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ABSTRACT

In game theory, imperfect-recall decision problems model situations in which an
agent forgets information it held before. They encompass games such as the “ab-
sentminded driver” and team games with limited communication. In this paper,
we introduce the first benchmark suite for imperfect-recall decision problems. Our
benchmarks capture a variety of problem types, including ones concerning privacy
in Al systems that elicit sensitive information, and Al safety via testing of agents
in simulation. Across 61 problem instances generated using this suite, we evaluate
the performance of different algorithms for finding first-order optimal strategies
in such problems. In particular, we introduce the family of regret matching (RM)
algorithms for nonlinear constrained optimization. This class of parameter-free
algorithms has enjoyed tremendous success in solving large two-player zero-sum
games, but, surprisingly, they were hitherto relatively unexplored beyond that set-
ting. Our key finding is that RM algorithms consistently outperform commonly
employed first-order optimizers such as projected gradient descent, often by orders
of magnitude. This establishes, for the first time, the RM family as a formidable
approach to large-scale constrained optimization problems.

1 INTRODUCTION

Imperfect-recall decision problems capture settings in which an agent can forget previously acquired
information (Rubinstein,|1998)). Humans are prone to forgetting, but why should we design or model
Al agents with imperfect recall? Several applications have already garnered considerable attention.
A prominent one concerns feam games—strategic interactions in which multiple players strive to-
ward a common objective. A central challenge there stems from the fact that communication or
coordination between players is often infeasible or expensive (Von Stengel & Koller, |1997; [Zhang
et al.| 2022} [2023}; Basilico et al.| 2017)). The inherent asymmetry of information between the play-
ers can then be captured as a single meta-player that faces an imperfect-recall decision problem.
Another influential application revolves around real-world problems that are too large to handle, and
therefore need to be compressed in a game abstraction. Abstractions with imperfect recall, in par-
ticular, form a key component of state-of-the-art algorithms for game solving (Waugh et al., 2009;
Kroer & Sandholm, [2014;|2016; [Waughl |2009; [Lanctot et al.|[2012; |Benjamin & Lanctot, 2024)).

With the rapid proliferation of Al, questions of trustworthiness have also been brought to the fore.
Institutions and governing bodies test and evaluate Al agents extensively in simulated environments
to verify their performance and safety upon deployment (Pan et al.| 2023} Kinniment et al., [2024).
This hinges on the assumption that the agent cannot distinguish between whether it is acting in
the real world or in a simulated environment; otherwise, it may obscure its intentions temporarily
during testing to secure deployment in the real world (Kovarik et al.,|2025a). This has happened,
for example, in the infamous Volkswagen (multi-billion-dollar) emission scandal in 2015, which
centered on the surreptitious use of software in some Volkswagen diesel vehicles to detect emission
testing. Consequently, effective evaluation protocols hinge on the agent not being able to make
such distinctions, which also requires that it forgets whether it has acted in a simulated environment
before or not. |[Kovarik et al.| (2023) introduced the framework of simulation games to address such
problems (cf. |Chen et al., 2024} |Oesterheld, 2019; (Cooper et al., 2025).

Last but not least, imperfect recall is critical in the ubiquitous cases where an Al system handles
private information. Data privacy laws are predicated on selectively relinquishing sensitive informa-
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tion, a premise exemplified by the [European Parliament and Council of the EU|(2016) GDPR “right
to be forgotten” act. As an example, consider a medical Al system tasked with identifying suitable
candidates for blood donation. Potential candidates would be reluctant to share confidential infor-
mation about their health status—HIV status, medical history, etc.—unless the Al has been designed
to delete any knowledge regarding patients that were deemed unsuitable, thus exhibiting imperfect
recall. In another example coming from the economics of innovation, Arrow’s disclosure paradox
(Arrow, [1962)) describes the perennial challenge in which an inventor must reveal information about
a new idea to secure funding, but such disclosure risks expropriation (Nelson, [1959). Stephenson
et al|(2025) propose and investigate delegating decision making to an imperfect-recall Al agent as
one possible solution to this dilemma. Taken together, it stands to reason that decision problems
with imperfect recall will play a key role in Al going forward.

