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Abstract
Time-series forecasting (TSF) finds broad ap-001
plications in real-world scenarios. Prompting002
off-the-shelf Large Language Models (LLMs)003
demonstrates strong zero-shot TSF capabili-004
ties while preserving computational efficiency.005
However, existing prompting methods oversim-006
plify TSF as language next-token predictions,007
overlooking its dynamic nature and lack of in-008
tegration with state-of-the-art prompt strategies009
such as Chain-of-Thought. Thus, we propose010
LSTPrompt, a novel approach for prompting011
LLMs in zero-shot TSF tasks. LSTPrompt de-012
composes TSF into short-term and long-term013
forecasting sub-tasks, tailoring prompts to each.014
LSTPrompt guides LLMs to regularly reassess015
forecasting mechanisms to enhance adaptabil-016
ity. Extensive evaluations demonstrate consis-017
tently better performance of LSTPrompt than018
existing prompting methods, and competitive019
results compared to foundation TSF models.020

1 Introduction021

Time-series (TS) data are ubiquitous across various022

domains, including public health (Adhikari et al.,023

2019), finance (Deb et al., 2017), and energy (Tay024

and Cao, 2001). Time-series forecasting (TSF), a025

crucial task in TS data analysis, aims to predict026

future events or trends based on historical data. Re-027

cent advancements in large Pre-Trained Models028

(PTMs), a.k.a. foundation models, and Large Lan-029

guage Models (LLMs) have demonstrated their ef-030

fectiveness for TSF tasks. This is achieved either by031

training TS foundation models from scratch (Yeh032

et al., 2023; Kamarthi and Prakash, 2023; Garza033

and Mergenthaler-Canseco, 2023; Das et al., 2023)034

or adapting LLMs to TS data as natural language035

modalities (Jin et al., 2023; Chang et al., 2023; Xue036

and Salim, 2023; Gruver et al., 2023). These meth-037

ods leverage powerful generalization capabilities of038

PTMs or LLMs, proving effectiveness in zero-shot039

TSF tasks with promising applications without the040

need for domain-specific training data.041

Figure 1: Comparison between naive prompt (Gruver
et al., 2023) and LSTPrompt.

Designing proper prompting techniques for zero- 042

shot TSF tasks offers notable advantages, which 043

avoids training models from scratch or fine-tuning 044

LLMs for computational efficiency while maintain- 045

ing forecasting accuracy. Existing approaches (Xue 046

and Salim, 2023; Gruver et al., 2023) prompt LLMs 047

for zero-shot TSF tasks by aligning TS data with 048

natural language sequences and prompting LLMs 049

to perform TSF as sequence completion tasks. 050

However, these methods overlook the dynamic na- 051

ture of TS data and the intricate forecasting mecha- 052

nisms inherent in TSF tasks, such as modeling tem- 053

poral dependencies, which cannot be adequately 054

modeled by simple sequence completion tasks. 055

To address the limitation, we introduce LST- 056

Prompt, a novel prompt strategy of LLMs for TSF 057

tasks by providing specific TSF-oriented guidelines. 058

Our contributions are summarized as follows: 059

• We propose Long-Short-Term Prompt (LST- 060

Prompt), which decomposes TSF into short- 061

term and long-term forecasting subtasks. Each 062

subtask guides LLMs with distinct forecasting 063

rules and mechanisms, forming a Chain-of- 064

Thought reasoning path for predictions. 065

• We introduce TimeBreath to LSTPrompt, 066

an innovative component that encourages 067

LLMs to regularly revisit forecasting mecha- 068

nisms, enabling leveraging different forecast- 069

ing mechanisms for different time periods. 070
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• We evaluate LSTPrompt on multiple bench-071

