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ABSTRACT

Knowledge Tracing (KT), tracking a human’s knowledge acquisition, is a central
component in online learning and AI in Education. In this paper, we present a
simple, yet effective strategy to improve the generalization ability of KT models:
we propose three types of novel data augmentation, coined replacement, insertion,
and deletion, along with corresponding regularization losses that impose certain
consistency or monotonicity biases on model’s predictions for the original and
augmented sequence. Extensive experiments on various KT benchmarks show
that our regularization scheme consistently improves the model performances, un-
der 3 widely-used neural networks and 4 public benchmarks, e.g., it yields 6.3%
improvement in AUC under the DKT model and the ASSISTmentsChall dataset.

1 INTRODUCTION

In recent years, Artificial Intelligence in Education (AIEd) has gained much attention as one of the
currently emerging fields in educational technology. In particular, the recent COVID-19 pandemic
has transformed the setting of education from classroom learning to online learning. As a result,
AIEd has become more prominent because of its ability to diagnose students automatically and pro-
vide personalized learning paths. High-quality diagnosis and educational content recommendation
require good understanding of students’ current knowledge status, and it is essential to model their
learning behavior precisely. Due to this, Knowledge Tracing (KT), a task of modeling a student’s
evolution of knowledge over time, has become one of the most central tasks in AIEd research.

Since the work of Piech et al. (2015), deep neural networks have been widely used for the KT
modeling. Current research trends in the KT literature concentrate on building more sophisticated,
complex and large-scale models, inspired by model architectures from Natural Language Processing
(NLP), such as LSTM (Hochreiter & Schmidhuber, 1997) or Transformer (Vaswani et al., 2017) ar-
chitectures, along with additional components that extract question textual information or students’
forgetting behaviors (Huang et al., 2019; Pu et al., 2020; Ghosh et al., 2020). However, as the
number of parameters of these models increases, they may easily overfit on small datasets and hurt
model’s generalizabiliy. Such an issue has been under-explored in the literature.

To address the issue, we propose simple, yet effective data augmentation strategies for improving
the generalization ability of KT models, along with novel regularization losses for each strategy.
In particular, we suggest three types of data augmentation, coined (skill-based) replacement, inser-
tion, and deletion. Specifically, we generate augmented (training) samples by randomly replacing
questions that a student solved with similar questions or inserting/deleting interactions with fixed
responses. Then, during training, we impose certain consistency (for replacement) and monotonic-
ity (for insertion/deletion) bias on a model’s predictions by optimizing corresponding regularization
losses that compares the original and the augmented interaction sequences. Here, our intuition be-
hind the proposed consistency regularization is that the model’s output for two interaction sequences
with same response logs for similar questions should be close. Next, the proposed monotonicity reg-
ularization is designed to enforce the model’s prediction to be monotone with respect to the number
of questions that correctly (or incorrectly) answered, i.e., a student is more likely to answer correctly
(or incorrectly) if the student did the same more in the past. By analyzing distribution of the previ-
ous correctness rates of interaction sequences, we can observe that the existing student interaction
datasets indeed have monotonicity properties - see Figure 1 and Section A.2 for details. The overall
augmentation and regularization strategies are sketched in Figure 2. Such regularization strategies
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(a) ASSISTments2015 (b) ASSISTmentsChall (c) STATICS2011 (d) EdNet-KT1

Figure 1: Distribution of the correctness rate of past interactions when the response correctness
of current interaction is fixed, for 4 knowledge tracing benchmark datasets. Orange (resp. blue)
represents the distribution of correctness rate (of past interactions) where current interaction’s re-
sponse is correct (resp. incorrect). x axis represents previous interactions’ correctness rates (values
in [0, 1]). The orange distribution lean more to the right than the blue distribution, which shows the
monotonicity nature of the interaction datasets. See Section A.2 for details.

(Q', 1)
ins

replacement(Q1, 1) (Q2, 0) (Q3, 1) (Q4, 0) rep(Q1', 1)

(Q2, 0)

model's
prediction

interaction
sequence

correct
insertion

correct deletion

(Q3, 1)

rep

(Q1, 1) (Q2, 0) (Q3, 1) (Q'',1) (Q4, 0)

(Q2, 0) (Q3', 1) (Q4, 0)

(Q4, 0)

Figure 2: Augmentation strategies and corresponding bias on model’s predictions (predicted cor-
rectness probabilities). Each tuple represents question id and response of the student’s interaction (1
means correct). Replacing interactions with similar questions (Q1, Q3 to Q′1, Q

′
3) does not change

model’s predictions drastically. Introducing new interactions with correct responses (Q′, Q′′) in-
creases model’s estimation , but deleting such interaction (Q1, 1) decreases model’s estimation.

are motivated from our observation that existing knowledge tracing models’ prediction often fails to
satisfy the consistency and monotonicity condition, e.g., see Figure 4 in Section 3.

