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Abstract

We develop a formal algorithmic framework to compute multiscale pixel spa-
tiotemporal information flows which capture, in an unbiased manner, salient causal
relationships between pixels across space and time. Real spatiotemporal dynamical
systems such as cellular morphodynamics are inherently complex, nonlinear and
evolve over time in response to feedbacks. This makes it highly challenging to
directly model, simulate, or fit observed phenomena from first principle physics.
Oftentimes neither the salient variables nor the key relationships are known a
priori to include in a mathematical model. Even if a model was possible, we may
be limited in our ability to sample the necessary information for exact system
identification and verification. Alternatively, causal measures have been developed
to identify potential causal relationships statistically from only observational time-
series. However such measures have largely only been studied for unstructured 1D
timeseries where objects-of-interest have been pre-segmented and tracked over time.
This restricts their application either to analyse general video dynamics, where
individual objects are impossible to define or difficult to segment, or to understand
potential causal relationships between subparts of objects. Here we propose a
formal definition of a pixel spatiotemporal information flow as a spatiotemporal
derivative of a pixel intensity timeseries to extract the dense pixel-to-pixel informa-
tion transfer in 2D + time videos using any desired 1D causal measure, in a general
and multiscale manner. Applying our framework, we discover salient pixel-to-pixel
information highways in videos of diverse phenomena spanning traffic and crowd
flow, collision physics, fish swarming, moving camouflaged animals, human action,
embryo development, cell division and cell migration.

1 Introduction

This work considers the problem of extracting salient causal dynamic patterns from video. Specifically,
we are interested in capturing whether an individual pixel’s intensity changes over a given time interval
causally influences another pixel’s intensity changes at a later timepoint.

Capturing semantically meaningful video dynamics over arbitrary time intervals is challenging. In
general, videos are capture the temporal evolution of real spatiotemporal dynamical systems which
are inherently complex, nonlinear, and nonstationary. Moreover videos may be affected by acquisition
artifacts such as camera shake. Consequently videos cannot generally be described by first principles
physical differential equations. Over short-time intervals, [t, t+ δt], e.g. frame-to-frame changes,
optical flow is the most popular approach in computer vision to capture the potential influence
of individual pixels on its neighbors through intensity variation. Many methods of optical flow
estimation have been proposed including block-based matching (Liu and Delbruck [2018]), gradient
based methods (Farnebäck [2003]) and learning based methods (Dosovitskiy et al. [2015]). For longer-
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time intervals over many frames, existing works have explored using the short time dynamics captured
by optical flow as a supplementary input to deep learning architectures to improve performance in
applications such as action recognition (Sun et al. [2018]) and object segmentation (Lamdouar et al.
[2020]). However deep learning training is expensive and limited by the availability of appropriate
training data. In addition, for novel scientific discovery in fields such as biology, labelled data are
often too expensive to acquire, ambiguous or outright impossible to annotate. Thus optical flow and
statistical modelling remains an important tool for applications such as cellular tracking and inference
of cell-cell interaction networks (Zhou et al. [2019]).

Classically, optical flow computes for every pixel the physical displacement (∆x,∆y) to a pixel
position (x, y) in the current video frame at time t such that the pixel intensity I(x+∆x, y+∆y, t) ≈
I(x, y, t+1), is preserved in the next video frame at time t+1 and pixel position (x, y). The (∆x,∆y)
optical flow displacement thus represent a pixel-wise ‘causal information flow’ where the magnitude
measures the ‘strength’ of interaction between the pixel at (x, y) and neighboring pixels in the
(∆x,∆y) direction. However the physical displacement of individual pixels between two timepoints
is only one process contributing to all possible ‘causal information flows’ within a video. In particular,
displacement captures only the egocentric motion of single actors and misses communal interactions
between several actors within a video such as: changes in the walking of pedestrians to avoid other
pedestrians and traffic; the changing traffic on highways; the physical collisions between snooker
balls; the influence of cellular crowding in confluent tissue; and the coordination between individual
body parts to execute a stereotypic action. Importantly these interactions are complex; a temporal
delay between interacting pixels requires observation over multiple frames. In addition, interactions
may be transient or sporadic. In all such cases their detection over a given time interval can easily be
under- or over-estimated even when the frame-to-frame optical flow is temporally averaged.