mark and concurrent datasets, demonstrating072

its effectiveness for zero-shot TSF tasks. We073

show its generalization ability to outperform074

non-zero-shot methods in specific scenarios.075

We provide additional related works in the Ap-076

pendix A with distinguishing the differences of077

popular zero-shot TSF methods in Table 3.078

2 Methodology079

2.1 Problem Formulation and Motivation080

Zero-shot TSF aims to predict future TS {yi}t+H
i=t081

with a horizon window size H based on a reference082

TS {yi}ti=t−L with lookback window size L, with-083

out prior exposure or training on the target series.084

Solving zero-shot TSF tasks with LLMs requires085

aligning TS data with natural language modalities086

to leverage remarkable generalization abilities and087

generate predictions based on the provided context.088

One approach to align TS data with LLMs is to089

present TS data as text. Existing zero-shot TSF090

prompt strategies (Xue and Salim, 2023; Gruver091

et al., 2023) represent TS data as strings of numer-092

ical digits and treat TSF tasks as text-based next-093

token predictions. However, these strategies over-094

look the need for sophisticated forecasting mech-095

anisms inherent in dynamic TS data. Without ex-096

plicit instructions, existing strategies may yield in-097

accurate predictions with high uncertainty.098

To address this, we propose LSTPrompt, tai-099

lored for zero-shot TSF tasks through prompting100

LLMs informatively. LSTPrompt comprises two101

components: (1) TimeDecomp, decomposing TSF102

tasks into subtasks for systematic reasoning, and (2)103

TimeBreath, facilitating periodic breaks to adapt104

forecasting strategies within the horizon window.105

We detail each module in the subsequent sections.106

2.2 TimeDecomp107

Rather than directly prompting complex questions108

to LLMs, recent studies advocate decomposing109

inquiries into simpler, sequential steps (Wei et al.,110

2022; Kojima et al., 2022). This approach aids111

LLMs in constructing a coherent reasoning path.112

However, applying such chain-of-thought or step-113

by-step strategies to TSF tasks remains unexplored.114

To address this, we introduce TimeDecomp,115

which breaks down TSF tasks into short-term116

and long-term forecasting subtasks. This is mo-117

tivated by different forecasting mechanisms for118

short/long-term forecasting. Particularly, TimeDe- 119

comp prompts LLMs to partition horizon time steps 120

into short-term and long-term accordingly. Then, it 121

guides LLMs through each subtask, directing them 122

to focus on specific aspects: short-term forecasting 123

emphasizes trend changes and dynamic patterns, 124

while long-term forecasting highlights statistical 125

properties and periodic patterns. TimeDecomp’s 126

chain-of-thought process follows step-by-step cues: 127

it prompts tasks with specific datasets, decomposes 128

tasks into short-term and long-term sub-tasks, and 129

guides LLMs to incorporate appropriate forecast- 130

ing mechanisms and domain knowledge. 131

2.3 TimeBreath 132

In addition to chain-of-thought prompting, recent 133

studies emphasize the importance of incentiviz- 134

ing LLMs to follow step-by-step reasoning, espe- 135

cially when having numerous subtasks (Zhou et al., 136

2022b; Yang et al., 2023). To facilitate this, Yang 137

et al. propose a strategy that introduces "Take a 138

deep breath" before initiating step-by-step tasks. 139

TSF tasks involve varying reasoning across dif- 140

ferent time steps and overly lengthy forecasting 141

horizons can overwhelm LLMs’ reasoning abilities. 142

Inspired by the "deep breath" design, we introduce 143

TimeBreath, which prompts LLMs to take "rhyth- 144

mic breaths" during sequential reasoning for TSF. 145

In the TSF task with H time steps horizon, Time- 146

Breath guides LLMs to rhythmically breathe every 147

k steps, where k is a hyperparameter determining 148

the breath frequency. The intuition of TimeBreath 149

is to encourage LLMs to reassess forecasting mech- 150

anisms regularly, particularly for distant time steps 151

that may require different reasonings. By taking 152

breaks, TimeBreath helps LLMs avoid prior irrel- 153

evant inferences and fosters adaptive forecasting 154

mechanisms to current forecasts. 155

In practice, the choice of k significantly impacts 156

LLMs’ performance in zero-shot TSF tasks, as 157

demonstrated in the sensitivity analysis provided in 158

Appendix C. A straightforward approach is to align 159

the frequency of breaks with the upper time scale. 160

For example, setting k = 5 prompts weekly breaks 161

for daily stock forecasting, while k = 4 encourages 162

monthly breaks for weekly Influenza forecasting. 163

2.4 LSTPrompt 164

We introduce LSTPrompt, which integrates 165

TimeDecomp and TimeBreath to create the compre- 166

hensive prompt strategy. The prompt is straightfor- 167

ward: LSTPrompt first guides LLMs through the 168
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Darts

Dataset Frequency Horizon
Supervised

Zero-Shot
(PTMs)

Zero-Shot
(Prompt)