We demonstrate the effectiveness of the proposed method with 3 widely used neural knowledge
tracing models - DKT (Piech et al., 2015), DKVMN (Zhang et al., 2017b), and SAINT (Choi et al.,
2020a) - on 4 public benchmark datasets - ASSISTments2015, ASSISTmentsChall, STATICS2011,
and EdNet-KT1. Extensive experiments show that, regardless of dataset or model architecture, our
scheme remarkably increases the prediction performance - 6.2% gain in Area Under Curve (AUC)
for DKT on the ASSISTmentsChall dataset. In particular, ours is much more effective under smaller
datasets: by using only 25% of the ASSISTmentsChall dataset, we improve AUC of the DKT model
from 69.68% to 75.44%, which even surpasses the baseline performance 74.4% with the full training
set. We further provide various ablation studies for the selected design choices, e.g., AUC of the
DKT model on the ASSISTments2015 dataset is dropped from 72.44% to 66.48% when we impose
‘reversed’ (wrong) monotonicity regularization. We believe that our work can be a strong guideline
for other researchers attempting to improve the generalization ability of KT models.

1.1 RELATED WORKS AND PRELIMINARIES

Data augmentation is arguably the most trustworthy technique to prevent overfitting or improve the
generalizability of machine learning models. In particular, it has been developed as an effective way
to impose a domain-specific, inductive bias to a model. For example, for computer vision models,
simple image warpings such as flip, rotation, distortion, color shifting, blur, and random erasing are
the most popular data augmentation methods (Shorten & Khoshgoftaar, 2019). More advanced tech-
niques, e.g., augmenting images by interpolation (Zhang et al., 2017a; Yun et al., 2019) or by using
generative adversarial networks (Huang et al., 2018), have been also investigated. For NLP models,
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it is popular to augment texts by replacing words with synonyms (Zhang et al., 2015) or words with
similar (contextualized) embeddings (Wang & Yang, 2015; Kobayashi, 2018). As an alternative
method, back translation (Sennrich et al., 2016; Yu et al., 2018) generates an augmented sentence
by translating a given sentence into a different language domain and translate it back to the original
domain with machine translation models. Recently, Wei & Zou (2019) show that even simple meth-
ods like random insertion/swap/deletion could improve text classification performances. In the area
of speech recognition, vocal tract length normalization (Jaitly & Hinton, 2013), synthesizing noisy
audio (Hannun et al., 2014), perturbing speed (Ko et al., 2015), and augmenting spectrogram (Park
et al., 2019) are popular as data augmentation methods.

The aformentioned data augmentation techniques have been used not only for standard supervised
learning setups, but also for various unsupervised and semi-supervised learning frameworks, by
imposing certain inductive biases to models. For example, consistency learning (Sajjadi et al., 2016;
Xie et al., 2019; Berthelot et al., 2019; Sohn et al., 2020) impose a consistency bias to a model
so that the model’s output is invariant under the augmentations, by means of training the model
with consistency regularization loss (e.g. L2-loss between outputs). Abu-Mostafa (1992; 1990)
suggested general theory for imposing such inductive biases (which are stated as hints) via additional
regularization losses. Their successes highlight the importance of domain specific knowledge for
designing appropriate data augmentation strategies, but such results are rare in the domain of AIEd,
especially for Knowledge Tracing.

Knowledge tracing (KT) is the task of modeling student knowledge over time based on the student’s
learning history. Formally, for a given student interaction sequence (I1, . . . , IT ), where each It =
(Qt, Rt) is a pair of question id Qt and the student’s response correctness Rt ∈ {0, 1} (1 means
correct), KT aims to estimate the following probability

P[Rt = 1|I1, I2, . . . , It−1, Qt], (1)

i.e., the probability that the student answers correctly to the question Qt at t-th step. Corbett &
Anderson (1994) proposed Bayesian Knowledge Tracing (BKT) that models a student’s knowledge
as a latent variable in a Hidden Markov Model. Also, various seq2seq architectures including LSTM
(Hochreiter & Schmidhuber, 1997), MANN (Graves et al., 2016), and Transformer (Vaswani et al.,
2017) are used in the context of KT and showed their efficacy. Deep Knowledge Tracing (DKT) is
the first deep learning based model that models student’s knowledge states as LSTM’s hidden state
vectors (Piech et al., 2015). Dynamic Key-Value Memory Network and its variation can exploit rela-
tionships between questions/skills with concept vectors and concept-state vectors with key and value
matrices, which is more interpretable than DKT (Zhang et al., 2017b; Abdelrahman & Wang, 2019).
Transformer based models (Pandey & Karypis, 2019; Choi et al., 2020a; Ghosh et al., 2020; Pu
et al., 2020) are able to learn long-range dependencies with their self-attention mechanisms and be
trained in parallel. Utilizing additional features of interactions, such as question texts (Huang et al.,
2019; Pandey & Srivastava, 2020), prerequisite relations (Chen et al., 2018) and time information
(Nagatani et al., 2019; Choi et al., 2020a; Pu et al., 2020) is another way to improve performances.
Recent works try to use graph neural networks (Nakagawa et al., 2019; Liu et al.; Tong et al., 2020;
Yang et al., 2020b) and convolutional networks (Yang et al., 2020a; Shen et al., 2020) to model
relations between questions and skills or extract individualized prior knowledge.

