
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEAFORMER: A SPATIAL PROXIMITY AND EDGE-
AWARE TRANSFORMER FOR REAL-WORLD VEHICLE
ROUTING PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world Vehicle Routing Problems (RWVRPs) require solving complex,
sequence-dependent challenges at scale with constraints such as delivery time
window, replenishment or recharging stops, asymmetric travel cost, etc. While
recent neural methods achieve strong results on large-scale classical VRP bench-
marks, they struggle to address RWVRPs because their strategies overlook se-
quence dependencies and underutilize edge-level information, which are pre-
cisely the characteristics that define the complexity of RWVRPs. We present
SEAFormer, a novel transformer that incorporates both node-level and edge-level
information in decision-making through two key innovations. First, our Clustered
Proximity Attention (CPA) exploits locality-aware clustering to reduce the com-
plexity of attention from O(n2) to O(n) while preserving global perspective, al-
lowing SEAFormer to efficiently train on large instances. Second, our lightweight
edge-aware module captures pairwise features through residual fusion, enabling
effective incorporation of edge-based information and faster convergence. Exten-
sive experiments across four RWVRP variants with various scales demonstrate
that SEAFormer achieves superior results over state-of-the-art methods. Notably,
SEAFormer is the first neural method to solve 1,000+ node RWVRPs effectively,
while also achieving superior performance on classic VRPs, making it a versatile
solution for both research benchmarks and real-world applications.

1 INTRODUCTION

The Vehicle Routing Problem (VRP) is a fundamental challenge in logistics, where the goal is to
deliver goods to many customers from a depot while minimizing cost and respecting constraints
such as vehicle capacity. In practice, VRPs appear most prominently in last-mile deliveries, which
have surged dramatically in recent years. For example, in 2022, Manhattan saw over 2.4 million
delivery requests per day (Blueprint, 2022), averaging over 3,000 deliveries per minute during a
12-hour workday. Although existing solutions perform well on simplified benchmarks, they rarely
account for the operational real-world problems, scales, and constraints encountered in practice.

Real-world Vehicle Routing Problems (RWVRPs) extend the VRP by incorporating sequence-
dependent constraints. This class includes variants such as VRPTW (time window (Kallehauge
et al., 2005)), EVRPCS (electric vehicles with recharging - which is important as carrying large
weight significantly reduces their driving range (Szumska et al., 2021)), VRPRS (replenishment
stops where vehicles can restock to continue service (Schneider et al., 2015)) and AVRP (asym-
metric travel costs (Vigo, 1996)). Unlike the VRP, RWVRPs feature multi-dimensional constraints
where routing decisions propagate through the entire system. For example, customer time windows
impose strict temporal dependencies between stops, choosing a charging station affects subsequent
sequences, asymmetric networks create cost imbalances between outbound and return legs, and
replenishment stops extend vehicle capacity dynamically. These interdependencies transform the
capacity-constrained spatial optimization problem of simple VRPs into a sequence-dependent one
and form a tightly coupled setup that can only be validated by considering the entire route sequence.

Recent progress in deep learning has delivered impressive results for combinatorial optimization,
reaching near-optimal solutions on classical VRP benchmarks. Existing approaches can be grouped

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

into two main paradigms: autoregressive and non-autoregressive models, each offering unique ben-
efits and facing specific challenges when extended to RWVRPs.

Autoregressive methods (Kool et al., 2018; Kwon et al., 2020; Berto et al., 2025; Li et al., 2024; Lin
et al., 2021; Chen et al., 2022; Wang et al., 2024) designed for VRP or RWVRPs, construct solutions
sequentially using transformers and perform well on small-scale benchmarks. However, their perfor-
mance deteriorates as problem size increases. They lack spatial inductive bias, treating all node pairs
uniformly, disregarding the inherent geometric structure of routing problems. In addition, their full
attention incurs an O(n2d) memory cost, where d is the embedding dimension, limiting training to
hundreds rather than thousands of nodes. Moreover, they cannot represent edge-specific attributes
(e.g., asymmetric costs, energy use, or traffic), limiting applicability to real-world routing where
pairwise relationships drive feasibility and optimality. These architectural limitations make current
autoregressive methods unsuitable for deployment on industrial-scale real-world routing problems.

Recent efforts to address the scalability limits of autoregressive models introduce new challenges
when applied to RWVRPs. Divide-and-conquer methods (Hou et al., 2022; Nasehi et al., 2025;
Zheng et al., 2024) can handle larger instances by decomposing the problem, yet they often overlook
the sequential dependencies critical to RWVRPs, leading to infeasible or low-quality routes. Other
scalable architectures (Gao et al., 2024; Luo et al., 2023; 2025a) face their own limitations, including
substantial computational overhead or reliance on supervised learning which requires a set of pre-
computed optimal solutions that are themselves computationally expensive to obtain.

In contrast, non-autoregressive methods (Kool et al., 2022; Qiu et al., 2022) improve scalability by
predicting all routing decisions simultaneously through learned heatmaps, thereby avoiding the se-
quential bottleneck of autoregressive decoding. While computationally efficient, these methods face
a fundamental challenge similar to divide-and-conquer approaches: they cannot assess constraint
satisfaction without the knowledge of the traversal sequence. Critical constraints, such as battery
levels, are inherently path-dependent and require sequential state accumulation to ensure feasibility.
As a result, non-autoregressive models are inherently hard to adapt to RWVRPs.

In this paper, we introduce SEAFormer (Spatial proximity and Edge-Aware transFormer), a novel
architecture that combines the representational power required for RWVRPs with the computational
efficiency necessary for real-world use. Unlike existing methods that treat routing as purely node
selection, our model explicitly reasons about both where to go (nodes) and how feasible/costly that

transition is (edges), a distinction critical for handling edge-level information and improving gen-
eralization. SEAFormer introduces two complementary innovations that together enable scalable,
high-quality solutions across diverse RWVRP and VRP variants.

First, we propose Clustered Proximity Attention (CPA), a spatially aware attention mechanism
that improves generalization while reducing the complexity of full attention from O(n2) to O(n).
Unlike generic sparse attention methods (e.g., Longformer (Beltagy et al., 2020)), CPA leverages
problem-specific spatial patterns to cluster nodes into meaningful partitions and applies attention
within each partition. Our deterministic-yet-diverse clustering strategy offers multiple spatial per-
spectives, to avoid the local optima issues often encountered in sparse attention mechanisms.

Second, we introduce a lightweight edge-aware module that explicitly models pairwise relation-
ships between nodes, capabilities largely absent from existing approaches. While node embeddings
capture individual locations and demands, they cannot represent edge-specific attributes. Incorpo-
rating edge-level information not only enables solutions to problems where such details are essential
but also enhances accuracy, generalization, and convergence across models. Our module learns these
relational patterns through a parameter-efficient architecture (increasing number of parameters by
only 7.5%), which is additively combined with the attention decoder to jointly optimize the problem.
To the best of our knowledge, SEAFormer is the first unified approach to address this comprehensive
range of real-world routing constraints at scales within a single architecture.

We evaluate SEAFormer on four RWVRP variants across a wide range of problem sizes and com-
pare it with state-of-the-art neural and classical methods. For complex variants such as VRPTW,
EVRPCS, VRPRS, and AVRP, it delivers at least 15% reduction in the objective value over the
large-scale instances while fully respecting operational constraints. On standard VRP benchmarks,
SEAFormer consistently surpasses the state-of-the-art approaches. Even on large-scale instances,
SEAFormer preserves solution quality, whereas existing neural solvers often run out of memory or
suffer substantial performance degradation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The contributions of this paper are threefold. (i) We introduce SEAFormer, the first transformer to
jointly optimize spatial proximity and edge-level constraints for real-world VRP variants, achiev-
ing state-of-the-art performance across different benchmarks. (ii) We propose Clustered Proximity
Attention (CPA), a problem-specific sparse attention mechanism that leverages spatial locality in
routing tasks, enhancing generalization and reducing memory complexity through deterministic-
yet-diverse clustering. (iii) We propose a parameter-efficient edge-aware module that integrates
pairwise relational information into routing decisions, enabling seamless handling of edge-specific
constraints that are essential for real-world deployment yet missing from existing neural solvers.

2 RELATED WORK

We review existing learning-based approaches to RWVRPs and VRP, focusing on why they struggle
to simultaneously achieve solution quality, computational efficiency, and constraint satisfaction at
real-world scales. A more comprehensive discussion is provided in Appendix I.

2.1 NEURAL SOLVERS WITH LIMITED SCALABILITY

Autoregressive neural methods construct solutions sequentially using learned policies, with several
notable approaches in the literature (Kool et al., 2018; Kwon et al., 2020; Berto et al., 2025; Luo
et al., 2023). These models capture sequence dependencies during solution generation. While ef-
fective on small-scale problem instances, their performance deteriorates on large-scale problems.
Moreover, reliance on the full-attention mechanism limits scalability and prevents efficient iterative
refinement on standard hardware.

2.2 SCALABLE NEURAL APPROACHES

Recent approaches for scalable VRP solutions (Hou et al., 2022; Zheng et al., 2024; Nasehi et al.,
2025; Ye et al., 2024) are based on divide-and-conquer method. Such techniques, however, cannot
solve RWVRPs effectively as they cluster nodes before determining visit sequences, yet feasibility of
a solution for RWVRPs depends on those sequences. Whether a vehicle can serve a cluster requires
knowing its state upon arrival, such as battery level in EVRPCS or elapsed time in VRPTW, which
is unavailable during clustering. This circular dependency causes clusters to violate constraints once
sequenced, requiring expensive repairs or prevents finding high-quality solutions.

