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ABSTRACT

This paper proposes set features for detecting anomalies in samples that consist of
unusual combinations of normal elements. Most methods, discover anomalies by
detecting an unusual part of a sample. For example, state-of-the-art segmentation-
based approaches, first classify each element of the sample (e.g., image patch) as
normal or anomalous and then classify the entire sample as anomalous if it contains
anomalous elements. However, such approaches do not extend well to scenarios
where the anomalies are expressed by an unusual combination of normal elements.
In this paper, we overcome this limitation by proposing set features that model
each sample by the distribution of its elements. We compute the anomaly score of
each sample using a simple density estimation method. Our simple-to-implement
approach outperforms the state-of-the-art in image-level logical anomaly detection
(+5.2%) and sequence-level time series anomaly detection (+2.4%).

1 INTRODUCTION

Anomaly detection aims to automatically identify samples that exhibit unexpected behavior. In some
anomaly detection tasks, such as detecting faults in industrial images or irregularities in time series,
anomalies are quite subtle. For example, let us consider an image of a bag containing screws, nuts,
and washers (Fig.1). There are two ways in which a sample can be anomalous: (i) one or more of the
elements in the sample are anomalous. E.g., a broken screw. (ii) the elements are normal but appear
in an anomalous combination. E.g., one of the washers might be replaced with a nut.

In recent years, remarkable progress has been made in detecting samples featuring anomalous
elements. The usual procedure is: First, we perform anomaly segmentation by detecting which (if
any) of the elements of the sample are anomalous, e.g., by density estimation Cohen & Hoshen
(2020); Defard et al. (2021); Roth et al. (2022). Given an anomaly segmentation map, we compute
the sample-wise anomaly score as the number of anomalous elements, or the abnormality level of the
most anomalous element. If the anomaly score exceeds a threshold, the entire sample is denoted as
an anomaly. We denote this paradigm detection-by-segmentation.

Here, we tackle the more challenging case of detecting anomalies consisting of an unusual combina-
tion of normal elements. For example, consider the case where normal images contain two washers
and two nuts, but anomalous images may contain one washer and three nuts. As each of the elements
(nuts or washers) occur in natural images, simple detection-by-segmentation will not work. Instead,
a more holistic understanding of the image is required. While simple global representations, such
as taking the average of the representations of all elements might work in some cases, the result is
typically too coarse to detect challenging anomalies.

We propose to detect anomalies consisting of unusual combinations of normal elements using set
representations. The key insight in this work, namely, that we should treat a sample as the set of its
elements, is driven by the assumption that in many cases the distribution of elements in a sample is
more correlated with it being anomalous than the ordering of the elements. Each sample is therefore
modeled as an orderless set. The elements are represented using feature embeddings, e.g., a deep
representation extracted by a pre-trained neural network or handcrafted features. To describe this set
of features we count the percentage of elements falling in different histograms bins. We compute
a histogram for a collection of random projection directions in feature space. The bin occupancies
from all the histograms are concatenated together, forming our set representation. Finally, we score
anomalies using density estimation on this set representation. We compare our set descriptor to
previous approaches and highlight its connection to the sliced Wasserstein distance (SWD).
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Our method, SINBAD (Set INspection Based Aomalies Detection) is evaluated on two diverse tasks.
The first task is image-level logical anomaly detection on the MVTec-LOCO datasets. Our method
outperforms more complex state-of-the-art methods, while not requiring any training. We also
evaluate our method on series-level time series anomaly detection. Our approach outperforms all
current methods while not using augmentations or training. Note that our method relies on the prior
that the elements are normal but their combination is anomalous. In scenarios where the elements
themselves are anomalous, it is typically better to perform anomaly detection directly at the element
level (i.e., detection-by-segmentation).

We make the following contribution:

• Identifying set representation as key for detecting anomalies consisting of normal elements.

• A novel set-based method for measuring the distance between samples.

• State-of-the-art results on logical and time series anomaly detection datasets.