2 CONSISTENCY AND MONOTONICITY REGULARIZATION FOR KT

For a given set of data augmentations A, we train KT models with the following loss:

Ltot = Lori +
∑

aug∈A
(λaugLaug + λreg-augLreg-aug), (2)

where Lori is the commonly used binary cross-entropy (BCE) loss for original training sequences
and Laug are the same BCE losses for augmented sequences generated by applying augmentation
strategies aug ∈ A.1 Lreg-aug are the regularization losses that impose consistency and monotonicity
bias on model’s predictions for the original and augmented sequence, which are going to be defined
in the following sections. Finally, λaug, λreg-aug > 0 are hyperparameters to control the trade-off
among Lori, Laug, and Lreg-aug.

1For replacement and insertion, we do not include outputs for augmented interactions in Laug.
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In the following sections, we introduce our three simple augmentation strategies, replacement, inser-
tion and deletion with corresponding consistency and monotonicity regularization losses, Lreg-rep,
Lreg-cor ins (or Lreg-incor ins) and Lreg-cor del (or Lreg-incor del), respectively.

2.1 REPLACEMENT

Replacement, which is motivated by the synonym replacement in NLP, is an augmentation strat-
egy that replaces questions in the original interaction sequence with other similar questions without
changing their responses, where similar questions are defined as the questions that have overlapping
skills attached to. Our hypothesis is that the predicted correctness probabilities for questions in an
augmented interaction sequence will not change a lot from those in the original interaction sequence.
Formally, for each interaction in the original interaction sequence (I1, . . . , IT ), we randomly decide
whether the interaction will be replaced or not, following the Bernoulli distribution with the proba-
bility αrep. If an interaction It = (Qt, Rt) with a set of skills St associated with the question Qt is
set to be replaced, we determine Irept = (Qrep

t , Rt) by selecting a question Qrep
t with its associated

set of skills Srep
t that satisfies St ∩ Srep

t 6= ∅. The resulting augmented sequence (Irep1 , . . . , IrepT ) is
generated by replacing It with Irept for t ∈ R ⊂ [T ] = {1, 2, . . . , T}, where R is a set of indices to
replace. Then we consider the following consistency regularization loss:

Lreg-rep = Et 6∈R[(pt − prept )2] (3)

where pt and prept are model’s predicted correctness probabilities for t-th question of the original
and augmented sequences, respectively. We do not include the output for the replaced interactions in
the loss computation. For the replacement strategy itself we consider several variants. For instance,
randomly selecting a question for Qrep

t from the question pool is an alternative strategy if a skill set
for each question is not available. It is also possible to only consider outputs for interactions that are
replaced or consider outputs for all interactions in the augmented sequence for the loss computation.
We investigate the effectiveness of each strategy in Section 3.

2.2 INSERTION

When a student answers more questions correctly (resp. incorrectly), the predicted correctness
probabilities of the KT models for the remaining questions should increase (resp. decrease).
Based on this intuition, we introduce a monotonicity constraint by inserting new interactions
into the original interaction sequence. Formally, we generate an augmented interaction sequence
(I ins1 , . . . , I insT ′ ) by inserting a correctly (resp. incorrectly) answered interaction I inst = (Qins

t , 1)
(resp. I inst = (Qins

t , 0)) into the original interaction sequence (I1, . . . , IT ) for t ∈ I ⊂ [T ′], where
the question Qins

t is randomly selected from the question pool and I with the size αins proportion of
the original sequence is a set of indices of inserted interactions. Then our hypothesis is formulated
as pt ≤ pinsσ(t) (resp. pt ≥ pinsσ(t)), where pt and pinst are model’s predicted correctness probabilities
for t-th question of the original and augmented sequences, respectively. Here, σ : [T ]→ [T ′]− I is
the order-preserving bijection which satisfies It = I insσ(t) for 1 ≤ t ≤ T . (For instance, in Figure 2,
σ sends {1, 2, 3, 4} to {2, 3, 4, 6}) We impose our hypothesis through the following losses:

Lreg-cor ins = Et∈[T ][max(0, pt − pinsσ(t))], Lreg-incor ins = Et∈[T ][max(0, pinsσ(t) − pt)] (4)

where Lreg-cor ins and Lreg-incor ins are losses for augmented interaction sequences of inserting cor-
rectly and incorrectly answered interactions, respectively.