Scalable VRP solutions that do not rely on divide-and-conquer strategy face challenges when ap-
plied to RWVRPs. ELG (Gao et al., 2024) restricts attention to nearby nodes using distance-based
penalties, which can limit performance in RWVRPs where vehicles need to reach distant nodes. Fur-
thermore, the local attention approach does not explicitly account for RWVRP-specific constraints,
which may lead to infeasible or suboptimal solutions. Heavy decoder architectures (Luo et al.,
2023; 2025a) rely on supervised learning from near-optimal solutions. For RWVRPs, generating
such training data is computationally expensive. For example, solving 100-node EVRPCS instances
to optimality can be prohibitively time-consuming, and in some cases computationally infeasible,
making these approaches impractical for RWVRPs.

Non-autoregressive models Ye et al. (2024); Qiu et al. (2022); Kool et al. (2022) generate high-
quality solutions for large-scale VRPs by predicting edge inclusion probabilities via a heatmap.
However, they face specific challenges with sequential constraints in RWVRPs. For instance, in
EVRPCS, edge feasibility depends on the vehicle’s battery state upon arrival, information that is
unavailable during parallel prediction. Applying non-autoregressive methods to sequence-dependent
problems requires costly repair procedures too, which often leads to a drop in solution quality.

2.2.1 RWVRP-SPECIFIC METHODS

A few recent works directly address variations of RWVRPs. Lin et al. (2021) used Transformer-
LSTM to track electric vehicle travel history, while Chen et al. (2022) employed GRUs with two-
stage training to improve charging station routing. Wang et al. (2024) introduced a GAT-based
encoder with penalty functions to enforce constraints for EVRPCS. Liu et al. (2024) and Berto et al.
(2025) proposed multi-task learning for VRP variants such as VRPTW. Despite these advances, ex-
isting methods face at least one of the following limitations: (i) limited scalability, resulting in low-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

quality solutions for instances larger than 100 nodes; (ii) reliance on manually tuned penalty terms,
which slows training and may still produce infeasible solutions requiring costly post-processing; and
(iii) sub-optimal strategies for visiting infrastructure nodes, limiting the model’s ability to determine
when and where to charge or restock efficiently, leading to lower quality solutions.

2.3 SPARSE ATTENTION MECHANISMS

Recent advances in efficient attention offer potential solutions to scalability challenges. Re-
former (Kitaev et al., 2020) leverages locality-sensitive hashing, Longformer (Beltagy et al., 2020)
employs sliding windows, and BigBird (Zaheer et al., 2020) combines random, window, and global
attention. These mechanisms are designed for text processing and do not naturally align with the ge-
ometric structure of routing problems and thus cannot be easily extended to spatial problems. While
language tasks mainly involve local sequential dependencies, routing requires radial connectivity
between depots and customers. Sparsity patterns based on these methods will disrupt the spatial
relationships, limiting performance on routing tasks.

3 CLUSTERED PROXIMITY ATTENTION

1

3

2

Figure 1: A VRP solution. Nodes within the same
route can exhibit: (1) similar angles but different
distances, (2) similar distances but different an-
gles, or (3) a close proximity in both.

Figure 1 shows a VRP solution captured
from Hou et al. (2022), highlighting an impor-
tant structural pattern: nodes within the same
route tend to cluster based on their polar coor-
dinates relative to the depot. In particular, they
typically follow one of three patterns: (1) sim-
ilar angles but varying distances from the de-
pot, (2) similar distances but different angles, or
(3) close proximity in both angle and distance.
This insight motivates our polar clustering ap-
proach, as optimal routes naturally reflect these
geometric relationships.

We propose Clustered Proximity Attention
(CPA), a problem-specific sparse attention
mechanism that maintains spatial routing struc-
ture while substantially reducing computational
complexity. The procedure is detailed below.

Polar-based Spatial Transformation. Given node coordinates {xi 2 R2}ni=0 with depot n0, first
we transform each customer location to polar coordinates:

ri = kxi � x0k2, ✓i = arctan 2(yi � y0, xi � x0) 2 [0, 2⇡), (1)
where ri represents radial distance and ✓i represents angular position relative to the depot.

Partitioning Score. To form clusters capturing the diverse spatial patterns illustrated in Figure 1
and necessary for optimal routing, we introduce a partitioning score that balances radial and angular
proximity. After normalizing polar coordinates to [0, 1], we compute a clustering metric as:

s(↵)i = ↵ · ✓̄i + (1� ↵) · r̄i, (2)
where r̄i = (ri � rmin)/(rmax � rmin) and ✓̄i = ✓i/2⇡ represent the normalized radial and angular
coordinates, respectively, and ↵ is the mixing coefficient that controls the relative importance of
distance versus angle in cluster formation.

Deterministic-yet-Diverse Partitioning. To prevent overfitting to specific cluster configurations,
preserve global context, and capture diverse spatial patterns while maintaining training efficiency,
we use R partitioning rounds with varied mixing coefficients, defining ↵ in Equation 2 as:

↵ = t/(R� 1), t 2 {0, 1, . . . , R� 1}. (3)
This creates a spectrum from radial (↵ = 0, grouping nodes at similar distances from depot) to an-
gular clustering (↵ = 1, grouping nodes sharing a similar angle from the depot). Each configuration
captures different spatial patterns shown in Figure 1, entails to a proper global prospective.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Boundary Smoothing for Robust Clustering. Hard cluster boundaries can artificially separate
nearby nodes, disrupting natural customer groups. We address this through a boundary smoothing
technique. After sorting the calculated partitioning scores S↵ = [s1↵, . . . , s

↵
n], given M as the cluster

size (a user-defined parameter analyzed in Appendix F), we apply a circular shift as:

S0
↵ = [sbM/2c+1

↵ , . . . , sn↵, s
1
↵, . . . , s

bM/2c
↵] (4)

This rotation softens the deterministic cluster boundaries that would otherwise push nearby nodes
apart, keeping close nodes together and improving transitions between clusters. After computing
the partitioning scores S = {S↵1 , S

0
↵1
, S↵2 , ...} across different proximity weights and rotations,

we partition nodes into clusters of size M based on each score. A comprehensive description with
visual examples of CPA is provided in Appendix H.

Localized Attention Computation. Given partition P = {C1
↵1
, C2

↵1
, . . . , Ck

↵1
, . . .} where each

Cj
↵ contains M proximate nodes, we compute attention independently within each cluster as:

Attention(Qj ,Kj , Vj) = softmax

QjK>

jp
d

!
Vj , where Qj ,Kj , Vj 2 R|Cj

↵|⇥d. (5)

Complexity analysis: CPA reduces complexity of attention from O(n2) to O(n) while preserving
the spatial relationships critical for routing decisions. It partitions nodes into clusters of size M .
Each cluster requires O(M2) operations for attention computation. With dn/Me clusters total:

CPA complexity = O
�

R|{z}
No. rounds

⇥dn/Me| {z }
clusters

⇥ (M2)| {z }
per cluster

�
= O(nRM) = O(n) (6)

4 SEAFORMER ARCHITECTURE

Figure 2 shows the SEAFormer architecture, a dual-stream design that jointly models node-level
spatial structure and edge-level information for RWVRPs. The node stream encodes location fea-
tures using our Clustered Proximity Attention (presented in Section 3), while the edge-aware stream
maintains explicit embeddings for pairwise attributes such as costs and distances. These two streams
converge in the decoder: node embeddings drive the sequential step-by-step node selection, and edge
embedding is used to rank candidate transitions from the current position through a learned heatmap
generation. This separation of roles allows SEAFormer to scale to thousands of nodes, converge
faster, and remain expressive enough to handle complex real-world constraints. The encoder of
SEAFormer comprises two complementary modules.

Node embedding through CPA. This module adopts the encoder architecture from Kwon et al.
(2020), encoding node features through L layers. Unlike prior works that employ full attention
mechanisms, SEAFormer utilizes CPA to produce spatially-aware node embeddings Hn 2 Rn⇥d,
while achieving significant memory savings in training and inference.

For problem variants with optional service nodes such as EVRPCS (charging stations) and VRPRS
(replenishment stops), we augment the spatial encoder with a specialized optional node processing
pathway. This parallel encoding layer generates embeddings for optional nodes Ho 2 Rf⇥d, where
f represents the number of service facilities. These embeddings are then fused with customer em-
beddings through a learnable mechanism, and the combined representations pass through the same
batch normalization and feed-forward layers. This allows each customer embedding to account
for nearby optional facilities and their influence on route feasibility, which is crucial in problems
where strategic service stops can substantially enhance or even enable high-quality solutions. A
comprehensive description of the optional node embedding and integration mechanism is provided
in Appendix G.