2 PREVIOUS WORK

Image Anomaly Detection. A comprehensive review of anomaly detection can be found in Ruff
et al. (2021). Early approaches (Glodek et al. (2013); Latecki et al. (2007); Eskin et al. (2002))
used handcrafted representations. Deep learning has provided a significant improvement on such
benchmarks Larsson et al. (2016); Ruff et al. (2018); Golan & El-Yaniv (2018); Hendrycks et al.
(2019); Ruff et al. (2019); Perera & Patel (2019); Salehi et al. (2021); Tack et al. (2020). As density
estimation methods utilizing pre-trained deep representation have made significant steps towards
the supervised performance on such benchmarks Deecke et al. (2021); Cohen & Avidan (2022);
Reiss et al. (2021); Reiss & Hoshen (2021); Reiss et al. (2022), much research is now directed at
other challenges Reiss et al. (2022). Such challenges include detecting anomalous image parts which
are small and fine-grained Cohen & Hoshen (2020); Li et al. (2021); Defard et al. (2021); Roth
et al. (2022); Horwitz & Hoshen (2022). The progress in anomaly detection and segmentation has
been enabled by the introduction of appropriate datasets Bergmann et al. (2019; 2021); Carrera et al.
(2016); Jezek et al. (2021); Bonfiglioli et al. (2022). Recently, the MVTec-LOCO dataset Bergmann
et al. (2022) has put the spotlight on fine-grained anomalies that cannot be identified using single
patches, but only when examining the connection between different (otherwise normal) elements in
an image. Here, we will focus on detecting such logical anomalies.

Time series Anomaly detection. A general review on anomaly detection in time series can be
found in (Blázquez-Garcı́a et al., 2021). In this paper, we are concerned with anomaly detection
of entire sequences, i.e., cases where an entire signal may be abnormal. Traditional approaches
for this task include generic anomaly detection approaches such as k nearest neighbors (kNN)
based methods e.g. vanilla kNN (Eskin et al., 2002) and Local Outlier Factor (LOF) (Breunig
et al., 2000), Tree-based methods (Liu et al., 2008), One-class classification methods (Tax & Duin,
2004) and SVDD (Schölkopf et al.), and auto-regressive methods that are particular to time series
anomaly detection (Rousseeuw & Leroy, 2005). With the advent of deep learning, the traditional
approaches were augmented with deep-learned features: Deep one-class classification methods
include DeepSVDD (Ruff et al., 2018) and DROCC (Goyal et al., 2020). Deep auto-regressive
methods include RNN-based prediction and auto-encoding methods (Bontemps et al., 2016; Malhotra
et al., 2016). In addition, some deep learning anomaly detection approaches are conceptually different
from traditional approaches. These methods use classifiers trained on normal data, assuming they
will struggle to generalize to anomalous data (Bergman & Hoshen, 2020; Qiu et al., 2021).

Discretized Projections. Discretized projections of multivariate data have been used in many previous
works. Locally sensitive hashing Dasgupta et al. (2011) uses random projection and subsequent
binary quantization as a hash for high-dimensional data. It was used to facilitate fast k nearest
neighbor search. Random projections transformation is also highly related to the Radon transform
Radon (1917). Kolouri et al. (Kolouri et al., 2015) used this representation as a building block in their
set representation. HBOS Goldstein & Dengel (2012) performs anomaly detection by representing
each dimension of multivariate data using a histogram of discretized variables. LODA Pevnỳ (2016)
extends this work, by first projecting the data using a random projection matrix. We differ from
LODA in the use of a different density estimator and in using sets of multiple elements rather than
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Figure 1: In set anomalies, each image element (e.g., patch) may be normal even when their
combination is anomalous. This is challenging as the variation in the normal data may be higher than
between normal and anomalous elements (e.g., swapping a bolt and a washer in the screw bag class).

single sample descriptions. Rocket and mini-rocket Dempster et al. (2020; 2021) represent time
series for classification using the averages of their window projection.