SP ARIMA TCN N-BEATS TimesFM LLMTime LSTPrompt
AirPassengers Month 29 34.67 24.03 54.96 97.89 14.75 48.96 13.02

MilkProduction Month 34 30.33 37.19 70.86 33.64 22.46 63.15 7.71
BeerProduction Season 43 102.05 17.13 30.90 10.39 10.25 20.85 13.29

Sunspots Day 141 53.74 43.56 51.82 73.15 50.88 59.91 46.84

Monash
DeepAR N-BEATS WaveNet Transformer TimesFM LLMTime LSTPrompt

RiverFlow Day 30 23.51 27.92 22.17 28.06 24.53 28.63 24.17
US Births Day 30 424.9 422.0 504.4 452.9 408.5 459.43 429.2

Informer
(ETT)

Informer Autoformer FEDformer PatchTST TimesFM LLMTime LSTPrompt

ETTh1 Hour
96 0.76 0.55 0.58 0.41 0.37 0.42 0.32

192 0.78 0.64 0.64 0.49 0.49 0.50 0.36

ETTm1 Minute
96 0.71 0.54 0.41 0.33 0.25 0.37 0.19

192 0.68 0.46 0.49 0.31 0.24 0.71 0.55

ETTh2 Hour
96 1.94 0.65 0.67 0.28 0.28 0.33 0.31

192 2.02 0.82 0.82 0.68 0.58 0.70 0.45

Table 1: Performance comparison of supervised models and zero-shot methods on benchmark datasets: (1)
LSTPrompt achieves mostly the best and several second-best results among zero-shot forecasting methods. (2)
LSTPrompt outperforms the best supervised models on 6 out of 12 datasets. We bold the best zero-shot results and
LSTPrompt with the second-best results is underlined. We italicize/underline the best supervised results.

Dataset Frequency Horizon
Supervised

Zero-Shot
(PTMs)

Zero-Shot
(Prompt)

Informer AutoFormer FedFormer PatchTST LPTM LLMTime LSTPrompt

ILI Week

4 1.64 1.17 2.31 0.51 1.54 0.61 0.42
12 2.25 2.10 1.97 0.52 0.83 0.81 0.67
20 2.01 1.43 1.67 1.39 1.70 4.68 1.73
24 4.29 1.86 1.30 2.15 2.18 4.81 2.08

Stock Day

24 5.07 9.94 8.73 4.52 0.73 0.51 0.32
48 8.03 9.22 9.56 4.11 0.80 0.42 0.19
96 3.11 9.61 9.43 4.36 0.87 1.42 0.41
120 4.07 10.92 10.59 4.65 1.28 2.61 0.52

Weather Day

24 1.59 1.54 1.77 1.77 0.79 0.31 0.31
48 1.62 1.63 1.84 1.25 1.06 0.66 0.53
96 1.43 1.50 2.34 1.16 1.08 0.84 0.62
120 1.45 1.64 1.95 1.40 1.18 0.83 0.69

Table 2: Performance comparison of supervised models and zero-shot methods on concurrent datasets: (1) LST-
Prompt consistently outperforms zero-shot baselines on all evaluations. (2) LSTPrompt outperforms best supervised
models on 9 of 12 evaluations. We bold the best zero-shot method and italicize/underline the best supervised results.