Edge-Aware Embedding Module. We design our edge embedding to preserve the properties that
exist for edges while maintaining computational efficiency. The edge-aware embedding module only
operates on edges between depots and customers, while optional nodes in EVRPCS and VRPRS do
not participate in this process. Given edge features (distance, energy consumption rate, historical

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Feature Compressor

Linear

Feed Forward

Norm

Norm

Clustered Proximity
Attention

Linear

Norm

Activation

Linear
N ×

Node Embedding (Hn) Edge Embedding (He)

Node Features Edge Features

Encoder

Hn

A
ttention B

ased
D

ecoder

Action Probability

Current
Decoding Step

He

Decoder

Figure 2: SEAFormer Architecture. The dual-module encoder embeds nodes through CPA and
edges through a lightweight residual module. The dual-path decoder combines edge-aware guid-
ance (heatmap) with sequential node selection (attention), unified through logit fusion. This design
enables scalable training on large number of nodes while handling diverse RWVRP constraints.

traffic) embedding X(i,j)
e 2 Rde , and node embeddings H(i)

n , H(j)
n 2 Rd, we compute edge-aware

embeddings through residual fusion (Szegedy et al., 2017):

H(i,j)
e = X(i,j)

e + �
⇣

BN
⇣
W1H

(i)
n +W2H

(j)
n +W3X

(i,j)
e

⌘⌘
(7)

Where W is a trainable parameter, W1H
(i)
n captures origin-specific factors, W2H

(j)
n captures

destination-specific factors, W3X
(i,j)
e captures edge features. Prior to this, we apply a linear trans-

formation to reduce node features to match edge embedding dimensions, enabling the model to ex-
tract only relative information from node embeddings. Batch normalization ensures stable training
across diverse edge scales and SILU activation (�) enables modeling of complex non-linear relation-
ships. This architecture anchors edge representations in spatial context while increasing the model’s
total parameters by only 7.5%. Lastly, a residual connection maintains original edge information
while selectively integrating node-level context.

Once edge and node embeddings are generated, SEAFormer’s decoder constructs the solution
through dual complementary pathways that balance global optimization with sequential decoding.

Edge-Guided Global Heatmap. Before sequential decoding, we produce a static heatmap that
encodes global edge preferences. This step occurs once at the onset of the decoding process:

Hij = tanh
�
MLP✓(H

(i,j)
e)

�
2 R, 8i, j 2 {1, . . . , n}, (8)

where MLP✓ is a multi-layer perceptron that maps each edge to a scalar score, followed by the
tanh activation function. This module encodes edge features (e.g., travel times, distances) that are
impossible to capture through node-level encoding.

Node-Guided Sequential Attention. The sequential decoder constructs solutions autoregres-
sively, selecting one node at each step t based on the current state of the partially generated solution.
To enable the model to differentiate between vehicle states across problem variants, we adapt the
query vector to each RWVRP variant’s state representation qt = [ht; ct; ⇠t], where ht is the last
visited node embedding and ⇠t represents variant-specific constraints: none for VRP, battery level
bt for EVRPCS, remaining travel length ⌧t for VRPRS, and current time wt for VRPTW. To ensure
stable convergence and prevent bias from large values, we normalize ⇠t by its maximum value to
maintain the range [0, 1]. Finally, the attention mechanism computes compatibility scores with all
unvisited nodes through:

↵ti =

(
exp(q>

t ki/
p
d)P

j2Ut
exp(q>

t kj/
p
d)

if i 2 Ut

0 otherwise
(9)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where Ut denotes the set of unvisited feasible nodes. We implement a proactive masking function
that enhances solution quality, reduces search space, and prevents the model from generating infea-
sible solutions during inference (see Appendix B for detailed description). Finally, at each step t,
we combine logits from both paths:

`t = `seq
t +Hit,:, (10)

where `seq
t is sequential attention logits, Hit,: is the heatmap row for current node it. For optional

nodes not included in the heatmap, we define heatmap values as Hit,j = �2 · rt
Rmax

, j 2 O to
encourage model to visit such nodes more frequently as resources deplete. Here, rt denotes the
remaining resource level (battery charge in EVRPCS or available driving range in VRPRS), Rmax

represents the maximum resource capacity (full battery capacity in EVRPCS or maximum driving
range in VRPRS), and O denotes the set of optional nodes.

5 EXPERIMENTS

To verify the applicability of SEAFormer on different variations of RWVRP and VRP, we evalu-
ate SEAFormer on 5 combinatorial optimization problems, including VRPTW, EVRPCS, VRPRS,
AVRP, and VRP. Detailed formulations of these problems are provided in Appendix A.

Benchmarks. We evaluate SEAFormer across four datasets: (i) Random RWVRP benchmarks,
comprising 100 instances per problem size with up to 7K nodes (results up to 1k are shown in
table 1, and larger values in appendix C) following Kwon et al. (2020); Zhou et al. (2023); (ii)
Random VRP benchmarks with up to 7K nodes following Zhou et al. (2023); (iii) real-world VRP
instances from CVRPLib; (iv) cross-distribution datasets generated by Zhou et al. (2023).

Implementation. For all problems, we train the model for 2000 epochs on 100-customer instances,
then 200 epochs on 500-customer instances, and 100 epochs on 1000-customer instances. As in
prior work, problem instances are uniformly sampled from the [0, 1]2 space, and demands drawn
from a discrete uniform distribution on [1, 10]. Asymmetric VRPs are created using our dataset
generation procedure (refer to appendix A.4.1). The Adam optimizer (Kingma, 2014) is employed
for training, with detailed hyperparameters for each problem provided in Appendix J.

Metrics. We report the mean objective (Obj.), gap (G), and inference time (T) for each approach.
Objective represents solution length, where lower values signify superior performance. Gap quan-
tifies the deviation from solutions generated by one of OR-tools, LKH, or HGS. Time denotes the
total runtime across the entire dataset, measured in seconds (s), minutes (m), or hours (h). Runtimes,
measured on identical hardware (NVIDIA A100 GPU for neural methods, 32-core CPU for classical
solvers), exclude model loading and represent the total solution time over each dataset.

Inference. In the inference phase, we evaluate SEAFormer using two strategies. First, greedy decod-
ing with 8-fold augmentation, and second, Simulation-Guided Beam Search (SGBS) (Choo et al.,
2022), which requires additional computation time but yields superior results as it explores multiple
solution trajectories simultaneously. The greedy variant of SEAFormer operates significantly faster
than the SGBS version at the expense of marginally reduced solution quality.

Baselines. We compare SEAFormer with 1) Classical Solvers: HGS (Vidal, 2022), LKH (Hels-
gaun, 2017), and OR-Tools; 2) Construction-based NCO Methods: POMO (Kwon et al., 2020),
MTPOMO (Liu et al., 2024), EVRPRL (Lin et al., 2021), EVGAT (Wang et al., 2024), LEHD (Luo
et al., 2023), RELD (Huang et al., 2025), ELG (Gao et al., 2024) L2C-insert (Luo et al., 2025b),
BLEHD (Luo et al., 2025a), and RouteFinder Berto et al. (2025); 3) Divide-and-conquer based
methods: GLOP (Ye et al., 2024), DeepMDV (Nasehi et al., 2025), UDC (Zheng et al., 2024).
Not all existing methods apply to every RWVRP variant, so comparisons are limited to applicable
approaches. For details on baselines and their integration, see Appendix K.

5.1 EVALUATION ON RWVRPS

Table 1 presents a comprehensive evaluation of SEAFormer against state-of-the-art methods across
four challenging RWVRPs. SEAFormer consistently achieves superior or competitive performance
across all problem variants and scales. Notably, using SGBS as a search method, SEAFormer es-
tablishes new state-of-the-art results in learning-based methods across all 12 test configurations be-
tween, at the cost of higher processing time, particularly with impressive gains on larger instances.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Objective function (Obj.), Gap to the OR-tools (Gap), and solving time (Time) on 100,
500, and 1,000-node RWVRPs. All test sets contain 100 instances following settings in Zhou et al.
(2023). The overall best performance is in bold and the best learning method is marked by shade.
OR-Tools results are not optimal, as execution was stopped early due to time limits.

RWVRP METHODS
100 CUSTOMERS 500 CUSTOMERS 1K CUSTOMERS

OBJ.# G(%) T OBJ.# G(%) T OBJ.# G(%) T

VRPTW

OR-TOOLS 26.34 0.00 1H 87.3 0.00 5H 151.4 0.00 10H
POMO 26.81 1.78 5S 93.2 6.75 30S 193.2 27.6 1M
MTPOMO 27.02 2.58 5S 96.8 10.8 30S 207.1 36.7 1M
ROUTEFINDER 26.8 1.74 5S 91.2 4.46 30S 171.4 11.3 1M
SEAFORMER 26.75 1.55 5S 87.4 0.11 30S 149.7 -1.1 1M
SEAFORMER-SGBS 26.5 0.6 10S 85.0 -2.6 13M 145.2 -4.1 1.6H

EVRPCS

OR-TOOLS 16.35 0.00 1H 31.1 0.00 5H 47.8 0.00 10H
EVRPRL 16.54 1.16 10S 34.3 10.3 90S 62.1 29.9 3M
EVGAT 16.9 3.36 30S 35.2 13.2 3M 56.3 17.8 6M
SEAFORMER 16.36 0.06 5S 30.8 -1.0 30S 45.8 -4.2 1M
SEAFORMER-SGBS 16.14 -1.3 15S 30.2 -2.9 13M 44.9 -6.1 1.7H

VRPRS

OR-TOOLS 11.2 0.00 1H 23.4 0.00 5H 36.11 0.00 10H
EVRPRL 11.43 2.05 10S 25.16 7.52 90S 47.5 31.5 3M
EVGAT 11.76 5.0 30S 25.65 9.6 3M 42.1 16.6 6M
SEAFORMER 11.24 0.35 5S 22.93 -2.0 30S 34.87 -3.4 1M
SEAFORMER-SGBS 10.97 -2.0 15S 22.33 -4.6 13M 33.95 -6.0 1.7H

AVRP

OR-TOOLS 19.37 0.00 1H 40.27 0.00 5H 47.6 0.00 10H
POMO 19.5 0.7 10S 42.12 4.59 20S 53.44 12.3 1M
MTPOMO 19.63 1.3 10S 44.4 10.2 3M 56.2 18.1 1M
ROUTEFINDER 19.6 1.2 5S 41.52 3.1 20S 48.3 1.47 1M
LEHD 19.96 3.0 5S 40.71 1.1 20S 45.89 -3.6 1.2M
BLEHD-PRC50 - - - 42.13 4.61 2.5M 45.23 -5.0 6M
UDC250(↵ = 50) - - - 40.06 -0.5 30M 45.17 -5.1 1.2H
SEAFORMER 19.48 0.6 5S 40.23 -0.1 30S 45.14 -5.2 1M
SEAFORMER-SGBS 19.04 -1.7 10S 38.97 -3.2 13M 44.07 -7.4 1.7H

While SEAFormer achieves superior performance on VRPTW, EVRPCS, and VRPRS across all set-
tings where existing large-scale solutions fail, the AVRP results especially showcase SEAFormer’s
architectural strengths. Whereas learning-based approaches including POMO, LEHD, BLEHD, and
UDC struggle with asymmetric distance matrices and show gaps up to 3% with OR-Tools on 100-
customer instances, SEAFormer achieves the best performance with a 1.7% improvement over OR-
Tools and increasingly larger gains on bigger instances. This highlights our model’s superior capac-
ity to capture complex spatial dependencies inherent in asymmetric routing problems.