2.3 DELETION

Similar to the insertion augmentation strategy, we propose another monotonicity constraint by re-
moving some interactions in the original interaction sequence based on the following hypothesis:
if a student’s response records contain less correct (resp. incorrect) answers, the correctness prob-
abilities for the remaining questions would become decrease (resp. increase). Formally, from the
original interaction sequence (I1, . . . , IT ), we randomly sample a set of indices D ⊂ [T ], where
Rt = 1 (resp. Rt = 0) for t ∈ D, based on the Bernoulli distribution with the probability αdel. We
remove the index t ∈ D and impose the hypothesis pt ≥ pdelσ(t) (resp. pt ≤ pdelσ(t)), where pt and
pdelt are model’s predicted correctness probabilities for t-th question of the original and augmented

4



Under review as a conference paper at ICLR 2021

dataset model no augmentation insertion
+ deletion

insertion
+ deletion
+ replacement

ASSIST2015
DKT 72.01 ± 0.05 72.46 ± 0.06 72.39 ± 0.07

DKVMN 71.21 ± 0.09 72.00 ± 0.18 72.23 ± 0.09

SAINT 72.13 ± 0.09 72.78 ± 0.06 72.81 ± 0.04

ASSISTChall
DKT 74.40 ± 0.16 75.98 ± 0.07 79.07 ± 0.08

DKVMN 74.46 ± 0.11 75.06 ± 0.10 78.21 ± 0.05

SAINT 77.01 ± 0.18 78.02 ± 0.09 80.18 ± 0.05

STATICS2011
DKT 86.43 ± 0.29 87.18 ± 0.12 87.27 ± 0.11

DKVMN 84.89 ± 0.17 85.65 ± 0.94 87.17 ± 0.14

SAINT 85.82 ± 0.50 86.53 ± 0.30 87.56 ± 0.06

EdNet-KT1
DKT 72.75 ± 0.09 74.04 ± 0.04 74.28 ± 0.06

DKVMN 73.58 ± 0.08 73.94 ± 0.05 74.16 ± 0.11

SAINT 74.78 ± 0.05 75.32 ± 0.05 75.26 ± 0.02

Table 1: Performances (AUCs) of DKT, DKVMN, and SAINT models on 4 public benchmark
datasets. The results show the mean and standard deviation averaged over 5 runs and the best result
for each dataset and model is indicated in bold.
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Figure 3: Performances with various sizes of training data under the DKT model. x axis stands for
the portion of the training set we use for training (relative to the full train set) and y axis is the AUC.
Blue line represents the AUCs of the vanilla DKT model, and red line represents the AUCs of the
DKT model trained with augmentations and regularizations.

sequences, respectively. Here, σ : [T ]−D→ [T ′] is the order preserving bijection with It = Idelσ(t)

for t ∈ [T ]−D. We impose the hypothesis through the following losses:

Lreg-cor del = Et6∈D[max(0, pdelσ(t) − pt)], Lreg-incor del = Et6∈D[max(0, pt − pdelσ(t))] (5)

where Lreg-cor del and Lreg-incor del are losses for augmented interaction sequences of deleting cor-
rectly and incorrectly answered interactions, respectively.

3 EXPERIMENTS

We demonstrated the effectiveness of the proposed method on 4 widely used benchmark datasets:
ASSISTments2015, ASSISTmentsChall, STATICS2011, and EdNet-KT1. ASSISTments datasets
are the most widely used benchmark for Knowledge Tracing, which is provided by ASSISTments
online tutoring platform2 (Feng et al., 2009). There are several versions of dataset depend on
the years they collected, and we used ASSISTments20153 and ASSISTmentsChall4. ASSIST-
mentsChall dataset is provided by the 2017 ASSISTments data mining competition. STATICS2011
consists of the interaction logs from an engineering statics course, which is available on the PSLC
datashop5. EdNet-KT1 is the largest publicly available interaction dataset consists of TOEIC (Test
of English for Interational Communication) problem solving logs collected by Santa6 (Choi et al.,

2https://new.assistments.org/
3https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data
4https://sites.google.com/view/assistmentsdatamining
5https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
6https://aitutorsanta.com/
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Figure 4: Response correctness prediction for a student in the ASSISTmentsChall dataset. We
randomly insert interactions with correct responses (interactions with yellow boundaries). In case of
the vanilla DKT model, the predictions for the original interactions (especially the interactions with
green boundaries) are decreased, even if the student answered more questions correctly. However,
such problem is resolved when we train the model with monotonicity regularization (with the loss
Ltot = Lori + Lcor ins + 100 · Lreg-cor ins). Unlike the vanilla DKT model, predicted correctness
probabilities for the original interactions are increased after insertion.

2020b). We reduce the size of the EdNet-KT1 dataset by sampling 6000 users among 600K users.
Detailed statistics and pre-processing methods for these datasets are described in Appendix. With
the exception of the EdNet-KT1 dataset, we used 80% of the students as a training set and the
remaining 20% as a test set.

We test DKT (Piech et al., 2015), DKVMN (Zhang et al., 2017b), and SAINT (Choi et al., 2020a)
models. For DKT, we set the embedding dimension and the hidden dimension as 256. For DKVMN,
key, value, and summary dimension are all set to be 256, and we set the number of latent concepts as
64. SAINT has 2 layers with hidden dimension 256, 8 heads, and feed-forward dimension 1024. All
the models do not use any additional features of interactions except question ids and responses as an
input, and the model weights are initialized with Xavier distribution (Glorot & Bengio, 2010). They
are trained from scratch with batch size 64, and we use the Adam optimizer (Kingma & Ba, 2015)
with learning rate 0.001 which is scheduled by Noam scheme with warm-up step 4000 as Vaswani
et al. (2017) suggest. We set each model’s maximum sequence size as 100 on ASSISTments2015
& EdNet-KT1 dataset and 200 on ASSISTmentsChall & STATICS2011 dataset. Hyperparameters
for augmentations, αaug, λreg-aug, and λaug are searched over αaug ∈ {0.1, 0.3, 0.5}, λreg-aug ∈
{1, 10, 50, 100}, and λaug ∈ {0, 1}. For all dataset, we evaluate our results using 5-fold cross
validation and use Area Under Curve (AUC) as an evaluation metric.