Our Contributions

Decision making under imperfect recall, and specifically absentmindedness, have been extensively
studied since the early years of game theory (cf. |Kuhn, |1953| and other work discussed in the
appendix). So far, this has been done with pen and paper. Our work is the first to develop an empir-
ical framework for decision making under imperfect recall through a flexible suite of benchmarks.
Specifically, we construct three key types of parametrized tabular problems motivated by the preva-
lent applications discussed above. We refer to them as simulation problems (Section [4.1)), subgroup
detection problems under privacy constraints (Section[4.2), and random problems (Section 4.3).

In the second part of the paper, we turn to designing algorithms for solving such problems at scale,
and evaluating them on 61 generated problem instances from our benchmark suite. First, we need
to specify what constitutes a solution. The most natural objective is to identify an (ex ante) optimal
strategy. Unfortunately, this is tantamount to finding a global optimum of a polynomial optimization
problem, which is NP-hard (Koller & Megiddo, [1992). This is not just a theoretical obstacle: in
our experiments, we find that a popular commercial solver for nonlinear optimization—namely,
Gurobi—fails to converge beyond tiny instances. Thus, it is essential to relax our solution concept
to tackle large problems. Following a recent line of work, we focus on computing Causal Decision
Theory (CDT) equilibria (Lambert et al.| [2019; [Tewolde et al.,[2023)), which can be viewed as the set
of KKT points—equivalently, first-order optima—of the underlying optimization problem. As such,
CDT equilibria are amenable to scalable first-order optimizers such as projected gradient descent
(PGD), which we use as the main baseline. As expected, our experiments show that PGD scales to
much larger problem instances than Gurobi.

More surprisingly, our key algorithmic finding is that PGD and its variants are far from the best
approach for this class of problems. In particular, we introduce the family of regret matching (RM)
algorithms for nonlinear constrained optimization. This class of algorithms has already enjoyed
tremendous success in the restricted setting of solving large (two-player) zero-sum games, being at
the heart of many milestone results (Moravcik et al.,|2017; Brown & Sandholm, 2018} [2019). RM
goes back to the pioneering work of Blackwell| (1956) that laid the foundations of online learning.
Part of its appeal lies in the fact that it is parameter-free. Yet, it has remained unexplored beyond
zero-sum games, modulo some exceptions which are discussed in the appendix. We pursue this
direction and find that the RM family of algorithms consistently outperform PGD and its variants
in terms of speed of convergence, typically by many orders of magnitude. This establishes for the
first time that RM-based algorithms are formidable first-order optimizers. Further, not only are RM
algorithms faster to converge, but they also consistently attain values at least as large as PGD, and
oftentimes strictly larger. Both of those findings are surprising. The fact that RM and its variants
perform remarkably well in two-player zero-sum games is a poor indicator of what would happen in
constrained nonlinear optimization since the latter problem class is fundamentally harder.

We will make our benchmarks and code publicly available. Taken as a whole, we lay the groundwork
for automatically analyzing decision problems under imperfect recall, beyond the toy instances that
have been analyzed in the past (Kovartik et al., [2023}[2025b; |Chen et al., 2024} Berker et al., 2025).

2 PRELIMINARIES

We begin by introducing imperfect-recall sequential decision making (Section [2.T). In Section[2.2}
we then describe some standard solution concepts and known results concerning their computation.
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Figure 1: Three tree-form decision problems, discussed in the paragraph “Infosets and imperfect
recall”. The latter two are of imperfect recall. The rightmost further exhibits absentmindedness.

2.1 DECISION PROBLEMS UNDER IMPERFECT RECALL

We operate under the standard framework of tree-form (aka. extensive-form) decision problems; for
additional background, we refer to |Piccione & Rubinstein| (1997) and |Fudenberg & Tirole|(1991).

Definition 1. A tree-form decision problem, denoted by I, consists of

1. A rooted tree with node set H and edges labeled with actions. The decision process starts at
the root node hy and ends at some leaf node, also called terminal node. We denote the terminal
nodes in H as Z and the set of actions available at a nonterminal node h € H \ Z as Ap,.

2. An assignment partition H \ Z = H* LI H'©) of nonterminal nodes to either (i) the player of
the decision problem or (ii) the chance “player” c that models exogenous stochasticity. At each
chance node h € H'®), actions are sampled according to a fixed distribution P(°)(- | h) over Ay,.