3 SET FEATURES FOR ANOMALY DETECTION

3.1 A SET IS MORE THAN THE SUM OF ITS PARTS

Detecting anomalies in complex samples consisting of collections of elements requires understanding
how the different elements of each sample interact with one another. As a motivating example let us
consider the screw bag class from the MVTec-LOCO dataset (Fig. 1). Each normal sample in this
class contains two screws (of different lengths), two nuts, and two washers. Anomalies may occur for
example when one screw is missing, or when an additional nut replaces one of the washers. Detecting
anomalies such as these requires a joint description of all elements within the sample since each local
element on its own could have come from a normal sample.

The typical way to aggregate element descriptor features is by average pooling. Yet, this is not
always suitable for set anomaly detection. In supervised learning, average pooling is often built into
architectures such as ResNet He et al. (2016) or DeepSets Zaheer et al. (2017), in order to aggregate
local features. Therefore, deep features learnt with a supervised loss are already trained to be effective
for pooling. However, for lower-level feature descriptors this may not be the case. As demonstrated in
Fig.2. The average of a set of features is far from a complete description of the set. This is especially
true in anomaly detection, where density estimation approaches require more discriminative features
than those needed for supervised learning Reiss et al. (2022). Even when an average pooled set of
features worked for a supervised task, it might not work for anomaly detection.

Here, we choose to model a set by the distribution of its elements, ignoring the ordering between
them. A naive way of doing so is using a discretized, volumetric representation, similarly to 3D
voxels for point clouds. Unfortunately, such approaches cannot scale to high dimensions, and more
compact representations are required. Therefore, we choose to represent sets using a collection of 1D
histograms. Each histogram represents the density of the elements of the set when projected along a
particular direction. We provide an illustration of this idea in Figure 2.

In some cases, projecting a set along its original axes may not be discriminative enough. Histograms
along the original axes correspond to 1D marginals, and may map distant elements to the same
histogram bins (see 2 for an illustration). On the other side, we can see at the bottom of the figure that
when the set elements are first projected along another direction, the histograms of the two sets are
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distinct. This suggests a set description method: first project each set along a shared random direction
and then compute a 1D histogram for each set along this direction. We can obtain a more powerful
descriptor by repeating this procedure with projections along multiple random directions. We analyze
this approach in Section 3.5

3.2 PRELIMINARIES

We are provided a training set S containing a set of NS samples x1, x2..xNS
∈ S. All the samples

at training time are known to be normal. At test time, we are presented with a new sample x̃. Our
objective is to learn a model, which operates on each sample x̃ and outputs an anomaly score. Samples
with anomaly scores higher than a predetermined threshold value are labeled as anomalies. The
unique aspect of our method is its treatment of each sample x as consisting of a set of NE elements
x = [e1, e2..eNE

]. Examples of such elements include patches for images and temporal windows for
time series. We assume the existence of a powerful feature extractor F that maps each raw element
e into an element feature descriptor fe. We will describe specific implementations of the feature
extraction for two important applications: images and time series, in section 4.

3.3 SET FEATURES BY HISTOGRAM OF PROJECTIONS

Figure 2: Random projection histograms allow us
to distinguish between sets where other methods
could not. The two sets are similar in their averages
and histograms along the original axes, but result
in different histograms when projected along a
random axis.

Motivated by the toy example in section 3.1, we
propose to model each set x by the histogram of
the values of its elements along each direction.
As the given raw axes of the representation may
mask out interesting degrees of variation, we
perform a random projection prior to building
the histograms.

Histogram descriptor. Average pooling of
the features of all elements in the set may re-
sult in insufficiently informative representations
(section 3.1). Instead, we describe the set us-
ing the histogram of values along each dimen-
sion. We note the set of the values of the
jth feature in each element of each sample as
s[j] = {f1[j], f2[j]..fNS

[j]}. We compute the
maximal and minimal values for sets s[j] across
all the samples, and divide the region between
them into K bins. We compute histograms Hj

for each of the ND dimensions and concate-
nate them into a single set descriptor h. The
descriptor of each set therefore has a dimension
of ND ·K.