The results highlight SEAFormer’s exceptional scalability: while most baselines suffer severe degra-
dation on 1,000-customer RWVRPs, SEAFormer preserves solution quality and remains the fastest
method. The SGBS variant, though requiring additional computation (95-100 minutes for 1k cus-
tomers), consistently produces the best solutions across all scales, suggesting an effective trade-off
between solution quality and computational resources.

5.2 EVALUATION ON VRP

Table 2 reports SEAFormer’s performance on standard VRP instances with 100–1000 customers,
showing both strong scalability and high solution quality. On small instances, SEAFormer achieves
0.96% gap in 5 seconds, and with SGBS it matches POMO while retaining efficient inference. The
advantage becomes clearer at larger scales: on 500-customer instances, our base model achieves a
4.64% gap in 15 seconds, which outperforms POMO and rivaling methods like DeepMDV-LKH3
that requires substantially more time. With SGBS, SEAFormer further improves to a 2.98% gap,
surpassing all learning-based approaches. On the challenging 1,000-customer setting, where most
neural methods degrade, SEAFormer proves robust, achieving a 0.62% gap in 30 seconds, surpass-
ing LEHD (1.05% in 2 minutes) and very recent methods such as RELD (2.36%) and L2C-Insert
(0.82%). With SGBS, SEAFormer outperforms HGS by a 0.9% gap and matches UDC and BLEHD.

Moreover, we evaluate SEAFormer on benchmarks across very large-scale (Appendix C), real-world
(Appendix D), and cross-distribution (Appendix E) settings. In all cases, SEAFormer performs well,
establishing itself as a robust solution for research benchmarks and real-world applications.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of various methods on 100 VRP instances with 100, 500, and
1,000 customers. Best values are bolded while the best learning-based solutions are highlighted.

METHODS
100 CUSTOMERS 500 CUSTOMERS 1K CUSTOMERS

OBJ.# G(%) T OBJ.# G(%) T OBJ.# G(%) T
HGS 15.5 0.00 40M 36.84 0.00 4H 43.5 0.00 8H
POMO 15.72 1.41 5S 44.8 21.6 20S 101 132 3M
GLOP-LKH3 21.3 36.5 30S 42.45 15.22 3M 45.9 5.51 2M
DEEPMDV-LKH3 16.2 4.51 90S 40.2 9.12 4M 45.0 3.44 8M
ELG 15.8 1.93 30S 38.34 4.07 2.6M 43.58 0.18 15M
LEHD 16.2 4.51 5S 38.41 4.26 20S 43.96 1.05 2M
BLEHD-PRC50 - - - 41.50 12.64 2.5M 43.13 -0.8 6M
RELD 15.75 1.61 5S 38.33 4.04 30S 44.53 2.36 50S
L2C-INSERT 15.72 1.41 2M 38.72 5.1 7M 43.86 0.82 13M
UDC50(↵ = 50) - - - 38.34 4.07 7M 43.48 0.00 14M
UDC250(↵ = 50) - - - 37.99 3.12 30M 43.00 -1.1 1.2H
SEAFORMER 15.82 2.06 5S 38.55 4.64 15S 43.77 0.62 30S
SEAFORMER-SGBS 15.72 1.41 30S 37.94 2.98 12M 43.10 -0.9 1.5H

5.3 ABLATION STUDY

Figure 3 shows that the edge module is crucial for SEAFormer’s performance. With edge embed-
dings, SEAFormer converges faster than POMO; without them, convergence lags behind the base-
line. This occurs because clustering modules like CPA inherently slow convergence by partitioning
the attention space. The edge module compensates for this limitation, creating a complementary
architecture where clustering handles scalability while edge embeddings accelerate learning.

Figure 3: SEAFormer training with/without
edge embeddings vs. POMO on VRP-100.

Table 3: Performance comparison of CPA ver-
sus alternative clustering approaches. Attention
is applied within each cluster while keeping all
other parameters in SEAFormer fixed. Gaps are
w.r.t full SEAFormer with CPA clustering.

Method VRP100 VRP500 VRP1000
Reformer-LSH4 0.3% 0.54% 1.27%

K-Means (one round) 7.8% 17.2% 28.7%
K-Means (four round) 2.6% 3.4% 3.9%
Grid-based clustering 8.14% 15.76% 24.05%

To validate CPA’s effectiveness, we replace it with alternative clustering strategies in SEAFormer
(Table 3). Reformer with LSH4 yields the smallest gap (0.3–1.27%), showing hash-based clustering
can be competitive, though CPA remains superior. Multi-round K-Means improves over single-
round, reducing the gap from 28.7% to 3.9% on VRP1000, underscoring the importance of iterative
refinement. Grid-based clustering performs poorly, with up to 24.05% gap on VRP1000. These
results confirm CPA’s advantage for routing. For a more extensive ablation study, see Appendix F.

6 CONCLUSION

In this paper, we present SEAFormer, a scalable, edge-aware transformer for VRP and RWVRP
variants that integrates Clustered Proximity Attention with a lightweight edge module. SEAFormer
outperforms state-of-the-art RWVRP methods by at least 15% on large-scale instances, converges
quickly, and performs well on standard VRPs. While current implementations primarily use greedy
decoding, future work will explore high performance search in the heatmap and integrate learning-
based partial solution construction to further improve solution quality and scalability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Juny-
oung Park, Kevin Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for vehicle
routing problems. arXiv preprint arXiv:2406.15007, 2025.

E-Commerce Blueprint. In NY daily news: Manhattan BP calls for delivery reforms as NYC resi-
dents, businesses receive more than 2.4 million packages per day. https://shorturl.at/
1hX8B, 2022.

Jinbiao Chen, Huanhuan Huang, Zizhen Zhang, and Jiahai Wang. Deep reinforcement learning with
two-stage training strategy for practical electric vehicle routing problem with time windows. In
International Conference on Parallel Problem Solving from Nature, pp. 356–370. Springer, 2022.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. Ad-

vances in Neural Information Processing Systems (NeurIPS), 35:8760–8772, 2022.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems

(NeurIPS), 35:16344–16359, 2022.

Ángel Felipe, M Teresa Ortuño, Giovanni Righini, and Gregorio Tirado. A heuristic approach for the
green vehicle routing problem with multiple technologies and partial recharges. Transportation

Research Part E: Logistics and Transportation Review, 71:111–128, 2014.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
volume 35, pp. 7474–7482, 2021.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
solvers for vehicle routing problems via ensemble with transferrable local policy. In Proceedings

of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI), 2024.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International

Conference on Learning Representations (ICLR), 2022.

Ziwei Huang, Jianan Zhou, Zhiguang Cao, and Yixin XU. Rethinking light decoder-based solvers
for vehicle routing problems. In The Thirteenth International Conference on Learning Represen-

tations (ICLR), 2025.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv

preprint arXiv:1611.01144, 2016.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. On learning paradigms for the travelling
salesman problem. arXiv preprint arXiv:1910.07210, 2019.

Brian Kallehauge, Jesper Larsen, Oli BG Madsen, and Marius M Solomon. Vehicle routing problem
with time windows. In Column Generation, pp. 67–98. Springer, 2005.

Surendra Reddy Kancharla and Gitakrishnan Ramadurai. An adaptive large neighborhood search
approach for electric vehicle routing with load-dependent energy consumption. Transportation in

Developing Economies, 4:1–9, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in Neural Information Processing Systems (NeurIPS),
30, 2017.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations (ICLR), 2020.

Çağrı Koç, Ola Jabali, Jorge E Mendoza, and Gilbert Laporte. The electric vehicle routing problem
with shared charging stations. International Transactions in Operational Research, 26(4):1211–
1243, 2019.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations (ICLR), 2018.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic pro-
gramming for vehicle routing problems. In International Conference on Integration of Constraint

Programming, Artificial Intelligence, and Operations Research, pp. 190–213, 2022.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
POMO: Policy optimization with multiple optima for reinforcement learning. Advances in Neural

Information Processing Systems (NeurIPS), 33:21188–21198, 2020.

Jinqi Li, Bing Tian Dai, Yunyun Niu, Jianhua Xiao, and Yaoxin Wu. Multi-type attention for solving
multi-depot vehicle routing problems. IEEE Transactions on Intelligent Transportation Systems

(TITS), 2024.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-

vances in Neural Information Processing Systems (NeurIPS), 34:26198–26211, 2021.

