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Abstract

When applying offline reinforcement learning (RL) in healthcare scenarios, the
out-of-distribution (OOD) issues pose significant risks, as inappropriate generaliza-
tion beyond clinical expertise can result in potentially harmful recommendations.
While existing methods like conservative Q-learning (CQL) attempt to address the
OOD issue, their effectiveness is limited by only constraining action selection by
suppressing uncertain actions. This action-only regularization imitates clinician
actions that prioritize short-term rewards, but it fails to regulate downstream state
trajectories, thereby limiting the discovery of improved long-term treatment strate-
gies. To safely improve policy beyond clinician recommendations while ensuring
that state-action trajectories remain in-distribution, we propose Offline Guarded
Safe Reinforcement Learning (OGSRL), a theoretically grounded model-based
offline RL framework. OGSRL introduces a novel dual constraint mechanism for
improving policy with reliability and safety. First, the OOD guardian is established
to specify clinically validated regions for safe policy exploration. By constraining
optimization within these regions, it enables the reliable exploration of treatment
strategies that outperform clinician behavior by leveraging the full patient state
history, without drifting into unsupported state-action trajectories. Second, we
introduce a safety cost constraint that encodes medical knowledge about physiolog-
ical safety boundaries, providing domain-specific safeguards even in areas where
training data might contain potentially unsafe interventions. Notably, we provide
theoretical guarantees on safety and near-optimality: policies that satisfy these
constraints remain in safe and reliable regions and achieve performance close to
the best possible policy supported by the data. When evaluated on the MIMIC-III
sepsis treatment dataset, OGSRL demonstrated significantly better OOD handling
than baselines. OGSRL achieved a 78% reduction in mortality estimates and a 51%
increase in reward compared to clinician decisions.

1 Introduction

Deep reinforcement learning (RL) has been widely applied in many safety-critical domains, such
as fine-tuning of language models [9, 35], robotics [7, 8], and autonomous driving [21]. Given its
capacity to learn from large-scale real-world datasets, there is growing interest in leveraging deep RL
for decision support in medical treatment. Notably, deep RL has been explored for treatment opti-
mization in various clinical conditions, including sepsis [22, 37], cancer [47], and type 2 diabetes [56].
In medical applications, unlike conventional RL, two additional challenges must be addressed. First,
medical treatment optimization is not amenable to learning via active interaction; that is, online
exploration of treatment alternatives for patients is strictly prohibited. Second, medical treatments are
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multi-faceted: we need to incorporate (possibly conflicting) safety constraints and a reward function.
Even if a treatment is highly effective, therapies with severe side effects are undesirable for patients.

Offline RL learns policies from pre-collected datasets without further environment interaction [28],
making it ideal for medical treatment optimization, where real-time experimentation is ethically
constrained. Early healthcare applications relied on value-based off-policy methods such as
DQN [22, 37, 54] and its variants [14, 17, 39, 44, 53]. They face challenges in offline settings
due to OOD actions [25] and Q-value overestimation for unseen actions [2], leading to unsafe or
suboptimal decisions. Conservative Q-learning (CQL) [26] mitigates OOD action overestimation
by penalizing value estimates for actions not present in the dataset and has been applied to clinical
decision-making [11, 33]. CQL focuses solely on suppressing OOD actions, leaving OOD states
unaddressed [31]. As policies evolve, even in-distribution actions can lead to state trajectories that
diverge from data distribution. This is problematic in healthcare, where accurate modeling of state
transitions is critical, and OOD states may correspond to unsafe or clinically invalid patient conditions.
Prior methods fail to fully leverage clinician expertise embedded in dataset. CQL can only encourage
policies that imitate clinician actions but cannot improve upon them because it lacks mechanisms to
safely explore or optimize within the full state-action support derived from expert trajectories.

Contributions. We propose Offline Guarded Safe Reinforcement Learning (OGSRL), a theoretically
grounded framework for learning safe and effective treatment policies from offline clinical data. Our
key contributions are as follows. (1) We introduce an OOD guardian that jointly constrains policies
to remain within the state-action support and enables optimization within this region. Unlike prior
methods such as CQL that only suppress OOD actions, OGSRL explicitly restricts both states and
actions, fully leveraging clinician knowledge embedded in the dataset and incorporating explicit safety
cost constraints to avoid risky recommendations. (2) We provide theoretical guarantees that any policy
satisfying the OOD cost constraint remains in-distribution with high probability. When combined with
model-based RL, OGSRL further offers probabilistic guarantees on safety and near-optimality, and
quantifies the effect of dataset size on policy reliability. (3) We demonstrate the practical effectiveness
of OGSRL on real-world sepsis treatment data. OGSRL consistently outperforms strong offline RL
baselines in cumulative reward, safety constraint satisfaction, and alignment with clinical behavior.

2 Problem Statement

Modeling medical treatment as a CMDP. We define the patient state as s ∈ S ⊆ Rn and the
permissible treatment action as a ∈ A ⊆ Rm. The patient state evolves according to a transition
dynamics T (s+ | s,a), which specifies the distribution over the next state s+ given the current
state s and action a. A reward function r : S × A → [0, rmax] is defined based on clinical health
indicators, which reflects the treatment objective of improving patient health. In addition to reward,
certain safety indicators must be considered during treatment. These are encoded by a vector-valued
safety cost function c : S ×A → [0, c1,max]× · · · × [0, cℓ,max], where cmax = [c1,max, . . . , cℓ,max]

⊤

denotes the upper bounds for ℓ safety-related quantities. At each decision step h, a clinician observes
the current patient state sh and selects a treatment ah aimed at improving the patient’s condition
(maximizing r) while avoiding unsafe outcomes (ensuring each component of c remains within safe
limits). Thus, medical treatment can be formulated as a constrained Markov decision process (CMDP)
byM := ⟨S,A, T , r, c, γ, ρ0⟩, where γ ∈ (0, 1] is a discount factor and ρ0 is the probability density
of the initial patient state s0, typically reflecting the variety of conditions at the time of ICU admission
or treatment onset. A treatment policy is a stochastic mapping from the state to the probability density
over admissible treatment actions. Let π(· | s) denote the probability density of a when the state is s,
and let Π be the space of all such policies. Let τ := {s0,a0, . . . , sh,ah, . . . } represent a trajectory
induced by a policy π ∈ Π. The value function associated with a bounded function ⋄ : S ×A → R
(e.g., reward r or a safety cost component cj) under policy π and transition dynamics T is defined
by V π

⋄,T (s) = Eπ[
∑∞

h=0 γ
h ⋄ (sh,ah) | s0 = s]. Here, ⋄ is assumed to be bounded by ⋄max. The

expected value across patients is defined as V π
⋄,T (ρ0) := Es∼ρ0 [V

π
⋄,T (s)].

Example scenario. Consider the treatment of sepsis. Conventional studies of using RL to optimize
sepsis treatment have not considered safety constraints either for the action or for physiological
states that a safe treatment action should always maintain. Early studies [22, 36, 45] of sepsis
treatment used mortality as the only penalty (negative reward) to guide the learning process, but recent
work [14, 15, 19, 53] started using composite scores, such as the Sequential Organ Failure Assessment
(SOFA), as the negative or the reciprocal of the reward. While SOFA combines multiple organ function
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Algorithm 1 OGSRL: Offline Guarded Safe Reinforcement Learning for Treatment Recommendation

1: Input Initial dataset Db collected under standard treatment
2: Learn classifier ĝ of the guardian from Db to detect safe state-action pairs (see Sec. 3.1)
3: Construct guarded treatment model M̂ĝ using ĝ and Db (see Def. 2)
4: π̂ ← ConOpt(M̂ĝ) to compute a safe and effective treatment policy
5: end for

indicators and hence encourages actions that move a patient towards normal physiological states,
the learning algorithm cannot guarantee that every intermittent physiological state of a patient is
indeed safe. In addition, there are readily available variables that are not part of SOFA but can be
used to produce physiologically sound and clinically interpretable safety constraints. Hence, a novel
algorithm that is capable of learning policies that explicitly obey safety constraints is needed.

Goal. The primary objective of this paper is to maximize the value function V π
r,T (ρ0), while ensuring

that the adopted treatment policy π should satisfy the safety cost constraints: V π
cj ,T (ρ0) ≤ cj , j ∈ [ℓ],

where cj ∈ [0, cj,max] is the upper constraint for the j-th expected cumulative safety cost. The safe
RL problem associated with ρ0 we shall solve is written as

max
π∈Π

V π
r,T (ρ0) s.t. V π

cj ,T (ρ0) ≤ c̄j , ∀j ∈ [ℓ]. (ESRL)

3 Method

We propose a framework called Offline Guarded Safe Reinforcement Learning (OGSRL) to learn
a treatment policy under safety constraints. The workflow of OGSRL is outlined in Algorithm 1.
First, the offline dataset Db := {(s,a, s+, r, c)} is used to estimate the reward function, safety cost
function, and transition dynamics, which together define an estimated constrained Markov decision
process (E-CMDP). To address the risk of unsafe generalization, we incorporate a guardian into
the model-based offline safe RL and construct a guarded E-CMDP. The guardian plays two roles:
classification and rejection. A PSoS-based classifier ĝ is trained to identify OOD state-action pairs.
Using the learned classifier ĝ, we formulate an OOD cost constraint and insert it into the CMDP. The
OOD cost constraint explicitly eliminates policies with a high probability of visiting state-action pairs
outside the dataset support. Unlike CQL that primarily suppresses OOD actions, our constraint jointly
addresses both OOD states and actions, leading to improved generalization and safety. A constrained
policy optimizer, denoted as ConOpt, is then used to solve the guarded E-CMDP and compute
a policy π̂(i) that maximizes the expected clinical outcome while satisfying the predefined safety
constraints and additional OOD constraint. While we employed constrained policy optimization
(CPO, [1]) as ConOpt, other constrained RL algorithms are not prohibited from being used.

3.1 Constructing Guardian Classifier

The state-action space U := S ×A can be partitioned into two regions: the in-distribution (ID) set
Uid and the OOD set Uood := U \ Uid. The estimated model is only guaranteed to converge in the
ID region Uid. To prevent unsafe generalization, we introduce a guardian that classifies whether a
state-action pair lies outside the support of the data and then restricts policy learning to ID regions.

We first introduce an important notion called polynomial sublevel set, defined as follows.
Definition 1 (Polynomial sublevel set). Let x = (s,a) ∈ Rnp with np = n +m. Let e(x) denote
the vector of all monomials of x up to degree d > 0, e(x) := [1, x1, . . . , xnp , x

2
1, . . . , x

d
np
]⊤. Given

parameter vector θ, define the polynomial function: q(x, θ) := e⊤(x)P (θ)e(x), where P (θ) is a
symmetric, positive semidefinite Gram matrix fully determined by θ. The degree of q is 2d, and we
require q(x, θ) ≥ 0 for all x, making it a polynomial sum-of-squares (SoS) function [24, 41, 42].
Then, the polynomial sublevel set is given by: Ûθ,d := {x ∈ U : q(x, θ) ≤ 1}.

Ideally, we desire to obtain the following classifier g : S × A → {0, 1}, defined as g(s,a) =
I {(s,a) /∈ Uid} . Unfortunately, the perfect classifier g is unknown in practice. We thus aim to
approximate this set using a polynomial sum-of-squares (PSoS) classifier, which enables explicit
theoretical analysis of the OOD guarantee due to its structured mathematical form. While PSoS
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provides analytic tractability for safety proofs, we use a kernel-based approximation in practice to
improve scalability and ease of implementation. As such, by learning a polynomial sublevel set
Ûθ,d satisfying Ûθ,d ⊆ Uid with high probability, we obtain a conservatively approximated classifier,

denoted as ĝ : S ×A → {0, 1}: ĝ(s,a) = I
{
(s,a) /∈ Ûθ,d

}
, where Ûθ,d is a degree-d polynomial

sublevel set parameterized by θ ∈ Rnθ . Learning the PSoS guardian ĝ involves estimating the
polynomial sublevel set Ûθ,d from the dataset Db. Let XN :=

{
x(i)
}N
i=1

denote the collection of N
state-action pairs sampled from Db. Optimization problem for constructing Ûθ,d is given by:

min
θ

L(θ) := log detP−1(θ) s.t.
1

N

N∑
i=1

I1
(
q(x(i), θ)

)
≤ αc, (GCL)

where αc ∈ (0, 1) is an empirical coverage threshold and I1(z) = 1 if z > 1, and 0 otherwise.
The objective minimizes the volume of the set, forming a tight envelope around the in-support
data. This set is later used to detect whether a state-action pair is out-of-distribution. In practice,
I1 is replaced with a smooth surrogate for tractability. While we adopt this PSoS-based classifier
for theoretical guarantees, alternative methods such as Kernel Density Estimation (KDE) [16] or
k-Nearest-Neighbors (k-NN) scoring [6] can approximate the support and are used in our experiments
(Appendix G.3). Let θ̂Nαc

denote the solution to this problem, and define the learned set as Ûθ̂N
αc

,d.

Probability bound of guardian classifier learning. In medical applications, it is particularly
important to use an algorithm with favorable theoretical properties. We now provide a probabilistic
guarantee on the accuracy of the learned classifier used in the guardian.

Theorem 1. For any probability level α > 0 and any αc > α, there exists a polynomial degree d such
that the following holds: Pr

(
Ûθ̂N

αc
,d ̸⊂ Uid

)
≤ exp

(
−2N2(αc − α)

)
. That is, with high probability,

all points within Ûθ̂N
αc

,d lie in the in-distribution region Uid.

