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Abstract

Computers, as well as most neuromorphic hardware systems, use central processing
and top-down algorithmic control to train for machine learning tasks. In contrast,
brains are ensembles of 100 billion neurons working in tandem, giving them
tremendous advantages in power efficiency and speed. Many physical systems
‘learn’ through history dependence, but training a physical system to perform
arbitrary nonlinear tasks without a processor has not been possible. Here we
demonstrate the successful implementation of such a system - a learning meta-
material. This nonlinear analog circuit is comprised of identical copies of a single
simple element, each following the same local update rule. By applying voltages
to our system (inputs), inference is performed by physics in microseconds. When
labels are properly enforced (also via voltages), the system’s internal state evolves in
time, approximating gradient descent. Our system learns on its own; it requires no
processor. Once trained, it performs inference passively, requiring approximately
100 µW of total power dissipation across its edges. We demonstrate the flexibility
and power efficiency of our system by solving nonlinear 2D classification tasks.
Learning meta-materials have immense potential as fast, efficient, robust learning
systems for edge computing, from smart sensors to medical devices to robotic
control.

1 Introduction

The brain is the ultimate meta-material. Comprised of 100 billion neurons signaling and evolving
in tandem, its emergent behaviors include physical locomotion, learning, memory, coding, and
writing Computer Science manuscripts. Computers, in contrast, operate on a hierarchical basis, with
processors performing centralized computation, shoehorned into digital logic [1]. While artificial
systems are catching up to human brains in many respects, they possess this distinct structural
disadvantage, and are thus are less power-efficient [2, 3] and slower at complex tasks like object
recognition [4], especially once their factor of 106 advantage in signal timescale (ns vs ms) is taken
into consideration.

The field of neuromorphic computing seeks to shrink these gaps between computers and brains
by building hardware that is, at least in spirit, more ‘brain-like’. Typically these efforts involve
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integrating memory and computation, or allowing physical processes to perform analog computations
for inference [1, 3, 5, 6, 7, 8, 9, 10, 11, 12]. However, these tactics retain a central design aspect
absent in the brain – hierarchical, top-down control during learning.

A nascent field, physical learning [13], seeks to create physical systems whose structures channel
physics into performing useful tasks, without encoding and decoding signals to and from digital logic.
For a limited set of tasks and conditions, this concept has been achieved using common physical
systems such as elastic foams [14], and in principle any physical system with history dependence can
be ‘trained,’ e.g. polymer glasses or frictional interfaces [15, 16]. Designed systems have achieved
a much wider range of functionalities, but are typically trained with computational assistance (that
is, in a ‘top-down’ manner) [17, 18, 14, 19, 20, 21], through an iterative process, similar to artificial
neural networks (ANNs).

Recently, the overlap of these two fields has produced ‘learning meta-materials,’ analog electrical
networks that evolve in a bottom-up manner like a physical system, but which, like an ANN, can
be trained to perform arbitrary functionality by example [22, 23, 24]. These systems are built to
implement Coupled Learning (CpL) [25], a framework inspired by Contrastive Hebbian Learning
(CHL) [26] and Equilibrium Propagation (EP) [27, 28], in which learning is driven by comparison of
two states of the same system. These first-generation learning meta-materials can perform a variety
of tasks, including regression and classification, but their functionality is limited by the linearity of
their elements, and the discrete values of their adjustable parameters.

Here we demonstrate nonlinear classification in a second-generation learning meta-material, a stan-
dalone physical system that can be trained by example, like an artificial neural network (ANN) [29].
Our system, an analog electrical network of MOSFET transistors, is comprised of 32 identical copies
of a single self-adjusting element. Training examples are shown to the network as enforced voltages
(boundary conditions), and the collective evolution of each element generates supervised learning
as an emergent property, requiring no outside computation. Once trained, the system is a passive
nonlinear electrical network, and inference is performed by physics in microseconds dissipating
approximately 100 micro Watts of power across its edges. We demonstrate the flexibility and efficacy
of our system by training it to perform several linear and nonlinear 2D classification tasks.

2 Learning Meta-Material Operation

Our system can be trained in a manner similar to an artificial neural network, that is, iteratively and
by example (supervised learning). However, it requires no processor, and its inner workings are far
closer to physical systems with history-dependent evolution in time [14, 15, 16]. This combination is
achieved by implementing the Coupled Learning (CpL) framework, as follows.