Bo Lin, Bissan Ghaddar, and Jatin Nathwani. Deep reinforcement learning for the electric vehicle
routing problem with time windows. IEEE Transactions on Intelligent Transportation Systems

(TITS), 23(8):11528–11538, 2021.

Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task
learning for routing problem with cross-problem zero-shot generalization. In Proceedings of the

30th ACM Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 1898–1908,
2024.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. Advances in Neural Information Processing

Systems (NeurIPS), 36:8845–8864, 2023.

Fu Luo, Xi Lin, Yaoxin Wu, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang.
Boosting neural combinatorial optimization for large-scale vehicle routing problems. In The Thir-

teenth International Conference on Learning Representations (ICLR), 2025a.

Fu Luo, Xi Lin, Mengyuan Zhong, Fei Liu, Zhenkun Wang, Jianyong Sun, and Qingfu Zhang.
Learning to insert for constructive neural vehicle routing solver. Advances in Neural Information

Processing Systems (NeurIPS), 2025b.

Michalis Mavrovouniotis, Georgios Ellinas, and Marios Polycarpou. Ant colony optimization for the
electric vehicle routing problem. In 2018 IEEE Symposium series on computational intelligence

(SSCI), pp. 1234–1241. IEEE, 2018.

Saeed Nasehi, Farhana Choudhury, Egemen Tanin, and Majid Sarvi. Deepmdv: Global spatial
matching for multi-depot vehicle routing problems. International Conference on Advances in

Geographic Information Systems (SIGSPATIAL), 2025.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in Neural Information Processing

Systems (NeurIPS), 31, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alex Nowak, David Folqué, and Joan Bruna. Divide and conquer networks. In International Con-

ference on Learning Representations (ICLR), 2018.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinato-
rial optimization problems. Advances in Neural Information Processing Systems (NeurIPS), 35:
25531–25546, 2022.

Michael Schneider, Andreas Stenger, and Dominik Goeke. The electric vehicle-routing problem
with time windows and recharging stations. Transportation Science, 48(4):500–520, 2014.

Michael Schneider, Andreas Stenger, and Julian Hof. An adaptive vns algorithm for vehicle routing
problems with intermediate stops. Or Spectrum, 37:353–387, 2015.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference

on Artificial Intelligence (AAAI), volume 31, 2017.

Emilia M Szumska, Rafał S Jurecki, and Rafał S Jurecki. Parameters influencing on electric vehicle
range. Energies, 14(16):4821, 2021.

Paolo Toth and Daniele Vigo. A heuristic algorithm for the symmetric and asymmetric vehicle
routing problems with backhauls. European Journal of Operational Research, 113(3):528–543,
1999.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neigh-
borhood. Computers & Operations Research, 140:105643, 2022.

Daniele Vigo. A heuristic algorithm for the asymmetric capacitated vehicle routing problem. Euro-

pean Journal of Operational Research, 89(1):108–126, 1996.

Mengqin Wang, Yanling Wei, Xueliang Huang, and Shan Gao. An end-to-end deep reinforcement
learning framework for electric vehicle routing problem. IEEE Internet of Things Journal, 2024.

Niels A. Wouda, Leon Lan, and Wouter Kool. PyVRP: a high-performance VRP solver package. IN-

FORMS Journal on Computing, 2024. URL https://doi.org/10.1287/ijoc.2023.
0055.

Yubin Xiao, Di Wang, Boyang Li, Mingzhao Wang, Xuan Wu, Changliang Zhou, and You Zhou.
Distilling autoregressive models to obtain high-performance non-autoregressive solvers for ve-
hicle routing problems with faster inference speed. In Proceedings of the AAAI Conference on

Artificial Intelligence (AAAI), volume 38, pp. 20274–20283, 2024.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial

Intelligence (AAAI), volume 35, pp. 12042–12049, 2021.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. GLOP: Learning
global partition and local construction for solving large-scale routing problems in real-time. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), volume 38, pp. 20284–
20292, 2024.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in Neural Information Processing Systems (NeurIPS), 33:17283–
17297, 2020.

Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. Udc: A uni-
fied neural divide-and-conquer framework for large-scale combinatorial optimization problems.
Advances in Neural Information Processing Systems (NeurIPS), 37:6081–6125, 2024.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning

(ICML), pp. 42769–42789. PMLR, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zefang Zong, Hansen Wang, Jingwei Wang, Meng Zheng, and Yong Li. Rbg: Hierarchically solving
large-scale routing problems in logistic systems via reinforcement learning. In Proceedings of the

28th ACM Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 4648–4658,
2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROBLEM FORMULATIONS OF RWVRPS

A.1 VEHICLE ROUTING PROBLEM WITH REPLENISHMENT STOPS (VRP-RS)

The Vehicle Routing Problem with Replenishment Stops (VRP-RS) (Schneider et al., 2015) extends
the traditional VRP by incorporating replenishment stops where vehicles can restock goods at in-
termediate nodes to continue their service. This model accounts for real-world constraints such as
maximum driving range limitations due to driver working hours or operational constraints.

Let V define a set of vehicles, where each vehicle w 2 V has a capacity Qw. Each customer n 2 N
has a demand qn and c 2 C shows a set of intermediate replenishment stops, which is a subset of
U = {n0, n1, ..., c1, c2}. The distance between any two nodes i and j, where i, j 2 U , is shown as
dij . Q defines the maximum vehicle capacity, while the maximum driving range is indicated by R.

Decision variables:

• xw
ij 2 {0, 1}: A binary variable that takes the value 1 if vehicle w travels from node i to

node j, and 0 otherwise.
• qwi : the load at node i delivered by vehicle w

• rwi : the remaining driving range of vehicle w after visiting node i

Problem formulation:
Minimize:

X

w2V

X

i2U

X

j2U

dijx
w
ij (11)

Where,

All vehicles start and end at the depot:
X

j2U

xw
0j = 1,

X

i2U

xw
i0 = 1, 8w 2 V (12)

Every customer must be visited exactly once:
X

w2V

X

j2U

xw
ij = 1, 8i 2 N (13)

At each node, the number of incoming and outgoing flows must match:
X

i2U

xw
ij =

X

k2U

xw
jk, 8j 2 U, 8w 2 V (14)

The capacity limit of each vehicle must be satisfied:
qwj  Q, 8j 2 N , 8w 2 V (15)

A vehicle’s remaining capacity decreases after serving a customer:
qwj = qwi � qjx

w
ij , 8i, j 2 N , 8w 2 V (16)

The total travel time of each vehicle must not exceed its maximum driving range:
0  rwi  R, 8i 2 U, 8w 2 V (17)

The remaining driving range is updated after each traversal:
rwj = rwi � dijx

w
ij , 8i, j 2 U, 8w 2 V (18)

Traveling from the current node to a customer and then to the depot must not exceed the vehicle’s
driving range:

rwi � dij + dj0, 8i, j 2 U, 8w 2 V (19)

Visiting a replenishment stop fully restores the vehicle’s capacity:

qwj = Q, 8j 2 C, 8w 2 V such that
X

i2U

xw
ij = 1 (20)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 ELECTRIC VEHICLE ROUTING PROBLEM WITH CHARGING STATIONS (EVRP-CS)

The Electric Vehicle Routing Problem with Charging Stations (EVRP-CS) (Koç et al., 2019) extends
the VRP by adding a fleet of EVs that have limited driving ranges due to battery constraints. There
is also set of charging stations along the routes to maintain operational feasibility.

We use the same notation as VRP-RS for problem formulation, with the key difference being that
intermediate stops c 2 C now represent charging stations rather than replenishment stops. EVs must
visit these charging stations to recharge their batteries and continue their routes.

Decision variables:

• xw
ij 2 {0, 1}: binary variable that equals 1 if vehicle w travels from i to j, and 0 otherwise

• qwi : the load at node i for vehicle w

• rwi : the remaining battery range of vehicle w at node i

Problem formulation:
Minimize:

X

w2V

X

i2U

X

j2U

dijx
w
ij (21)

Where,

All vehicles start and end at the depot:
X

j2U

xw
0j = 1,

X

i2U

xw
i0 = 1, 8w 2 V (22)

Every customer must be visited exactly once:
X

w2V

X

j2U

xw
ij = 1, 8i 2 N (23)

At each node, the number of incoming and outgoing flows must match:
X

i2U

xw
ij =

X

k2U

xw
jk, 8j 2 U, 8w 2 V (24)

The capacity limit of each vehicle must be satisfied:

qwj  Q, 8j 2 N , 8w 2 V (25)

A vehicle’s remaining capacity decreases after serving a customer:

qwj = qwi � qjx
w
ij , 8i, j 2 N , 8w 2 V (26)

Each vehicle’s battery has a minimum and maximum capacity:

0  rwi  R, 8i 2 U, 8w 2 V (27)

The level of remaining battery is updated after traversing:

rwj = rwi � dijx
w
ij , 8i, j 2 U, 8w 2 V (28)

Traveling from the current node to a customer and then to the depot must not deplete the vehicle’s
battery:

rwi � dij + djc, 8i, j 2 U, 8w 2 V, 8c 2 C (29)

Whenever an EV visits a charging station, its battery is fully recharged:

rwj = R, 8j 2 C, 8w 2 V such that
X

i2U

xw
ij = 1 (30)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 VEHICLE ROUTING PROBLEM WITH TIME WINDOWS (VRPTW)

The Vehicle Routing Problem with Time Windows (VRPTW) (Kallehauge et al., 2005) extends VRP
by incorporating time constraints at customer locations. Each customer must be served within a
specified time window, making the problem more realistic for applications such as delivery services,
waste collection, and appointment scheduling where timing is crucial.