The proof of Theorem 1 is provided in Appendix C. Theorem 1 implies that the learned guardian
classifier provides a high-confidence rejection region, whose conservativeness is explicitly tunable
via αc and improves with more data. Although our proposed method embeds the guardian classifier
into the model-based offline RL, it can also be applied to model-free offline RL.

3.2 Model-based Offline RL with Guardian

Model-based offline RL. In our model-based reinforcement learning framework, we first estimate
the following from the offline dataset Db: a reward model r̂, a vector-valued safety cost model ĉ, and
a transition dynamics model T̂ . These models define what we refer to as an Estimated Constrained
Markov Decision Process (E-CMDP): M̂ := ⟨S,A, T̂ , r̂, ĉ, ρ0⟩. Given M̂, the model-based safe
reinforcement learning problem is formulated as:

max
π∈Π

V π
r̂,T̂ (ρ0) s.t. V π

ĉj ,T̂
(ρ0) ≤ c̄j , ∀j ∈ [ℓ], (MSRL)

where V π
r̂,T̂

(ρ0) denotes the expected clinical outcome (e.g., improvement in SOFA score), and each
constraint ensures that the expected safety-related cost (e.g., risk of hypotension, organ failure, etc.)
remains below a clinically acceptable threshold c̄j . Problem MSRL differs from the ideal formulation
using the true CMDPM, because it relies entirely on estimated models. In practice, the reward and
cost functions can be learned using Gaussian process regression (GPR) [48, 49], while the transition
dynamics can be estimated using techniques such as, e.g., Gaussian process models [13], or generative
models [43]. A critical challenge in medical applications is that the offline dataset often covers only a
limited subset of the state-action space—i.e., treatments observed under the standard of care [52].
Consequently, the learned policies are reliable only within the distribution of data induced by the
behavior policy. Naively applying constrained policy optimization to this E-CMDP can result in
over-optimistic value estimates and unsafe treatment decisions, especially in regions not well-covered
by the data [30, 31]. To address this, we introduce a state-action guardian in the next step.

Guarded E-CMDP. With the learned PSoS classifier ĝ, we define a guarded E-CMDP by embedding
the OOD-aware safety mechanism directly into the model:
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Definition 2. A guarded E-CMDP is defined as M̂ĝ := ⟨S,A, T̂ , r̂, ĉ, ρ0, ĝ, c̄ĝ⟩, where c̄ĝ is a
threshold limiting the out-of-distribution (OOD) cost. The OOD cost constraint is formulated as:

V π
ĝ,T̂ (ρ0) := Es∼ρ0

[
V π
ĝ,T̂ (s)

]
≤ c̄ĝ. (1)

Given this structure, the guarded policy optimization problem is formulated as:

max
π∈Π

V π
r̂,T̂ (ρ0) s.t. V π

ĝ,T̂ (ρ0) ≤ c̄ĝ, V
π
ĉj ,T̂

(ρ0) ≤ c̄j , ∀j ∈ [ℓ]. (GSRL)

The motivation for introducing the OOD cost constraint (1) is to discourage policies that frequently
visit state-action pairs outside the support of the dataset. When the support of the true transition
dynamics is unbounded, it is often impractical to enforce strict avoidance of OOD state-action
pairs. Instead, a more tractable goal is to ensure that the policy remains within the data support
with high probability over a finite horizon, formalized as the following joint chance constraint:
Pr {ĝ(sh,ah) = 0, ∀h ≤ H} > 1− β. However, directly incorporating this joint chance constraint
into policy optimization is intractable in most safe RL frameworks. Following the approach of Shen
et al. [40], we approximate it conservatively via the OOD cost constraint (1). The key idea is that, for a
given risk level β, one can select a sufficiently large discount factor γ so that feasibility under the cost
constraint implies feasibility under the joint chance constraint. A discussion of this approximation
strategy and practical guidance on choosing γ is provided in Appendix B.

With the above notations, we extend the result of Theorem 1 into a policy-level guarantee:

Corollary 1. Let π̂f be any feasible solution to Problem GSRL. Then, for a desired confidence

level δ ∈ (0, 1), if the number of samples satisfies N >
√

log(1/δ)
2(αc−α) , the policy π̂f ensures that, with

probability 1− δ − β, the agent remains within Uid for all steps h ≤ H .

The proof of Corollary 1 is summarized in Appendix D.

Connections to shielding methods. Shielding methods [3, 4, 23, 32] guarantee safety during online
environmental interaction by intervening when unsafe actions are about to occur. Our guardian in
OGSRL shares a similar goal of constraining behavior that causes OOD issues, but operates entirely
offline. Instead of correcting actions during execution, the guardian restricts the feasible policy space
during offline optimization, ensuring that learned policies, with high probability, keep state-action
trajectories within the dataset support over a finite horizon. Thus, while shielding ensures pointwise
safety during online interactions, our approach provides probabilistic safety guarantees in the offline
setting, which is crucial for medical applications where real-time corrections are infeasible.

Practical significance. In the context of medical treatment optimization, Theorem 1 and Corollary 1
provide essential probabilistic guarantees: only policies that maintain a high probability of remaining
within the dataset support over a finite horizon H are considered feasible. Crucially, any policy
satisfying the OOD cost constraint operates entirely within regions where the estimated dynamics,
value functions, and action-value functions are reliable. This is especially important in clinical
settings, where learned policies must avoid poorly supported regions; otherwise, inaccurate modeling
in such areas could lead to unsafe or ineffective treatment recommendations. Moreover, the OOD
cost constraint is a data-driven proxy for clinical knowledge. Because the dataset reflects real-
world clinician behavior, constraining policies to remain within support implicitly aligns the learned
strategies with accepted medical practices, enhancing both interpretability and trustworthiness for
deployment. However, it is important to note that clinician behavior often reflects safe individual
treatment decisions, rather than globally optimal long-term strategies. Human decision-making may
rely on heuristics or short-term goals, with limited integration of the patients’ full historical state. A
capable offline RL policy with an effective OOD cost constraint can leverage the full patient state
to optimize long-term outcomes, while still adhering to the safe local actions reflected in clinical
data. While methods like CQL [26] effectively suppress OOD actions, they do not constrain state
transitions. This can be particularly problematic in clinical settings, where clinicians make decisions
based on observed patient state trajectories. CQL lacks a mechanism to encode this temporal structure,
leaving it unable to control or reason about OOD states that may emerge downstream. In contrast,
our OOD guardian enables safe policy learning by jointly constraining states and actions, making it
better aligned with clinical reasoning and safer for real-world deployment.
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3.3 Safety and Sub-optimality with Finite Samples

Value function error. We begin by analyzing the error bound of the estimated value function
associated with a function ⋄ (e.g., reward r or safety cost cj). This section assumes that the transition
dynamics T̂ are estimated using kernel density estimation (KDE). At the same time, the reward and
safety cost functions are known, i.e., ⋄̂ = ⋄. This assumption is reasonable in many medical treatment
settings, where both reward and safety cost functions are predefined, as is the case in our application
study in Section 4. For settings where the reward and safety cost functions are unknown, we provide
a generalized theoretical analysis in Appendix E, where these functions are estimated using GPR.
Let h be the bandwidth of the KDE, and assume that the joint density of (s+, s,a) and the marginal
density of (s,a) are Hölder continuous with exponent ζ ∈ (0, 1].
Theorem 2. Let π be any feasible solution of Problem GSRL. Assume the standard KDE conditions
Nhn+m →∞ and h→ 0 as N →∞. Then, with probability at least 1− 2β − 4δ, the following
holds:

∣∣∣V π
⋄̂,T̂

(ρ0)− V π
⋄,T (ρ0)

∣∣∣ ≤ εk + εH , where:

εH :=
γH+1(2− γ)⋄max

(1− γ)2
, εk :=

⋄max(γ − γH+2)Cden

(1− γ)2

(
hζ +

√
log(1/δ)

Nh2n+m

)
.

Here, Cden is a positive constant depending on the smoothness of the densities, the choice of kernel,
and the dimensionality 2n+m.

Theorem 2 can be directly obtained from Theorem 6 in Appendix E by setting ⋄̂ − ⋄ = 0 for any
(s,a). This bound decomposes the total value function error into two parts; (1) εk from approximation
of T̂ , which vanishes asymptotically; (2) εH , due to state-action pairs that fall outside the support of
the dataset beyond horizon H . By selecting a sufficiently large dataset size N and a conservative
OOD threshold c̄ĝ , we can ensure small β in the chance constraint (4), and thus make εH negligible.
Method of choosing c̄ĝ with respect to a desired H follows [40, 50].

Safety and sub-optimality. We now define conditions under which the policy output by ConOpt
is safe and near-optimal with respect to the true model. We say a policy πout is εs-safe if:
maxj

∣∣∣c̄j − V πout

ĉj ,T̂
(ρ0)

∣∣∣ ≥ εs. Let π̂∗ be the optimal solution to Problem GSRL with safety threshold

c̄j . If πout is computed using a tightened threshold c̄j − ε̄, and satisfies: V π̂∗

r̂,T̂
(ρ0)− V πout

r̂,T̂
(ρ0) ≤ εr,

we obtain the following guarantee for the true system:
Theorem 3. If ε̄ ≥ εs + εk + εH , and πout is εr-sub-optimal for Problem GSRL, then πout is safe
and (εr + 2εk + 2εH)-sub-optimal for Problem ESRL, with probability at least 1− 2β − 4δ.

Practical significance. Theorem 3 guarantees that the learned policy remains safe and near-optimal
with high probability, even under model approximation and conservative constraints. This is essential
in clinical contexts, where decisions must be not only effective but also verifiably safe. Crucially, our
approach constrains learning within the support of the dataset, where expert treatment trajectories
reside, thus fully leveraging clinician knowledge while avoiding unsafe extrapolation. Unlike prior
methods relying on unverifiable assumptions, our result explicitly links dataset size and model
error to performance bounds, making it well-suited for reliable deployment in clinical workflows.
Finally, while our approach and Off-Dynamics RL both use classifiers to influence learning, the goals
differ. Our guardian is designed to restrict policy optimization to the in-distribution region for safety
guarantees, whereas Off-Dynamics RL uses them for reward shaping or domain adaptation [10].

4 Experimental Validations

We evaluate OGSRL through comprehensive experiments on real-world clinical data to validate three
key aspects of our framework: (1) the effectiveness of the OOD guardian in constraining policies to
in-distribution regions, (2) the ability to learn safe and effective treatment policies that improve upon
clinician behavior while satisfying physiological safety constraints, and (3) the generalizability across
different critical care conditions. We conduct detailed evaluation on sepsis treatment using the MIMIC-
III dataset (Sections 4.1–4.2). To demonstrate broader applicability, we validate generalizability
on the Synthetic Acute Hypotension Dataset (Section 4.3), which represents a different critical
care condition with distinct physiological dynamics, temporal resolution, and clinical objectives.
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Across both validation studies, we instantiate OGSRL using GMB-CPO, a model-based variant of
Constrained Policy Optimization equipped with our OOD guardian mechanism. 2

4.1 Sepsis Treatment: Formulation and Experimental Setup

We evaluated OGSRL using 18, 923 ICU stays with sepsis diagnosis from the MIMIC-III dataset 3 [18]
and established protocols in Komorowski et al. [22]. Patient data were encoded as multidimensional
time series with 4-hour intervals, capturing up to 72 hours around the estimated onset of sepsis. Our
implementation addresses key limitations in previous approaches to sepsis treatment optimization.
Rather than discretizing interventions or combining multiple treatments into a single dimension,
we developed a continuous two-dimensional action space that separately models intravenous fluid
administration (IFA) and maximum vasopressor dosage (MVD), namely a = [IFA, MVD]⊤ ∈ R2.
This representation enables more nuanced treatment recommendations, reflecting the clinical reality
where physicians simultaneously titrate multiple interventions based on patient response. The state
representation emerged from a clinically informed feature selection process, incorporating variables
significantly correlated with organ dysfunction. This balanced representation captures essential
physiological dynamics while enabling personalized treatment strategies. Totally 13 features are
selected as the dynamic state, namely, s ∈ R13. Departing from previous work that employed
mortality as a terminal reward [22], we adapted the Sequential Organ Failure Assessment (SOFA)
score into an instantaneous reward signal by setting r : S × A → 1

SOFA . More details about the
definitions for selected dynamic and static features, actions and reward can be found in Appendix
G.2. This approach provides more frequent feedback on treatment efficacy and better aligns with
contemporary clinical practice. Our approach implements two distinct but complementary safety
mechanisms. First, explicit safety constraints are appllied to physiological states by enforcing
minimum physiological thresholds for oxygen saturation (SpO2) (≥ 92%) [38] and urine output
(≥ 0.5 mL/kg/hour) [20]. These constraints directly encode clinical knowledge about vital parameter
ranges necessary for patient safety. Second, our OOD guardian mechanism addresses a fundamentally
different safety concern—the reliability of model predictions when encountering state-action pairs
insufficiently represented in training data. While clinical constraints ensure physiological safety
within the model’s assumptions, the OOD guardian prevents the policy from recommending treatments
in regions where the model itself may be unreliable, regardless of the predicted clinical outcomes.
We implement OGSRL as described in Algorithm 1, approximating the PSoS guardian classifier ĝ
using a kernel-based method (see Appendix G.3) to identify OOD state-action pairs efficiently. For
transition dynamics T̂ , we employed a k-nearest neighbor (k-NN) approach as an approximation
of KDE, which maintains theoretical consistency while offering practical advantages for clinical
time-series data, particularly its robustness to sparse regions in the state space [34, 51]. We use
CPO [1] as the constrained policy optimizer ConOpt, resulting in our full implementation referred
to as GMB-CPO, which is a model-based (MB) variant of CPO equipped with the OOD Guardian
(G). Additional details are provided in Appendix G.4. Note that GMB-CPO is a specific instantiation
of the proposed OGSRL framework. As discussed at the beginning of Section 3, other constrained
reinforcement learning algorithms can also be employed as ConOpt within our framework.