3. A utility function v : Z — R that specifies the payoff the player receives when the decision
process finishes at a terminal node.

4. A collection T of information sets (infosets) that partitions the player’s decision nodes as H* =
Urezl. We require A;, = Ay for all nodes h, h' of the same infoset 1. Therefore, the infoset I
has a well-defined action set Aj.

Infosets and imperfect recall The infoset structure captures the presence of imperfect informa-
tion. Nodes of the same infoset are indistinguishable for the player. One possible source of imperfect
information is the fact that the player is sometimes unable to observe the actions of another player,
as illustrated in Figure [I] (left) w.r.t. the chance player. The player may also forget information
it previously acquired; in that case, we say that the player exhibits imperfect recall. In Figure [I]
(middle), for example, it cannot recall whether it played the left (I) or right () action in the past.
A particular manifestation of imperfect recall is absentmindedness: the player in Figure [I] (right)
cannot discern at a decision node whether it has been in the same situation (i.e. infoset) before.

Formally, each node h € H in the decision tree is uniquely associated with a history path hist(h),
comprising a sequence of alternating nodes and actions from the root hg to k. On the path hist(h),
the player only encounters the sequence seq(h) comprising infosets visited and actions taken by
the player itself. We say an infoset I is of perfect recall if for all nodes h,h’ € I, we have
seq(h) = seq(h’)—informally, the player can reconstruct the sequence seq(h) from observing I
alone. Otherwise, it exhibits imperfect recall. The infoset I exhibits absentmindedness if there exist
distinct nodes h,h’ € I with h € hist(h'). By extension, we say that the entire decision problem
has imperfect recall (resp. absentmindedness) if it is the case for at least one of its infosets.

Strategies A (behavioral) strategy x for the player in I" specifies for any infoset I of I" a proba-
bility distribution over the available actions at I. Upon reaching I, it will draw an action randomly
according to that probability distribution, henceforth called randomized action and represented as
x(- | I). Denoting the probability simplex at I by A(Aj), a strategy x is an element of the product
of simplices X' := X, A(Ay). A pure strategy is a tuple in XierAr C X.

Reach probabilities and utilities The reach probability P(h | x, h) is the probability of arriving
at node h € H when the player plays according to the strategy a« and is currently at node h € H.
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This is the product of probabilities of the actions on the path from h to h when h € hist(h), and
0 otherwise. The expected utility of the player from being at node h € H \ Z and following
profile z is U(x | h) == > .z u(z) - P(z | ,h). We will simplify our notation for the special
case where the player is at the root node hy by defining P(h | ) := P(h | x, hg); similarly,
we define the function U : X — Ras U(x) := U(x | ho), mapping a profile z to its expected
utility with respect to the root node. For example, the utility function in Figure [l (right) reads
Ulx)=1-z(c| I)3+10-x(c | I)?- z(e | I). More generally, U is a polynomial function in
terms of x and the player faces a polynomial maximization problem over a product of simplices.
The presence of absentmindedness necessitates the use of randomized actions in optimal strategies.

2.2  SOLUTION CONCEPTS

We call a strategy «* e-optimal (for € > 0) if U(x*) > U(x) — € for all ¢ € X. Unfortunately, it
is computationally hard to find an e-optimal strategy; or much simpler, to decide (up to a constant
precision €) whether a particular value v € R can be reached.

Proposition 2 (Koller & Megiddo, [1992; Tewolde et al., [2023)). Let 0 < ¢ < 1/8. Given a decision
problem I and a target value v € R, it is NP-complete to distinguish between whether I' admits a
strategy € X with U(x) > v or whether all strategies x € X satisfy U(x) < v —e.

In light of these theoretical limitations—which will be supported by our empirical findings—past
work has studied relaxed solution concepts. One such notion, the causal decision theory (CDT)
equilibrium, is particularly amendable to optimization algorithms. The basic idea behind the CDT
equilibrium is that whenever the player must take an action at an information set, it considers whether
it is beneficial for it to deviate just this one time from what & prescribes. To determine the expected
gain from such a deviation, it assumes that it will continue to play according to x at all other decision
nodes of the decision problem. (We provide further background on CDT equilibria in the appendix.)
To formalize this, let ha denote the child node reached if the player plays action a at node h. CDT
postulates that if it plays according to x, reached infoset I, and deviates this one time to action a, it
anticipates to receive ), ., P(h | ) - U(x | ha) utility from it overall. It can be shown that this
quantity is equal to the partial derivative Vy , U () of the utility function U w.r.t. to action a of
infoset I € 7 at x (Piccione & Rubinstein, |1997; |Oesterheld & Conitzer, [2024).