chain-of-thought steps outlined by TimeDecomp,169

then instructs them to take regular breaks using170

TimeBreath. A LSTPrompt demo is shown by Fig-171

ure 1. We provide a detailed prompting example172

in Appendix B. LSTPrompt is designed for any TS173

datasets for zero-shot TSF tasks. It can be easily174

tailored to different scenarios by adjusting a single175

hyperparameter, k, as previously discussed.176

3 Experiments177

3.1 Benchmark Evaluation178

To benchmark the performance of LSTPrompt, we179

use three common TSF benchmarks: Darts (Herzen180

et al., 2022), Monash (Godahewa et al., 2021), and181

Informer datasets (Zhou et al., 2021). While these182

datasets can potentially be used for training LLMs,183

evaluating LSTPrompt on these datasets allows fair184

comparisons within aligned settings, which strictly185

follows the established setup for zero-shot TSF186

tasks (Gruver et al., 2023) and are detailed in Ap-187

pendix C. We use the SOTA prompting method188

LLMTime (Gruver et al., 2023) and a recent PTM189

TimesFM (Das et al., 2023) as zero-shot baselines. 190

The results are shown in Table 1. We showcase 191

visualized results in Appendix C. 192

The results highlight two main benefits of LST- 193

Prompt: First, LSTPrompt achieves the best per- 194

formance on 8 out of 12 benchmark datasets and 195

the second-best performance on the remaining 4 196

among zero-shot methods. Notably, LSTPrompt al- 197

ways outperforms the SOTA prompt method LLM- 198

Time, while may slightly lag behind TimesFM, 199

which is expected since TimesFM is a TSF-specific 200

PTMs. Second, LSTPrompt can outperform best 201

supervised results under certain scenarios. For in- 202

stance, LSTPrompt achieves a 74.6% lower MAE 203

compared to the best supervised result on the 204

MilkProduction dataset. This improvement relies 205

on the strong generalization ability of LLMs, which 206

helps mitigate overfitting for supervised models. 207

3.2 Concurrent Dataset Evaluation 208

To evaluate the true zero-shot ability of LSTPrompt, 209

we conduct experiments over three concurrent 210

datasets from different domains: influenza-like ill- 211
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ness (ILI), Stock, and Weather (Detailed in Ap-212

pendix C). These datasets ensure that the test data213

are after June 2023, while most LLMs are trained214

only up to 2022 (Achiam et al., 2023). Employing215

these datasets ensures the zero-shot property, even216

for GPT4. The experiment setup follows Bench-217

mark Evaluations. We omit PromptCast (Xue and218

Salim, 2023), exclude TimesFM, and include an-219

other foundation time-series model, LPTM (Ka-220

marthi and Prakash, 2023), for zero-shot baselines221

with explanations in Appendix C. We include su-222

pervised TSF models, including Informer (Zhou223

et al., 2021), Autoformer (Wu et al., 2021), FED-224

former (Zhou et al., 2022a), and PatchTST (Nie225

et al., 2022), to show performance disparities be-226

tween zero-shot methods and supervised models227

on TSF tasks. The results are shown in Table 2.228

The results demonstrate that LSTPrompt consis-229

tently outperforms zero-shot baselines on all eval-230

uations. Notably, LSTPrompt consistently outper-231

forms best supervised results on Stock and Weather232

datasets. This is attributed to heavy distribution233

drifts on these datasets, which largely degrade the234

supervised models’ performances. In contrast, ben-235

efiting from strong generalization abilities of LLMs236

and zero-shot properties, zero-shot methods miti-237

gate the impacts of distribution drifts and achieve238

better performance than supervised models.239

3.3 Ablation Study240

Figure 2: Ablation Study: (1) Enhanced reasoning abil-
ities enable LSTPrompt to perform best on GPT4. (2)
Both TimeDecomp and TimeBreath effectively enhance
the forecasting accuracy of LSTPrompt.