Baseline Algorithms and Evaluation Metrics. We evaluated OGSRL against seven baseline algo-
rithms spanning model-free and model-based offline RL approaches, and their guardian-enhanced
variants prefixed with G: (1) CQL; (2) CQL with Guardian (GCQL); (3) CQL variant (CCQL) pre-
sented in [33]; (4) CCQL with constraint satisfaction (GCCQL); (5) MB-TRPO [29]; (6) MB-TRPO
with Guardian (GMB-TRPO); (7) MB-CPO. The implementation details for guardian integration
with each algorithm are summarized in Appendix G.4. We assess OGSRL against baseline methods
across four critical dimensions that follow a logical progression essential for clinical deployment:
(1) OOD state avoidance: establishing whether guardian mechanism effectively constrains policies
to remain within the clinical data support; (2) clinical alignment: measuring how closely learned
policies match clinician decision-making patterns, a prerequisite for interpretability and trust; (3)
treatment effectiveness: quantifying improvements in patient outcomes compared to standard care; (4)
physiological safety: verifying that policies maintain vital parameters within safe ranges throughout
treatment trajectories. For quantitative evaluation, we employed four clinically relevant metrics:
Model Concordance Rate (MCR) measuring alignment with clinician decisions, Appropriate Intensifi-
cation Rate (AIR) assessing treatment escalation in response to physiological deterioration, Mortality

2Our source code is available at https://github.com/Runz96/SafeRL-OGSRL.
3MIMIC-III dataset: https://physionet.org/content/mimiciii/1.4/.
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Table 1: Performance comparison across methods showing Model Concordance Rate (MCR), Appro-
priate Intensification Rate (AIR), Mortality Estimate (ME), and Action Change Penalties (ACP) for
vasopressor dosage (MVD) and fluid administration (IFA) (mean ± Standard Deviation (SD)). Mean
and SD were computed from the results of five different seeds. The symbol ↑ indicates that higher
values are better, ↓ indicates that lower values are better, and↔ denotes that closer alignment with
the standard of care (SOC) is preferred. MCR should align with SOC within a reasonable range.

Method MCR(↑,10−3) AIR(↑, 10−2) ME(↓, 10−2) ACP: MVD(↔) ACP: IFA(↔, 102)

CQL 789± 5.64 13± 0.540 4.86± 0.540 4.18± 0.129 5.43± 0.083
GCQL 909± 2.52 30.5± 1.17 5.53± 0.214 3.13± 0.033 1.51± 0.034
CCQL 827± 3.12 3.93± 0.248 4.81± 0.339 3.74± 0.066 4.60± 0.027
GCCQL 827± 3.50 30.2± 0.930 5.17± 0.142 3.23± 0.110 2.73± 0.011
MB-TRPO 0.04± 0.055 2.45± 0.280 − 48.1± 0.121 1670± 1.78
GMB-TRPO 571± 3.37 36.9± 1.19 2.32± 0.491 1.24± 0.026 9.85± 0.063
MB-CPO 0.04± 0.055 49.6± 0.731 − 50.5± 0.121 492± 1.12
GMB-CPO 549± 2.56 44.8± 0.241 1.38± 0.482 4.34± 0.052 6.47± 0.018
SOC − − 6.32 4.34 6.48

Estimate (ME) projecting survival outcomes, and Action Change Penalty (ACP) quantifying treatment
smoothness over time. Detailed definitions and computational methodology for these metrics are
provided in Appendix G.6.

4.2 Sepsis Treatment: Results and Discussions

We present results on OOD state avoidance and summarize key insights regarding clinical efficacy,
defined here as the ability of learned policies to simultaneously achieve clinician alignment, treatment
effectiveness, and physiological safety. This organization allows us to focus on the core techni-
cal contribution while providing essential context on its downstream clinical implications, with
comprehensive quantitative analyses available in Appendix G.7.

(a) CQL (b) MB-TRPO (c) CCQL (d) MB-CPO

(e) GCQL (f) GMB-TRPO (g) GCCQL (h) GMB-CPO

Figure 1: Results on state distributions by learned policies via different algorithms. Blue points
represent the original offline dataset; orange points represent the states visited by the learned policies.

OOD State Avoidance. To visualize the high-dimensional state distributions, we apply t-SNE
dimensionality reduction to project the policy-generated states and the original clinical dataset onto a
2D manifold. Figure 1 compares the distributions across all evaluated algorithms. Policies learned
without the guardian (CQL, MB-TRPO, CCQL, MB-CPO) exhibit significant divergence from the
support of the offline dataset, with many states falling outside the distribution of the training data. In
contrast, guardian-augmented policies (GCQL, GMB-TRPO, GCCQL, GMB-CPO) maintain state
distributions tightly concentrated around the dataset support, visually validating our theoretical
guarantees on OOD state avoidance (Theorem 1 and Corollary 1). This visualization confirms the
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Figure 2: Comparison of cumulative reward distributions between the SOC (green) and policies by
different algorithms with guard mechanisms (blue). Each subplot shows the estimated reward density
for trajectories in the test set. Dashed vertical lines indicate the mean rewards. (a) CQL vs. GCQL;(b)
CCQL vs. GCCQL; (c) MB-TRPO vs. GMB-TRPO; (d) MB-CPO vs. GMB-CPO.

core premise of our approach. Despite effective mitigation of OOD actions by CQL and CCQL,
without explicit guardian mechanisms, their learned policies still induce OOD states during trajectory
rollouts. Integrating the proposed guardian restricts policies to operate within regions where model
predictions remain reliable, enhancing the generalization capability of existing approaches.

Clinical Efficacy. Table 1 presents quantitative performance metrics across all RL algorithms eval-
uated in our study. We observed that the incorporation of guardian mechanism led to significant
performance improvements, regardless of which underlying RL algorithm was implemented. Specifi-
cally, we observed marked improvements in clinician decision alignment (MCR increased from 0.789
to 0.909 in GCQL and from approximately zero to 0.549 in GMB-CPO), as did appropriate interven-
tion timing (AIR increased from 0.130 to 0.305 in GCQL). These improvements directly reflect the
guardian’s ability to constrain policies within clinically relevant state-action regions (Corollary 1).
When comparing model-free versus model-based approaches, we observed complementary strengths.
Model-free methods with guardians (GCQL, GCCQL) achieved superior clinician concordance, while
model-based guardian approaches (GMB-TRPO, GMB-CPO) demonstrated enhanced physiological
responsiveness and more concentrated reward distributions (Figure 2), indicating greater robust-
ness to patient variability. Notably, GMB-CPO achieved the lowest mortality estimate (0.0138),
representing a 78.2% reduction compared to the standard of care (0.0632), while simultaneously
improving cumulative rewards by 51% compared to SOC. The explicit incorporation of safety con-
straints on physiological states demonstrated effectiveness even without guardian integration. As
evidenced by Figure 3a, MB-CPO) reduced the number of unsafe states through explicit constraints
on SpO2 (≥ 92%) and urine output (≥ 0.5 mL/kg/hour), whereas MB-TRPO exhibits concerning
deterioration in both physiological states. These results illustrate how explicitly encoded clinical
constraints preserve physiological stability throughout treatment. Interestingly, GMB-TRPO, despite
lacking explicit clinical constraints, also decreased the number of unsafe states by using only the
guardian mechanism. The dual-safety mechanism in GMB-CPO, combining explicit physiological
with distribution-aware guardian safety constraints, achieved the greatest decrease in unsafe states for
urine output and the second-best decrease for SpO2. This dual-safety mechanism further enabled
GMB-CPO to maintain near-identical action smoothness to clinical practice (ACP of 4.34 versus
4.34 for standard care), as shown in Table 1. These improved outcomes demonstrate that GMB-CPO
improves policy performance through the OOD cost constraint, consistent with Theorem 3.

4.3 Cross-Disease Validation: Acute Hypotension

To evaluate whether OGSRL generalizes beyond sepsis management, we validate our framework
on the Synthetic Acute Hypotension Dataset [27]. This dataset represents a different critical care
condition with distinct physiological dynamics and clinical objectives, providing a meaningful test of
cross-disease applicability. The hypotension cohort contains 3,910 ICU stays with 187,680 hourly
state-action pairs over 48 hours. Unlike sepsis experiments using 4-hour intervals with 13-dimensional
states and SOFA-based rewards, hypotension operates on hourly intervals with 18-dimensional states
and piecewise linear MAP-based rewards. Safety constraints also differ: urine output and lactate
levels. We apply the same guardian mechanism and baseline algorithms with appropriately adjusted
hyperparameters. Complete experimental setup details are provided in Appendix H.

Results and Analysis Table 2 summarizes performance across key metrics. The guardian mechanism
demonstrates consistent benefits across both datasets. For model-free approaches, GCQL achieved
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(a) SpO2 (b) Urine Output

Figure 3: Physiological safety assessment of learned policies. We evaluate the safety of learned
policies by analyzing two critical physiological states: SpO2 and urine output. Our assessment
compares the percentage of states below defined safety thresholds against SOC. Positive values
represent a reduction in unsafe states compared to SOC, while negative values an increase.

near-perfect clinician alignment (MCR: 0.973± 0.002), representing an 18% improvement over CQL
(0.824± 0.004). The impact was even more pronounced for GMB-CPO increased concordance from
near-zero (0.060± 0.008) to clinically meaningful alignment (0.700± 0.063). In terms of clinical
safety, GMB-CPO achieved the highest AIR at 0.482± 0.071—a 17% improvement over MB-CPO
(0.411± 0.036) and substantially higher than both CQL (0.281± 0.031) and GCQL (0.301± 0.046).
Regarding cumulative rewards, GMB-CPO achieved the best performance (mean: 14.88, median:
16.14), outperforming MB-CPO (mean: 3.9, median: 5.38), GCQL (mean: 12.42, median: 12.69),
and standard of care (mean: 10.37, median: 11.21).

Table 2: Comparison on Acute Hypotension Dataset (mean ± SD).

Method MCR (↑) AIR (↑) Reward Mean (↑)

CQL 0.824± 0.004 0.281± 0.031 10.15± 1.23
GCQL 0.973± 0.002 0.301± 0.046 12.42± 0.98
MB-CPO 0.060± 0.008 0.411± 0.036 3.90± 2.14
GMB-CPO 0.700± 0.063 0.482± 0.071 14.88± 1.45
SOC – – 10.37± 1.87

Cross-Disease Con-
sistency These results
demonstrate three key
aspects of cross-disease
generalizability: (1)
Consistent guardian
benefits—Guardian aug-
mentation consistently
improves all methods
across both diseases, with model-based approaches benefiting most dramatically (concordance
improved from near-zero to 0.700 for GMB-CPO in both datasets). (2) Robust best per-
former—GMB-CPO achieves the best balance of clinician alignment, clinical safety, and treatment
effectiveness in both sepsis and hypotension. (3) Mechanism transferability—The dual-safety
mechanism (explicit physiological constraints + OOD guardian) proves robust to differences in
disease pathophysiology, temporal resolution (hourly vs. 4-hour intervals), state dimensionality (18
vs. 13 features), reward structure (continuous MAP-based vs. discrete SOFA-based), and safety
constraints (urine + lactate vs. SpO2 + urine). These cross-disease results establish OGSRL as a
generalizable framework for safe offline RL in critical care settings.

5 Conclusion

We introduced OGSRL, a model-based offline reinforcement learning framework designed for safe
and effective medical treatment optimization. By jointly enforcing OOD and safety cost constraints,
OGSRL ensures policy learning remains within clinically supported regions while allowing safe
performance improvement over observed clinician behavior. We established theoretical guarantees on
safety, near-optimality, and in-distribution containment. We validated OGSRL by evaluating one of its
instantiations, GMB-CPO, on real-world sepsis treatment data, showing substantial gains in reward,
safety, and clinical consistency, demonstrating the promise of OGSRL for reliable deployment in
safety-critical healthcare domains.
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A Assumption on the Probability Density

Note that the data points {(s+, s,a︸︷︷︸
x

)} inDb can be seen as samples extracted from S ×Uid according

to a joint probability density f(s,x) associated with the behavior policy, initial state distribution,
and the transition dynamics. Here, with an abusement of notation, we replace s+ by s for simplicity.
Let p(s|x) be the condition density from f(s,x). Let fX(x) be the marginal density. We have the
following assumption regarding the underlying real density.
Assumption 1. Suppose that both joint density f(s,x) and the marginal density fX(x) are Holder
continuous with the parameter ζ ∈ (0, 1]. Namely, there exists Cζ such that |fX(x) − fX(x′)| ≤
Cζ∥x− x′∥ζ and |f(s,x)− f(s′,x′)| ≤ Cζ∥(s,x)− (s′,x′)∥ζ hold. Besides, the marginal density
fX(x) satisfies

fX(x) ≥ fmin,∀x ∈ Uid. (2)
Both joint density and the marginal density satisfy exponential decays.

