ V (S)j′kτ ′′′ (20)

C.2.1 Proof of Proposition (1) and Proposition (4)

We build on the results of section (C.1). Let us repeat proposition (1) below.
Proposition 7 (CiL Symmetry Invariance). Our approach equation 7 is invariant under:

1. right matrix multiplication by orthogonal L equation 5 if W = 1 i.e. the identity matrix.

2. by a one-parameter family of (special) orthogonal Ls equation 5 if W ∈ SO(3). The specific L depend
on the details of weights in W, see the appendix section (B.1) for exact relations.

3. by 3 (6) symmetric L1,L2,L3, equation 5 iff W is symmetric. The specific L depend on the details
of weights in W, see section (B.1) for exact relations.

The expression in the parenthesis in proposition (1) refer to the case when we do not normalise V by its
determinant. In the default case we use V → V/det(V).

Proof: The point (1) above follows as a consequence of the discussions in section (C.1).

The proof of point (2) and (3) of proposition (1) builds on point (1) thereof, i.e. by adding respective
weights W to preserve specific symmetries and break others. Firstly, for claim (2) note that symmetries L
are preserved if and only if they commute with W ∈ SO(3) i.e. [W, L] = W L − LW = 0. Where L acts on
the input S → S L thus

CiL : S L 7→ S L W LTV

as L is orthogonal i.e. LLT = LT L = 1 the expression above is invariant if and only if the claim of
commutativity between W and L holds.

Note that any real orthogonal 3 × 3 matrix W ∈ SO(3) may be decomposed as W = UΛU−1 with one real
and a pair of two complex conjugate eigen-values all lying on the unit disk (Strang, 2003). Thus the real
eigen-values are either {+1,−1} and the complex ones are {a+ i b, a− i b}, a, b ∈ R s.t. a2 + b2 = 1. Moreover,
invertible normal matrices (such as W and L) commute if they have a shared set of eigen-vectors, i.e. they
share the same eigen-decomposition but for different eigen-values i.e. L = UΛLU

−1.

We normalize the network to symmetries with determinant of {+1} by adding to the layer V → V/det(V).
Moreover, due to the constraint of lying of the eigenvalues on the unit disk only one independent parameter
remains in ΛL i.e. is not fixed by the constraint of commuting with W . This free parameter in choosing ΛL

constitutes the one-parameter family of symmetries which is preserved - category II symmetry type-.

The argument for claim (3) of proposition (1) is analog to the one for claim (2). With the difference that
now W is a symmetric matrix. Any real symmetric matrix can be written as W = UΛUT for an orthogonal
U , which is referred to as the Spectral Theorem (Strang, 2003). Since U is real the eigenvalues of L are
constraint to {+1,−1} and the additional constrain of determinant one, results in the following four choices
for ΛL: diag(+1,−1,−1),diag(−1,+1,−1), diag(−1,−1,+1),diag(1, 1, 1). The latter is the identity matrix.
If we allow L’s with determinant of either {+1,−1} then one obtains eight different choices for L. As we
omit plus/minus the identity matrix this results in 3 (6) choices for L - category III -.

This concludes the proof of proposition (1).

Proof of proposition (4). Let an orthogonal transformation L act on the input S → S L and S′ → S′ L one
arrives at equation 20, where we use Einstein summation convention i, j, k = 1, . . . , 3 and τ, . . . , τ ′′′ = 1 , . . . , N
and where L1, L2 are orthogonal matrices transforming the color and stack dimension, respectively. Any
orthogonal L may be decomposed in L1, L2. The proof for L1 is the same as for proposition (1). As we
choose T ∈ RN×N to be generic the symmetry w.r.t. the orthogonal L2 is broken as a general matrix does

24

Published in Transactions on Machine Learning Research (10/2024)

not admit an orthogonal matrix it commutes with. However, since the weights of T are unconstrained those
are free to preserve symmetries in a self-supervised way.

This concludes the proof of proposition (4).

C.2.2 Invariance of equation (3); proof of proposition (2), proposition (3)

By equation (13), equation (3) is invariant under the right action of an orthogonal matrix, hence invariant
under orthogonal color changes (Figure 4(b)). This implies the statements of proposition (1).

Proposition (3) is a corollary of the results of (Weissenbacher et al., 2024), by noting that the graph matrix
commutes with orthogonal transformations R if and only if R preserves the graph structure of underlying
pixels, up to mirror flips and rotations by 90◦.

C.2.3 Rotations, flips, patchwise pixel permutations and multiplications and invertible color changes

Let us discuss the invariance of equations (6). By the above Remark and Propositions 5 and 6, χ1, χ2 and Kr

are invariant under rotations, flips, patchwise pixel permutations and, more generally, patchwise multiplications
by an orthogonal matrix R. The functions χ1 and kr are also invariant with respect to invertible color changes.

Regional color changes require some additional analysis.