To understand the significance of various compo-241

nents of LSTPrompt, we conduct two ablation stud-242

ies: (1) Analyzing the impact of employing differ-243

ent LLMs; (2) Analyzing the effects of TimeDe-244

comp and TimeBreath. We conduct experiments245

with combinations of different LLMs and vari-246

ous ablated versions of LSTPrompt on the Stock247

dataset, with results visualized in Figure 2.248

Prompting Different LLMs. In prior experiments,249

we presented forecasting results based on the most250

suitable LLMs (e.g., GPT3.5-Turbo-Instruct for251

LLMTime and GPT4 for LSTPrompt). However, 252

performance differences can arise among zero- 253

shot TSF methods, including LSTPrompt, when 254

evaluated across different LLMs. Thus,we in- 255

vestigate and interpret the potential impacts of 256

utilizing GPT3.5-Turbo, GPT3.5-Turbo-Instruct, 257

and GPT4 with LSTPrompt. The results indicate 258

LSTPrompt coupled with GPT4.0 outperforms in- 259

stances with GPT3.5-Turbo and GPT3.5 Turbo- 260

Instruct. This finding aligns with expectation, as 261

LSTPrompt prompts LLMs to follow the reason- 262

ing path through distinct short-term and long-term 263

forecasting subtasks, each requiring different rea- 264

soning mechanisms, while GPT4 is known for its 265

reasoning abilities compared to the remaining two. 266

Module Effectiveness. To understand the signif- 267

icance of TimeDecomp and TimeBreath, we an- 268

alyze performance discrepancies over three ab- 269

lated versions of LSTPrompt: (1) Base, using 270

standard prompts; (2) LSTPrompt\TD, exclud- 271

ing TimeDecomp from LSTPrompt; (3) LST- 272

Prompt\TB, excluding TimeBreath from LST- 273

Prompt. We include the state-of-the-art Chain-of- 274

Thought method (Yang et al., 2023) (referred to as 275

‘CoT’) to highlight performance differences with 276

the SOTA prompt strategy for general tasks. 277

The results demonstrate the effectiveness of 278

both TimeDecomp and TimeBreath. Incorporating 279

TimeDecomp and TimeBreath reduces the average 280

NMAE by 26.8% and 34.1%, respectively, com- 281

pared to Base prompts. Employing both modules 282

enhances average performance by 46.7% than Base 283

prompts. Moreover, the sole utilization of either 284

TimeDecomp or TimeBreath demonstrates certain 285

advantages in forecasting accuracy over the best 286

CoT method, highlighting the necessity of design- 287

ing tailored prompts for TSF tasks. 288

4 Conclusion 289

In this paper, we introduce LSTPrompt, a novel 290

prompt paradigm for zero-shot TSF tasks through 291

prompting LLMs. LSTPrompt enables LLMs to 292

achieve accurate zero-shot TSF tasks through two 293

innovative modules: TimeDecomp, which decom- 294

poses zero-shot TSF tasks into a series of chain- 295

of-thought subtasks, and TimeBreath, which en- 296

courages LLMs to periodically reassess forecasting 297

mechanisms. Extensive experiments validate the 298

effectiveness of LSTPrompt, which consistently 299

outperforms the SOTA prompt method and shows 300

generally better performance than SOTA PTMs. 301
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A Additional Related Works467

Time-Series Forecasting. Traditional time se-468

ries methods approach forecasting from a statis-469

tical standpoint, treating it as standard regression470

problems with time-varying parameters (Nadaraya,471

1964; Williams and Rasmussen, 1995; Zhang,472

2003). Recent advancements in deep learning have473

led to significant breakthroughs in this field, ex-474

emplified by deep models like LSTNet and N-475

BEATS (Lai et al., 2018; Oreshkin et al., 2019).476

Many state-of-the-art deep learning methods, such477

as Informer, Autoformer, PatchTST, and CA-478

Mul (Zhou et al., 2021; Wu et al., 2021; Nie et al.,479

2022; Kamarthi et al., 2022), build upon the suc-480

cess of self-attention mechanisms, popularized by481

transformer-based architectures (Vaswani et al.,482

2017). These transformer-based models excel at483

capturing long-range dependencies, surpassing the484

capabilities of traditional Recurrent Neural Net-485

work (RNN) models, owing to their effective use486

of self-attention mechanisms.487

Large Language Models. The augmentation of488

language model parameters and training data size489

has been shown to enhance generalization abil-490

ity (Brown et al., 2020). Consequently, researchers491

have developed Large Language Models (LLMs)492

like GPT (Brown et al., 2020; Achiam et al., 2023)493

and Llama (Touvron et al., 2023). These models494

excel at identifying patterns in prompts and extrap-495

olating them through next-token prediction, achiev-496

ing remarkable success in few-shot or zero-shot497

generalization and in-context learning. Beyond nat-498

ural language tasks, LLMs exhibit effectiveness499

in transfer learning across diverse modalities, in-500

cluding images (Lu et al., 2021), audio (Ghosal501

et al., 2023), tabular data (Hegselmann et al., 2023),502

and time-series data (Zhou et al., 2023). These ac-503

complishments underscore the importance of align-504

ing modalities appropriately to enable LLMs to505

comprehend tokenized patterns across different506

domains beyond traditional language processing507

tasks.508

Large Models for Time-Series Forecasting. In509

addition to the success of large models in language510

tasks, researchers in the field of time-series fore-511

casting (TSF) have pursued the development of512

large models from two main perspectives: First,513

they train Pre-Trained Time-Series Models from514

scratch (Garza and Mergenthaler-Canseco, 2023;515

Das et al., 2023; Kamarthi and Prakash, 2023; Yeh516

et al., 2023), utilizing extensive time-series datasets 517

and tailoring them specifically for TSF tasks. Al- 518

ternatively, researchers harness the generalization 519

capabilities of Large Language Models (LLMs) by 520

aligning time-series data with language modalities 521

through techniques such as reprogramming (Jin 522

et al., 2023; Chang et al., 2023; Zhou et al., 2023) 523

or prompting (Gruver et al., 2023; Xue and Salim, 524

2023). To better understand the similarities and dif-

Method Type Cost
Use CoT or
Guidelines

Evaluated
on GPT4

TimesFM PTMs High N/A N/A
LPTM PTMs High N/A N/A

PromptCast Prompt Low No No
LLMTime Prompt Low No Partial

LSTPrompt Prompt Low Yes Yes

Table 3: Summary of similarities and differences of
related works on zero-shot TSF tasks.