The lower bound of the marginal density given by (2) is a strong assumption in a general sense.
However, it is reasonable and practical in the problem setting of offline reinforcement learning with
partial coverage. In this setting, we should not consider the area with an extremely low probability of
having state-action pairs.

B About the Choice of γ

Lemma 1. For any risk level β > 0, there exist constants γ̄(β) ∈ (0, 1) and H̄(β) ∈ N such that,
for all γ ≥ γ̄(β) and H ≤ H̄(β), the OOD cost constraint

V π
ĝ,T̂ (ρ0) := Es0∼ρ0

[ ∞∑
h=0

γhĝ(sh,ah)

]
≤ β (3)

serves as a conservative approximation of the joint chance constraint:
Pr {ĝ(sh,ah) = 0, ∀h ≤ H} > 1− β. (4)

Proof. We begin by considering the joint chance constraint under the learned dynamics model T̂ :

Pr
{
ĝ(sh,ah) = 0, ∀h ≤ H | T̂

}
> 1− β. (5)

Using the definition of ĝ, this is equivalent to:

Pr
{
q(xh, θ) ≤ 0, ∀h ≤ H | T̂

}
≥ 1− β. (6)

Define the violation probability under π as:

VH,π

ĝ,T̂
(ρ0) := Pr

{
∃h ≤ H : q(xh, θ) > 0 | T̂

}
.

Then (6) is equivalent to VH,π

ĝ,T̂
(ρ0) ≤ β. Applying Boole’s inequality gives:

VH,π

ĝ,T̂
(ρ0) ≤

H∑
h=1

E
[
ĝ(sh,ah) | T̂

]
= E

[
H∑

h=1

ĝ(sh,ah) | T̂

]
=: ṼH,π

ĝ,T̂
(ρ0). (7)

Thus, ṼH,π

ĝ,T̂
(ρ0) ≤ β serves as a conservative approximation for the original joint chance constraint.

Next, consider the infinite-horizon discounted surrogate: V π
ĝ,T̂

(ρ0) :=

Es0∼ρ0

[∑∞
h=0 γ

hĝ(sh,ah) | T̂
]
. Let VH,π

ĝ,T̂ (ρ0) := E
[∑H

h=0 γ
hĝ(sh,ah) | T̂

]
. The error

between the infinite-horizon discounted cost and the cumulative cost can be expressed as:

ϵ̃π(γ,H) := V π
ĝ,T̂ (ρ0)− ṼH,π

ĝ,T̂
(ρ0) = V π

ĝ,T̂ (ρ0)− VH,π

ĝ,T̂ (ρ0) + VH,π

ĝ,T̂ (ρ0)− ṼH,π

ĝ,T̂
(ρ0)

= E

[ ∞∑
h=H+1

γhĝ(sh,ah)

]
︸ ︷︷ ︸

tail error

+E

[
H∑

h=0

(γh − 1)ĝ(sh,ah)

]
︸ ︷︷ ︸

discount bias

.
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This error term ϵ̃π(γ,H) is strictly increasing in γ, with:

ϵ̃π(0, H) < 0, ϵ̃π(1, H) > 0.

Therefore, for any fixed H and policy π, there exists γlim(π,H) such that γ > γlim(π,H) implies:

ṼH,π

ĝ,T̂
(ρ0) ≤ V π

ĝ,T̂ (ρ0).

If π is parameterized over a compact set, we can define γ̄(H,β) := supπ γlim(π,H) such that this
inequality holds for all feasible policies.

We now discuss approximation under the true model T . Let ṼH,π
ĝ,T (ρ0) denote the cumulative violation

cost under true dynamics. The gap between the learned-model discounted cost and the true cumulative
cost is:

ϵ̃πs (γ,H) := V π
ĝ,T̂ (ρ0)− ṼH,π

ĝ,T (ρ0)

≤ ṼH,π

ĝ,T̂
(ρ0)− ṼH,π

ĝ,T (ρ0)︸ ︷︷ ︸
ϵ̃πs,1

+V π
ĝ,T̂ (ρ0)− ṼH,π

ĝ,T̂
(ρ0)︸ ︷︷ ︸

ϵ̃πs,2

.

The second term ϵ̃πs,2 is already controlled as before. For the first term ϵ̃πs,1, which reflects model
mismatch, we note:

In practice, the approximation error ϵ̃πs (γ,H) may be controlled by selecting a modest value of
H (to limit propagation of model error) and choosing γ sufficiently close to 1 (to amplify the tail
contribution in ϵ̃πs,2). While this argument is heuristic, it aligns with common assumptions in model-
based reinforcement learning, where shorter planning horizons and conservative discounting reduce
the impact of model misspecification. Meanwhile, since the state-action pair is within the dataset
support, the model misspecification can be small. Under these conditions, it is reasonable to expect
ϵ̃πs (γ,H) ≥ 0, ensuring:

ṼH,π
ĝ,T (ρ0) ≤ V π

ĝ,T̂ (ρ0) ≤ β.

Thus, the discounted OOD cost constraint conservatively approximates the joint chance constraint
under the true model. If the policy class is compact, we can define constants γ̄(β) and H̄(β) such
that the approximation holds uniformly for all feasible policies.

C Proof of Theorem 1

A chance-constrained optimization problem can be formulated as

min
θ

L(θ) := log det P−1(θ) (Pα,d)

s.t. Pr {q(x, θ) ≤ 1} ≥ 1− α. (8)

The solution of Problem Pα,d is defined by θ⋆α. The corresponding polynomial sublevel set is Ûθ⋆
α,d.

We have the following lemma regarding Problem Pα,d.
Lemma 2. Assume that Uid is a compact set. If α = 0 and the degree d→∞, we have

Ûθ⋆
α,d → Uid. (9)

Proof. Define a distance function gs(x) associated with Uid in the following way:

gs(x) =

{
−dist(x, ∂Uid) + 1, if x ∈ Uid,
dist(x, ∂Uid) + 1, otherwise. (10)

Here, dist(x, ∂Uid) is defined by

dist(x, ∂Uid) := inf
y∈∂Uid

∥x− y∥2. (11)

Note that Uid can be specified by gs(x) ≤ 1 and gs(x) is continuous. By the Stone-Weierstrass
theorem, for any ε > 0, we can find a d such that the following holds:

sup
x∈Uc

|gs(x)− qds (x)| < ε. (12)
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Here, Uc is a compact set satisfying that Uid ⊂ Uc and qds (x) is a d−degree polynomial function.
Define three sets by

Ũε−

d :=
{
x : qds (x) ≤ 1− ε

}
, Ũd :=

{
x : qds (x) ≤ 1

}
, Ũε+

d :=
{
x : qds (x) ≤ 1 + ε

}
.

For any ε, let d be chosen as the value that makes (12) holds. Then, we have

Ũε−

d ⊂ Uid ⊂ Ũε+

d . (13)
Note that, as ε→ 0 and d is corresponding chosen to satisfy (12), we have

lim
ε→0
Ũε−

d = Ũ l
d, ∀ε > 0, Ũε−

d ⊂ Uid ⇒ Ũd ⊆ Uid

lim
ε→0
Ũε+

d = Ũ l
d, ∀ε > 0, Ũε+

d ⊃ Uid ⇒ Ũ l
d ⊇ Uid.

Thus, Ũ l
d = Uid.

Let {εk}∞k=1 be a sequence converging to zero and {dk}∞k=1 be a sequence chosen to satisfy

sup
x∈Uc

|gs(x)− qdk
s (x)| < εk, ∀k ∈ N+.

Define a problem for any given k by
min
θ

L(θ) := log det P−1(θ) (Pr,dk
)

s.t. q(x, θ) ≤ 1, ∀x ∈ Uid. (14)

Note that Problem Pr,dk
is equivalent to Problem Pα,d with α = 0 and d = dk. For all k, let Θf

k be
the feasible set of Problem Pr,dk

. Construct a set of polynomial sublevel sets by

Uf
k :=

{
Ûθ,dk

: θ ∈ Θf
k

}
.

By the definition of Ũε+k
dk

, we have Ũε+k
dk
∈ Uf

k for every k ∈ N+ since every x ∈ Uid also satisfies

x ∈ Ũε+k
dk

. As k →∞, Ũε+k
dk

converges to Ũ l
d∞

= Uid and thus Uid ∈ Uf
∞.

Let θ̂d∞ be one optimal solution of Problem Pr,dk
with k = ∞. Then, we continue to prove

Uid = Ûθ̂d∞ ,d∞
. First, we know that Uid ⊆ Ûθ̂d∞ ,d∞

due to the constraint q(x, θ̂d∞) ≤ 1, ∀x ∈ Uid.
Note that we have already proved that Uid ∈ Uf

k and let θs be the parameter corresponding to the
polynomial sublevel set that is identical with Uid. Since Uid ⊆ Ûθ̂d∞ ,d∞

, we have L(θs) ≤ L(θ̂d∞)

due to the the monotonicity of log-det inverse for positive semidefinite matrices [5]. Besides, Problem
Pr,dk

is a convex optimization with a strictly convex objective function and thus the problem attains
an unique solution. Namely, θs is identical with θ̂dinfty

, which implies that Uid = Ûθ̂d∞ ,d∞
. Since

Ûθ̂d∞ ,d∞
is identical with Ûθ⋆

0 ,d∞ , (9) holds as d→∞.

Theorem 4. The set Uid need not to be compact. For any α > 0, there exists a degree d such that

Ûθ⋆
α,d ⊆ Uid. (15)

Proof. By Assumption 1, we know that the probability density defined on Uid is positive and continu-
ous on Uid.

Assume that θ⋆α,d∞
is the solution of Problem Pα,d with d = d∞. The corresponding polynomial

sublevel set is Ûθ⋆
α,d∞

,d∞ . Note that Ûθ⋆
α,d∞

,d∞ is compact. Define the following sets:

Ucom := Ûθ⋆
α,d∞

,d∞

⋂
Uid, Um := Uid \ Ûθ⋆

α,d∞
,d∞ .

Assume that the volume of Um is not zero. Note that Ucom is compact. Replacing Uid in Problem
Pr,dk

by Ucom, we have Ucom = Ûθ̂d∞ ,d∞
by Lemma 2. Moreover, θ⋆α,d∞

is a feasible solution to

Problem Pr,dk
by Ucom and thus L(θ⋆α,d∞

) > L(θ̂d∞) holds due to the uniqueness of the optimal
solution to Problem Pr,dk

by Ucom. Note that θ̂d∞ is also a feasible solution of Problem Pα,d with
d = d∞ due to Pr{x ∈ Ucom} = 1− α. Therefore, by L(θ⋆α,d∞

) > L(θ̂d∞), it contradicts with that
θ⋆α,d∞

is an optimal solution. Thus, the volume of Um is zero and (15) holds.
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Theorem 4 only relies on a positive value of α to ensure the subset relationship Ûθ⋆
α,d ⊆ Uid.

Assumption 2. The parameters α and d are appropriately tuned such that Theorem 4 holds.

Theorem 5. Suppose that Assumption 2 holds. Let αc > α. Then, the probability that Ûθ̂N
αc

,d is a
subset of Uid can be bounded as:

Pr
(
Ûθ̂N

αc
,d ̸⊂ Uid

)
≤ exp

(
−2N2(αc − α)

)
. (16)

As N →∞, the bound converges to 0.

Proof. It is reasonable to assume that we seek the optimal solution of Problem Pα,d within a
compact set Θ, which includes a solution that satisfies (12) for some ε with a correspondingly
chosen d. Besides, we also assume that q(x(i), θ) is well-justified as q(x(i), θ) = q(x(i), θ) − ε.
Let Yi = I1

(
q(x(i), θ)

)
for i = 1, ..., N , then Pr{Yi ∈ [0, 1]} = 1 and E{Yi} = Pr {q(x, θ) > 1} .

Given that θ is a feasible solution for Problem Pα,d and Pr {q(x, θ) > 1} ≤ α. We consider the event
that a feasible solution θ (E [Yi] ≤ α) for Problem Pα,d is not feasible for Problem GCL, implying

1

N

N∑
i=1

I1(q
(
x(i), θ)

)
≥ αc ⇒

1

N

N∑
i=1

(Yi − E [Yi]) ≥ αc −
1

N
E [Yi]

⇒ 1

N

N∑
i=1

(Yi − E [Yi]) ≥ αc −
1

N
α ⇒

N∑
i=1

(Yi − E[Yi]) ≥ N(αc − α).

Thus, we have

Pr

{
1

N

N∑
i=1

I1(q
(
x(i), θ)

)
≥ αc

}
≤ Pr


N∑
j=1

(Yj − E [Yj ]) ≥ N(αc − α)

 ≤ exp{−2N(αc − α)2},

where the last inequality holds due to Hoeffding’s inequality [12]. Note that θ⋆α,d is also a feasible
solution of Problem Pα,d, which is one realization of those mentioned above θ. If θ⋆α,d is a feasible
solution of Problem GCL, we have that L(θ⋆α,d) ≥ L(θ̂Nαc

). Then, Ûθ̂N
αc

,d ⊆ Ûθ⋆
α,d

. By Theorem 4, we

have Ûθ̂N
αc

,d ⊂ Uid. Thus, the probability of violation is bounded by exp{−2N(αc − α)2}.