We use the same notation as VRP-RS for problem formulation, with the key difference being that
each demand qi must be served within a time window [ei, li], where ei is the earliest service time
and li is the latest service time. The distance between any two nodes i and j is denoted as dij , with
an associated travel time tij . Each customer i requires a service time si.

Decision variables:

• xw
ij 2 {0, 1}: binary variable that equals 1 if vehicle w travels from node i to node j, and 0

otherwise
• Tw

i : arrival time of vehicle w at node i

• qwi : cumulative load of vehicle w after serving node i

Problem formulation:
Minimize:

X

w2V

X

i2U

X

j2U

dijx
w
ij (31)

Where,

All vehicles start and end at the depot:
X

j2N
xw
0j = 1,

X

i2N
xw
i0 = 1, 8w 2 V (32)

Every customer must be visited exactly once:
X

w2V

X

j2U

xw
ij = 1, 8i 2 N (33)

At each node, the number of incoming and outgoing flows must match:
X

i2U

xw
ij =

X

k2U

xw
jk, 8j 2 N , 8w 2 V (34)

The capacity limit of each vehicle must be satisfied:

qwj = qwi + qjx
w
ij , 8i, j 2 U, 8w 2 V (35)

qwi  Q, 8i 2 U, 8w 2 V (36)

Time window constraints must be satisfied:

ei  Tw
i  li, 8i 2 U, 8w 2 V (37)

Time consistency constraints must be satisfied:

Tw
j � Tw

i + si + tij �M(1� xw
ij), 8i, j 2 U, 8w 2 V (38)

where M is a sufficiently large constant.

Depot time window is between the range:

e0  Tw
0  l0, 8w 2 V (39)

Decision variables must satisfy non-negativity:

xw
ij 2 {0, 1}, Tw

i � 0, qwi � 0 (40)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 ASYMMETRIC VEHICLE ROUTING PROBLEM (AVRP)

The Asymmetric Vehicle Routing Problem (AVRP) (Toth & Vigo, 1999) extends the VRP by al-
lowing the travel cost or distance from node i to j to differ from that of traveling from j to i. This
asymmetry reflects real-world urban transportation scenarios, where factors such as traffic conges-
tion, one-way streets, and temporarily closed roads can cause travel times between two nodes to
vary depending on the direction.

The key distinction of AVRP with other extensions is that the distance matrix is asymmetric: dij 6=
dji for some pairs (i, j). This creates a directed graph G = (U,A) where A is the set of directed
arcs.

Decision variables:

• xw
ij 2 {0, 1}: binary variable that equals 1 if vehicle w traverses arc (i, j)

• qwi : load of vehicle w after serving node i

Problem formulation:
Minimize:

X

w2V

X

(i,j)2A

dijx
w
ij (41)

Where,

All vehicles start and end at the depot:
X

j2N
xw
0j = 1,

X

i2N
xw
i0 = 1, 8w 2 V (42)

Every customer visited exactly once:
X

w2V

X

i2U,i 6=j

xw
ij = 1, 8j 2 N (43)

The capacity limit of each vehicle must be satisfied:

qwj = qwi + qjx
w
ij , 8i, j 2 U, 8w 2 V (44)

qwi  Q, 8i 2 U, 8w 2 V (45)

Vehicle route continuity:
X

j2N
xw
0j  1,

X

i2N
xw
i0  1, 8w 2 V (46)

X

i2U,i 6=j

xw
ij =

X

k2U,k 6=j

xw
jk, 8j 2 N , 8w 2 V (47)

A.4.1 DATASET GENERATION

To generate asymmetric dataset instances, we implement a directional cost perturbation approach.
We randomly select � (asymmetry scaling parameter) customers as origin nodes, then independently
select � different customers as destination nodes. For each origin-destination pair, we introduce
asymmetry by augmenting the forward travel distance by a random factor uniformly sampled from
[1, 1+ �], where � = 0.2 in our experiments, while keeping the reverse direction unchanged. This
creates directional biases that mirror real-world scenarios such as one-way streets, traffic patterns,
or elevation changes.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B PROACTIVE MASKING FUNCTION

A masking function is an essential component in approaches for VRP optimization to restrict the
search space and prevent model from generating infeasible solutions. The definition of a masking
function varies for each specific problem. In the EVRPCS, infeasibility is defined as selecting an
already-visited customer, selecting a customer which violate cargo capacity or entails EV to be out of
battery before reaching a CS. In the VRPRS, infeasibility occurs when a previously visited customer
is visited again, a customer that violate cargo weight is open to select, or decisions that cause the
vehicle to exceed its maximum allowable driving range before returning to the depot.

In standard VRP, at each decision step, we evaluate whether any of the remaining customers can be
feasibly visited based on the vehicle’s current load and remaining capacity. However, VRPRS in-
troduces additional complexity: a vehicle may lack sufficient driving range to reach any subsequent
location after completing its current service, rendering the proposed solution infeasible. Similarly,
in EVRPCS, the battery constraint adds another layer of feasibility checking beyond simple capacity
constraints. Previous approaches, such as those proposed by Wang et al. (2024), have introduced
penalty functions to encourage the agent to autonomously explore the feasible domain and learn
to generate valid solutions. While this penalty-based approach shows promise, it significantly ex-
pands the search space, resulting in longer convergence times during model training. Furthermore,
even after complete training, such models may still produce infeasible solutions, compromising their
practical reliability.

To address these limitations, we propose a proactive masking function that preemptively eliminates
infeasible actions from the decision space. During the decoding step at time t, any customer or
intermediate stop is masked if: (i) the customer has already been visited up to time t�1, (ii) visiting
the customer would cause the vehicle to exceed its capacity limit, or (iii) the vehicle’s remaining
battery charge (for EVRPCS) or driving range (for VRPRS) is insufficient to reach the selected node
and subsequently travel to the nearest charging station, replenishment stop, or depot.

B.1 PROACTIVE MASKING FUNCTION FOR EVRPCS

For the EVRPCS, let D = {n0} [C define the set containing both the depot and all charging
stations, where C represents the set of charging stations. Let ^ denote the logical AND operator,
� ⇢ N represent the set of visited customers, and Ut(j) indicate the masking function for visiting
node j at time t when vehicle w is currently at node i. The masking function is defined as:

Ut(j) =

(
False, j /2 � ^ qwi + qj  Q ^ rwi � dij +min

c2D
djc

True, Otherwise
(48)

This formulation ensures that a node j is only selectable if: (1) it has not been visited, (2) serving
it would not exceed vehicle capacity, and (3) the vehicle has sufficient battery to reach node j and
then travel to the nearest charging facility or depot.

B.2 PROACTIVE MASKING FUNCTION FOR VRPRS

For the Vehicle Routing Problem with Replenishment Stops, let C define the set of intermediate
replenishment stops, n0 denote the depot node, R represent the maximum driving range of the
vehicle, and � ⇢ N show the set of visited customers. Let rwi denote the remaining driving range
of vehicle w at node i. The lookahead masking function Ut(j) for VRPRS, which determines the
feasibility of visiting node j at time t when vehicle w is at node i, is defined as:

Ut(j) =

⇢
False, j /2 � ^ qwi + qj  Q ^ rwi + dij + dj0  R
True, Otherwise

(49)

This ensures that a customer can only be selected if visiting them and returning to the depot would
not violate the driving range constraint.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C EXPERIMENTS ON VERY LARGE VRP PROBLEMS

We evaluated SEAFormer’s scalability on the exceptionally large problem instances proposed
by Hou et al. (2022), comprising 5,000 and 7,000 nodes in both VRP and RWVRP settings. The re-
sults, presented in Table 4, show that SEAFormer consistently outperforms state-of-the-art methods
across all RWVRP configurations and scales. The same holds for standard VRP, where SEAFormer
surpasses UDC which is the leading divide-and-conquer approach for large-scale VRPs.

Table 4: Experimental results on very large-scale VRP instances. The best overall performance is
shown in bold, and the top learning-based method is shaded. We compare the best-performing base-
lines that run without encountering out-of-memory errors in a reasonable time. Gaps are measured
with respect to the best-performing approach.

METHODS
5K CUSTOMERS 7K CUSTOMERS

OBJ. G(%) T OBJ. G(%) T
LKH 175 26.7 4.3H 245 30.2 14H
TAM-LKH3 144.6 4.7 35M 196.9 4.67 1H
GLOP-LKH3 142.4 3.11 8M 191.2 1.64 10M
LEHD 140.7 1.88 3H - - -
UDC250(↵ = 1) 139.0 0.65 15M 188.6 0.26 20M
SEAFORMER 138.1 0.00 22M 188.1 0.00 34M

Table 5 presents results for very large-scale RWVRPs. SEAFormer demonstrates exceptional scala-
bility on 5,000- and 7,000-customer instances, achieving the best solutions across all four problem
variants while existing methods struggle. For VRPTW, it reduces objectives by 94.3% compared to
MTPOMO on 5K instances and is the only method effectively solving 7K instances. In EVRPCS,
SEAFormer outperforms specialized methods like EVGAT by 45% on 5K instances and maintains
this advantage at 7K scale, with similar results for VRPRS. For AVRP, it achieves a 5.57% im-
provement over the state-of-the-art solver, highlighting SEAFormer’s strong generalizability across
different problem types and scales.

Table 5: Performance of SEAFormer on a very large scale RWVRP instances. The best results are
bolded while the best learning-based method is highlighted. Gaps are measured with respect to the
best-performing approach.