Definition 3. A strategy x is called an e-CDT equilibrium (e > 0) of a decision problem T if for all
infosets I € T and all alternative randomized actions o € A(Ay), we have

U(x) > Ucpr(a | @, I)—e,where Ucpr(a | ,1) = U(w)+ZaGAI (afa)—x(a | 1)V U(x).

Tewolde et al.| (2023;2024) observed that CDT equilibra correspond to Karush-Kuhn-Tucker (KKT)
points, also known as first-order optima of constrained optimization, discussed further in Section[3.1]

3  ALGORITHMS

This section dives into algorithmic approaches for tackling imperfect-recall decision problems. We
will first review some known algorithms that will serve as our baselines in the experiments. In the
second part, we introduce a family of algorithms from the game theory literature to the problem of
nonlinear constrained optimization, which—as we shall see—performs remarkably well in practice.

3.1 KNOWN APPROACHES AND BASELINES

Despite the complexity barriers for computing optimal strategies (Proposition [2)), one may still hope
to come up with fast algorithms in practice. For that reason, we make use of a popular commercial
solver for nonlinear optimization, Gurobi [2025]], which guarantees global optimality (up to a small
tolerance error) upon termination. We will see that this approach scales poorly in our benchmarks.

This motivates shifting our attention to CDT equilibria, which—as we mentioned—can be expressed
as KKT points of a polynomial optimization problem. It is well known that e-KKT points can be
computed in poly(1/¢) time via (projected) gradient descent (GD) (for example, |[Fearnley et al.,
2023). This will serve as our basic benchmark when it comes to algorithms for computing CDT
equilibria. We will also experiment with the following two popular variants of GD: (1) Optimistic
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Algorithm 1: Optimization over products of simplices.

Input: Feasible set ¥ = A(mq) X -+ x A(my,), utility function U : X — R
fori=1,...,ndo

Initialize local optimizer R; on A(m;)

(0)

Setu, ' <0
fort =1,...,T or until convergence do
fori=1,...,ndo ﬁgt) — ul(.t_l) // Set /[1,5” < 0 instead if R; is not optimistic/predictive
fori=1,...,ndo a:l(-t) +— Ri.GETX(ﬁEt))
fori=1,...,ndo

ul? v, Ux®)
Ri.STEP(uEt))
return z(*)

Algorithm 2: (Optimistic) Projected gradient descent; (0)GD

Initialize learning rate n > 0, ) € A(m)
procedure GETX (@) return () «+ I, (2@ + na®)
procedure STEP(u(") £+ « TI5 () (2 + nu®)

(projected) gradient descent (OGD), which goes back to [Popov| (1980), and is receiving renewed
interest in recent years, especially in the context of games (Wei et al., 2021} Daskalakis & Panageas,
2018} [Daskalakis et al., 2018). And (2) AMSGrad (AMS) (Reddi et al., |2018)), an adaptive gradient
method based on exponential moving averages for the first and second gradient momentum that also
enjoys theoretical convergence guarantees.

Since we deal exclusively with optimization over a product of simplices, we can provide a basic
template for decomposing it into independent subproblems over the individual simplices (in Algo-
rithm[T)). What remains to be specified is the choice of individual local optimizers. Algorithm 2] for
example, describes (0)GD. We present the AMS algorithm in the appendix, together with an expla-
nation on how to implement its projection operator in simplex domains. Regarding implementing
these algorithms and the upcoming RM ones, a non-trivial observation is that, for tree-form decision
problems, the gradients at every decision point can be computed in total time linear in the size of the
decision problem. Indeed, the quantities P(% | (¥)) and U(x™® | ha) in CDT utilities (Section |2.2)
can be computed for each history h by recursive passes down and up through the tree respectively.