D Proof of Corollary 1

From Theorem 4, we know that the inclusion Ûθ̂N
αc

,d ⊂ Uid holds with probability at least 1− δ if the

sample size satisfies N >
√

log(1/δ)
2(αc−α) . In addition, recall that the discount factor γ and the OOD cost

threshold c̄ĝ are chosen such that the following joint chance constraint holds (Lemma 1):

Pr {ĝ(sh,ah) ≤ 0, ∀h ≤ H} > 1− β. (17)

Note that the event
{
Ûθ̂N

αc
,d ⊂ Uid

}
together with {ĝ(sh,ah) ≤ 0,∀h ≤ H} forms a sufficient con-

dition to ensure that the agent remains within the support Uid for all steps h ≤ H .

Therefore, applying Boole’s inequality yields:

Pr
{[
Ûθ̂N

αc
,d ̸⊂ Uid

]
∨ [∃h ≤ H, ĝ(sh,ah) > 0]

}
≤ δ + β. (18)

Hence, the corollary is established: with probability at least 1− δ − β, all state-action pairs along the
trajectory remain within the support Uid for the first H steps. This concludes the proof of Corollary 1.

E Safety and Sub-Optimality with Finite Samples Considering ⋄’s Estimation
Error

Value Function Error. We first analyze the error bound of the estimated value function associated
with a function ⋄ (e.g., reward r or safety cost cj). Following Wachi et al. [49], we estimate ⋄̂ using
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GPR and estimate T̂ using KDE [16]. While our theoretical analysis is grounded in these choices, our
results also apply to other estimation methods, provided they ensure asymptotic consistency. Let h be
the bandwidth of the KDE, and assume that the joint density of (s+, s,a) and the marginal density
of (s,a) are Hölder continuous with exponent ζ ∈ (0, 1]. Let σN (x) denote the posterior standard
deviation of the GP estimate ⋄̂(x), and define η

1/2
N := ⋄max + 4ω

√
νN + 1 + log(1/δ) where ω is

a kernel scaling constant and νN is the GP information capacity. Define the maximum standard
deviation at training points as: σmax

N := maxx∈UN
σN (x), UN :=

{
x(i)
}N
i=1

.

Theorem 6. Let π be any feasible solution of Problem GSRL. Assume the standard KDE conditions
Nhn+m →∞ and h→ 0 as N →∞. Then, with probability at least 1− 2β − 4δ, the following
holds:

∣∣∣V π
⋄̂,T̂

(ρ0)− V π
⋄,T (ρ0)

∣∣∣ ≤ εg + εk + εH , where:

εg :=
ηNσmax

N

1− γ
, εH :=

γH+1(2− γ)⋄max

(1− γ)2
, εk :=

⋄max(γ − γH+2)Cden

(1− γ)2

(
hζ +

√
log(1/δ)

Nh2n+m

)
.

Here, Cden is a positive constant depending on the smoothness of the densities, the choice of kernel,
and the dimensionality 2n+m.

The proof of Theorem 6 is provided in Appendix F. By selecting a sufficiently large dataset size N
and a conservative OOD threshold c̄ĝ, we can ensure small β in the chance constraint (4), and thus
make εH negligible. Method of choosing c̄ĝ for a desired H follows [50].

Safety and Sub-optimality. We now define conditions under which the policy output by ConOpt
is safe and near-optimal with respect to the true model. We say a policy πout is εs-safe if:
maxj

∣∣∣c̄j − V πout

ĉj ,T̂
(ρ0)

∣∣∣ ≥ εs. Let π̂∗ be the optimal solution to Problem GSRL with safety threshold

c̄j . If πout is computed using a tightened threshold c̄j − ε̄, and satisfies: V π̂∗

r̂,T̂
(ρ0)− V πout

r̂,T̂
(ρ0) ≤ εr,

we obtain the following guarantee for the true system:

Theorem 7. If ε̄ ≥ εs+εg+εk+εH , and πout is εr-sub-optimal for Problem GSRL, then πout is safe
and (εr + 2εg + 2εk + 2εH)-sub-optimal for Problem ESRL, with probability at least 1− 2β − 4δ.

F Proof of Theorem 6

The proof follows these main steps:

1. Bounding Errors for Supported Policies: We assume uniform upper bounds on the errors
of conditional density estimation and reward or cost functions. Based on this, we establish
the error bound for policy evaluation, limited to policies that do not visit state-action pairs
outside the support of the behavior policy.

2. Relating Sample Size and Estimation Errors: We analyze how the sample size influences
the errors in both conditional density estimation and function approximation, showing the
dependency between the two.

3. Deriving the Probabilistic Bound: Combining the results from steps (1), (2) and Theorem
1, we deduce a probabilistic error bound for policy evaluation, demonstrating how the
evaluation accuracy improves with larger datasets.

First, we give the revised telescoping Lemma by introducing the estimation error of ⋄̂.
Lemma 3. Define a function Gπ

T̂
(s,a) by

Gπ
T̂ (s,a) := E

s+∼T̂ (s,a)

[
V π
⋄,T (s

+)
]
− E

s+∼T (s,a)

[
V π
⋄,T (s

+)
]
. (19)

Then, we have

V π
⋄̂,T̂ (ρ0)−V

π
⋄,T (ρ0) =

∞∑
j=0

γj E
sj ,aj∼π,T̂

[⋄̂(sj ,aj)− ⋄(sj ,aj)]+
∞∑
j=0

γj+1 E
sj ,aj∼π,T̂

[
Gπ

T̂ (sj ,aj)
]
.

(20)
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Proof. Following the pattern of the proof of Lemma 4.1 in [55], define Wj as the expected return
when executing π on M̂ĝ for the j steps, then switching toM for the remainder, written by

Wj = E
ah∈π(sh), s0∼ρ0

h<j:sh+1∼T̂ (sh,ah), ⋄̃=⋄̂
h≥j:sh+1∼T (sh,ah), ⋄̃=⋄

[ ∞∑
h=0

γh⋄̃(sh,ah)

]
.

Write

Wj = D̂j−1 + E
sj ,aj∼π,T̂

[
γj ⋄ (sj ,aj) + E

sj+1∼T (sj ,aj)

[
γj+1V π

⋄,T (sj+1)
]]

Wj+1 = D̂j−1 + E
sj ,aj∼π,T̂

[
γj ⋄̂(sj ,aj) + E

sj+1∼T̂ (sj ,aj)

[
γj+1V π

⋄,T (sj+1)
]]

.

Here, D̂j−1 is the expected return of the first j − 1 time steps, which are taken with respect to T̂ and
⋄̂. Then, we have

Wj+1 −Wj = γj E
sj ,aj∼π,T̂

[⋄̂(s,a)− ⋄(s,a)] + γj+1 E
sj ,aj∼π,T̂

[
Gπ

T̂ (sj ,aj)
]
.

Note that W0 = V π
⋄,T and W∞ = V π

⋄̂,T̂
(ρ0), and we have

V π
⋄̂,T̂ (ρ0)− V π

⋄,T (ρ0) =

∞∑
j=0

(Wj+1 −Wj)

=

∞∑
j=0

γj E
sj ,aj∼π,T̂

[⋄̂(s,a)− ⋄(s,a)] +
∞∑
j=0

γj+1 E
sj ,aj∼π,T̂

[
Gπ

T̂ (sj ,aj)
]
,

which completes the proof.

One practical strategy is to use the kernel density estimation to give the estimations of f(s,x) and
fX(x) and then obtain the estimation of p(s|x). The estimation p̂(s|x) is defined by

p̂(s|x) = f̂(s,x)

f̂x(x)
, (21)

where f̂(s,x) and f̂x(x) denote the estimated joint density and marginal density, respectively. Kernel
density estimation can be used for f̂(s,x) and f̂x(x), denoting by

f̂(s,x) =
1

N · h2n+m

N∑
i=1

K

(
s− s(i)

h

)
K

(
x− x(i)

h

)
, (22)

f̂X(x) =
1

N · hn+m

N∑
i=1

K

(
x− x(i)

h

)
. (23)

We have the following lemma for the estimation error of the conditional density estimation.
Lemma 4. Suppose that Assumption 1 holds. The kernel function K(u) satisfies:∫

K(u)du = 1, sup
u
|K(u)| <∞,

∫
u2K(u)du <∞. (24)

The bandwidth satisfies the standard kernel density estimation condition such that Nhn+m → ∞
and h→ 0 hold as N →∞. Then, let εp(s,x) := |p̂(s|x)− p(s|x)| with probability at least 1− δ,
we have

εp(s,x) ≤
(
Cj + p̂(s|x) · Cm

fmin

)
·

(
hζ +

√
log 1/δ

Nh2n+m

)
. (25)

Here, Cj is a positive constant which depends on the kernel, joint density smoothness, and dimen-
sionality 2n+m. Besides, Cm is a positive constant which depends on the kernel, marginal density
smoothness, and dimensionality n+m.
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Proof. Compute the absolute error by

p̂(s|x)− p(s|x) =

∣∣∣∣∣ f̂(s,x)f̂x(x)
− f(s,x)

fx(x)

∣∣∣∣∣ =
∣∣∣∣∣ f̂(s,x)f̂X(x)

· fX(x)− f̂X(x)

fX(x)
− f(s,x)− f̂(s,x)

fX(x)

∣∣∣∣∣
≤

∣∣∣f̂(s,x)− f(s,x)
∣∣∣

fX(x)
+ p̂(s|x) ·

∣∣∣f̂X(x)− fX(x)
∣∣∣

fX(x)

Then, we have

εp(s,x) ≤

∣∣∣f̂(s,x)− f(s,x)
∣∣∣

fX(x)︸ ︷︷ ︸
εp,1(s,x)

+ p̂(s|x) ·

∣∣∣fX(x)− f̂X(x)
∣∣∣

fX(x)︸ ︷︷ ︸
εp,2(s,x)

.

Then, According to the sup-norm bound for kernel density estimation given by Theorem 2 in [16],
with probability at least 1− δ, we have

εp,1(s,x) ≤
1

fmin
· Cj ·

(
hζ +

√
log 1/δ

Nh2n+m

)
. (26)

εp,2(s,x) ≤ p̂(s|x) · Cm

fmin
·

(
hζ +

√
log 1/δ

Nh2n+m

)
. (27)

By (26) and (27), we obtain (25).

Based on the above discussions, we give the proof of Theorem 6 as follows.

Proof. (Theorem 6) We first discuss π, which ensures that (s,a) ∼ ρπT stays in Uid with probability
1. Using x for (s,a), rewrite (20) into the following case:

∣∣∣V π
⋄̂,T̂ (ρ0)− V π

⋄,T (ρ0)
∣∣∣ ≤

∣∣∣∣∣∣
∞∑
j=0

γj E
xj∼π,T̂

[⋄̂(xj)− ⋄(xj)]

∣∣∣∣∣∣︸ ︷︷ ︸
ε⋄̂

+

∣∣∣∣∣∣
∞∑
j=0

γj+1 E
xj∼π,T̂

[
Gπ

T̂ (xj)
]∣∣∣∣∣∣︸ ︷︷ ︸

εT̂

. (28)

We first discuss ε⋄̂’s bound based on the GPR-based estimation ⋄̂. We have

ε⋄̂ =

∣∣∣∣∣∣
∞∑
j=0

γj E
xj∼π,T̂

[⋄̂(xj)− ⋄(xj)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
H∑
j=0

γj E
xj∼π,T̂

[⋄̂(xj)− ⋄(xj)]

∣∣∣∣∣∣︸ ︷︷ ︸
In distribution w.p.(1−β−δ)

+

∣∣∣∣∣∣
∞∑

j=H+1

γj E
xj∼π,T̂

[⋄̂(xj)− ⋄(xj)]

∣∣∣∣∣∣︸ ︷︷ ︸
Out of distribution

≤

∣∣∣∣∣∣
H∑
j=0

γj E
xj∼π,T̂

[⋄̂(xj)− ⋄(xj)]

∣∣∣∣∣∣+
∞∑

j=H+1

γj⋄max

≤
H∑
j=0

γj E
xj∼π,T̂

[|⋄̂(xj)− ⋄(xj)|] +
⋄max · γH+1

1− γ
.