525
ferences between all zero-shot methods mentioned 526

in this work, we list the property comparisons of 527

all zero-shot methods in Table 3. 528

B Prompt Details 529

Below, we introduce a template prompt for LST- 530

Prompt, designed to be adaptable to various time- 531

series datasets for zero-shot time-series forecasting 532

tasks. The template is outlined as follows: 533

1 f"Please continue the following input 534
sequence by addressing the task of 535
forecasting {dataname }. You should 536
break down the task into short -term 537
and long -term predictions , following 538
a three -step plan. First , 539

adaptively and reasonably identify 540
the ranges for short -term and long - 541
term predictions. Then , design 542
distinct and correct forecasting 543
mechanisms for both short -term and 544
long -term prediction tasks. For 545
short -term predictions , focus on 546
trends and the last few steps of the 547
input sequence. For long -term 548

predictions , emphasize cyclical 549
patterns and statistical properties 550
of the entire input sequence. You 551
may further optimize the forecasting 552
mechanisms based on your 553

observations and domain knowledge. 554
Finally , correctly implement the 555
forecasting mechanisms , completing 556
predictions one -time step at a time. 557

2 Remember to take a deep breath after 558
every {breath_steps} time steps of 559
prediction. The input sequence is as 560
follows :\n" 561
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C Additional Experiment Details562

Experiment Setup. Following the established se-563

tups in LLMTime and with the consideration of564

evaluating costs, we limit our focus to univari-565

ate time series forecasting tasks. However, LST-566

Prompt can readily extend to the multivariate fore-567

casting domain by employing multiple univari-568

ate forecasting techniques (Gruver et al., 2023;569

Lim and Zohren, 2021). We strictly followed570

LLMTime’s data-splitting method for benchmark571

datasets, where the test set comprises the last 20%572

of each time series.573

In addition to well-known benchmark datasets574

such as Darts, Monash, and ETT, our zero-shot575

evaluations encompass three concurrent datasets:576

ILI, Stock, and Weather. This selection ensures577

that the test data have never been exposed to LLMs578

training. All these datasets are publicly accessible.579

We use data after June 2023 for testing, thereby580

guaranteeing that GPT-3.5 and GPT-4 models have581

not been trained on these sets. Further details on582

these datasets are provided below:583

• ILI1: The ILI dataset provides the reported584

influenza-like illness patients with age divi-585

sions. The dataset covers from 2002 to 2023.586

The forecasting target is the weekly number587

of ILI patients.588

• Stock2: The Stock dataset provides daily his-589

torical data of Alphabet Inc. (GOOG). The590

Stock dataset set has 7 columns, including the591

stock’s opening price, closing price, highest592

price of the day, etc. The dataset covers from593

2013 to 2024 (Jan). The forecasting target is594

the daily opening price.595

• Weather3: The Weather dataset provides596

historical weather record of Chicago. This597

dataset set has 10 columns, including date,598

temperature, precipitation, humidity, wind599

speed, and atmospheric pressure. The dataset600

covers from 2021 to 2023. The forecasting601

target is the daily average temperature.602

Baseline. In supervised baselines, we adopt var-603

ious models depending on the benchmark’s offi-604

1https://gis.cdc.gov/grasp/fluview/
fluportaldashboard.html

2https://www.kaggle.com/
datasets/jillanisofttech/
google-10-years-stockprice-dataset