3.2 REGRET MATCHING FOR CONSTRAINED OPTIMIZATION

We now introduce a new family of algorithms for constrained optimization based on regret matching
(RM) (Hart & Mas-Colell, [2000) (Algorithm . Here, we use the notation [z]* := max(x, 0) for a
vector £ € R™, and 1 for the all-ones vector. RM™ is a simple variant of RM that has been shown to

Algorithm 3: (Pred.) Reg. matching; (P)RM Algorithm 4: (P)RMT

Initialize (") <+ 0,2 € A(m) 1 Initialize 7™ < 0,2 € A(m)
procedure GETX(u(") 2 procedure GETX(u(*)
0 [r® 4 a® — (a® (t-D)1] o 0 —[r®) +a®) — (a® zt-1) 1]+
if 6() £ 0 then =" « 61)/||6®) ||, 4+ | if0" £ 0thenz® 01 /|60
else z(t) « (-1 s | elsex(®) « (-1
return () 6 | returnx®
procedure STEP(u*) 7 procedure STEP(u(®)
D) p® Ly ® (O 2®)1 o | rtHD ) a® — (u® g®) 1]+
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work very well in practice (e.g., Bowling et al., 2015); the only difference is that RM™ truncates the
regrets in each iteration (Algorithm . We also implement their predictive versions PRM and PRM™
Farina et al.| (2021). All these algorithms are designed to minimize regret in the online learning
setting. In zero-sum games, having vanishing regret implies that the average strategies converge to
the set of Nash equilibria, whereas the last iterate can fail to converge (Farina et al., 2023).

Although RM and its variants have received a lot of attention in the context of zero-sum games,
there was hitherto little reason to believe they would perform well in constrained optimization prob-
lems. In particular, unlike for gradient descent and its variants, it is not known whether RM variants
converge to first-order optima for generic nonconvex optimization problems such as ours.

4 BENCHMARKS

We introduce three different parametric classes of decision problems. The parameters dictate the
structure of the problem instance such as its depth, number of infosets, the degree of absentminded-
ness, and number of actions per infoset, etc. Our implementation is based on LiteEFG (Liu et al.,
2024), a lightweight format for extensive-form games.

4.1 SIMULATION PROBLEMS

Inspired by the type of problems discussed in the introduction, we model problems that involve
simulating an agent. For this to be effective, the simulation must be indistinguishable from reality;
thus, nodes corresponding to decisions in simulation are in the same infoset as nodes corresponding
to decisions in reality. Specifically, we consider games where in the simulation phase, the simulator
may test the simulated agent’s behavior, possibly multiple times in a row. The agent will then be
deployed if and only if it acted as intended in simulation.

Figure 2: Left: A simple simulation problem. The agent is misaligned: it receives 10 utility for its
preferred action (which the simulator considers the bad action), and 1 utility for the other action.
The simulator decides to simulate the agent with the fixed probability 4/s, and up to a total of 2
times, in order to catch misaligned behavior in advance. Right: A slightly more complex simulation
problem. There are now two scenarios the agent can be tested on, giving rise to two different infosets.
Reaching the subtree IV means the agent reached deployment; we visualize I in the appendix.

A concrete yet simple simulation example is given in Figure 2| (left). In line with previous works on
simulation games, we focus on the setting in which the agent has only two actions: “good” or “bad”
(with respect to the simulator’s goals). If the agent ever acts bad in simulation, the game ends and
the agent receives some constant utility (0, by default). We fix the simulator’s strategy, thus making
the simulator a chance node and this game a single-agent problem. The simulator can simulate the
agent up to n times, but does not have to; whether they simulate the agent yet another time will be
decided by a probability parameter. Once the agent reaches a decision node in the deployment phase,
it will receive utility 7 € R for acting good and /3 € R for acting bad (specified further below).

The purpose of simulating the agent, and thus inducing absentmindedness, is two-fold (Chen et al.,
2024])). First, it allows the simulator to screen for misaligned agents: if the agent acts bad with
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some positive probability, it becomes exponentially unlikely—in the number of simulation rounds—
to remain unnoticed by the simulator. In contrast, if the agent prefers to act good (v > f), it
chooses to act so deterministically, guaranteeing that it will reach the deployment phase. Second,
the simulations have a disciplining effect: even in the worst case where the simulator is presented
with a misaligned agent (v < ), the simulator still incentivizes the agent to act good most of the
time, if not all the time, by testing the agent (multiple times) in simulation.