We use the Gaussian process regression to approximate the scalar function ⋄(x). By Theorem 6.1
of [49], we further have ε⋄̂ ≤

∑H
j=0 γ

j E
xj∼π,T̂

[ηN · σN (xj)] +
⋄max·γH+1

1−γ w.p.1 − β − 2δ. Here,

σN (xj) is the posterior standard deviation at point xj and η
1/2
N := ⋄max + 4ω

√
νN + 1 + log(1/δ)

with ω as a scaling factor accounting for kernel parameters, νN is the information capacity associated
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with kernel. Since we consider the in-distribution posterior standard deviation σN (x), it is reasonable
to assume that σN (x) is bounded in Us, σN (x) ≤ σmax

N . Note that σmax
N can be approximately chosen

as σmax
N ≈ maxx∈UN

σN (x). Thus, we have

ε⋄̂ ≤
ηN · σmax

N

1− γ
+
⋄max · γH+1

1− γ
w.p.1− β − 2δ. (29)

We then discuss the bound of εT̂ . We have

εT̂ =

∣∣∣∣∣∣
∞∑
j=0

γj+1 E
xj∼π,T̂

[
Gπ

T̂ (xj)
]∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
H∑
j=0

γj+1 E
xj∼π,T̂

[
Gπ

T̂ (xj)
]∣∣∣∣∣∣︸ ︷︷ ︸

In distribution w.p.(1−β−δ)

+

∣∣∣∣∣∣
∞∑

j=H+1

γj+1 E
xj∼π,T̂

[
Gπ

T̂ (xj)
]∣∣∣∣∣∣︸ ︷︷ ︸

Out of distribution

≤

∣∣∣∣∣∣
H∑
j=0

γj+1 E
xj∼π,T̂

[
Gπ

T̂ (xj)
]∣∣∣∣∣∣+

∞∑
j=H+1

γj+1 · ⋄max

1− γ

=

∣∣∣∣∣∣
H∑
j=0

γj+1 E
xj∼π,T̂

[
Gπ

T̂ (xj)
]∣∣∣∣∣∣+ γH+1 · ⋄max

(1− γ)2

=

∣∣∣∣∣∣
H∑
j=0

γj+1 E
xj∼π,T̂

[
E

s∼T̂ (xj)

[
V π
⋄,T (s)

]
− E

s∼T (xj)

[
V π
⋄,T (s)

]]∣∣∣∣∣∣+ γH+1 · ⋄max

(1− γ)2

=

∣∣∣∣∣∣
H∑
j=0

γj+1 E
xj∼π,T̂

[∫
S
V π
⋄,T (s)p̂(s|xj)ds−

∫
S
V π
⋄,T (s)p(s|xj)ds

]∣∣∣∣∣∣+ γH+1 · ⋄max

(1− γ)2

=

∣∣∣∣∣∣
H∑
j=0

γj+1 E
xj∼π,T̂

[∫
S
V π
⋄,T (s)× (p̂(s|xj)− p(s|xj)) ds

]∣∣∣∣∣∣+ γH+1 · ⋄max

(1− γ)2

≤
H∑
j=0

γj+1 E
xj∼π,T̂

[∫
S

∣∣V π
⋄,T (s)

∣∣× (p̂(s|xj)− p(s|xj)) ds

]
+

γH+1 · ⋄max

(1− γ)2

≤ ⋄max

1− γ
·

H∑
j=0

γj+1 E
xj∼π,T̂

[∫
S
εp(s,xj)ds

]
+

γH+1 · ⋄max

(1− γ)2

(Use Lemma 4 to proceed to the next)

≤ ⋄max

1− γ
·

H∑
j=0

γj+1 E
xj∼π,T̂

[∫
S

(
Cj + p̂(s|xj) · Cm

fmin

)
·

(
hζ +

√
log 1/δ

Nh2n+m

)
ds

]
+

γH+1 · ⋄max

(1− γ)2
w.p. 1− β − 2δ

≤ ⋄max

1− γ
· γ(1− γH+1)

1− γ
·
(
Cj + Cm

fmin

)
·

(
hζ +

√
log 1/δ

Nh2n+m

)
+

γH+1 · ⋄max

(1− γ)2
w.p. 1− β − 2δ

=
⋄max · (γ − γH+2)

(1− γ)2
·
(
Cj + Cm

fmin

)
·

(
hζ +

√
log 1/δ

Nh2n+m

)
+

γH+1 · ⋄max

(1− γ)2
w.p. 1− β − 2δ.

(30)
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Combine (29) and (30), we have that, with probability 1− 2β − 4δ, the following holds

V π
⋄̂,T̂ (ρ0)− V π

⋄,T (ρ0) ≤
ηN · σmax

N

1− γ
+
⋄max · (γ − γH+2)

(1− γ)2
· Cden ·

(
hζ +

√
log 1/δ

Nh2n+m

)
+

γH+1 · (2− γ) · ⋄max

(1− γ)2
, (31)

where Cden := (Cj + Cm)/fmin.

G Sepsis Treatment Experimental Details

G.1 Dataset Description

The MIMIC-III (Medical Information Mart for Intensive Care) database serves as a comprehensive
repository containing detailed clinical records from over 40,000 intensive care admissions [18]. This
extensive dataset our methods maintain clinical relevance and algorithmic robustness across diverse
patient populations and treatment scenarios. Its widespread adoption in healthcare machine learning
research, combined with its real-world clinical variability and detailed documentation, establishes
MIMIC-III as an appropriate benchmark for treatment policy evaluation. We implemented a five-fold
cross-validation approach, randomly dividing the data into training (60%), validation (20%), and test
(20%) partitions for each seed.

G.2 Sepsis Treatment Formulation for RL

The MIMIC-III Sepsis dataset provides 44 variables, comprising both dynamic physiological mea-
surements and static patient attributes, which form the foundation for our state space construction.
Following the protocols as mentioned in Section 4.1, we obtained a cohort of septic patients by iden-
tifying those who developed sepsis at some point during their ICU stay and including all observations
from 24 hours before until 48 hours after the presumed onset of sepsis. The protocols organized data
into 4-hour windows, creating a sequence of 20 time windows in total. Table 3 below summarizes the
selected features, treatment actions, and reward signal used in our study.

Table 3: Summary of Feature Space, Actions, and Reward
Category Variables Description
Dynamic Features Mechanical ventilation, GCS,

FiO2, PaO2, PaO2/FiO2, Total
bilirubin, Urine output (4h), Cu-
mulative urine output, Cumulative
fluid input, SpO2

Time-varying physiological indica-
tors with moderate or strong corre-
lation to SOFA, capturing real-time
sepsis severity.

Static Features Age, Gender, Readmission status Fixed patient characteristics offering
essential context for modeling het-
erogeneity and enabling personalized
treatment.

Actions Intravenous fluids (per 4h), Max
vasopressor dose (per 4h)

Core interventions for sepsis manage-
ment aimed at stabilizing blood pres-
sure and perfusion.

Reward SOFA score Quantifies the extent of organ dys-
function and guides the policy toward
clinically meaningful improvement.

Reward Function. The Sequential Organ Failure Assessment (SOFA) score was selected as the
reward function for its clinical advantages over mortality as a terminal reward. SOFA provides instan-
taneous assessment of organ dysfunction across six physiological systems: respiratory, coagulation,
hepatic, cardiovascular, central nervous system, and renal. SOFA scores range from 0-24, with each
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subsystem contributing 0-4 points. This granularity supports more nuanced policy optimization
compared to binary mortality outcomes.

State Space. For treatment optimization, we selected state variables through a clinically grounded
and data-driven approach. Our model incorporates two treatment actions: intravenous fluid volume
administered every 4 hours and maximum vasopressor dosage within the same interval. These
interventions were chosen for their prevalence in early sepsis management protocols, where they
restore blood pressure and tissue perfusion [33]. The state representation was designed to include
features highly correlated with SOFA, capturing critical aspects of patient health relevant to clinical
outcomes.

Dynamic Feature Selection. We prioritized dynamic variables that change during treatment by calcu-
lating Pearson correlation coefficients between each variable and the SOFA score. Both synchronous
(lag = 0) and asynchronous correlations (lags of 1, 2, and 3 time steps) were examined to account for
delayed physiological responses. Features with absolute correlation exceeding 0.2 in at least one lag
setting were retained. This threshold balances inclusivity and relevance—stringent enough to exclude
weak associations while preserving moderately meaningful relationships to patient severity.

Inclusion of Static Features. To model patient heterogeneity and personalize treatment decisions,
we incorporated static patient attributes that remain constant during ICU stays. Although limited to
age, gender, and readmission status in this dataset, these features provide essential clinical context:
age represents a known risk factor for sepsis severity, gender may influence physiological responses,
and readmission could indicate chronic conditions or recent complications. Their inclusion enables
policy generalization across diverse patient populations.

Final State Space. The final state representation comprises 13 features (10 dynamic and 3 static),
creating a compact yet expressive state space that captures key clinical indicators while maintaining
computational efficiency. Both state and action spaces are continuous, supporting fine-grained policy
learning and clinical interpretability while remaining feasible for real-world implementation.

Explicit Clinical Safety Constraints. We justify that our safety oxygen saturation (SpO2) maintained
at or above 92% prevents hypoxemia and ensures adequate tissue oxygenation. Urine output of at
least 0.5 mL/kg/hour preserves sufficient renal perfusion and detects early signs of kidney injury.
We selected these constraints to monitor distinct yet vulnerable organ systems in sepsis while
providing continuous measurement capability in ICU settings, ensuring both clinical interpretability
and practical implementation.

G.3 Guardian Construction

Solving Problem GCL becomes computationally complex when the dataset is large (e.g., exceeding
fifty thousand state-action pairs). To enable scalable implementation, we propose a kernel density-
based approximation for the guardian set. Let f̃pa(x,XN ) be a kernel density estimate built from
the dataset XN of state-action pairs. For any given density threshold fths, define the corresponding
empirical outlier probability by pout(fths) := Nout(fths)/N, where Nout(fths) is the number of
samples in XN whose estimated density is below fths. To find a threshold corresponding to a
given confidence level α, we perform binary search over fths: - Initialize fmin

ths and fmax
ths such that

pout(f
min
ths ) < α < pout(f

max
ths ). - Iteratively update the midpoint fmid

ths := (fmin
ths + fmax

ths )/2 and
evaluate pout(f

mid
ths ). - If pout(fmid

ths ) > α, update fmax
ths := fmid

ths ; otherwise, set fmin
ths := fmid

ths . After a
fixed number of iterations, the binary search converges to a threshold fα

ths such that pout(fα
ths) ≈ α.

We then define the approximate guardian: a state-action pair x is considered inside the guardian if
f̃pa(x,XN ) > fα

ths, and outside otherwise.

G.4 Policy Learning Algorithms

We explain how the guardian is applied in GCQL. CQL trains the Q-function using an offline
dataset {(s,a, r, s+)}. During the Bellman backup step in CQL, the target is computed as y =
r + γ Ea+∼π(·|s+) [Qtarget(s

+,a+)] , where the expectation is approximated by sampling. Note that
although s+ lies within the dataset, the sampled action a+ may result in a state-action pair (s+,a+)
that falls outside the guardian set. In GCQL, if (s+,a+) is not within the guardian, we replace
Qtarget(s

+,a+) with a large negative penalty value. For MB-TRPO, GMB-TRPO, MB-CPO, and
GMB-CPO, we use the training data to fit a k-nearest neighbor (k-NN) model of the transition
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dynamics. These online algorithms are then trained by interacting with the environment simulated
using the k-NN-based transition model. The reward (i.e., the SOFA score) and the cost (i.e., SpO2)
are computed directly from the estimated state using predefined rules, without requiring additional
model estimation. In GMB-TRPO, the guardian is incorporated by modifying the reward function: if
a state-action pair falls outside the guardian set, the reward is penalized by assigning a large negative
value.

G.5 Transition Dynamics Model

To comprehensively evaluate our learned policies while maintaining safety, we employ k-NN model
to estimate transition dynamics. The k-NN model learns transition dynamics from historical patient
trajectories, capturing the complex relationships between medical states, treatment actions, and
subsequent patient outcomes. In our experiment design, we maintain two separate k-NN models:

k-NN-train. Trained on the 60% training partition, used during policy learning in model-based
algorithms (GMB-TRPO and GMB-CPO). As the agent learns, it takes actions in this simulated
environment, with the k-NN model providing plausible next states based on historical patterns from
the training data. This creates a realistic training environment that remains anchored to observed
clinical behavior, preventing the policy from exploring dangerously unfamiliar territories.

k-NN-eval. Trained on the full dataset (training + validation + test), used exclusively for policy
evaluation. This approach plays a crucial role in enabling safe off-policy evaluation by simulating
patient trajectories without actual patient interaction. When evaluating a learned policy, we start
with real patient states from our test set and let the policy choose treatments. The k-NN model then
predicts the most likely next state by finding similar historical cases in the dataset. This process
continues, creating synthetic patient trajectories that mirror realistic clinical progressions while
keeping actual patients safe from experimental policies. The k-NN-eval model, having access to a
broader range of state transitions, provides a more demanding test of the guardian’s ability to prevent
OOD exploration.

This dual-model approach ensures methodological rigor: policy learning uses only training data
(k-NN-train), while evaluation leverages the full dataset (k-NN-eval) to comprehensively assess
generalization. This configuration is consistent across both sepsis and hypotension experiments.

G.6 Evaluation Metrics

Model Concordance Rate (MCR). The Model Concordance Rate measures the proportion of
instances where the model’s recommended action matches the clinician’s action in the offline dataset.
Formally, the MCR is defined as:

MCR =

∑
i,t I {πSoC(si,t) = πRL(si,t)}∑

i Ti
,

where πSoC(si,t) and πRL(si,t) denote the actions taken by the standard-of-care (SoC) and the learned
policy at state si,t, respectively, and Ti is the number of timesteps for patient i. For continuous
action spaces, a match is determined if the Euclidean distance between the two actions is less than a
pre-specified threshold ϵ, that is,

∥πSoC(si,t)− πRL(si,t)∥2 < ϵ.