3https://www.kaggle.com/datasets/curiel/
chicago-weather-database

cial evaluation criteria. Concurrent datasets utilize 605

transformer-based supervised models, same as the 606

ETT benchmark, known for their remarkable per- 607

formance in TSF evaluations. 608

For zero-shot baselines, we categorize meth- 609

ods into pre-trained Time-Series Foundation Mod- 610

els (PTMs) and prompting methods. In bench- 611

mark evaluations, we utilize TimesFM (Das et al., 612

2023) for PTMs, as it asserts not being trained on 613

these datasets, while LPTM (Kamarthi and Prakash, 614

2023) does. Conversely, for concurrent dataset 615

evaluations, we employ LPTM, as it is open-source 616

compared to TimesFM. Reprogramming methods 617

are omitted, such as TimeLLM (Jin et al., 2023) 618

and LLM4TS (Chang et al., 2023), due to their 619

inapplicability to our zero-shot setting. 620

For prompting methods, we compare LLM- 621

Time (Gruver et al., 2023) with our proposed LST- 622

Prompt. Promptcast (Xue and Salim, 2023) is omit- 623

ted, as LLMTime consistently outperforms it, and 624

LSTPrompt demonstrates uniformly better perfor- 625

mance across all evaluations than LLMTime. 626

Evaluation Metric. Following the established se- 627

tups, we evaluate the Mean Absolute Error (MAE) 628

on Darts and Monash datasets between predictions 629

and raw target sequences. For ETT, ILI, Stock, and 630

Weather datasets, we evaluate the MAE based on 631

the normalized predictions and target sequences 632

according to the mean and variance of the training 633

data. The formulation of MAE = 1
n

∑n
t=1 |yt− ŷt|. 634

Hyperparameter Sensitivity Study. As previ- 635

ously mentioned in Section 2, we conduct experi- 636

ments using LSTPrompt on the Stock dataset with 637

varying values of breath frequency k. The results 638

are shown in Fiugure 3. Note that k = 0 denotes 639

LSTPrompt without employing TimeBreath. 640

Figure 3: Hyperparameter Sensitivity: The best breath
frequency k = 5 (weekly) aligns with the upper time
scale of the Stock data (daily).

The results suggest that setting k = 5, enabling 641
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LSTPrompt to breathe weekly in forecasting the642

stock prices, achieves the best performance com-643

pared to other breath frequencies. This optimal644

frequency aligns with the Stock dataset’s structure,645

which includes daily stock prices for 5 weekdays.646

Intuitively, setting k = 5 encourages LSTPrompt to647

reassess its reasoning and forecasting strategy on a648

weekly basis, fitting well with the inherent weekly649

cycles in stock data. By appropriately adjusting the650

breath frequency in TimeBreath, LSTPrompt can651

dynamically infer patterns while effectively adapt-652

ing to the data’s periodic nature, leading to more653

accurate forecasts.654

Figure 4: Result visualizations on the AirPassengers
(top) and ILI (bottom) datasets. LSTPrompt exhibits
better performance than LLMTime, demonstrating en-
hanced long-term prediction stability and improved abil-
ity to capture trend changes.

Result Visualization. We present the result vi-655

sualizations for the AirPassengers dataset in the656

Benchmark Evaluation and the ILI dataset in the657

Concurrent Dataset Evaluation. These visualiza-658

tions are shown in Figure 4.659

The visualizations demonstrate clear benefits660

from two perspectives: First, the predictions of661

LSTPrompt exhibit greater long-term stability and662

accuracy compared to LLMTime, as evidenced663

by the AirPassengers predictions. Notably, LST-664

Prompt effectively maintains the periodic proper-665

ties inherent in the dataset. Second, LSTPrompt666

demonstrates better capability in capturing accu- 667

rate trend changes compared to LLMTime, as il- 668

lustrated by the ILI predictions. In particular, LST- 669

Prompt accurately captures trends in increasing 670

predictions where LLMTime fails to detect them. 671

D Limitation Discussion 672

While LSTPrompt has demonstrated effective- 673

ness in zero-shot TSF tasks by employing sim- 674

ple prompts for LLMs, its limitations should be 675

acknowledged from two perspectives. First, the 676

interpretability of LSTPrompt may be compro- 677

mised. The evaluation of LSTPrompt heavily relies 678

on existing LLMs, the mechanisms and response 679

behaviors of which are currently challenging to 680

interpret. Consequently, LSTPrompt may suffer 681

from reduced interpretability due to our limited 682

understanding of LLMs. Second, incorporating 683

additional instructions in the prompts, such as the 684

names and properties of time-series datasets, could 685

potentially introduce information leaks that are ex- 686

ploited by the LLMs. We advocate for further re- 687

search within the safe AI community to investigate 688

the trustworthiness of LLMs, ensuring that LST- 689

Prompt can be deployed without concerns regard- 690

ing information leakage issues. 691
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