We expand on prior work by allowing the simulator to evaluate the agent in k > 1 scenarios rather
than just a single one. For example, an autonomous vehicle might be tested on its behavior in the
city, on the highway, off-road, and under certain difficult weather conditions. A language model
might be evaluated on writing essays and executable code, and providing mental support through
conversation. Furthermore, we also extend the deployment phase to m > 1 rounds, with acting
good and bad in scenario i contributing with 5; and ~; to the total payoffs. An example of such a
simulation problem is given in Figure [2] (right). In particular, an agent might now refrain from ever
acting bad in scenario 7 because it hopes to act bad (or act at all) in another scenario ¢’ in deployment.

4.2 SUBGROUP DETECTION UNDER PRIVACY CONSTRAINTS

Motivated by the privacy applications discussed in the introduction, we introduce a parametrized
class of decision problems in which the agent aims to identify suitable subgroups—be it medical
patients, investment opportunities, and so on—under privacy constraints. Figure [3] (left) depicts a
graph in which the nodes represent, say, the patients, and the edges encode relationships between
them. Two subgroups are planted unbeknownst to the agent. Specifically, an action in these decision
problems consists of choosing one of the nodes. If the node is a member of a subgroup, then the agent
learns this fact; otherwise, the agent forgets having chosen this node at all. The parameters control
(a) the underlying graph structure, (b) the subgroup formations we allow in the graph (namely, lines,
cycles, cliques, stars), their size, their quantity, and the way in which the subgroups are secretly
planted, (c) the immediate payoffs of hitting nodes of different subgroups, and (d) the number of
rounds the agent can hit nodes. We sample graphs as 2D grids, as well as according to the Erd&s-
Rényi G(n,p) and G(n,m) models. The 2D grid resembles the prominent “Battleship” game,
except that here the agent is absentminded about cells selected in the past that did not hit a ship
(Figure[3] right).

X

Figure 3: Subgroup detection under privacy constraints. On the left, we see an arbitrary graph with
two subgroups (a 3-clique, and a star of degree 3). The goal is to find as many of the subgroups’
nodes as possible. On the right, we see another such decision problem on a 2D grid, which we
visualized as an instance of the Absentminded Battleship game. The agent has already succeeded in
hitting one node of each ship, which indicates that there must be more subgroup nodes nearby. The
agent does not remember whether it has selected any cell other than these two before.

4.3 RANDOM DECISION PROBLEMS

Finally, we introduce a highly parametrized class of randomly generated decision problems, follow-
ing an active line of work on random games (McKelvey & McLennan, |1996; Nudelman et al., 2004;
Arieli & Babichenko)| 2016; |/Amiet et al., 2021} [Flesch et al., 2023} [Heinrich et al.| [2023)). Part of
their appeal is that they serve as a sanity check and help counterbalance cherry picking of benchmark
problems. The parameters dictate (a) the probability with which a node will be terminal (dependent
on its depth), (b) the probabilities with which a nonterminal node has k available actions, as well as
with which it will be a chance node, (c) the (approximate) number of nodes we want to cover with
each infoset, and (d) the probability distribution over payoffs at terminal nodes. The payoffs at the
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Table 1: The performance of various algorithms in our benchmarks. Value and convergence winners
per game highlighted in bold. For Gurobi, time is only reported if convergence was reached.