Alternatively, statistical causal measures for measuring the information transfer between 1-
dimensional (1D) timeseries have been developed and extensively studied in scientific disciplines
such as econometrics (Granger [1969]), ecology (Sugihara et al. [2012], Detto et al. [2012]) and
neuroscience (Seth et al. [2015]). Unlike optical flow, these measures do not require a physical
notion of information. Instead a score of causal information is provided by assaying the extent of
co-fluctuation between individual timeseries when observed over a given window of time. A plethora
of causal measures have been developed and they can generally be classified into two categories: func-
tional and effective connectivity. Functional connectivity defines causal information by measuring
observable statistical dependencies among timeseries and includes well-known families of methods
such as correlation, coherence, Granger causality, and transfer entropy (Bastos and Schoffelen [2016]).
Effective connectivity defines causal information based on the influence on activity, and depends
on an explicit parametric model of the interaction. Examples include structural causal models and
dynamic differential covariance (Valdes-Sosa et al. [2011], Chen et al. [2022]).

In this paper, we investigate whether by considering each pixel as a 1D timeseries and using existing
1D causal measures can better discover the complex salient dynamic patterns over arbitrary time
intervals of any video with minimal prior assumptions. To do so, we developed a generally applicable
and multiscale algorithmic framework, pixel spatiotemporal information flows which formally defines
how to adapt 1D functional and effective connectivity measures to compute meaningful information
flows at individual pixels in real 2D videos. We note this is not as trivial as one might think.
Images are structured data such that individual pixels are intrinsically correlated and causally affect
any dynamics in their immediate surrounding pixels! As it was unclear to us which 1D causal
measures, if any, would be optimal, we operationalised three 1D causal measures, two examples of
functional connectivity (maximum cross-correlation, conditional Granger causality) and one example
of effective connectivity (dynamic differential covariance). We then applied these pixel spatiotemporal
information flows together with the only literature example of a pixel-based information flow we
could find, probabilistic canonical correlation analysis (PCCA) (Yamashita et al. [2012]) to a broad
variety of real world datasets to discover salient pixel-wise information highways and information
sources/sinks. First, we uncover dynamic patterns in a crowd flow segmentation dataset (Ali and
Shah [2007]) to qualitatively and quantitatively compare and highlight differences to mean optical
flow. Second, we demonstrate the generality of information flows with diverse examples of video
dynamical systems from action recognition (Soomro et al. [2012]), collision physics (Yi et al. [2018]),
developmental biology (Tomer et al. [2012]), and cell migration (Ulman et al. [2017]). Finally, we
compared the ability of optical and information flows on the challenging task of segmenting moving
camouflaged animals in the wild (Lamdouar et al. [2020]). We find pixel spatiotemporal information
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Figure 1: Schematic illustrating the four key steps and mathematical notation used in the definition
and computation of a pixel spatiotemporal information flow. For more details see section 3.

flows are superior than optical flow in every application where the physical pixel displacement is not
explicitly necessary by better leveraging any temporal cues within the given time interval.

2 Related Works

We briefly review existing literature that attempt to discover causal relationships in 2D videos.

Pixel-wise Causal information flow as an alternative to dense optical flow. Yamashita et al.
[2012] first introduced the notion of a pixel-based causal flow analogous to dense optical flow for
2D videos and is still the only literature example we could find. They exclusively considered the
extension of Granger causality, a functional connectivity measure to the case of a RGB pixel by
showing an equivalence to probabilistic canonical correlation analysis (PCCA). Only qualitative
comparison to Horn-Schunk optical flow was shown for a few selected examples of the same crowd
flow segmentation dataset (Ali and Shah [2007]) we use and only at a single spatial scale. It
is thus unclear whether PCCA flow is simply an improved optical flow, whether it can discover
dynamic patterns dense optical flow could not, and if other causal measures behave the same or could
offer additional insights. Addressing these outstanding important questions was the main technical
motivation for this paper. Importantly, PCCA specifically only operationalises Granger causality. A
formal algorithmic framework was therefore needed to operationalise other 1D causal measures into
its equivalent pixel-based causal flow.

Causal inference of object relationships in videos. Much literature exists related to the inference of
causal relationships between ‘objects’ in videos. These ‘objects’ are any predefined discrete entity
including keypoints, segmentated objects or superpixels - any representation that is not individual
pixels. 1D timeseries of any property of these objects are then extracted after temporal tracking.
These timeseries can then simply be treated with existing methods for the desired 1D causal measure
- typically this is just Granger causality (Narayan and Ramakrishnan [2014], Prabhakar et al. [2010],
Swears et al. [2014]). These methods can identify potential causal relationships in video, however
their dependence on knowing a priori the exact objects of interest means they are unsuited to general
application to discover potentially novel causal information flows. Any causal relationships inferred
are also clearly limited at the level of object specification. For example if only entire humans
are segmented, we cannot infer anything about the coordinated movement of joints in an action
recognition video.