3.1 MAIN RESULTS

The results (AUCs) are shown in Table 1 that compares models without and with augmentations,
and we report the best results for each strategy. (The detailed hyperparameters for these results are
given in Appendix.) The 4th column represents results using both insertion and deletion, and the
last column shows the results with all 3 augmentations. Since there’s no big difference on perfor-
mance gain between insertion and deletion, we only report the performance that uses one or both of
them together. We use skill-based replacement if skill information for each question in the dataset is
available, and use question-random replacement that that selects new questions among all questios
if not (e.g. ASSISTments2015). As one can see, the models trained with consistency and mono-
tonicity regularizations outperforms the models without augmentations in a large margin, regardless
of model’s architectures or datasets. Using all three augmentations gives the best performances for
most of the cases. For instance, there exists 6.3% gain in AUC on ASSISTmentsChall dataset un-
der the DKT model. Furthermore, not only enhancing the prediction performances, our training
scheme also resolves the vanilla model’s issue where the monotonicity condition on the predictions
of original and augmented sequences is violated. As in Figure 4, the predictions of the model trained
with monotonicity regularization (correct insertion) are increased after insertion, which contrasts to
the vanilla DKT model’s outputs.
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dataset loss replacement correct
insertion

incorrect
insertion

correct
deletion

incorrect
deletion

ASSIST2015 (6) 72.03 ± 0.06 71.98 ± 0.06 71.98 ± 0.05 72.05 ± 0.04 72.04 ± 0.02

(72.01 ± 0.05) (2) 72.06 ± 0.03 72.09 ± 0.06 72.35 ± 0.11 72.53 ± 0.08 72.26 ± 0.04

ASSISTChall (6) 75.13 ± 0.04 74.61 ± 0.17 74.57 ± 0.14 74.92 ± 0.12 74.42 ± 0.20

(74.40 ± 0.16) (2) 78.85 ± 0.08 75.98 ± 0.07 75.64 ± 0.12 75.60 ± 0.06 74.77 ± 0.11

STATICS2011 (6) 86.89 ± 0.23 86.45 ± 0.26 86.40 ± 0.22 86.53 ± 0.29 86.55 ± 0.25

(86.43 ± 0.29) (2) 87.27 ± 0.11 86.72 ± 0.23 87.18 ± 0.12 87.07 ± 0.33 86.97 ± 0.26

EdNet-KT1 (6) 73.04 ± 0.10 72.81 ± 0.08 72.88 ± 0.09 72.99 ± 0.07 73.28 ± 0.04

(72.75 ± 0.09) (2) 73.89 ± 0.06 73.73 ± 0.06 73.52 ± 0.06 74.04 ± 0.04 73.76 ± 0.04

Table 2: Comparison of the performances (AUCs) of the DKT model, trained with only data aug-
mentation (i.e., using the loss (6)) and with consistency and monotonicity regularizations (i.e., using
the loss (2)). AUCs of the vanilla DKT model are given in parentheses below the dataset names.

augmentation direction ASSIST2015 ASSISTChall STATICS2011 EdNet-KT1

- - 72.01 ± 0.05 74.40 ± 0.16 86.43 ± 0.29 72.75 ± 0.09

correct insertion increase 72.08 ± 0.02 75.98 ± 0.06 86.72 ± 0.23 73.70 ± 0.08

incorrect insertion decrease 72.31 ± 0.04 75.34 ± 0.16 87.18 ± 0.12 73.40 ± 0.06

correct deletion decrease 72.44 ± 0.05 75.60 ± 0.06 87.07 ± 0.33 74.01 ± 0.05

incorrect deletion increase 72.26 ± 0.04 74.77 ± 0.11 86.68 ± 0.27 73.71 ± 0.04

correct insertion decrease 71.79 ± 0.06 75.42 ± 0.17 86.58 ± 0.50 69.67 ± 0.06

incorrect insertion increase 70.73 ± 0.10 74.92 ± 0.11 86.22 ± 0.18 71.95 ± 0.15

correct deletion increase 66.48 ± 0.10 74.68 ± 0.13 86.76 ± 0.27 71.23 ± 0.81

incorrect deletion decrease 67.34 ± 0.17 73.91 ± 0.14 86.58 ± 0.28 69.99 ± 0.11

Table 3: Ablation test on the directions of monotonicity regularizations with the DKT model. 2nd to
5th rows show the results with the original regularization losses, and the last 4 rows show the results
with the reversed regularization losses.