Projection. As discussed before, not all pro-
jection directions are equally informative for
describing the distributions of sets. In the gen-
eral case, it is unknown which directions will
be the most informative ones for capturing the
difference between normal and anomalous sets.
As we cannot tell the best projection directions
in advance, we randomly project the features. This ensures a low likelihood for catastrophically poor
projection directions, such as those in the example in Fig.2.

In practice, we generate a random projection matrix P ∈ R(ND,NP ) by sampling values for each
dimension from the Gaussian distribution N(0, 1). We project the features f of each element of x,
yielding projected features f ′:

f ′ = Pf (1)
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Figure 3: For both image and time series samples, we extract set elements at different granularity.
For images (left), the sets of elements are extracted from different ResNet levels. For time series
(right), we take pyramids of windows at different strides around each time step (noted in blue circles).

We run the histogram descriptor procedure described above on the projected features. The final set
descriptor hPx becomes the concatenation of NP histograms, resulting in a dimension of NP ·K.

3.4 ANOMALY SCORING

We perform density estimation on the set descriptors, expecting unusual test samples to have unusual
descriptors, far from those of the normal train set. We define the anomaly score as the Mahalanobis
distance, the negative log-likelihood in feature space. We denote the mean and covariance of the
histogram projection features of the normal data as µ and Σ:

a(h) = (h− µ)TΣ−1(h− µ) (2)

3.5 CONNECTION TO PREVIOUS SET DESCRIPTORS AND THE WASSERSTEIN DISTANCE

Classical set descriptors. Many prior methods have been used to describe sets, e.g., for image
retrieval, among them Bag-of-Features Csurka et al. (2004), VLAD Jégou et al. (2010), and Fisher-
Vectors Sánchez et al. (2013). These begin with a preliminary clustering stage (K-means or Gaussian
Mixture Model). They then describe the set using the zeroth, first, or second moments of each cluster.
The comparison in Appendix D shows that our method outperforms clustering-based methods in
describing our feature sets.

Wasserstein distance. Our method is closely related to the Wasserstein distance, which measures
the minimal distance required to transport the probability mass from one distribution to the other.
As computing the Wasserstein distance for high-dimensional data such as ours is computationally
demanding, the Sliced Wasserstein Distance (SWD) Bonneel et al. (2015), was proposed as an
alternative. The SWD1 between two sets. x and y, has a particularly simple form:

SWD1(x, y) = ∥hPx − hPy∥1 (3)

where hPx, hPy are the random projections histogram of sets x and y, that we defined in Sec.3.3.

As the histogram projection feature dimensions have high correlation between them, it is necessary to
decorrelate them, e.g., using a Gaussian model. The Mahalanobis distance therefore performs better
than the simple SWD1 distance. While this weakens the connection to the Wasserstein distance,
this was crucial for most time-series datasets Table 12. In practice, we opted to use kNN with the
Mahalanobis distance rather simply computing the Mahalanobis distance to µ as it worked slightly
better (see Appendix D).
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Table 1: Anomaly detection on MVTec-LOCO. ROC-AUC (%). See Tab.4 for the full table.
f-AnoGAN MNAD ST SPADE PCore GCAD SINBAD

L
og

ic
al

A
no

m
al

ie
s Breakfast box 69.4 59.9 68.9 81.8 77.7 87.0 97.7 ± 0.2

Juice bottle 82.4 70.5 82.9 91.9 83.7 100.0 97.1 ± 0.1
Pushpins 59.1 51.7 59.5 60.5 62.2 97.5 88.9 ± 4.1
Screw bag 49.7 60.8 55.5 46.8 55.3 56.0 81.1 ± 0.7
Splicing connectors 68.8 57.6 65.4 73.8 63.3 89.7 91.5 ± 0.1
Avg. Logical 65.9 60.1 66.4 71.0 69.0 86.0 91.2 ± 0.8