Inference of functional connectivity networks Notions of functional connectivity are popular in
biology, including in the fields of neuroscience and cell biology where the exact causality is unknown
and the system cannot be experimentally perturbed. As in the machine learning literature, works in
this area focus on finding potential functional connectivity networks between discrete, predefined
entities such as physical partitions of the brain (Bastos and Schoffelen [2016], Noble et al. [2019]) or
between segmented cells (Zamir et al. [2022]) and superpixels (Noh et al. [2022]). Here again any 1D
causal measures can be directly applied to any extracted average 1D timeseries of object properties.
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3 Methods

3.1 Pixel spatiotemporal information flow

Given a grayscale input video, X ∈ RH×W×T with each video frame of size H ×W pixels, and T
total frames, let Xi,j,t denote the intensity timeseries of the pixel at position (i, j) ∈ [0, H − 1]×
[0,W − 1] over a time interval ∆t with start time t0 i.e. t ∈ [t0, t0 +∆t]. The pixel spatiotemporal
information flow at the pixel position (i, j) is a 2-vector and the spatial gradient ∇Ii,j of a scalar-
valued ‘causal information’ measure, Ii,j . Thus an input video X ∈ RH×W×T yields a pixel
spatiotemporal information flow, ∇I ∈ RH×W×2. We illustrate the concept schematically with the
same mathematical notation in Figure 1.

The spatial gradient, ∇Ii,j is evaluated considering the set of all pixel timeseries within a P ×P pixel
neighborhood centered around (i, j), i.e. Xi,j,t = {X(i+δi,j+δj ,t)|δi = −P/2, ..., P/2 and δj =
−P/2, ..., P/2}. Note that each pixel timeseries is a 1D timeseries with respect to time. For each
pixel timeseries in the spatial neighborhood we compute the causal information Ii,j as the causal
influence of its own past intensity values to its present intensity values, conditioning out any influence
from all other pixel timeseries according to the chosen 1D causal measure of interest (see section 3.2
for mathematical details of those measures implemented in this study). This produces a P ×P matrix
of causal information values I = {I(i+δi,j+δj)|δi = −P/2, ..., P/2 and δj = −P/2, ..., P/2}. The
spatiotemporal information flow, ∇Ii,j is then computed as the total sum of causal information in I
multiplied by an orientation vector, Oi,j with the following x−, y− components:

O(i,j),x = (−1)

P/2∑
δj=1

Ii,j−δj +

P/2∑
δj=1

Ii,j+δj (1)

O(i,j),y = (−1)

P/2∑
δi=1

Ii−δi,j +

P/2∑
δi=1

Ii+δi,j (2)

∇Ii,j =
∑
δi,δj

Ii+δi,j+δj

√
O2

(i,j),x +O2
(i,j),y (3)

This definition following (Yamashita et al. [2012]) allows us to quantify the mean spatial direction of
causal information across the central (i, j) pixel weighted by the total causal influence in the pixel
neighborhood. Note in Eqn.1 and 2 in contrast to (Yamashita et al. [2012]), the pixel offset indices
are all positive in the summation symbol as we incorporate the sign in the summand.

In practice, to reduce computational time, we only compute ∇Ii,j for all non-overlapping P × P
neighborhoods to generate ∇I for the input video, and use linear interpolation to resize the resulting
vector field to the size of the video frame i.e. ∇I ∈ RH×W×2. Color RGB videos are first converted
to grayscale videos for computation.

3.2 Implemented causal measures as information flows

We implement three literature causal information measures as pixel spatiotemporal information flows
to supplement the PCCA flow of (Yamashita et al. [2012]) using the same mathematical notation
introduced in section 3.1 as described below:

Maximum Cross-Correlation (max. CC). Cross-correlation measures the similarity between two
timeseries over different temporal lags. The peak position offset of the maximum spatial cross-
correlation between a pixel neighborhood at time t and the same neighborhood in the successive
frame at time t+ δt is commonly used to extract dense optical flow in fluid mechanics and biology
where it is more commonly referred to as particle image velocimetry (Adrian [2005]). Here we
extend correlation into a causal measure for pixel timeseries. Consider Xi,j,t, the set of all pixel
timeseries in a P × P neighborhood around (i, j) over a time interval [t0, t0 +∆t]. Construct from
Xi,j,t, the m-frame lagged signal denoted Xi,j,t = {X(i+δi,j+δj ,t)|t ∈ [t0, t0 + ∆t − m]} as the
‘past’ timeseries of each pixel and the corresponding ‘present’ timeseries of each pixel and of equal
temporal duration, Xi,j,t = {X(i+δi,j+δj ,t)|t ∈ [t0 +m, t0 +∆t]}. We then define the P × P max.
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CC causal information matrix, ICC as the maximum 3D (space + time) correlation value over time,

ICC = max
t

CC(t) ∈ RP×P (4)

and

CC(t) =
∑

δ′i,δ
′
j ,δ

′
t

Xi+δi′,j+δj′,t−m+δt′Xi,j,t,∈ RP×P×(∆t−m) (5)

computed over spatial and temporal lags using ‘same’ padding. Note ICC is only valid when m > 0.
When m = 0, ICC will be the identity matrix as every pixel is maximally correlated with itself and
the pixel spatiotemporal information flow will be 0 everywhere.