Consider an electrical network comprised of edges with conductance K⃗. Applying ‘input’ voltages I⃗
to two or more nodes of the network will generate a new electrical state inside the system (currents
will flow). Picking two arbitrary nodes and defining the difference between them as the ‘output’
O ≡ O+ − O− (as in [28]), we may think of the network as guiding physics to perform a linear
function, F (I⃗)K⃗ = O. By modifying K⃗, a wide range of linear functions may be created.

In this work, the edges of our network are N-channel enhancement-mode MOSFET transistors wired
as nonlinear variable resistors. Specifically, we utilize these transistors in the Ohmic (passive) regime,
where their source-drain conductance follows K ∝ G − Vth − V , where G is the gate voltage,
Vth ≈ 0.6 V is a fixed, threshold voltage, and V is the average of the source and drain voltages. This
last contribution is a source of nonlinearity; the conductance of each edge depends on the electrical
state of the system, and thus the inputs themselves. We may now think of the physics acting on the
network as performing a nonlinear function

N (I⃗)G⃗ = O (1)

The ‘learning’ in our system occurs by changing the gate voltages G⃗ of these transistor edges. We
utilize the learning rule from CpL, which requires comparing two states of the same system, free
and clamped. In the free state, only inputs are applied, and the output is determined by Eq. 1. In the
clamped state, inputs are applied, but the output is also enforced, specifically at a value between the
free output O and the desired output (label) L

OC = ηL+ (1− η)O (2)
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Figure 1: Structure of the Learning Meta-Material. This prototype is comprised of 32 identical
copies of a single self-adjusting element, shown schematically on the left. This element, a twin-edge,
consists of two N-channel MOSFETs whose gates are tied to a shared capacitor. This capacitor is
charged/discharged by local circuitry that produces current according to the learning rule (Eq. 3).
These elements are wired together such that they form identical twin networks that can be viewed as
two copies of the same nonlinear electrical network. This system can then be trained by imposing
inputs to both networks and labels to just one, creating two electrical states of the ‘same’ system. The
learning rule embedded on each element will evolve according to differences between the networks,
and collectively produce supervised learning as an emergent phenomenon. The physical circuit (right
side), shown here without periodic boundary conditions, is a standalone meta-material, requiring no
processor to learn or perform inference.

where η ≤ 1 is a hyper-parameter. In practice, instead of clamping the difference between the two
output nodes OC = OC

+ −OC
− , we clamp each output node individually as OC

± = O± ± η
2 (L−O).

Each gate voltages of our system G⃗ then evolves according to the CpL learning rule, specifically,

Ġ =
V 2
F − V 2

C

V0R0C0
(3)

Where V0, R0, and C0 are constants set by circuitry components, and VF and VC are the voltage
drops across an edge of the network in the free and clamped states respectively.

As in previous work [22], we build a twin network such that we may simultaneously access the free
and clamped states. These twin networks are constructed from a single irreducible element, a twin
edge, shown in Fig. 1. These edges do not interact directly, but share a common gate voltage to ensure
commensurate edges of each network are identical. Circuitry on board each twin edge operationalizes
the learning rule (Eq. 3) by charging a shared gate capacitor with capacitance C0. This learning may
be frozen/unfrozen via a global binary switch. When the system is frozen, the charged capacitors are
connected only to the transistor gates, and thus their charge decays slowly but has a finite lifetime.
After training, testing the circuit requires no more than 100ms, and we find no appreciable affect of
this decay over that timescale. For long-term storage of trained values, nonvolatile memory such as
memristors may be necessary.

An ensemble of 32 of these twin edges comprise our system, to which we apply boundary conditions
(Eq. 2), driving evolution (Eq. 3). Our system, shown in Fig. 1, right side, is a standalone, active
meta-material. The role of a supervisor in its training is therefore quite simple. For a chosen data
point i:

1. Enforce the inputs I⃗i on both networks, physics produces output Oi (Eq. 1)

2. Enforce the clamped output OC
i (Eq. 2).

3. Unfreeze the learning for training step time th, allowing edges to evolve (Eq. 3)

At no point does the supervisor calculate a solution or an update, load or save weights, or communicate
with the edges in any way other than the binary ‘freeze’ switch. Further, in practice, step 2 is performed
automatically by a feedback circuit that continually enforces Eq. 2. In this way, evolution is truly
continuous, as modifications to G⃗ impact O and thus OC at a timescale much faster than learning,
τV ≈ 1 µs, the measured equilibration timescale of the network. The learning evolution (Eq. 3) has
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Figure 2: A 2D Nonlinear Classification Task (A) Schematic of the network showing input and
output nodes as well as average rate of change in learning degrees of freedom for the first 15 ms
of training. Edge width indicates average edge conductance across the entire training set. (B)
Classification task visualization at four time points during training. Range of both axes is 0 to 0.45V,
the entire range of allowed node voltages. The two classes of training data are overlaid as blue and
orange colored dots, and the system output O(t) = O+(t)−O−(t) as a function of inputs (I1, I2) is
the background color. The black region indicates where |O| < 1.4 mV, near enough to the boundary
that noise potentially interferes with evaluation. (C) Classification error (black) and average power
dissipated across edges in the inference state from entire input range (green) versus time. Faded
green indicates standard deviation. Time points indicated in (B) are shown as vertical gray bars. (D)
Network schematic as in (A) but at the end of training. Colors indicate average change in learning
degrees of freedom from 0.5 to 2.6 seconds of training.

approximate timescale τ0 ≈ 24 ms. Cycling through data points in this three step manner will train
the system, just like an ANN performing supervised learning.

Because we are interested in performing classification tasks, we add one additional feature to our
learning protocol, designed to maximize classification accuracy instead of minimizing mean squared
error. Our classification tasks will each contain two classes, and we will treat zero output (O+ = O−)
as the classification boundary. Therefore our classification error for data point i can be written as

Ci = Θ(−LiOi) (4)

Where Θ is the Heaviside step function, Oi is the output for data point i, and label Li takes a single
positive value for all members of class one and the negative of that value for all members of class
two. This results in Ci = 0 for correctly classified data points, and Ci = 1 for incorrect ones. Then,
for each training step, we add a caveat to step 3: evolve only if the chosen data point is incorrectly
classified1. Note that this is an additional task for the supervisor, but involves only a binary evaluation.
In practice, noise in the system will make for occasional incorrect evaluations of points very near the
boundary, which will result in a natural push towards widening the gap between classes, and more
consistent evaluations. In this way, small-scale noise becomes a robustness-building feature of our
system. Finally, while we do not include such tasks in this work, classification with more than two
classes may be accomplished by adding additional output nodes, as previously demonstrated in linear
learning metamaterials [22].

3 Results

Using the protocol detailed above, we perform nonlinear classification tasks using our learning
meta-material. We use the same network setup for each task, shown in Fig. 2A. We impose two
constant inputs I− = 0.11V and I+ = 0.33V , which remain fixed for all tasks shown. We also

1In practice it speeds training to store evaluations of a data point and update or not update based on one
evaluation several times. We find this speeds training without an appreciable decrease in accuracy, but is not
necessary for successful functioning. More sophisticated evaluation methods (e.g. not updating a data point that
is very far correctly classified for a longer period) would likely speed training even further
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Figure 3: Additional Classification Tasks (A) Linear task. Top: Output maps. Orange and blue
dots are training data of class 1 and 2 respectively, background color is network output O, and black
indicates |O| < 1.4 mV. The maps are initial and final inference. Bottom: classification accuracy
(black) and average power dissipation over all edges during inference (green), over training time. (B)
and (C) are the same as (A) but for a closed circular boundary (B) and a task that emulates XOR (C).
Note that for (C) the training data points were not randomly chosen but rather 196 data points are
spaced equally in four lines, as shown. Variation in initial inference power between (A-C) comes
from variation in initial gate voltage G0 values.

impose two variable inputs I1 and I2, which vary between 0 and 0.45V , and utilize the differential
output scheme O = O+ − O− as previously described. We randomly (with uniform probability)
select 196 values of I1 and I2 from voltages allowed in our network [0, 0.45]V. We choose a 2D
boundary, and re-select all data points that lie within a small distance (≈ 0.01V ) in (I1,I2) space. We
choose label values L1 = −L2 for the two classes. G are initialized at an approximately uniform
value in the middle of their range.

We choose a highly nonlinear boundary (a circular arc) to define our first task, and successfully train
the network, as shown by the output maps in Fig. 2B. The network trains (evolves G) for less than
three total seconds, with peak accuracy above 99% and final accuracy 96.9%. As the majority of G
values decrease during training, the power to perform inference falls from approximately 400 µW to
a final average of 105± 62 µW. As the network equilibrates in approximately 2 µsec, this represents
an inference energy of 210 pJ, or 7 pJ per parameter (edge). This number is a summation of power
dissipation across every edge in the equilibrium state. This calculation ignores a number of factors,
including capacitance of the implementation (breadboards and wires) as well as of the transistors
themselves. By the end of training, the network evolution has massively slowed, as shown in Fig. 2D,
and the decision boundary hovers and wiggles around the optimal line due to small-scale noise in
evaluation.