St
ru

ct
ur

al
A

no
m

a. Breakfast box 50.7 60.2 68.4 74.7 74.8 80.9 85.9 ± 0.7
Juice bottle 77.8 84.1 99.3 84.9 86.7 98.9 91.7 ± 0.5
Pushpins 74.9 76.7 90.3 58.1 77.6 74.9 78.9 ± 3.7
Screw bag 46.1 56.8 87.0 59.8 86.6 70.5 92.4 ± 1.1
Splicing connectors 63.8 73.2 96.8 57.1 68.7 78.3 78.3 ± 0.3
Avg. Structural 62.7 70.2 88.3 66.9 78.9 80.7 85.5 ± 0.7

Avg. Total 64.3 65.1 77.4 68.9 74.0 83.4 88.3 ± 0.7

4 APPLICATION TO IMAGE AND TIME SERIES ANOMALY DETECTION

4.1 IMAGES AS SETS

Images can be seen as consisting of a set of elements of different levels of granularity. This ranges
from pixels to small patches and low-level elements such as lines or corners, up to high-level elements
such as objects. For anomaly detection, we typically do not know in advance the correct level
of granularity for separating between normal and anomalous samples Heckler et al. (2023). This
depends on the anomalies, which are unknown during training. Instead, we first use multiple levels of
granularity, describing image patches of different sizes, and combine their scores.

In practice, we use representations from intermediate blocks of a pre-trained ResNet He et al. (2016).
As a ResNet network simultaneously embeds many local patches of each image, we pass the image
samples through the network encoder and extract our representations from the intermediate activations
at the end of different ResNet blocks (see Fig.3). We define each spatial location in the activation map
as an element. Note that as different blocks have different resolutions, they yield different numbers of
elements per layer. We take the elements at the end of each residual block as our sets.

4.2 TIME SERIES AS SETS

Time series data can be viewed as a set of temporal windows. Similarly to images, it is generally
not known in advance which temporal scale is relevant for detecting anomalies; i.e., the duration
of windows which includes the semantic phenomenon. Inspired by Rocket Dempster et al. (2020),
we define the basic elements of a time series as a collection of temporal window pyramids. Each
pyramid contains L windows. All the windows in a pyramid are centered at the same time step,
each containing τ samples (Fig.3). The first level window includes τ elements with stride 1, the
second level window includes τ elements with stride 2, etc. Such window pyramid is computed for
each time step in the series, and the entire series is represented as the set of its pyramid elements.
Implementation details for both modalities are described in Sec.E.2.

5 RESULTS

5.1 LOGICAL ANOMALY DETECTION RESULTS

Logical Anomalies Dataset. We use the recently published MVTec-LOCO dataset Bergmann et al.
(2022) to evaluate our method’s ability to detect anomalies caused by unusual configurations of
normal elements. This dataset features five different classes: breakfast box, juice bottle, pushpins,
screw bag and splicing connector (see Fig.1). Each class includes: (i) a training set of normal samples
(∼ 350 samples). (ii) a validation set, containing a smaller set of normal samples (∼ 60 samples).
(iii) a test set, containing normal samples, structural anomalies, and logical anomalies (∼ 100 each).
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Table 2: Anomaly detection on the UEA datasets, average ROC-AUC (%) over all classes.
See Tab.5 for the full table. σ presented in Tab. 6

OCSVM IF RNN ED DSVDD DAG GOAD DROCC NeuTraL Ours

EPSY 61.1 67.7 80.4 82.6 57.6 72.2 76.7 85.8 92.6 98.1
NAT 86.0 85.4 89.5 91.5 88.6 78.9 87.1 87.2 94.5 96.1
SAD 95.3 88.2 81.5 93.1 86.0 80.9 94.7 85.8 98.9 97.8
CT 97.4 94.3 96.3 79.0 95.7 89.8 97.7 95.3 99.3 99.7
RS 70.0 69.3 84.7 65.4 77.4 51.0 79.9 80.0 86.5 92.3

Avg. 82.0 81.0 86.5 82.3 81.1 74.6 87.2 86.8 94.4 96.8

The anomalies in each class are divided into structural anomalies and logical anomalies. Structural
anomalies feature local defects, somewhat similar to previous datasets such as Bergmann et al. (2019).
Conversely, logical anomalies may violate ‘logical’ conditions expected from the normal data. As
one example, an anomaly may include a different number of objects than the numbers expected from
a normal sample (while all the featured object types exist in the normal class (Fig.1)). Other types of
logical anomalies in the dataset may include cases where distant parts of an image must correlate
with one another. E.g., within the normal data, the color of one object may correlate with the length
of another object. These correlations may break in an anomalous sample.