Conditional Granger causality (cGC). Granger causality (GC) establishes that a variable, x is
‘causal’ to another variable y if the additional inclusion of the history of x reduces the uncertainty in
the prediction of future values of y. First conceptualized by (Wiener [1956]) GC was operationalized
using vector autoregressive (VAR) models by (Granger [1969]). Later, (Geweke [1984]) extended
the VAR model to condition out the confounding effect of a third variable z which x and y may
both depend upon. The modified method is called conditional Granger causality (cGC). Due to the
conceptual simplicity, GC variants are the most popular class of causal measures for testing temporal
precedence amongst 1D timeseries (Bressler and Seth [2011]). To adapt the cGC setup to pixel
timeseries, consider Xi,j , the set of all pixel timeseries in a P × P neighborhood around (i, j) over a
time interval [t0, t0 +∆t]. We will test for each pixel timeseries the reduction in fitting error when
predicting the ‘present’ timeseries when including (full model) or excluding (reduced model) the
‘present’ timeseries in addition to all ‘past’ timeseries up to a maximum lag of mmax frames as
independent regression variables. Mathematically, construct from Xi,j,t, the m-frame lagged ‘past’
timeseries denoted Xi,j,t−m = {X(i+δi,j+δj ,t)|t ∈ [t0+mmax−m, t0−m+∆t]}, and the ‘present’
timeseries which we wish to predict denoted Xi,j,t = {X(i+δi,j+δj ,t)|t ∈ [t0 +mmax, t0 + ∆t]}.
The pair of full and reduced VAR regression models in matrix notation for all pixel timeseries is then

Xi,j,t = Am=0Xi,j,t +
∑

m=1,...,mmax

BmXi,j,t−m + Efull
i,j,t (6)

Xi,j,t =
∑

m=1,...,mmax

CmXi,j,t−m + Ereduced
i,j,t (7)

where A, B, C denote respective submatrices of the constant coefficients fitted by least squares ridge
regression and E the residual error timeseries. The P × P cGC causal information matrix, IcGC is
computed following (Geweke [1984]) as the log variance ratio of reduced and full residual errors.

IcGC = ln
var(Ereduced

i,j,t )

var(Efull
i,j,t )

∈ RP×P (after reshaping) (8)

where the variance operation is over time.

Dynamic differential covariance (DDC). The VAR models that operationalise Granger causality
can be seen as modelling a set of timeseries as a state-space dynamical system (Barnett and Seth
[2015]). Instead of VAR which requires specifying a maximum lag, (Chen et al. [2022]) proposed a
linear ordinary differential equation (ODE) dynamical system could compute causality. They showed
that the least-squares fitted ODE model coefficients are a measure of causal effect between every pair
of 1D timeseries conditional on all other timeseries. They termed this measure dynamic differential
covariance (DDC). We adapt DDC to consider Xi,j,t, all pixel timeseries in a P × P neighborhood
around (i, j) over a time interval [t0, t0 +∆t]. The P × P DDC causal information matrix, IDDC is
defined as the matrix formed by retrieving just the causality measure between desired timeseries pairs
in the full pairwise DDC computed according to (Chen et al. [2022]):

dXi,j,t

dt
= WXi,j,t and DDC = W ∈ RP 2×P 2

(9)

IDDC = {Wk,k|k = 1, ..., P 2} ∈ RP×P (after reshaping) (10)

where dXi,j,t/dt = {dX(i+δi,j+δj ,t)/dt} is the time derivative of the timeseries, W is the constant
coefficient matrix estimated using ridge regression and k is the matrix indices of W.
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Figure 2: Comparison of the mean single- and multi-scale optical flow with four spatiotemporal
information flows. Row 1: highway traffic. Row 2: pedestrian and motor traffic at a 4-way junction.
Row 3: Multistory, multi-directional highway traffic. Row 4: Anti-clockwise rotating fish swarm.
Row 5: two way crowd movement indoors. Row 6: cheerleading performance in a sports arena. Row
7: visitors in an art gallery. Direction of flow is colored per the color wheel