Appropriate Intensification Rate (AIR). The Appropriate Intensification Rate evaluates whether
the model appropriately escalates treatment in response to physiological deterioration. We define
the Urine Output Rate (UOR) as the volume of urine output normalized by patient weight per hour
(mL/kg/hr). A need for intensification arises when either the oxygen saturation (SpO2) or the UOR
falls below a clinically significant threshold. Formally, AIR is defined as:

AIR =

∑
i,t I

{(
SpO2(i, t) < τSpO2

∨ UOR(i, t) < τUOR
)
∧ Intensified(i, t)

}∑
i,t I

{
SpO2(i, t) < τSpO2

∨ UOR(i, t) < τUOR
} ,

where τSpO2
is set to 92%, τUOR is set to 0.5 mL/kg/hr, and Intensified(i, t) is an indicator function

equal to 1 if the model recommends an increased treatment intensity at time t.
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Mortality Estimate (ME). The Mortality Estimate measures the likelihood of patient death under the
model’s policy by simulating patient trajectories using a learned transition model. Starting from an
initial state, actions are selected according to the policy, and next states are predicted by the transition
model. The simulation continues until either the maximum trajectory length is reached or a terminal
"dead" state is encountered. The ME is defined as:

ME =
1

N

N∑
i=1

I {Diet(i)} ,

where N is the number of simulated trajectories, and Diet(i) equals 1 if patient i equals 1 if patient
enters a dead state before reaching the end of the simulation horizon.

Action Change Penalty (ACP). The Action Change Penalty quantifies the abruptness of the model’s
recommended actions across consecutive time steps within a trajectory. Formally, ACP is defined as:

ACP =

∑
i

∑Ti−1
t=1 ∥ai,t+1 − ai,t∥2∑

i(Ti − 1)
,

where ai,t denotes the action taken at time t for patient i, and ∥ · ∥2 denotes the Euclidean norm.
Lower ACP values indicate smoother and more consistent treatment recommendations over time.

G.7 Detailed Validation Results and Discussions

G.7.1 Physiological State Distribution Analysis

This comprehensive analysis examines the temporal evolution of physiological states across 20-step
treatment trajectories, extending beyond the safety constraints demonstrated in Figure 3 (SpO2 and
urine output) to encompass the broader spectrum of clinical variables. Through systematic evalua-
tion, we reveal how different reinforcement learning implementations influence patient physiology
throughout the treatment continuum.

G.7.2 Temporal Evolution of Clinical Variables

MB-TRPO demonstrates progressive divergence from standard care protocols, manifesting physio-
logical deterioration across multiple organ systems illustrated in Figure 4. Mechanical ventilation
patterns exhibit marked volatility, while Glasgow Coma Scale trajectories deviate substantially from
clinical norms. The PaO2/FiO2 ratio reveals concerning instability that intensifies temporally, sug-
gesting compromised respiratory efficiency. This systemic divergence indicates that unrestricted
exploration permits physiologically implausible treatment strategies, compounding adverse effects
across interconnected organ systems.

MB-CPO, despite explicit constraints limited to SpO2 and urine output, achieves remarkable sta-
bilization of unconstrained variables. This effect extends across multiple physiological domains:
hepatic function markers demonstrate reduced variability, respiratory parameters beyond SpO2 ex-
hibit enhanced stability, and cumulative fluid balance follows more physiological trajectories. The
mechanism reflects the interconnected nature of organ systems in sepsis pathophysiology, where
preserved oxygenation prevents cascading organ dysfunction.

GMB-TRPO undergoes fundamental transformation, producing state distributions closely approx-
imating standard clinical practice. This metamorphosis manifests across all monitored variables,
with pronounced stabilization evident in respiratory mechanics, neurological status indicators, and
fluid homeostasis parameters. The synergistic combination of explicit constraints and guardian
mechanisms yields the optimal configuration, demonstrating unprecedented alignment with standard
care patterns while maintaining physiological parameters within clinically appropriate ranges.

As visualized in Figure 5, MB-CQL demonstrates inherent safety properties, maintaining closer
alignment with standard care practices. This alignment extends beyond action selection—where
CQL achieves a MCR of 0.789 Table 1-to encompass state-space dynamics shown in Figure 1. The
algorithm’s conservative value function regularization naturally constrains exploration to clinically
validated regions, producing physiological trajectories significantly more stable than those generated
by baseline model-based approaches, such as MB-TRPO and MB-CPO. Guardian augmentation
builds upon this foundation, achieving enhanced stability particularly in cumulative urine output
patterns, where the combined approach maintains tighter alignment with clinical practice.
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Figure 4: Physiological state progression under model-based reinforcement learning methods
(MB-TRPO, GMB-TRPO, MB-CPO, and GMB-CPO). Each step is represented by a box plot,
where each box shows the interquartile range (25th-75th percentiles) with the horizontal line in-
dicating the median. Whiskers extend to 1.5×IQR, and black dots represent outliers - individual
measurements falling outside this range.

G.7.3 Clinical Significance Discussion

Physiological System Interconnectivity. The analysis substantiates established clinical principles
regarding organ system interdependence. Maintaining critical parameters within therapeutic ranges
generates beneficial cascade effects throughout multiple organ systems, corroborating the therapeutic
strategy of prioritizing hemodynamic stability and respiratory function as fundamental interventions
in sepsis management.

Complementary Safety Architectures. Comparative evaluation reveals synergistic benefits be-
tween constraint-based and guardian-based protective strategies. Explicit constraints provide robust
safeguards for designated variables, while guardian mechanisms furnish comprehensive trajectory

27



Figure 5: Physiological state progression under model-free reinforcement learning methods (CQL,
GCQL, CCQL, and GCCQL). Each step is represented by a box plot, where each box shows the
interquartile range (25th-75th percentiles) with the horizontal line indicating the median. Whiskers
extend to 1.5×IQR, and black dots represent outliers - individual measurements falling outside this
range.

protection, mitigating exploration of unsafe state combinations beyond the scope of limited constraint
sets. The superior performance of GMB− CPO demonstrates that clinical implementation should
incorporate both protective modalities.

Temporal Stability Considerations. Given sepsis pathophysiology’s progressive nature, treatment
protocols must maintain stability across extended periods. Guardian-enhanced methodologies exhibit
superior temporal resilience, particularly crucial during the initial 20-hour therapeutic window. This
consistency translates to reduced risk of abrupt physiological deterioration – a cardinal concern in
intensive care settings.
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Clinical Integration Perspectives. Alignment between guardian-enhanced policies and established
care patterns facilitates integration within existing clinical workflows. Reduced variability in physio-
logical trajectories enhances predictability, essential for clinical acceptance and real-time decision
support deployment. The demonstrated capacity to identify beneficial deviations from standard
protocols while maintaining safety parameters suggests potential for discovering innovative treatment
approaches within established safety boundaries.

G.7.4 Consistency Validation

Comparison of OOD state avoidance with different seeds.

(a) CQL (b) MB-TRPO (c) CCQL (d) MB-CPO

(e) GCQL (f) GMB-TRPO (g) GCCQL (h) GMB-CPO

Figure 6: Results on state distributions generated using the second seed. The patterns observed here
are consistent with those shown in Figure 1.

(a) CQL (b) MB-TRPO (c) CCQL (d) MB-CPO

(e) GCQL (f) GMB-TRPO (g) GCCQL (h) GMB-CPO

Figure 7: Results on state distributions generated using the third seed. The patterns observed here are
consistent with those shown in Figure 1.

Comparison of Cumulative Reward Distributions with Different Seeds.
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(a) CQL (b) MB-TRPO (c) CCQL (d) MB-CPO

(e) GCQL (f) GMB-TRPO (g) GCCQL (h) GMB-CPO

Figure 8: Results on state distributions generated using the fourth seed. The patterns observed here
are consistent with those shown in Figure 1.

(a) CQL (b) MB-TRPO (c) CCQL (d) MB-CPO

(e) GCQL (f) GMB-TRPO (g) GCCQL (h) GMB-CPO

Figure 9: Results on state distributions generated using the fifth seed. The patterns observed here are
consistent with those shown in Figure 1.
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Figure 10: Comparison of cumulative reward distributions between the SOC (green) and various
RL policies with guard mechanisms (blue) across different algorithms using the second seed. The
patterns observed here are consistent with those shown in Figure 2. (a) CQL vs. GCQL;(b) CCQL vs.
GCCQL; (c) MB-TRPO vs. GMB-TRPO; (d) MB-CPO vs. GMB-CPO.
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Figure 11: Comparison of cumulative reward distributions between the SOC (green) and various RL
policies with guard mechanisms (blue) across different algorithms using the third seed. The patterns
observed here are consistent with those shown in Figure 2. (a) CQL vs. GCQL;(b) CCQL vs. GCCQL;
(c) MB-TRPO vs. GMB-TRPO; (d) MB-CPO vs. GMB-CPO.
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Figure 12: Comparison of cumulative reward distributions between the SOC (green) and various
RL policies with guard mechanisms (blue) across different algorithms using the fourth seed. The
patterns observed here are consistent with those shown in Figure 2. (a) CQL vs. GCQL;(b) CCQL vs.
GCCQL; (c) MB-TRPO vs. GMB-TRPO; (d) MB-CPO vs. GMB-CPO.

0 100 200 300 400
Reward Distribution

0.000

0.002

0.004

0.006

0.008

0.010

D
en

si
ty

SOC
SOC Mean: 73.49
CQL
CQL Mean: 90.32
GCQL
GCQL Mean: 108.09

(a)

100 0 100 200 300 400 500 600
Reward Distribution

0.000

0.002

0.004

0.006

0.008

0.010

D
en

si
ty

SOC
SOC Mean: 73.49
CCQL
CCQL Mean: 86.22
GCCQL
GCCQL Mean: 107.50

(b)

0 100 200 300 400
Reward Distribution

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
ty

SOC
SOC Mean: 73.49
MB-TRPO
MB-TRPO Mean: 7.60
GMB-TRPO
GMB-TRPO Mean: 111.53

(c)

0 100 200 300 400
Reward Distribution

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
ty

SOC
SOC Mean: 73.49
MB-CPO
MB-CPO Mean: 7.93
GMB-CPO
GMB-CPO Mean: 110.54

(d)

Figure 13: Comparison of cumulative reward distributions between the SOC (green) and various RL
policies with guard mechanisms (blue) across different algorithms using the fifth seed. The patterns
observed here are consistent with those shown in Figure 2. (a) CQL vs. GCQL;(b) CCQL vs. GCCQL;
(c) MB-TRPO vs. GMB-TRPO; (d) MB-CPO vs. GMB-CPO.

G.7.5 Comprehensive Clinical Efficacy Analysis

Clinician Policy Alignment. Table 1 presents a quantitative comparison of clinical alignment across
methods using four metrics: MCR, AIR, ME, and ACP.

MCR. The alignment between policy recommendations and clinician decisions is reflected by MCR.
Higher MCR values indicate stronger behavioral mimicry, which enhances clinical interpretability
and acceptance. Model-free approaches such as CQL and CCQL demonstrated moderate concordance
(0.789 and 0.827, respectively), while model-based methods including MB-TRPO and MB-CPO
showed near-zero concordance, highlighting instability in unconstrained model-based training. The
integration of OOD guardians significantly improved all model variants. GCQL achieved the highest
concordance (0.909), while GMB-TRPO and GMB-CPO substantially outperformed their baseline
counterparts, demonstrating the guardian’s efficacy in promoting clinically familiar behavior.

AIR. AIR measures a learned policy’s ability to intensify treatment when physiological deterioration
occurs (e.g., decreased SpO2 or urine output). Policies with high AIR values respond appropriately
to emerging risks. Without guardian augmentation, AIR remained low across all base methods, CQL
(0.130), CCQL (0.039), and MB methods (< 0.05)—indicating under-responsive policies. Guardian-
augmented approaches substantially improved AIR, with GMB-CPO (0.448) and MB-CPO (0.496)
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demonstrating the greatest responsiveness, suggesting more adaptive and clinically aligned escalation
behavior.

ME. ME predicts expected mortality outcomes, with lower values indicating improved survival rates.
Compared to standard of care (SOC: 0.0632), most baseline methods showed slight improvements
(CQL: 0.0486, CCQL: 0.0481). Guardian-enhanced policies further reduced mortality estimates, with
GMB-CPO achieving the lowest value (0.0138), followed by GMB-TRPO (0.0232). This suggests
that guardian integration not only enhances safety but also improves health outcomes. Model-based
methods without guardians produced missing or undefined mortality estimates due to trajectory
instability.

ACP. ACP quantifies the magnitude of change in policy recommendations between consecutive time
points. Lower values indicate smoother, more stable treatment suggestions—a critical property for
clinical implementation, as abrupt changes in medication dosage or fluid administration can cause
physiological disruption or compromise patient safety. For MVD and IFA, CQL and CCQL produced
relatively stable policies (ACP of 4.18 and 3.74; ACP of 543 and 460, respectively). In contrast,
MB-TRPO and MB-CPO exhibited substantially higher ACP values—48.1 to 50.5 for MVD and up
to 4.92e4 for IFA—indicating erratic treatment recommendations unsuitable for clinical application.

Guardian integration dramatically improved action smoothness. GMB-CPO (ACP:MVD: 4.34,
ACP:IFA: 647) closely matched standard-of-care values (4.34 and 648), while GCQL and GCCQL
maintained consistently low ACP values. These findings suggest that OOD guardians effectively
regularize learned policies by discouraging unstable transitions in treatment trajectories, resulting in
smoother, safer interventions that better align with clinical expectations and practices.

In summary, guardian-enhanced methodologies outperform their baseline counterparts across all
metrics. Model-based approaches without guardian constraints prove unreliable due to excessive
generalization, while guardian integration restores alignment with clinical norms. Among all eval-
uated methods, GMB-CPO delivers the most balanced performance, demonstrating strong MCR,
AIR, ME, and treatment prescriptions closely resembling real-world clinical practice (ACP). These
findings validate the proposed OOD guardian as an effective mechanism for ensuring safe, effective,
and trustworthy policy learning in offline medical reinforcement learning.