We perform a similar training protocol for three additional tasks, shown in Fig. 3A, B, and C. These
tasks all end their training above 94% accuracy, with a comparable inference energy to the task
in Fig. 2. Note that the task in 3A is linear, and the task in 3C does not have random but rather
prescribed input values (I1, I2), and is meant to emulate XOR. The variety of these tasks, all with the
same input/output node selection, highlight the flexibility and power-efficiency of our system. While
it is significantly faster to learn simpler (linear) tasks, determining the minimum network size and
connectivity needed to perform tasks of varying complexity is a subject for future work. Details and
results for all four tasks, including hyper-parameters, training times, and power/energy for inference,
are listed in Table 1.

4 Conclusion

We have demonstrated the efficacy, flexibility, speed, and energy efficiency of our nonlinear learning
meta-material. Our system trains itself, with each element self-adjusting in response to imposed
boundary conditions (training data). Using one input/output scheme and a variety of hyper-parameters,
our network learned four 2D classification tasks, three of them nonlinear. After training, a single
evaluation of each task dissipates 7 pJ per edge (parameter) or less on average. It should be noted
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Table 1: Task Details and Results

Fig η G0 |L| Tr. Time Epochs Acc. Inference Pwr Inf En pJ/Param

2 0.62 4.6V 0.18V 2.6 sec 12755 96.9% 105±62 µW 210 pJ 7
3A 1 2.3V 0.09V 0.44 sec 797 100% 99±48 µW 198 pJ 6
3B 0.62 3.5V 0.18V 24 sec 12755 94.3% 91±48 µW 182 pJ 6
3C 0.5 2.3V 0.18V 1.4 sec 15944 100% 84±46 µW 167 pJ 5

Hyperparameters and results for each experiment. Hyper parameters η (nudge factor), initial value
for all learning degrees of freedom G0, label magnitude |L|, and training epochs are determined at
the start of each experiment to demonstrate a range of successful values. Epochs were chosen to be
significantly larger than required, to demonstrate the stability of the final solutions. Training time

represents integrated time spent evolving the system, which only occurs for incorrectly classified data
points; when accuracy is higher, this time is reduced per epoch. Results accuracy (Acc.), inference

power, inference energy, and pJ/param are calculated using the final learned state of the system.
Inference power includes only energy dissipated by effective resistance of network edges. Inference

energy (Inf En) is estimated using (inference power * 2 µsec). All power and energy values are
reported using the average across the training set. pJ/param is (inference energy / 32).

that this is a lower bound for power consumption since it ignores several relevant factors including
power loss from parasitic capacitance from the breadboards and transistors. However, we find it is
a useful benchmark, as it illustrates the efficiency of the analog computation used in our method.
Like all systems that integrate computation with memory, there is no need to spend additional energy
shuffling information (e.g. weight values) in and out of the network. As a point of comparison,
the most efficient supercomputer on the Green500 list2 consumes approximately 15 pJ per FLOP
(floating point operation)3, and dense neural networks perform inference using approximately 1
FLOP/parameter. Our parameters G and our updates are orders of magnitude less precise than they
would be using simulated networks and floating point numbers, but for tasks requiring only modest
precision, it is easy to see how future versions of network may be competitive.

Learning meta-materials show great promise as fast, energy-efficient in-situ learning devices, with
applications in edge computation, medicine, agriculture, robotics, and more. Furthermore, because
updates are performed on each element with physics performing the inference calculation, the system
is tolerant to damage/defects like its first-generation cousins [22]. Discrepancies between the twin
networks is a potential source of error, and subject for future work. However, because updates are
local, errors due to physical imperfection do not compound in the same manner as in differentiation
(backpropagation) of physical networks, and the system is insensitive to variations between transistors
within each network. As a result, learning meta-materials should be massively scalable, and may one
day prove competitive for machine learning applications.

Broader Impact

Computational machine learning has become widespread and energy use is increasing at an unsus-
tainable rate. There is therefore both a need for more efficient computation at a large (supercomputer)
and small (edge computing) scale. Neuromorphic hardware seeks to lower the energy cost of machine
learning applications. The system demonstrated here is energy-efficient and flexible, and may prove
useful for compact, low-power edge computation, decreasing data transfer and storage energy costs.
Furthermore, like its first-generation counterparts [22], it is robust to damage, making it a potentially
useful system to combat electronic waste, and potentially manufacturable at scale.
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