Probabilistic Canonical Correlation Analysis (PCCA). We briefly describe PCCA and defer the
reader to (Yamashita et al. [2012]) for mathematical details. (Yamashita et al. [2012]) considered how
to apply Granger causality, defined originally for the univariate case, to compute a causal measure
between two pixels when each pixel is described by a multivariate timeseries (e.g. in a color image,
a pixel is described by three timeseries; red, green and blue). They showed that correcting for the
redundant intercorrelations between the multivariate features was the same as using PCCA (Fujita
et al. [2009]). This modification allowed them to consider further block causal flow where the (i, j)
pixel is replaced by a P × P pixel block centered at (i, j). Neighboring pixels are analogously
replaced by neighboring P ×P pixel blocks. The information flow computation is the same as Eqn.3.
We note PCCA is undefined for univariate grayscale images. For comparison here for grayscale video
we use the P × P pixel block definition for PCCA pixel spatiotemporal information flow.

3.3 Multiscale pixel spatiotemporal information flow

The causal information flow between pixels is dependent in part on the spatial separation of individual
interacting objects in the video. Consequently a prespecified P × P neighborhood may be too
small or too large a window to capture all potential causal relationships. Therefore we propose
to compute the pixel spatiotemporal information flow in a multiscale manner. We note it is not
fully clear how exactly to do this (Valdes-Sosa et al. [2011]). Unlike optical flow which yields a
physical displacement vector, information flow vectors do not have physical meaning. In favor of
keeping things simple we implemented multiscale flow using the same Gaussian image pyramids
as used in multiscale optical flow schemes and an average pooling scheme to combine the flows
from different scales. Given a grayscale input video sequence, X ∈ RH×W×T with a frame
size of H × W pixels, T total frames, and an array of N desired downsampling factors, s =
{s1, s2, ..., sN} of increasing magnitude, compute the dowsampled video sequences with linear
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Figure 3: Perturbations of a traffic flow by inverting or rotating the pixel intensity inside a fixed
region of interest (red box), 50x50 pixels in size and the computed flows and their predicted perturbed
region (purple box). Direction of flow is colored per the color wheel

interpolation, Xs = {σ1(Xs1) ∈ RH/s1×W/s1×T , σ2(Xs2) ∈ RH/s2×W/s2×T , ..., σN (XsN ) ∈
RH/sN×W/sN×T } where σ(·) denotes an optional isotropic Gaussian smoothing with the specified
smoothing σ. For each video sequence compute the respective information flow fields, ∇I =
{∇Is1 ∈ RH/s1×W/s1×2,∇Is2 ∈ RH/s2×W/s2×2, ...,∇IsN ∈ RH/sN×W/sN×2}. The multiscale
pixel spatiotemporal information flow, ∇Ims = mean{∇I} is the mean flow after first linearly
upsampling individual flows to the image dimensions of the largest scale, s1. We note unlike
optical flow, no scaling factors are applied to the upsampled flows before taking the mean. We
reason that the 1D causal measures are already a ‘normalised’ non-physical unit and independent
of the magnitude of the image pixel intensity. Consequently the magnitudes of information flows at
individual scales are all comparable and should not be weighted. Using the mean as the agglomerative
function is thus in the spirit of obtaining the net causality across scales at each pixel position as
well as a quantitative measure of a spatially-persistent causality. In Appendix A we illustrate how
this multiscale implementation allows us to fully capture the highway traffic flow filmed from a
perspective view such that cars further back are much smaller than those in the front. In contrast the
single scale information flows selectively captured only those cars in the back, middle or front. The
remainder of the paper always refers to the multiscale pixel spatiotemporal flow implementation.

4 Experiments

We conduct qualitative and quantitative experiments on various video datasets to verify our implemen-
tation and demonstrate the utility of the four pixel spatiotemporal information flows in comparison to
classic optical flow. Optical flow was computed with the algorithm of (Farnebäck [2003]) which is
readily available in the OpenCV library at both single and multiple scales.

4.1 Crowd flow segmentation dataset

4.1.1 Crowd flow information flows

Crowd flow segmentation aims to extract salient motion patterns of high density moving objects
where individual objects cannot be independently identified and segmented. Following (Yamashita
et al. [2012]) we computed optical and information flows for the dataset of (Ali and Shah [2007])
comprising 30 diverse crowd flow videos, including highway traffic, pedestrian crossing, fish swarms
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Table 1: Comparison of optical and information flows to detect perturbed video regions on 4 different
perturbations of the crowd flow segmentation dataset. Bold numbers indicate the best value in column.