C.2.4 Regional Color Changes

Let

S = (st1 , st1 , st1 , st2 , st2 , st2 , . . . , stN
, stN

, stN
)

Since χ1 is invariant under matrix row permutations (Proposition 5), we may assume without loss of generality
that the color changes apply to a fixed number k of rows in bottom of the matrix S, while the rest of the
rows above them are unchanged. In other words, we can define the regional color change operation

regL : Rn×3N → Rn×3N

S =
[
S1
S2

]
7→

[
S1

S2 · L

]

where the matrix S1 ∈ R(n−k)×3N is the upper part of S, the matrix S2 ∈ Rk×3N is the lower part of S and L
is an arbitrary diagonal 3N × 3N matrix, which acts by scaling the RGB channels of the fixed regions in the
sequence of images represented by matrix S2 (the notation · here refers to ordinary matrix multiplication).

Claim 1. The matrix of eigenvalues in equation 7 is in general, not invariant under regL.
Proof. Let us choose matrices

S =
[
S1
S2

]
, S′ =

[
S′

1
S′

2

]
such that

1. S1 and S2 are square orthogonal matrices of the same size.

2. diag(S′
1S

−1
1) ̸= diag(S′

2S
−1
2).

25

Published in Transactions on Machine Learning Research (10/2024)

regL(S′) · (regL(S))† =
[
S′

1 0
0 S′

2

]
·

[
(I + L2)−1 L · (I + L2)−1

L · (I + L2)−1 L2 · (I + L2)−1

]
·
[
S−1

1 0
0 S−1

2

]

=

 S′
1(I + L2)−1S−1

1 S′
1L · (I + L2)−1S−1

2

S′
2L · (I + L2)−1S−1

1 S′
2L

2 · (I + L2)−1S−1
2

(22)

Observe that

regL(S) =
[
S1

S2 · L

]
=

[
S1 0
0 S2

]
·
[
I
L

]
therefore

regL(S′) · (regL(S))† = (21)

=
[
S′

1 0
0 S′

2

]
·
[
I
L

]
·
([
S1 0
0 S2

]
·
[
I
L

])†

=
[
S′

1 0
0 S′

2

]
·
[
I
L

]
·
[
I
L

]†

·
[
S1 0
0 S2

]−1

=
[
S′

1 0
0 S′

2

]
·
[
I
L

]
·
[
I
L

]†

·
[
S−1

1 0
0 S−1

2

]

Since
[
I
L

]
is full rank, we have

[
I
L

]†

=
([

I
L

]T

·
[
I
L

])−1
·
[
I
L

]T

=

[
(I + L2)−1 | L · (I + L2)−1]

so we see that this implies equation 22. From equation 22 we see that the set of eigenvalues of regL(S′) ·
(regL(S))† is not independent of L; indeed, if that were the case then the trace of the above matrix (i.e. the
sum of its eigenvalues) would be the same for all L. However,

trace(regL(S′) · (regL(S))†) = (23)

=
∑

i

diag(S′
1S

−1
1)ii

1 + L2
ii

+
∑

i

L2
iidiag(S′

2S
−1
2)ii

1 + L2
ii

which is constant if and only if diag(S′
1S

−1
1) = diag(S′

2S
−1
2) (just take partial derivatives with respect to Lii).

Claim 2. The matrix Kr in equation 6 is in general, not invariant under regL.

Proof. Let us choose S, S′ satisfying the assumptions of the proof of Claim 1. Let us also consider the case
where r is the full rank of S, so that Kr = K = S′S†. Let (U,Σ, V) be a singular value decomposition of S.
Further let (UL,ΣL, VL) be a singular value decomposition of regL(S), that is the transformation of S under

26

Published in Transactions on Machine Learning Research (10/2024)

regional color changes operation regL defined above. If equation 6 were invariant under regL, then we would
have -for all diagonal L-

U∗S′S†U = U∗
L · regL(S′) · (regL(S))† · UL

which would imply that

trace(U∗S′S†U) = trace(U∗
L · regL(S′) · (regL(S))† · UL)

and therefore

trace(S′S†) = trace(regL(S′) · (regL(S))†)

for all diagonal L, since trace(AB) = trace(BA) for any matrices A,B and since U∗U = U∗
LUL = I.

However as we saw in the proof of Claim 1, trace(regL(S′)·(regL(S))†) is not independent of L; a contradiction.

27

	Introduction
	Background
	Reinforcement Learning & Symmetries
	Dynamic Mode Representation
	Leading Rank Representation

	An Adaptive Color Invariant Layer
	Theoretical Aspects
	On the importance of reducing an abundance of symmetry

	Empirical evaluation
	Modified Minigird Lavacrossing to Test Color-sensitivity & Generalisation
	Procgen Benchmark & Distracted Deepmind Control suite
	Limitations

	Related Work
	Conclusions
	Modified Lavacrossing Environment - Add-On
	Color Generalisation

	Technical Details
	Implementation of Symmetry Groups
	SO(3) group - Category II
	Symmetric Weight Matrices - Category III
	Numerical Invariance: torch.svd

	Normalized Rewards in Procgen
	Hyperparameters

	Proofs of Invariance
	Preliminary steps
	Completion of proofs
	Proof of Proposition (1) and Proposition (4)
	Invariance of equation (3); proof of proposition (2), proposition (3)
	Rotations, flips, patchwise pixel permutations and multiplications and invertible color changes
	Regional Color Changes