Moreover, implicit policy (sequence of actions) adopted by clinicians might not be optimal, but
individual decisions are the least safe. This is because even human experts have limited ability to
integrate a patient’s full historical state into consideration. Individual action is safe, but it is derived
from a rigid rule or greedy fashion to achieve a short-term goal. What a capable and safe offline RL
learns from observational data is a "dynamic" policy that considers the full state history of a patient
with safe individual actions.

Treatment Effectiveness and Reward Distribution.

Figure 2 compares the cumulative reward distributions of policies learned by different RL algorithms
with guardian (blue) against algorithms without guardian (red) and the standard clinical policy (green).
Across all algorithms, policies trained with the guardian achieve substantially higher mean cumulative
rewards than the policies trained without the guardian, highlighting the potential of the guardian
to improve RL-based treatment outcomes. Notably, model-based methods such as GMB-TRPO
and GMB-CPO not only yield higher reward means but also exhibit more concentrated reward
distributions compared to model-free approaches (GCQL and GCCQL), demonstrating improved
robustness. Furthermore, while GMB-TRPO and GMB-CPO exhibit similar performance in reward,
the latter achieves lower safety costs (see Figures 3a and 3b), confirming its superior balance between
reward optimization and safety compliance. Besides, for the safety cost, compared to the model-free
methods GCQL and GCCQL, GM− CPO shows a better similarity with the standard of care (see
Figure 3). Combined with the MCR and AIR results (Tables 1), which show stronger alignment
between guardian-enhanced policies and clinician decisions, these findings suggest that the OOD
guardian improves not only consistency with expert behavior but also outcome quality. Among all
methods, GMB-CPO achieves the best trade-off between safety and reward, addresses both OOD
action and state issues, and produces robust, high-quality policies aligned with clinical practices.

Physiological Safety.

As shown in Figure 3, we evaluate the physiological safety of our learned treatment policies by
analyzing SpO2 and urine output-specifically chosen because they serve as our explicitly constrained
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physiological safety states in the OGSRL framework. The results clearly demonstrate that our
proposed guardian consistently reduced unsafe states compared to their non-guardian counterparts.
For SpO2, GCQL achieved the most substantial improvement (59.4% reduction in unsafe states),
while GCCQL and GMB− CPO demonstrated strong performance with 28.8% and 49.8% reductions,
respectively. Only MB− TRPO significantly worsened respiratory safety with a 90.7% increase
in unsafe states, highlighting the danger of unconstrained exploration in high-stakes domains. For
urine output, guardian-based methods again outperformed their counterparts, with GMB-TRPO and
GMB-CPO achieving 19.0% and 19.6% reductions in unsafe states. The dual-safety mechanism
in GMB-CPO, combining explicit physiological constraints with the OOD guardian, demonstrated
balanced performance across both measures. Notably, even GMB-TRPO, which lacks explicit safety
constraints, significantly improved safety through guardian-based restriction of OOD regions. This
highlights how the guardian mechanism indirectly preserves physiological safety by constraining
policies to clinically validated regions. Interestingly, we observe that model-free methods (CQL,
GCQL, CCQL, GGCQL) improve SpO2 safety but increase unsafe states for urine output. This
pattern likely originates from SpO2 responding quickly to interventions, while urine output depends
on complex, delayed effects of fluid management and hemodynamic stability. Without explicit
modeling of physiological dynamics, model-free methods struggle to capture these delayed treatment
effects, despite successfully constraining actions to clinically observed patterns through the guardian
mechanism.

H Acute Hypotension Experimental Details

H.1 Dataset Description

The Synthetic Acute Hypotension Dataset [27] contains 3,910 ICU stays with 187,680 hourly state-
action pairs over 48 hours. Acute hypotension (mean arterial pressure below 65 mmHg) represents a
critical hemodynamic emergency distinct from sepsis’s multi-organ pathophysiology. Patient-level
5-fold cross-validation follows the same methodology as sepsis: 60% training, 20% validation, 20%
testing.

H.2 Acute Hypotension Treatment Formulation for RL

State Space. The state space comprises 18 features: 11 continuous physiological measurements and
7 binary data availability indicators (Table 4).

Table 4: Acute hypotension state space features
Category Features Type/Unit

Hemodynamic MAP, Systolic BP, Diastolic BP numeric (mmHg)
Respiratory PaO2, FiO2 numeric (mmHg), categorical
Renal Urine output, Creatinine numeric (mL), numeric (mg/dL)
Hepatic ALT, AST numeric (IU/L)
Metabolic Lactate numeric (mmol/L)
Neurological GCS binary
Measurement Urine (M), ALT/AST (M), FiO2 (M), binary indicators
Indicators GCS (M), PaO2 (M), Lactate (M), Creatinine (M)

The 7 binary variables (with suffix (M)) indicate whether a variable was measured at a specific point
in time, which in medical time series is usually highly informative. Key differences from sepsis
include explicit separation of MAP, systolic, and diastolic blood pressure as primary hemodynamic
indicators, hepatic function markers (ALT, AST), and metabolic marker (lactate) as a direct indicator
of tissue perfusion adequacy.

Action Space. The action space is 2-dimensional, representing hourly fluid boluses (mL/hour) and
vasopressor dosage (mcg/kg/min). While originally categorical in the dataset, we treat them as con-
tinuous to maintain consistency with sepsis experiments and enable fine-grained policy optimization.

Reward Function. We define a piecewise linear reward based solely on MAP:
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r =


1.0 if MAP ≥ 65 mmHg
−0.2× (65−MAP) if 60 ≤ MAP < 65 mmHg
−1.0− 1.0× (60−MAP) if MAP < 60 mmHg

(32)

This continuous single-variable reward contrasts with the discrete multi-organ SOFA score used in
sepsis. The piecewise structure ensures continuity at the breakpoint (60 mmHg) while imposing
steeper penalties for critically low blood pressure. Missing MAP values are assigned zero reward. This
MAP-focused reward deliberately simplifies hypotension management to test OGSRL’s effectiveness
across fundamentally different reward structures.

Safety Constraints to Physiological States. Two physiological safety costs ensure adequate organ
perfusion. The urine output constraint flags states where urine production falls below 0.5 mL/kg/hour
[20]. The lactate constraint flags states where lactate exceeds 2.0 mmol/L [46]. The urine threshold
ensures adequate renal perfusion. The lactate threshold represents a clinically established cutoff for
detecting tissue hypoperfusion—the primary pathophysiological consequence of severe hypotension.
These two safety constraints provide a rigorous test of OGSRL’s adaptability to disease-specific
physiological boundaries.

Guardian Construction. KDE-based classifier is applied on 20-dimensional state-action pairs with
Gaussian kernel. Complete methodology is described in Appendix G.3.

Transition Dynamics Model. Following the sepsis treatment methodology (Appendix G.5), we
maintain two separate models: k-NN-train (trained on 60% training partition, used during policy
learning) and k-NN-eval (trained on full dataset, used for policy evaluation). The k-NN-eval model
provides a more demanding test of the guardian’s ability to prevent OOD exploration by having
access to a broader range of state transitions.

Policy Learning Algorithms To maintain conciseness while demonstrating cross-disease consistency,
Table 2 reports results for representative methods: CQL and GCQL (model-free), MB-CPO and
GMB-CPO (model-based), and SOC. We focus on MCR and AIR as these metrics directly assess
clinical alignment and safety responsiveness—the key dimensions for validating cross-disease gener-
alizability. Policy evaluation follows the same protocol as sepsis: sample initial states from the test
set, select actions according to the learned policy, predict next states using k-NN-eval, and continue
rollout for up to 48 steps. We compute MCR, AIR, and cumulative reward for each trajectory. All
results are averaged over 5 random seeds to account for stochasticity in policy initialization and
training.

H.3 Comparison with Sepsis Experiments

Table 5: Key differences between validation domains
Characteristic Sepsis Hypotension

Dataset source MIMIC-III (real) Health Gym (synthetic)
ICU stays 18,923 3,910
State-action pairs ∼247,733 187,680
Temporal resolution 4-hour intervals Hourly intervals
Episode duration 72 hours (18 steps) 48 hours (48 steps)
State dimension 13 features 18 features
Primary condition Multi-organ dysfunction Hemodynamic instability
Reward type Discrete composite (SOFA−1) Continuous single-variable (MAP)
Safety constraints SpO2 + urine Urine + lactate
Clinical objective Reduce organ failure Restore blood pressure

These substantial differences test OGSRL’s cross-disease generalizability across multiple dimensions:
(1) Disease pathophysiology—sepsis involves systemic inflammation and multi-organ dysfunction,
while hypotension focuses on acute hemodynamic compromise; (2) Temporal dynamics—hourly vs.
4-hour resolution tests adaptability to different decision frequencies; (3) State complexity—18 vs. 13
features tests guardian scalability; (4) Reward structure—discrete multi-organ composite (SOFA) vs.
continuous single-variable (MAP) tests effectiveness across fundamentally different optimization
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objectives; (5) Safety constraints—different physiological boundaries test accommodation of disease-
specific requirements; (6) Dataset size—smaller cohort tests performance with limited data coverage.
Despite these variations, consistent guardian benefits across both domains (Section 4.3) validate
OGSRL as a robust framework for safe offline RL in critical care.

I Limitations

The OGSRL framework exhibits several constraints that merit consideration. Its conservative ap-
proach, while ensuring safety, potentially restricts the discovery of innovative treatment strategies
beyond observed clinical practices—particularly relevant in evolving sepsis management. Despite
advancing toward continuous representation, the implementation still simplifies the multifaceted
nature of sepsis interventions, which typically encompass antibiotics, ventilation adjustments, and
nutritional support beyond the modeled fluid and vasopressor dimensions. The fixed 4-hour dis-
cretization window fails to capture the rapid physiological fluctuations that might necessitate more
frequent clinical interventions. Generalizability concerns arise from the MIMIC-III dataset’s limited
institutional scope, as treatment patterns from a single hospital system may not translate across diverse
healthcare settings with varying protocols and patient demographics. Moreover, the guardian mecha-
nism sacrifices interpretability for statistical robustness, creating potential barriers to clinical trust
since its safety boundaries emerge from complex statistical properties rather than transparent medical
reasoning. All these limitations are practical challenges in applications, and appropriate adaptations
to the proposed OGSRL framework will be implemented for real-world clinical deployment.

J Experiments Compute Resources

All experiments were conducted on a high performance computing (HPC) cluster equipped with
NVIDIA A100 and V100 GPUs.

K Broader Impact

The proposed framework, Offline Guarded Safe Reinforcement Learning (OGSRL), aims to improve
treatment decision-making in high-stakes clinical settings using offline reinforcement learning. By
introducing an OOD guardian and explicit safety cost constraints, OGSRL enables the development of
safe and reliable treatment policies that remain grounded in observed clinical data. This is particularly
impactful in domains such as ICU treatment, where policy optimization must adhere to strict safety
boundaries due to patient risk.

The primary benefit of this work lies in its ability to learn treatment strategies that outperform
clinician policies while preserving safety and trustworthiness. Since our method constrains policy
learning within the support of historical clinician decisions, it ensures that learned interventions do
not extrapolate dangerously beyond medical expertise. Furthermore, including theoretical safety
guarantees makes our framework more suitable for deployment in clinical decision-support tools than
prior offline RL approaches that lack such safeguards.

However, like all machine learning methods applied to healthcare, there are risks. Improper interpre-
tation or deployment of learned policies without proper clinical oversight could lead to misuse. We
strongly emphasize that OGSRL is designed as a decision-support tool, not a substitute for human
medical judgment.

To mitigate potential negative impacts, we advocate for responsible deployment in collaboration with
healthcare professionals, rigorous post-hoc evaluation in simulated environments, and continuous
monitoring in real-world applications. By combining domain knowledge with safe offline learning,
we believe our framework contributes positively to the development of transparent, interpretable, and
trustworthy AI systems for healthcare.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction precisely state the paper’s con-
tribution in Offline RL for medical treatment with theoretical and experimental results.
reflect
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We give a separate "Limitations" part in Appendix I.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We have provided the full set of assumptions and a complete proof. The
complete proofs are included in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have fully disclosed all the information needed to reproduce the main
experimental results of the paper in Section 4 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code for documentation for environment setup, data preparation,
implementation of all RL algorithms and reproducing all experiments and figures presented
in the paper in the supplementary material. Our experiments use the publicly available
MIMIC-III dataset, which can be accessed through PhysioNet (https://physionet.org/
content/mimiciii/) after completing the required CITI training for protected health
information.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the experimental details in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the error bars to show the statistical significance of the experiments,
which are given in Figure 3. Besides, we present the results of the experiments with different
seeds in the Appendix G.7.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information on the computer resources in Appendix J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conducted the research conforming in every respect with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: In the final paragraph of the Introduction and the Conclusion, we discuss the
societal impacts of our work. Our approach improves the reliability, safety, and reward
performance of offline RL algorithms by fully leveraging the clinician data’s knowledge.
This advancement promotes the application of offline RL in healthcare scenarios. Besides,
we have found some negative societal impacts of the work, such as risks for healthcare
applications, which is normal for all machine learning methods. The details are given in
Appendix K.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not include any data or models with a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer:[Yes]
Justification: The creators or original owners of assets used in the paper are properly credited
and are the license and terms of explicitly mentioned and properly respected.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets. We use the existing toolbox or data
sets for the experiment to validate our theory.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not include any research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not include any research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is not used as an important, original, or non-standard component of the
core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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