Invert rot90 rot180 rot270
Flow mAP25 IoU25 mAP25 IoU25 mAP25 IoU25 mAP25 IoU25

Single-scale optflow 36.9 35.3 93.3 70.4 93.3 68.6 93.3 70.4
Multi-scale optflow 37.6 29.2 100.0 64.2 96.7 62.2 100.0 63.8

max. CC 74.8 46.4 84.7 51.3 90.6 51.8 84.7 52.1
cGC 16.3 12.8 30.1 22.6 22.6 19.8 27.2 21.1
PCCA 14.4 12.1 95.3 44.8 100.0 46.4 100.0 46.4
DDC 47.8 22.6 93.3 55.3 93.3 54.5 93.3 55.0

Figure 4: Comparison of the mean single- and multi-scale optical flow with four spatiotemporal
information flows. Row 1: collision scence. Row 2: cartwheel scene. Row 3: Drosophila embryo.
Row 4: cell divsion. Row 5: cell migration. Direction of flow is colored per the color wheel

and cheerleading. For all videos, we use the full temporal duration, a 3x3 pixel neighborhood, and
downsampling scale factors s = {1, 2, 4, 8} for multiscale flows. We use a maximum lag mmax of
1 frame for max. CC, cGC and PCCA. Figure 2 shows that mean optical flow (1st two columns)
oversmooths motion patterns over time phasing out any transiently occurring patterns or patterns
involving only small pixel displacements. The smoothing will be worse, the longer the video duration.
In contast, spatiotemporal information flows better attends to the distinct motion patterns present
as evidenced by their ability to recover more homogeneous and spatially complete ‘information
highways’. Notably, due to differences in the modeling assumptions of individual causal measures,
the different information flows do exhibit differences in their behavior. Maximum cross-correlation
(max. CC) appears to be midway between mean optical flow and DDC flow. It can produce more
homogeneous representation of dynamical patterns but can also be sensitive to motion artifact. In
the multi-story highway example (Row 3), max.CC over enhances the top-right static buildings. For
fish swarming (Row 4) max.CC fails to find the dominant anti-clockwise swirling in the second
half of the video. Meanwhile, conditional Granger causality (cGC) is highly sensitive and finds all
potential information sources as seen by the sharp imprintings of the zebra crossing (Row 2) and
individual people (Row 5) in the final flow. However it also appears cGC is less able to ‘weight’ the
relative intensity of motion patterns within a single video. This results in blurring or overemphasis
of information highways when the information is a composition of transient dynamical patterns.
Notably, under cGC the full stadium (Row 6) and art gallery (Row 7) is highlighted. Lastly PCCA and
DDC appear similar and strikes a good balance between max.CC and cGC. They find the dominant
flow patterns whilst better suppressing less interesting or background sources of motion variation.
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Table 2: Comparison of performance of optical and information flows to segment moving camouflaged
animals over a range of IoU cutoffs. Bold highlights the best value per row.

Cutoffs Single-scale optflow Multi-scale optflow max. CC cGC PCCA DDC
mAP5 19.9 19.3 10.9 17.7 21.3 22.9
IoU5 4.2 2.2 2.2 4.8 5.0 3.3

mAP15 6.7 8.0 8.5 13.6 15.5 13.7
IoU15 4.0 2.1 2.2 4.7 4.9 3.2

mAP25 3.9 3.9 5.5 9.8 10.6 7.7
IoU25 3.6 1.9 2.0 4.3 4.6 2.8

This is nicely seen in the case of the stadium where both highlight the walkway between the seated
spectators instead of highlighting everything (optical flow and cGC) or nothing (max.CC).

4.1.2 Perturbed crowd flow information flows

To understand quantitatively the behavior of the different information flows, we generated perturbed
versions of the crowd flow segmentation dataset by inverting the pixel intensities in the central
50x50 region of each video every frame or rotating this region by 90, 180, 270 degrees. Flows were
computed with the same parameters as previously. Figure 3 shows an example of the perturbation and
the computed flows. Visually all flows detect a difference in the flow direction after region rotation.
However flow differences appear less apparent for intensity inversion. We posed the detection of
the perturbed region as a bounding box detection problem and measured the detection performance
of each flow. Predicted bounding boxes were obtained by thresholding the magnitude difference in
flow between the unperturbed and perturbed video and keeping the largest connected component.
Table 1 summarises the detection results. When rotated, optical flow and PCCA optimized for motion
flow performed best. However both max. CC and DDC perform competitively. Notably when pixel
intensity was inverted such that the motion remained the same, cGC and PCCA performed the worst
but both max. CC and DDC outperform optical flow variants. Averaging the mAP across all four
perturbations, max. CC was best (83.7), then multi-scale optical flow (83.6), DDC (81.9), single-scale
optical flow (79.2), PCCA (77.4) and cGC worst (24.1).