Since overfitting is expected to be more severe when using a smaller dataset, we conduct experiments
using various fractions of the existing training datasets (5%, 10%, 25%, 50%) and show that our
augmentations yield more significant improvements for smaller training datasets. Figure 3 shows
performances of DKT model on various datasets, with and without augmentations. For example,
on ASSISTmentsChall dataset, using 100% of the training data gives AUC 74.4%, while the same
model trained with augmentations achieved AUC 75.44% with only 25% of the training dataset.

3.2 ABLATION STUDY

Are constraint losses necessary? One might think that data augmentations are enough for boosting
up the performance, and imposing consistency and monotonicity are not necessary. However, we
found that including such regularization losses for training is essential for further performance gain.
To see this, we compare the performances of the model trained only with KT losses for both original
and augmented sequences

Ltot = Lori +
∑

aug∈A
λaugLaug (6)

(where λaug = 1) and with consistency and monotonicity regularization losses (2) where A is a
set that contains a single augmentation. Training a model with the loss (6) can be thought as using
augmentations without imposing any consistency or monotonicity biases.

Table 2 shows results under the DKT model. Using only data augmentation (training the model with
the loss (6)) gives a marginal gain in performances or even worse performances. However, training
with both data augmentation and consistency or monotonicity regularization losses (2) give signif-
icantly higher performance gain. Under ASSISTmentsChall dataset, using replacement along with
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dataset no augmentation replaced inters remaining inters full inters qDKT

ASSIST2015 72.01 ± 0.05 70.53 ± 0.07 72.07 ± 0.02 71.39 ± 0.09 -
ASSISTChall 74.40 ± 0.16 74.68 ± 0.09 78.45 ± 0.08 75.91 ± 0.07 75.17 ± 0.13

STATICS2011 86.43 ± 0.29 82.97 ± 0.27 87.17 ± 0.15 83.49 ± 0.10 86.51 ± 0.10

EdNet-KT1 72.75 ± 0.09 65.52 ± 0.07 73.87 ± 0.10 68.77 ± 0.11 64.49 ± 0.09

Table 4: Performances (AUCs) of the DKT model with variations of replacements and qDKT with
Lapacian regularization. Best result for each dataset is indicated in bold.

dataset no augmentation question-random interaction-random skill-set skill

ASSIST2015 72.01 ± 0.05 72.07 ± 0.02 71.77 ± 0.05 - -
ASSISTChall 74.40 ± 0.16 78.39 ± 0.09 74.27 ± 0.38 77.57 ± 0.08 78.45 ± 0.08

STATICS2011 86.43 ± 0.29 86.35 ± 0.06 84.50 ± 0.28 - 87.17 ± 0.15

EdNet-KT1 72.75 ± 0.09 73.84 ± 0.05 72.62 ± 0.17 73.80 ± 0.07 73.87 ± 0.10

Table 5: Performances (AUCs) of the DKT model with different type of replacements - question-
random replacement, interaction-random replacement, skill-set-based replacement, and skill-based
replacement. Best result for each dataset is indicated in bold.

consistency regularization improves AUC by 6%, which is much higher than the 1% improvement
only using data augmentation.

Ablation on monotonicity constraints We perform an ablation study to compare the effects of
monotonicity regularization and reversed monotonocity regularization. Monotonocity regulariza-
tion introduces constraint loss to align the inserted or deleted sequence in order to modify the prob-
ability of correctness of the original sequence to follow insertion or deletion. For example, when a
correct response is inserted to the sequence, the probability of correctness for the original sequence
increases. Reversed monotonocity regularization modifies the probability of correctness in the op-
posite manner, where inserting a correct response would decrease the probability of correctness in
the original sequence.

For each aug ∈ {cor ins, incor ins, cor del, incor del}, we can define reversed version of the
monotonicity regularization loss Lrev

reg-aug which impose the opposite constraint on the model’s out-
put, e.g. we define Lrev

reg-cor ins as

Lrev
reg-cor ins = Et∈[T ][max(0, pinsσ(t) − pt)] = Lreg-incor ins (7)

which forces model’s output of correctness probability to decrease when correct responses are in-
serted. In this experiments, we do not include KT loss for augmented sequences (set λaug = 0) to
observe the effects of consistency loss only. Also, the same hyperparameters (αaug and λreg-aug) are
used for both the original and reversed constraints.

Table 3 shows the performances of DKT model with the original and reversed monotonicity regu-
larizations. Second row represents the performance with no augmentations, the 3rd to the 6th rows
represent the results from using original (aligned) insertion/deletion monotonicity regularization
losses, and the last four rows represent the results when the reversed monotonicity regularization
losses are used. The results demonstrate that using aligned monotonicity regularization loss outper-
forms the model with reversed monotonicity regularization loss. Also, the performances of reversed
monotonicity shows large decrease in performance on several datasets even compared to the model
with no augmentation. For example, in case of the EdNet-KT1 dataset, the model’s performance
with correct insertion along with original (aligned) regularization improves the AUC from 72.75%
to 73.70%, while using the reversed regularization drops the performance to 69.67%.