Baselines. We compare to baseline methods used by the paper which presented the MVTec-LOCO
dataset Bergmann et al. (2022): Variational Model (VM) Steger (2001), MNAD, f-AnoGAN Schlegl
et al. (2017), AE / VAE. Student Teacher (ST), SPADE, PatchCore (PCore) Roth et al. (2022). We
also compare to GCAD Bergmann et al. (2022) - a reconstruction-based method, based on both local
and global deep ResNet features, which was explicitly designed for logical anomaly detection. A
concurrent method, EfficientAD Batzner et al. (2023), focuses on structural anomalies and achieves
impressive results there (but underperforms on logical anomalies). It is not included in our table as
per-class results are not reported.

Metric. Following the standard metric in image-level anomaly detection we use the ROC-AUC
metric.

Results. We report our results on image-level detection of logical anomalies and structural anomalies
in Tab.1. Interestingly, we find complementary strengths between our approach and GCAD, a
reconstruction-based approach by Bergmann et al. (2022). Although GCAD performed better on
specific classes (e.g., pushpins), our approach provides better results on average. Most notably, our
approach provides non-trivial anomaly detection capabilities on the screw bag class, while baseline
approaches are close to the random baseline. All other approaches performed significantly worse on
the logical anomaly classes, as they rely on the abnormality of single patches.

Our approach also provides an improvement in the detection of structural anomalies in some classes.
This is somewhat surprising, as one may assume that detection-by-segmentation approaches would
perform well in these cases. One possible reason for that is the high variability of the normal data
in some of the classes (e.g., breakfast box, screw bag, Fig.1). This high variability may induce
false positive detections for detection-by-segmentation approaches. Taken together, while different
methods provide complementary strengths, on average, our method provides state-of-the-art results
in logical anomaly detection. See also the discussion at Sec.6

5.2 TIME SERIES ANOMALIES DETECTION RESULTS

Time series dataset. We compared on the five datasets used in NeurTraL-AD Qiu et al. (2021):
RacketSports (RS). Accelerometer and gyroscope recording of players playing different racket sports.
Each sport is designated as a class. Epilepsy (EPSY). Accelerometer recording of healthy actors
simulating four activity classes,e.g. an epileptic shock. Naval air training and operating procedures
standardization (NAT). Positions of sensors mounted on body parts of a person performing activities.
There are six different activity classes in the dataset. Character trajectories (CT). Velocity trajectories
of a pen on a WACOM tablet. There are 20 characters in this dataset. Spoken Arabic Digits (SAD).
MFCC features ten Arabic digits spoken by 88 speakers.
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Baselines. We compare the results of several baseline methods reported by Qiu et al. (2021). The
methods cover the following paradigms: One-class classification: One-class SVM (OC-SVM), and
its deep versions DeepSVDD (“DSVDD”) Ruff et al. (2018), DROCC Goyal et al. (2020). Tree-based
detectors: Isolation Forest (IF) Liu et al. (2008). Density estimation: LOF, a specialized version of
nearest neighbor anomaly detection Breunig et al. (2000). DAGMM (“DAG”) Zong et al. (2018):
density estimation in an auto-encoder latent space Auto-regressive methods - RNN and LSTM-ED
(“ED”) - deep neural network-based version of auto-regressive prediction models Malhotra et al.
(2016). Transformation prediction - GOAD Bergman & Hoshen (2020) and NeuTraL-AD Qiu et al.
(2021) are based on transformation prediction, and are adaptations of RotNet-based approaches (such
as GEOM Golan & El-Yaniv (2018)).