Problem | Gurobi GD 0GD AMS RM RM* PRM*

value time|value time gap|value time gap|value time  gap|value time  gap|value time  gap|value time gap
Det-1k  [13.00 1m 24s[13.00 0.13s  —[13.00 0.07s —[13.00  1.04s —[13.00  0.32s —[13.00  0.36s —[13.00  0.41s —
Det-1.8k [22.00 2m 40s(22.00 0.06s  —|22.00 0.07s —{22.00 0.71s —{22.00  0.03s —{22.00  0.03s —[22.00  0.03s —
Det-2.0k (17.50 1m 42s(17.50 0.03s —[17.50 0.05s —|17.50  0.20s —|17.50  0.03s —|17.50  0.03s —[17.50  0.03s —
Det-2.1m — —126.00 — 1e-05(25.96 — 0.02)26.15 — 0.002)26.15 — 0.003|26.15 3h 25m —1[26.15 — 0.005
Det-2.2m — —116.20 — 0.002(15.93 — 0.02|16.36 — 0.0002|16.36 2h 22m —1{16.36 3h 13m —|16.36 — 5e-06
Det-3.8m — —115.66 — 0.003|15.14 —  0.03]15.78 — 0.0002|15.80 — 2e-06/15.80 — 5e-05|15.80 — 0.0003
Det-9m — —23.16 — 0.004{22.71 — 0.02)23.45 — 0.004]|23.45 — 0.0001]23.45 — 0.0001)23.45 — 0.0004
Det-10m — —|24.64 — 0.002{24.61 — 0.003)24.76 — 0.009|24.76 — 0.002)24.76 — 0.0004)24.76 — 0.0008
Det-18m — —126.38 — 0.006(25.81 — 0.05)26.71 — 0.004/26.71 — 0.004)26.71 — 0.001(26.71 —  0.04
Rand-24k | 0.72 —| 0.66 7mO0s —| 0.66 7m 46s —1 0.66 4mds —1 0.66 26.55s —1 0.66 1m3s —| 0.66 5m5s —
Rand-35k | 1.00 — 095 3.85s —| 0.95 3.76s —1 095  3.90s —1 092 0.99s —1 0.92 1.18s — 0.94 1.68s —
Rand-42k | 0.69 —1 0.55 — 0.01} 0.55 — 0.01] 0.64 — 0.0006| 0.65 — 2e-06| 0.65 5m 56s —1 0.65 3m 19s —
Rand-13m| — —1 0.59 — 0.003| 0.58 — 0.003| 0.65 1h40m —| 0.63 19m 11s —| 0.64 17m 31s —1 0.65 36m 42s —
Rand-18m| — —1 0.972h33m —| 0.97 3hOm —/ 0.99 1h29m —| 0.95 29m 45s —| 0.97 24m0s —1 0.97 14m 31s —
Rand-23m| — —| 0.943h37m —| 0.93 — 0.0007| 0.98 3h20m —1 0.98 23m 10s —1{ 0.96 23m5s —| 0.95 18m2s —
Sim-3k 6.25 Imls| 625 032s —| 625 1.03s —1| 625  5.54s —1{ 625 0.26s —1| 625 0.28s —| 625  0.48s —
Sim-7k 8.58 Im 36s| 8.58 0.055 —| 8.58 0.05s —| 8.58 0.12s —| 8.58  0.05s —| 8.58  0.05s —1 8.58  0.05s —
Sim-13k [10.38 4m 215(10.38  0.69s —[10.38 8.54s —{10.38 14.37s —{10.38  1.03s —{10.38  1.01s —(10.38  3.97s —
Sim-540k | 6.41 —| 8.54 47.54s —| 8.542m 37s —| 8.54 15m 31s —| 8.54 19.39s —| 8.54 19.44s —1 854 3m3s —
Sim-1m | 4.14 —| 477 5m33s —| 4.77 Tm2s —| 4.77 29m 22s —| 477 2m 14s —| 477 2m 34s —| 477 4m 20s —
Sim-1.9m — —|13.45 18.31s —[13.45 17.96s —|1345 1m2s —|13.45 12.36s —|1345 12.19s —[13.45 12.47s —
Sim-2.3m — —[11.09 22.01s —[11.09 21.88s —{11.09 1m 10s —{11.09 14.97s —{11.09  15.00s —|11.09 15.13s —
Sim-4m — —1[14.01 45m 5s  —[14.01 41m Os —113.98 — 0.02|14.01 11m 36s —[14.01 7m3s —|14.01 21m 17s —

leaf nodes are drawn uniformly at random between 0 and 1. In the experiments in Section [5] each
tree has varying depth in an interval [d, d’'] where 4 < d < d’ < 15, the nonterminal nodes have 3
to 5 available actions and a 20% probability to be a chance node, and infosets are of a size roughly
proportional to 7”/?, where n denotes the total number of decision nodes in the tree.