4.2 Information flows on diverse motion videos

The crowd flow videos primarily exhibit dynamic patterns driven by the persistent, unidirectional
motion of objects. we therefore extracted spatiotemporal information flows next for videos exhibiting
diverse dynamics and acquired from different sources to test generality using the same parameters as
for crowd flow, (Figure 4, see Appendix B for links to the datasets used). On simulated collisions
of objects (Yi et al. [2018]) information flows accurately extract the collision information highways
irrespective of whether the objects were initially present or subsequently have left the frame. Optical
flow could only track the object corners, (Row 1). On complex human actions like a cartwheel,
information flows capture coordinated body part motion to recreate a ‘flow’ of key snapshot postures
(Row 2). Drosophila (fruitfly) embryos undergo characteristic, motion patterns during development
for correct gene patterning (Alberts [2017]). These patterns occur in sequential order, are transient,
and comprise both small and dramatic motion patterns, separated by periods of stationarity (Zhou
[2017]). Optical flow and max. CC capture just the largest motion patterns, cGC capture the subtle
vibration in the stationary periods, only PCCA and DDC capture a superposition of all occurring
patterns (Row 3). In cell division, where motion is mostly stochastic morphological fluctuations with
division occurring over only a brief moment, only the dynamical systems based information flows
(cGC, PCCA and DDC) recovered the circular flow of cell division. Lastly, we tested cell migration
where individual cells also actively change shape whilst moving (Row 5). Optical flow obtains a
patchy flow of the migration. In contrast information flow better extracts spatiotemporally consistent
histories of both the subcellular morphodynamics and the cell migration trajectory of the cell centroid.
In conclusion, information flows are generally applicable, and demonstrate an enhanced capacity to
retain temporal history and uncover salient dynamic patterns even over long video durations and for
complex nonlinear dynamics.
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Figure 5: Comparison of the mean single- and multi-scale optical flow with spatiotemporal informa-
tion flow detection of different camouflaged moving animals in video frames. Red box = ground truth.
Purple box = detection by binary thresholding of flow and running connected components. Direction
of flow is colored per the color wheel.

4.3 Moving camouflaged animals (MoCA) dataset

The previous experiments all used the full available temporal duration of a given video (ranging
from 10s to 1000s of frames) to compute flows. From these experiments we can conclude that
information flows better attend to salient motion patterns in a video over long times. From the
extensive literature on applying causal measures to 1D timeseries we know that these measures
are expected to perform optimally when dynamic processes are stationary and when timeseries are
sampled over long durations e.g. DDC (Chen et al. [2022]). Our last experiment seeks therefore to
assess whether information flows could also even offer advantages over very short timeseries of a few
frames. This is important practically as events may be sporadic or chaotic. We conduct the test with
the task of detecting camouflaged animals through their subtle movements. The moving camouflaged
animals (MoCA) is a comprehensive dataset with 141 videos of animals. Each video is of a single
animal instance which lasts 10s to 100s of frames. The animal has been annotated with bounding
boxes every 5 frames. We test the ability of individual flows to detect the animal in every annotated
frame given only a video subsequence of temporal duration 11 frames. 11 frames was chosen as 5
frames either side of the annotated frame. Bounding boxes were generated from the magnitudes of
the computed information flows by binary thresholding (median + std magnitude cutoff). Removal
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of overly small connected component regions (<250 pixels) followed by morphological dilation
(disk kernel with 3 pixel radius) and morphological holefilling was used to postprocess the initial
binarisation before bounding box extraction for each remaining individual connected components.
No non-max bounding box suppression as commonly used in detection applications was used. The
majority of MoCA videos exhibit significant camera motion which required sophisticated registration.
As the correction of these camera-related acquistion artifacts is not in the scope of this paper, we
computed flows only on a subset of 40 videos for which we manually identified to have little to no
visible camera artifact (see Appendix B). Notably, these videos exhibit animals of different sizes and
shapes. Frames do not necessarily exhibit any animal motion - the majority in fact does not. We
did not however constrain prediction and evaluation to only frames of animals moving as it does not
affect fair comparison between the different flows, and we find it also illuminating to understand the
extent of the dataset that cannot be detected using any form of flow. To make the total computation
time tractable for the total number of frames in this reduced 40 video dataset (2,321 total annotated
frames), we resized all videos whilst preserving the aspect ratio so that the height of all video frames
was 512 pixels. We then computed flows on the resized videos with the same parameters as for crowd
flow. Table 2 shows the quantitative detection results for different IoU cutoffs. Notably cGC, PCCA,
DDC information flows significantly outperform and are more robust than optical flow. DDC achieves
the highest mean average precision of 22.8 with IoU cutoff of 5. Across all cutoffs, PCCA is best
overall and is always better than cGC but DDC performs competitively. To investigate the globally
low IoU cutoffs we visualised the detections (purple boxes) relative to the ground truth bounding box
(red box), Figure 5. We found that the low cutoffs were justified. Contrary to detecting the contour of
the whole animal, information flows by definition targetly aims to isolate the precise motion sources
and sinks as evidenced by their flow magnitude being localised and near to the moving arms, legs
and heads of individual animals. We note from the fox and hedgehog examples that cGC, PCCA
and DDC compute less noisy flows even when motion was minimal and to generate significantly
reduced extraneous bounding boxes due to background motion. In the lichen katydid example, all
four information flows precisely focus and isolate the organism’s moving appendages. A similar
pattern is found in the snow leopard case. Lastly, all methods perform well when there is clear relative
motion of the animal to its background such as in the pygmy seahorse case. Overall the qualitative
visualisation show that PCCA and DDC are the best and nearly inseparable. We hypothesise from the
lichen katydid and pygmy seahorse examples where PCCA and DDC differ the most, that the use of
a pixel block-based flow in PCCA yields slightly larger bounding boxes that help it to overlap better
with the ground-truth annotations which are based on the full animal.