RWVRP METHODS
5K CUSTOMERS 7K CUSTOMERS

OBJ. G(%) T OBJ. G(%) T
POMO 997 67.2 28M - - -

VRPTW MTPOMO 1158 94.3 30M 1656 110 54M
SEAFORMER 596 0.00 33M 786 0.00 65M

EVRPCS
EVRPRL 272.4 90.3 30M - - -
EVGAT 207.9 45.2 38M 296.8 50.5 75M
SEAFORMER 143.1 0.00 32M 197.1 0.00 65M

VRPRS
EVRPRL 193.2 64.9 30M - - -
EVGAT 167.3 42.8 38M 230.6 46.8 75M
SEAFORMER 117.1 0.00 32M 157.1 0.00 65M

AVRP
POMO 244 68 17M - - -
UDC250(↵ = 1) 154.8 7.05 14M 208.4 5.57 20M
SEAFORMER 144.6 0.00 21M 197.4 0.00 34M

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D EXPERIMENTS ON REAL-WORLD CVRPLIB DATASET

On large-scale CVRPLib instances, SEAFormer demonstrates strong performance. Table 6 shows
the gap of different methods relative to the best-known solution. When combined with SGBS, it
surpasses state-of-the-art solutions; even without SGBS, SEAFormer is only 0.2% less effective on
the largest instances, underscoring the robustness of the proposed approach.

Table 6: Gap to Best Known Solution on CVRPLib real-world Benchmark. The best overall perfor-
mance is highlighted.

Dataset GLOP-LKH3 LEHD UDC250 SEAFormer SEAFormer-SGBS
Set-X(500, 1000) 16.8% 17.4% 7.1% 7.3% 6.8%
Set-XXL(1000, 10000) 19.1% 22.2% 13.2% 13.3% -

E CROSS-DISTRIBUTION GENERALIZATION

A key requirement for any neural combinatorial optimization (NCO) solver is the ability to gen-
eralize beyond the data on which it was trained (Zheng et al., 2024). To evaluate this property,
we assessed SEAFormer on two challenging out-of-distribution settings proposed by Zhou et al.
(2023): the Rotation and Explosion distributions of the CVRP, each with 500 and 1,000 customers.
As reported in Table 7, SEAFormer demonstrates consistent robustness and strong performance even
when faced with large-scale instances that exhibit fundamentally different spatial structures.

Table 7: Cross-distribution generalization on 128 instances from the dataset of Zhou et al. (2023).
The best overall result is shown in bold, and the top learning-based result is highlighted.

Rotation Explosion
Method Obj.# Gap Time Obj.# Gap Time
HGS 32.97 0.00% 8h 32.87 0.00% 8h
POMO 64.76 96.4% 1m 58.17 76.9% 1m
Omni VRP 35.9 8.8% 56.8m 35.65 8.45% 56.8m
ELG 37.31 13.16% 16.3m 36.53 8.1% 16.6m
UDC-x250(↵=1) 35.14 6.58% 3.3m 35.11 6.81% 3.3m
SEAFormer 35.27 6.97% 1m 35.85 9.06% 1m
SEAFOrmer-SGBS 34.51 4.67% 100m 34.84 5.99% 100m

F ADDITIONAL ABLATION STUDY

F.1 ABLATION ON CLUSTER SIZE AND PARTITIONING ROUNDS: IMPACT ON SOLUTION
QUALITY AND MEMORY

One of the main contributions of this paper is CPA with its partitioning rounds and smoothing
techniques. Figure 4a demonstrates model accuracy under different partitioning and smoothing set-
tings. The SEAFormer’s performance improves with increasing partitioning rounds. The accuracy
gap between utilizing CPA with 1 partitioning round (PR) with and without smoothing is 0.15%
for VRP1000, validating our smoothing approach’s effectiveness. Furthermore, the gap reduction
from 0.38% to 0.05% demonstrates the power of our deterministic-yet-diverse partitioning strategy.
Notably, performance across different partitioning rounds remains relatively consistent, highlight-
ing SEAFormer’s architectural strength which achieves high-quality solutions by deterministically
attending to small node groups.

Performance gains come at the cost of higher memory usage. Figure 4b illustrates memory con-
sumption during CVRP1k training with batch size 32 and pomo size 100. As anticipated, increasing
partitioning rounds and enabling smoothing raise memory requirements, highlighting the trade-off
between computational resources and solution quality.

Figure 5 compares CPA attention memory usage with POMO’s standard encoder on CVRP1k in
logarithmic scale. CPA achieves a 92% reduction with 20 nodes per cluster and 85% with 100
nodes, relative to full-node attention.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Performance gap for different settings (b) Training memory consumption

Figure 4: (a) Performance gap of SEAFormer with different CPA configurations. (b) Training mem-
ory consumption for a 1,000-node VRP with batch size 32 and pomo size of 100 under different
CPA configurations.

Figure 5: Logarithmic training memory consumption of CPA encoder on a 1,000-node VRP with
batch size 32 and pomo size 100 under different configurations.

F.2 ABLATION ON CLUSTER SIZE AND PARTITIONING ROUNDS: IMPACT ON CONVERGENCE

Table 8 examines the convergence behavior of different CPA configurations on VRP100. We report
the gap relative to the best objective observed across the entire training process, considering two
cluster sizes (20 and 50). In this evaluation, we vary the number of partitioning rounds (PR) and
compare settings with smoothing (S) and without smoothing (NS).

The baseline POMO method achieves a 1.19% gap after 1000 epochs. In contrast, our CPA variants
consistently deliver stronger performance, with several notable trends. First, the smoothing tech-
nique plays a critical role: comparing one partitioning round with and without smoothing reveals
gap reductions of 0.51% and 0.45% at epoch 1000 for cluster sizes 20 and 50, respectively. Second,
increasing the number of partitioning rounds leads to substantial improvements. For example, mov-
ing from one to four rounds with smoothing decreases the final gap from 1.19% to 0.69% for cluster
size 20, and from 1.00% to 0.56% for cluster size 50.

We further observe that larger cluster sizes consistently outperform smaller ones across all settings.
In particular, cluster size 50 with four partitioning rounds and smoothing achieves the best result,
reaching a 0.56% gap. Beyond final performance, CPA also exhibits faster convergence: with
four partitioning rounds and cluster size 50, the gap at epoch 100 is already 2.46%, outperform-
ing POMO’s performance at epoch 500. This combination of accelerated convergence and superior
asymptotic performance highlights the importance of both multiple partitioning rounds and well-
chosen cluster sizes within the CPA framework.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: Performance gap relative to best achieved objective on VRP100 across training epochs with
different CPA configurations (PR: Partitioning Rounds, S: Smoothing, NS: No Smoothing)

Method Cluster epoch Cluster epoch
size 100 500 1000 size 100 500 1000

POMO - 4.16% 1.89% 1.19% - - - -
1 PR-NS 20 3.97% 2.39% 1.7% 50 3.65% 2.01% 1.45%
1 PR-S 20 3.65% 2.14% 1.19% 50 3.53% 1.57% 1.00%
2 PR-S 20 3.4% 1.51% 0.88% 50 3.15% 1.38% 0.82%
4 PR-S 20 2.58% 1.19% 0.69% 50 2.46% 1.07% 0.56%

F.3 ABLATION ON EDGE MODULE EFFECT ON AVRP

Table 9 reports the performance gap of SEAFormer without the edge module relative to the full
SEAFormer. Across AVRP instances of varying sizes, the gap ranges from 2.4% to 3.4%, high-
lighting the significant contribution of the edge module to SEAFormer’s performance in asymmetric
routing settings.

Table 9: Gap between SEAFormer without Edge Embedding (SEAFormer-WOE) and the full
SEAFormer on AVRP.

Method AVRP100 AVRP500 AVRP1000
SEAFormer-WOE 2.4% 2.7% 3.4%

G OPTIONAL NODES AND THEIR EMBEDDINGS

SEAFormer treats optional nodes differently from customer nodes for three key reasons. First, the
number of optional nodes can change across problem instances, and mixing them with customers
could make the customer embeddings unstable. Second, because CPA fixes the number of customers
per cluster, adding variable optional nodes would require extra padding, which wastes resources.
Third, CPA groups nearby nodes together, so if optional nodes were embedded with customers,
some clusters might miss important optional node information, which could hurt solution quality.

For these reasons, we apply self-attention among all optional nodes to capture their inter-
relationships. These embeddings are then integrated with customer node representations through
a Gumbel-Softmax (Jang et al., 2016) and learnable fusion mechanism. During training, we imple-
ment a temperature annealing schedule: ⌧ initializes at 1.0 to encourage exploration and decays by
a factor of 0.99 per epoch until reaching 0.2. Through this mechanism, customer embeddings learn
to initially explore all optional facilities without bias, then progressively concentrate on the most
relevant service nodes as determined by spatial proximity and emerging routing patterns.

H CPA VISUAL EXAMPLE

Figure 6 provides steps of how CPA operates. The input instance (Figure 6a) is first transformed
into polar coordinates relative to the depot (Figure 6b). We then compute and normalize the parti-
tioning score from Equation 2 (Figure 6c), sort nodes by that score, and partition them into clusters
according to the chosen cluster size (Figure 6d). Finally, Figure 6e compares CPA’s attention scores
with standard full attention (Figure 6f), highlighting CPA’s locality-aware sparsity and its reduced
memory footprint.