Ablation on replacement. We compare our consistency regularization with the other two variations
of replacements - consistency regularization on replaced interactions and full interactions - and
qDKT (Sonkar et al., 2020). As we mentioned in Section 3, there are two more possible variations
of the consistency loss for the replacement depends on whether we include replaced interaction’s
output in the loss or not:

Lreg-rep ro = Et∈R[(pt − prept )2], Lreg-rep full = Et∈[T ][(pt − prept )2], (8)

where ro stands for replaced only. We compared such variations with the original consistency loss
Lreg-rep that does not include predictions for the replaced interactions. For all variations, we used
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the same replacement probability αrep and loss weight λreg-rep, and we do not include KT loss for
replaced sequences (set λrep = 0) as before. Also, we compare replacement with qDKT that uses
the following Laplacian loss which regularizes the variance of predicted correctness probabilities
for questions that fall under the same skill:

LLaplacian = E(qi,qj)∈Q×Q[1(i, j)(pi − pj)
2] (9)

where Q is the set of all questions, pi, pj are the model’s predicted correctness probabilities for the
questions qi, qj , and 1(i, j) is 1 if qi, qj have common skills attached, otherwise 0. It is similar to our
variation of consistency regularization (Lreg-rep ro in (8)) that only compares replaced interactions’
outputs, but it does not replace questions and it compares all questions (with same skills) at once.
Since the hyperparameter λ that scales the Laplacian regularization term is not provided in the paper,
we use the same set of hyperparameters we use for other losses, and report the best results among
them. Table 4 shows that including the replaced interactions’ outputs hurt performances. For ex-
ample, under the EdNet-KT1 dataset, all the variations of consistency regularization and Laplacian
regularization significantly dropped AUCs to under 70%, while the original consistency regulariza-
tion boost up the performance from 72.75% to 73.87%.

To see the effect of using the skill information of questions for replacement, we compared skill-based
replacement with three different random versions of replacement: question random replacement, in-
teraction random replacement, and skill-set-based replacement. For question random replacement,
we replace questions with different ones randomly (without considering skill information), while
interaction random replacement changes both question and responses (sample each response with
0.5 probability). Skill-set-based replacement is almost the same as the original skill-based replace-
ment, but the candidates of the questions to be replaced are chosen as ones with exactly same set
of skills are associated, not only have common skills (S = Srep). The results in Table 5 show that
the performances of the question random replacements depends on the nature of dataset. It shows
similar performance with skill-based replacement on ASSISTmentsChall and EdNet-KT1 datasets,
but only give a minor gain or even dropped the performance on other datasets. However, applying
interaction-random replacement significantly hurt performances over all datasets, e.g. the AUC is
decreased from 86.43% to 84.50% on STATICS2011 dataset. This demonstrates the importance
of fixing responses of the interactions for consistency regularization. At last, skill-set-based re-
placement works similar or even worse than the original skill-based replacement. Note that each
question of the STATICS2011 dataset has single skill attached to, so the performance of skill-based
and skill-set-based replacement coincide on the dataset.

4 CONCLUSION

We propose simple augmentation strategies with corresponding constraint regularization losses for
KT and show their efficacy. We only considered the most basic features of interactions, question and
response correctness, and other features like elapsed time or question texts enables us to exploit di-
verse augmentation strategies if available. Furthermore, exploring applicability of our idea on other
AiEd tasks (dropout prediction or at-risk student prediction) is another interesting future direction.
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A APPENDIX

A.1 DATASET STATISTICS AND PRE-PROCESSING

Detailted dataset statistics are given in the Table 6.

• ASSISTments: For ASSISTments2015 dataset, we filtered out the logs with CORRECTS
not in {0, 1}. Note that ASSISTments2015 dataset only provides question and no corre-
sponding skills.

• STATICS2011 A concatenation of a problem name and step name is used as a ques-
tion id, and the values in the column KC (F2011) are regarded as skills attached to each
question.

• EdNet-KT1 Among 600K students, we filtered out whose interaction length is in
[100, 1000], and randomly sampled 6000 users, where 5000 users for training and 1000
users for test.

name logs students questions skills avg. length avg. correctness

ASSIST2015 683801 19840 100 - 34.47 0.73
ASSISTChall 942816 1709 3162 102 551.68 0.37
STATICS2011 261937 333 1224 81 786.60 0.72
EdNet-KT1 2051701 6000 14419 188 341.95 0.63

Table 6: Dataset statistics.

A.2 MONOTONICITY NATURE OF DATASETS

We perform data analysis to explore monotonicity nature of datasets, i.e. a property that students are
more likely to answer correctly if they did the same more in the past. For each interaction of each
student, we see the distribution of past interactions’ correctness rate. Formally, for given interaction
sequences (I1, . . . , IT ) with It = (Qt, Rt) and each 2 ≤ t ≤ T , we compare the distributions of
past interactions’ correctness rate

correctness rate<t =
1

t− 1

t−1∑
τ=1

1Rτ=1

where 1Rτ=1 is an indicator function which is 1 (resp. 0) whenRτ = 1 (resp. Rτ = 0). We compare
the distributions of correctness rate<t over all interactions with Rt = 1 and Rt = 0 separately,
and the results are shown in Figure 1. We can see that the distributions of previous correctness
rates of interactions with correct response lean more to the right than ones of interactions with
incorrect response. This shows the positive correlation between previous correctness rate and the
current response correctness, and it also explains why monotonicity regularization actually improve
prediction performances of knowledge tracing models.