Metric. Following (Qiu et al., 2021), we use the series-level ROC-AUC metric.

Results. Our results are presented in Tab. 2. We can observe that different baseline approaches
are effective for different datasets. kNN-based LOF is highly effective for SAD which is a large
dataset but achieves worse results for EPSY. Auto-regressive approaches achieve strong results on
CT. Transformation-prediction approaches, GOAD and NeuTraL achieve the best performance of
all the baselines. The learned transformations of NeuTraL achieved better results than the random
transformations of GOAD.

Our method achieves the best overall results both on average and individually on all datasets apart
from SAD (where it is comparable but a little lower than NeuTraL). Note that unlike NeuTraL, our
method is far simpler, does not use deep neural networks and is very fast to train and evaluate. It also
has fewer hyperparameters.

5.3 IMPLEMENTATION DETAILS

We provide here the main implementation details for our image anomaly detection application.
Further implementation details for the image application can be found in App.E.1. Implementation
details for the time series experiments can be found in App.E.2.

Multiple crops for image anomaly detection. Describing the entire image as a single set might
sometimes lose discriminative power when the anomalies are localized. To mitigate this issue, we
can treat only a part of an image as our entire set. To do so, we crop the image to a factor of c, and
compare the elements taken only from these crops. We compute an anomaly score for each crop
factor and for each center location. We then average over the anomaly scores of the different crop
center locations for the same crop factor c. Finally, for each ResNet level (described above), we
average the anomaly scores over the different crop ratios c. We use crop ratios of {1.0, 0.7, 0.5, 0.33}.
The different center locations are taken with a stride of 0.25 of the entire image.

5.4 ABLATIONS

We present ablations for the image logical AD methods. For further ablations of the histogram
parameters and for the time series modality, see appendix H.

Using individual ResNet levels. In Tab.3 we report the results of our method when different
components of our multi-level ResNet ensemble are removed. We report the results using only the
representation from the third or fourth ResNet block (“Only 3 / 4”). We also report the results of
using both ResNet blocks but without the raw-pixels level (“No Pixels”).

No multiple crops ablation. We also report our results without the multiple crops ensemble
(described in Sec.5.3). We feed only the entire image for the set extraction stage (“Only full”).
As expected, using multiple receptive fields is beneficial for classes where small components are
important to determine abnormality.

Ablating our histogram density-estimation method. In Tab.9 in the appendix we ablate different
aspects of our use of histogram set descriptors. Simple averaging. We compare to a simple averaging
Lee et al. (2018) of the set features (Fig. 2), ablating our entire set-features approach. This yields a
significantly worse performance. No random projection. We ablate our use of random projections
as described in Sec.3.3. We replace the random histograms with similar histograms using the raw
given features. No whitening. We ablate our Gaussian model of the set features. The whitening is not
essential for this modality, as it is for the time-series data (Table 12).
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Table 3: Ablation for logical image AD. ROC-AUC (%).
Only 3 Only 4 No pixels Only full Ours

Breakfa. 95.9 95.7 96.8 97.2 97.7
Juice bo. 93.0 97.0 95.8 97.0 97.1
Pushpins 79.2 67.0 74.0 89.9 88.9
Screw b. 79.8 70.4 76.6 76.2 81.1
Splicing. 84.7 85.6 86.1 90.7 91.5

Average 86.5 83.1 85.9 90.2 91.2

6 DISCUSSION

Complementary strength of density estimation and reconstruction based approaches for logical
anomaly detection. Our method and GCAD Bergmann et al. (2022), a reconstruction based approach,
exhibit complementary strengths. Our method is most suited to detect anomalies resulting from the
distribution of featured objects in each image. E.g., object replacements, additional or missing objects,
or colors indicating a logical inconsistency with the rest of the image. The generative modeling
by GCAD gives stronger results when the positions of the objects are anomalous (e.g., one object
containing another when it should not, or vice versa, as in the Pushpins class). The intuition here is
that our approach treats the patches as an unordered set, and might not capture exact spatial relations
between the objects. Therefore, it may be a natural direction to try and use both approaches together.
A practical way to take advantage of both approaches would be an ensemble. Ultimately, future
research is likely to lead to the development of better approaches, combining the strengths of both
methods.