Figure 7 demonstrates how CPA employs 4 rounds of partitioning with boundary smoothing to gen-
erate diverse spatial patterns. This approach preserves the global perspective of problem instances
while achieving significant reductions in memory usage and computational cost.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) Input Nodes (b) Polar Transform (c) Paritioning scoring (d) Clustering

(e) CPA Attention: O(n) (f) Standard Attention: O(n2)

Figure 6: Pipeline of CPA. Top row: CPA processing steps - (a) Input nodes in Cartesian space
with depot (red star), (b) Polar transformation relative to depot, (c) Angular scoring with ↵ = 0
(pure angular), (d) Nodes sorted by angle and partitioned into fixed-size clusters. Bottom row:
(e) Final CPA attention pattern with O(n) complexity showing attention only within clusters, (f)
Standard attention with O(n2) complexity showing all pairwise connections. CPA reduces number
of attention calculation for this example from 10,000 to 2100 (approximately 80% reduction).

Figure 7: Visualization of Clustered Proximity Attention with ↵ = [0, 0.33, 0.66, 1], where nodes
are partitioned into K=4 clusters using polar coordinates centered at the depot (black star). Top
row: Without boundary smoothing, hard boundaries can separate nearby nodes. Bottom row: With
smoothing, cluster boundaries shift to maintain local neighborhoods. Colors indicate cluster assign-
ment; attention is computed only within same-colored groups plus depot. The mixing parameter ↵
interpolates between radial (↵=0) and angular (↵=1) clustering, capturing different routing patterns.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

I ADDITIONAL RELATED WORK

I.1 CLASSICAL APPROACHES AND THEIR LIMITATIONS

Classical (meta-)heuristic methods for RWVRPs follow a construction-destruction-improvement
paradigm. Examples include variable neighborhood search with Tabu search for load-dependent
energy consumption (Schneider et al., 2014), ant colony optimization with look-ahead for EVR-
PCS (Mavrovouniotis et al., 2018), simulated annealing for partial recharging (Felipe et al., 2014),
and adaptive large neighborhood search with load-aware power estimation (Kancharla & Ramadu-
rai, 2018). Although these approaches yield high-quality solutions and handle complex constraints,
they face two main drawbacks: (i) solution time grows exponentially with problem size (Hou et al.,
2022), and (ii) they struggle to generalize, as solutions cannot leverage patterns learned from previ-
ous instances. Such limitations make them unsuitable for real-time logistics, where solutions must
be produced in seconds rather than hours.

I.2 LEARNING-BASED APPROACHES

The intersection of machine learning and combinatorial optimization has yielded approaches that di-
rectly produce high-quality VRP solutions without iterative refinement. These methods fall into two
architectural paradigms: (1) Autoregressive models that build solutions sequentially, adding one de-
cision at a time (Khalil et al., 2017; Kool et al., 2018; Kwon et al., 2020; Hou et al., 2022; Luo et al.,
2025a; 2023; Zheng et al., 2024; Berto et al., 2025; Nasehi et al., 2025), and (2) Non-autoregressive
models that generate complete solutions simultaneously, typically through learned heatmaps (Nowak
et al., 2018; Kool et al., 2022; Ye et al., 2024; Xiao et al., 2024). Training paradigms include su-
pervised learning from optimal solutions or reinforcement learning to directly optimize solution
quality (Joshi et al., 2019).

Early work by Bello et al. (2016) pioneered learned heuristics using pointer networks trained with
actor-critic methods. Nazari et al. (2018) enhanced this framework by incorporating attention mech-
anisms into the encoder. The field advanced significantly when Kool et al. (2018) applied Transform-
ers to routing problems, demonstrating strong performance across TSP and VRP tasks. Subsequent
improvements include POMO (Kwon et al., 2020), which introduced multiple rollouts for better
exploration, and multi-decoder architectures (Xin et al., 2021) for enhanced solution refinement.
Despite these advances, scaling to large problem instances remains computationally prohibitive.

Divide-and-conquer strategies have emerged as the dominant approach for large-scale in-
stances (Nowak et al., 2018; Li et al., 2021; Zong et al., 2022; Fu et al., 2021; Zheng et al.,
2024; Nasehi et al., 2025). TAM (Hou et al., 2022) employs two-stage decomposition followed by
LKH3 (Helsgaun, 2017) for sub-problem resolution. GLOP (Ye et al., 2024) integrates global par-
titioning through non-autoregressive models with local autoregressive construction. UDC (Zheng
et al., 2024) addresses sub-optimal partitioning through robust training procedures, combining
GNN-based decomposition with specialized sub-problem solvers.

Recently, heavy decoder architectures have emerged as another approach for achieving high-quality
results. Luo et al. (2023) proposed shifting computational complexity from the encoder to the de-
coder, introducing a partial reconstruction approach to enhance model accuracy while maintain-
ing reasonable training times through supervised learning. Luo et al. (2025a) extended this with
a boosted heavy decoder variant that restructures attention computation through two intermediate
nodes, reducing attention complexity to O(2n). This efficiency gain enables training on signifi-
cantly larger instances by computing attention from each node to two pivot nodes, then from these
pivots to all other nodes, rather than computing full pairwise attention. Huang et al. (2025) provide
insights into models with light encoders and identify their weaknesses. They propose RELD, incor-
porating simple modifications such as adding identity mapping and a feed-forward layer to enhance
the decoder’s capacity.

J HYPERPARAMETERS

Following previous work (Kwon et al., 2020), we sample depot and customer coordinates uniformly
from [0, 1]2 space, with customer demands drawn uniformly from {1, ..., 10}. Vehicle capacities are

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

set to 50, 100, and 200 units per Zhou et al. (2023). For each epoch, we generate 10,000 training
instances on-the-fly. We train models for 2,000 epochs on 100-customer instances, 200 epochs
on 500-customer instances, and 100 epochs on 1,000-customer instances for each problem variant.
Training employs batch size 64 with POMO size 100 (Kwon et al., 2020). Our architecture uses
a 6-layer encoder with 8 attention heads, embedding dimension 128, and feedforward dimension
512. The learning rate remains fixed at 10�4. We leverage Flash Attention (Dao et al., 2022) in our
multi-head attention mechanisms. The edge module uses 32-dimensional embeddings, computing
edge representations only between each node and its 50 nearest neighbors as a fixed constraint.
All remaining hyperparameters, training algorithms, and loss functions follow POMO (Kwon et al.,
2020) specifications.

VRPTW. we follow the time window generation procedure from Liu et al. (2024). Service times
and time window lengths are uniformly sampled from [0.15, 0.2], representing normalized time
units relative to a planning horizon of T=4.6.

EVRPCS. we randomly select 4 charging stations, and each EV can travel up to 2 units before
needing to recharge.

VRPRS. we set 5 replenishment stops, with each vehicle able to travel a maximum of 4 units.

AVRP. the asymmetry scaling parameter � is set to 50, 200, and 400 for 100-, 500-, and 1,000-
customer problems, respectively, while the directional bias factor � is fixed at 0.2 for all instance
sizes.

K BASELINES, CODES AND LICENSES

As noted earlier, many existing methods cannot be directly applied to all RWVRP variants. For
EVRPCS, we use two learning-based approaches from the literature, following the implementation
details provided in their original papers. To our knowledge, no learning-based solutions exist for
VRPRS, so we adapted the EVRPCS methods, given their similarity in implementation and ap-
proach, to VRPRS and retrained them. For AVRP, we use baseline methods to generate solutions
and then recompute route costs using the asymmetric distance matrix. Reported runtimes reflect
only model execution, excluding post-processing or cost recalculation. We keep all hyperparame-
ters at the defaults specified by the original authors. We also include recent concurrent works from
arXiv, as well.

OR-Tools. We configure OR-Tools using the PATH CHEAPEST ARC strategy to generate initial
solutions and apply GUIDED LOCAL SEARCH as the local search metaheuristic. The runtime is
adapted to problem size, selecting from 30, 180, or 360 seconds per instances. The results reported
for OR-Tools are not the optimal, as the process was stopped once the time limit was reached.

HGS. We use the HGS (Helsgaun, 2017) implementation in PyVRP (Wouda et al., 2024) version
0.8.2, setting the neighborhood size to 50, minimum population to 50, and generation size to 100.
Runtime is adjusted by problem size, choosing 20, 120, or 240 seconds per instance. All other
parameters remain at default. The results reported for HGS are not the optimal, as the process was
stopped once the time limit was reached.

The available codes and their licenses for used in this work are listed in Table 10.

L USE OF LARGE LANGUAGE MODELS

We use LLM assistance for grammar and presentation improvements. The original text and ideas
remain the authors’ work, and they take full responsibility for the content.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 10: Resources for TSP and Optimization Problems

Resource Link License
LKH3 (Helsgaun, 2017) http://webhotel4.ruc.dk/keld/research/LKH-3/ Academic research use
HGS (Vidal, 2022) https://github.com/chkwon/PyHygese MIT License
PyVRP (Wouda et al., 2024) https://github.com/PyVRP/PyVRP MIT License
POMO (Kwon et al., 2020) https://github.com/yd-kwon/POMO MIT License
LEHD (Luo et al., 2023) https://github.com/CIAM-Group/NCO_code/tree/

main/single_objective/LEHD
MIT License

BLEHD (Luo et al., 2025a) https://github.com/CIAM-Group/SIL MIT License
ELG (Gao et al., 2024) https://github.com/lamda-bbo/ELG MIT License
GLOP (Ye et al., 2024) https://github.com/henry-yeh/GLOP MIT License
DeepMDV (Nasehi et al., 2025) https://github.com/SaeedNB/DeepMDV MIT License
RELD (Huang et al., 2025) https://github.com/ziweileonhuang/reld-nco -
UDC (Zheng et al., 2024) https://github.com/CIAM-Group/NCO_

code/tree/main/single_objective/
UDC-Large-scale-CO-master

MIT License

26