A.3 MODEL’S PREDICTIONS AND CONSISTENCY REGULARIZATION LOSSES

Instead of analyzing consistency nature of datasets directly, we compare the test consistency loss
for correctly and incorrectly predicted responses separately, with the DKT model on ASSIST-
mentsChall, STATICS2011, and EdNet-KT1 datasets. Table 7 shows the average consistency loss
for correctly and incorrectly predicted responses, with the vanilla DKT model and the model trained
with consistency regularization losses. When we compute the test consistency loss, we replaced
each (previous) interaction’s questions to another questions with overlapping skills with αrep = 0.3
probability. For all models, the average loss for the correctly predicted responses are lower than
the incorrectly predicted responses. This verifies that smaller consistency loss actually improves
prediction accuracy.
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dataset target response vanilla regularized

ASSISTChall correct 0.01028 0.00027
incorrect 0.01713 0.00039

STATICS2011 correct 0.00618 0.00049
incorrect 0.01748 0.00093

EdNet-KT1 correct 0.00422 0.00091
incorrect 0.00535 0.00116

Table 7: Comparison of the average consistency loss for correctly and incorrectly predicted re-
sponses of the DKT model.

A.4 HYPERPARAMETERS

Table 8 describes detailed hyperparameters for each augmentation and model that are used for the
main results (Table 1). Each entry represents a tuple of augmentation probability (αaug) and a weight
for constraint loss (λreg-aug), which shows the best performances among αaug ∈ {0.1, 0.3, 0.5} and
λreg-aug ∈ {1, 10, 50, 100}. Each entry represents (αaug, λreg-aug) for each augmentation. We use
λaug = 1 for all experiments with augmentations, except for the DKT model on STATICS2011
dataset with incorrect insertion augmentation (λincor ins = 0).

To see the effect of augmentation probabilities and regularization loss weights, we perform grid
search over αaug ∈ {0.1, 0.3, 0.5} and λreg-aug ∈ {1, 10, 50, 100} with DKT model, and the AUC
results are shown as heatmaps in Figure 5.

dataset model insertion + deletion insertion + deletion + replacement

cor ins incor ins cor del incor del cor ins incor ins cor del incor del rep

ASSIST2015
DKT (0, 0) (0, 0) (0.3, 100) (0, 0) (0.3, 100) (0, 0) (0, 0) (0, 0) (0.1, 10)

DKVMN (0.5, 100) (0, 0) (0, 0) (0, 0) (0.5, 100) (0, 0) (0, 0) (0, 0) (0.3, 1)
SAINT (0, 0) (0.5, 10) (0, 0) (0, 0) (0, 0) (0.5, 10) (0, 0) (0, 0) (0.3, 1)

ASSISTChall
DKT (0.5, 100) (0, 0) (0, 0) (0, 0) (0.5, 1) (0, 0) (0, 0) (0, 0) (0.3, 100)

DKVMN (0.5, 1) (0, 0) (0, 0) (0, 0) (0.5, 1) (0, 0) (0, 0) (0, 0) (0.5, 100)
SAINT (0, 0) (0, 0) (0.3, 1) (0, 0) (0, 0) (0.3, 1) (0.3, 1) (0, 0) (0.3, 100)

STATICS2011
DKT (0, 0) (0.5, 10) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0.3, 100)

DKVMN (0, 0) (0, 0) (0.3, 10) (0, 0) (0, 0) (0, 0) (0.3, 1) (0, 0) (0.3, 10)
SAINT (0, 0) (0.5, 1) (0, 0) (0.5, 1) (0, 0) (0.5, 1) (0, 0) (0.5, 1) (0.3, 100)

EdNet-KT1
DKT (0, 0) (0, 0) (0.3, 50) (0, 0) (0, 0) (0.3, 1) (0.3, 1) (0, 0) (0.1, 100)

DKVMN (0, 0) (0.5, 1) (0, 0) (0, 0) (0, 0) (0.5, 1) (0, 0) (0, 0) (0.1, 1)
SAINT (0, 0) (0.3, 50) (0, 0) (0, 0) (0, 0) (0.3, 50) (0, 0) (0, 0) (0.5, 1)

Table 8: Hyperparameters for Table 1.
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(a) ASSISTments2015

(b) ASSISTmentsChall

(c) STATICS2011

(d) EdNet-KT1

Figure 5: Performances (AUCs) of the DKT model for each augmentation and corresponding
regularization with different augmentation probabilities (αaug)) and regularization loss weights
(λreg−aug). The hyperparameters are searched over αaug ∈ {0.1, 0.3, 0.5} and λreg−aug ∈
{1, 10, 50, 100}. For each dataset, each column represents results with replacement, correct inser-
tion, incorrect insertion, correct deletion, and incorrect deletion, from left to right. We set λaug = 1
for all cases. We use question-random replacement for ASSISTments2015 dataset.
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