5 Conclusion

In conclusion, we have introduced a formal notion of a multiscale pixel spatiotemporal information
flow in this paper which enables the operationalisation and application of 1D causal measures to
discover causal information relationships amongst individual pixels in 2D + time video over short
and long times. We demonstrated through application to diverse video datasets that these information
flows possess the ability to capture community structure in complex dynamical systems, and provides
a more robust and informative alternative to standard computer vision optical flow approaches. For
simplicity, we implemented our multiscale framework based on Gaussian image pyramids used in
optical flow estimation and combined the flows from different scales using average pooling. Future
work will investigate more optimal methods to combine information flows across individual scales.
We would like to investigate if the spatial Gaussian pyramids could also be extended to time to allow
the combination of spatiotemporal flows computated over different sized time intervals in addition
to different spatial scales. We hypothesise the resultant flow may better adapt to the spatiotemporal
complexity of the video e.g. to better handle intervals of minimal movement. Encouraged by the
performance of the DDC flow based on a linear ODE system with constant coefficients, we would
like to also experiment with using more complex ODE models to better handle nonlinear dynamics.

6 Code Availability

An extensible Python library for implementing the four multiscale pixel spatiotemporal information
flows in this paper is available in the following GitHub, https://github.com/DanuserLab/
spatiotemporal_information_flows.
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A Information flow at different scales

Figure 6: Visualisation of the individual information flow at each of the 4 dowsampling factors
compared to the multiscale flow, the average of the 4 for dynamic differential covariance flow.
Direction and magntiude of flow is colored per the color wheel.

B Datasets used

Below are links to the datasets used in this paper.

• Crowd flow segmentation dataset (Ali and Shah [2007]),
https://www.crcv.ucf.edu/research/data-sets/crowd-segmentation.

• CLEVRER: CoLlision Events for Video REpresentation and Reasoning dataset for videos
of collisions, (Yi et al. [2018]). http://clevrer.csail.mit.edu/.

• HMDB: a large human motion database for cartwheel example, (Kuehne et al.
[2011]). https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-
database/#Downloads.

• Tomer et al. [2012] supplementary movie 3 for Drosophila fruitfly embryo development
example.

• HeLa cells on a flat glass (DIC-C2DH-HeLa.zip) for cell divison and Glioblastoma-
astrocytoma U373 cells on a polyacrylamide substrate (PhC-C2DH-U373.zip) from the cell
tracking challenge, (Ulman et al. [2017]). http://celltrackingchallenge.net/2d-datasets/

• MoCA : Moving camouflaged animals dataset, (Lamdouar et al. [2020]).
https://www.robots.ox.ac.uk/ vgg/data/MoCA/. We specifically used the following
40/141 videos with least camera artifacts for evaluating animal detection: arctic_fox_2,
arctic_wolf_0, crab_2, dead_leaf_butterfly_1, desert_fox, egyptian_nightjar, flatfish_3,
flower_crab_spider_0, flower_crab_spider_1, flower_crab_spider_2, fossa, grasshopper_1,
grasshopper_2, hedgehog_1, hedgehog_3, hyena, jerboa, jerboa_1, lichen_katydid, meerkat,
mongoose, moth, pallas_cat, polar_bear_3, potoo, pygmy_seahorse_4, rabbit, rodent_x,
rusty_spotted_cat_0, rusty_spotted_cat_1, smallfish, snow_leopard_4, snow_leopard_5,
snow_leopard_10, snowy_owl_0, snowy_owl_2, spider_tailed_horned_viper_1, spi-
der_tailed_horned_viper_3, white_tailed_ptarmigan, wolf.
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