5 EXPERIMENTAL EVALUATION

Having introduced our benchmarks, we now use them to evaluate the performance of the algorithms
described earlier in Section E} Abbreviations “Sim,” “Det,” and “Rand” stand for simulation prob-
lems (Section {.1)), subgroup detection problems (Section4.2)), and random problems (Section
respectively. The suffixes indicate the number of nodes in the decision tree (with “k” and “m” ab-
breviating thousands and millions). Our algorithms run until any of three termination conditions is
met: achieving a KKT gap of at most 10~%, reaching the time limit of 4 hoursE] or reaching the iter-
ation limit of 6000. We run the first-order methods for 12 times with randomly initialized strategies
and report the median. For GD and OGD, we run the algorithm with different learning rates, namely
n € {1,107%,1072,1073}, and report only the one that minimizes the KKT gap the fastest at time
of termination. We operate analogously for AMS, except that we instead test the parameter settings
(n, B1,B2) € {1071,1072} x {0.9,0.99} x {0.99,0.999} (this includes Reddi et al.[s suggested
[-values). A subset of our results are gathered in Table[I] We also plot the KKT gap and value ver-
sus iteration in Figure E] to gain insight into the process of convergence The confidence intervals
represent the 30th and 70th percentile run for the respective iteration count. Further experimental
details and results can be found in the appendix. The main takeaways are the following:

* Gurobi fails to converge beyond small instances (<100k nodes for simulation, and <20k other-
wise). Moreover, when it converges, the time required to terminate is multiple orders of magni-
tude more than that of the first-order optimizers. This is despite the fact that Gurobi is based on
an optimized C++ implementation whereas our first-order optimizers are implemented in Python.

* Interestingly, in all such cases in Table [T} where we know the optimal value, the first-order opti-
mizers converge to an optimal strategy. As expected, we can also find some experiments where
this is not the case (e.g. Rand-42k once Gurobi would eventually terminate). Indeed, we con-
struct an extreme example in the appendix, where our gradient descent and regret matching algo-
rithms all converge to a KKT point that is arbitrarily bad in value relative to the global optimum.

'With the only exceptions of Det-{9m,10m,18m} problems, which we run for 12 hours since the standard
time limit poses a significant bottleneck for those instances.

2Qur regret matching implementations complete more iterations per time than our gradient descent imple-
mentations, so the fact that we plot against iterations rather than time favors the gradient descent algorithms.
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Figure 4: Two detection instances, a simulation and a random instance. They have ~1200 infosets,
~300 infosets, 3 infosets, and ~100 infosets respectively.

* The RM family of algorithms, and RM™ in particular, consistently outperform GD, OGD, and AMS
in runtime. The difference is often many orders of magnitude, especially in the larger instances.

* RMT performs best among the RM family. Surprisingly, it typically outperforms PRM', which
stands in stark contrast to what has been observed in zero-sum games (Farina et al.| 2021). We
have the following intuition. Predictiveness in RM (= Optimism in GD) roughly corresponds to
having negative momentum, which is beneficial in zero-sum games and minimax optimization be-
cause it helps minimize regret faster. But in our setting of nonlinear (single-player) optimization,
it is not known whether predictiveness helps anymore, since the task is not to minimize regret,
but to search for a first-order optimal point. Indeed, our experiments seem to suggest otherwise.

* RMT1 and AMS oftentimes attain higher values than GD and OGD, and almost never less.

6 FUTURE RESEARCH

Our paper opens many interesting avenues for future work. First, we have focused exclusively on
solving tabular imperfect-recall decision problems. A promising direction is to use modern RL
techniques to expand the scope to even larger problems that cannot be represented in tabular form.
Considering other formulations beyond tree-form decision problems, such as (PO)MDPs, is another
natural direction that was beyond our scope. Finally, our experiments revealed that the regret match-
ing family of algorithms is a formidable first-order optimizer; elucidating their theoretical properties
is another important open question.
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REPRODUCIBILITY STATEMENT

Comprehensive details about our experimental methodology can be found in Sections [4] and [3] as
well as in the last section of the appendix, including generation procedures, hyperparameter ranges,
termination conditions, hyperparameter grids, and hardware specifications. The supplementary ma-
terial contains our code base for generating instances from our benchmark suite, running the dis-
cussed algorithms on problem instances, and evaluating and visualizing the results. The specific 61
benchmark instances used in our evaluation, along with their corresponding experimental results,
are available through the provided link at the end of the appendix.
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