Further discussion on structural anomalies, time-series features, and other random projection
methods can be found in Appendix A.

7 LIMITATIONS

Element-level anomaly detection. Our method focuses on sample-level time series and image-
level anomaly detection. In some applications, a user may also want a segmentation of the most
anomalous elements of each sample. We note that for logical anomalies, this is often not well
defined. E.g., when we have an image with 3 nuts as opposed to the normal 2, each of them may be
considered anomalous. To provide element-level information, our method can be combined with
current segmentation approaches by incorporating the knowledge of a global anomaly (e.g., removing
false positive segmentation if an image is normal). Directly applying our set features for anomaly
segmentation is left for future research.

Pre-trained features. Similarly to the other top-performing approaches, our approach for image
anomaly detection relies on pre-trained features. While the use of pre-trained features for anomaly
detection in images is standard, it has failure modes. There are a handful of datasets where ImageNet
pretraining is known to fail Yousef et al. (2023).

Class-specific performance. While our method outperforms on average, in some classes we do not
perform as well compared to baseline approaches. A better understanding of the cases when our
method fails would be beneficial for deploying it in practice.

8 CONCLUSION

We presented a method for detecting anomalies caused by unusual combinations of normal elements.
We introduce set features dedicated to capturing such phenomena, and demonstrate their applicability
for images and time series. Extensive experiments established the strong performance of our method.
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A FURTHER DISCUSSION

Is our set descriptor approach beneficial for detecting structural image anomalies? While our
method slightly lags behind the top segmentation-by-detection approach on structural anomalies, it
achieves the top performance on specific classes. Yet, generally, detection-by-segmentation methods
are better when anomalies are contained in a single element. We hypothesize this may be due to the
high variation among the normal samples in these classes. In this case, too, future research may allow
the construction of better detectors, enjoying the combined strength of many approaches.

Incorporating deep features for time series data. Our method can outperform the state-of-the-art
in time series anomaly detection without using deep neural networks. While this is an interesting and
surprising result, we believe that deep features will be incorporated into similar approaches in the
future. One direction for doing this is replacing the window projection features with a suitable deep
representation, while keeping the set descriptors and Gaussian modeling steps unchanged.

Relation to previous random projection methods. Our method is related to several previous
methods. HBOS (Goldstein & Dengel, 2012) and LODA (Pevnỳ, 2016) also used similar projection
features for anomaly detection. Yet, these methods perform histogram-based density estimation by
ignoring the dependency across projections. As they can only be applied to a single element, they do
not achieve competitive performance for time series AD. Rocket/mini-rocket (Dempster et al., 2020;
2021) also average projection features across windows but do not tackle anomaly detection nor do
they apply to image data.

B FULL RESULTS TABLES

The full table image logical anomaly detection experiments can be found in Tab.4. The full table for
the time series anomaly detection experiments can be found in Tab.5.

C UEA RESULTS WITH STANDARD ERRORS

We present an extended version of the UEA results including error bounds for our method and
baselines that reported them. The difference between the methods is significantly larger than the
standard error.

D SET DESCRIPTOR COMPARISON

Clustering-based set descriptors. We compare our histogram-based approach to the VLAD and
Bag-of-Features approaches. It can be seen that while effective, they still underperform our method.
We do not report the results on Fisher-Vectors as the underlying GMM model (unlike K-means)
requires unfeasible computational resources with our set dimensions. Taken together, it seems that the
underlying clustering assumption does not fit the sets we wish to describe as well our set descriptors
(we report in Tab.7 the results for C = 100 cluster, but this result persists when we varied the number
of clusters).

kNN versus distance to the mean. We found that using the Gaussian model only to whiten the data
and taking the distance to the 1 nearest neighbors worked better for the MVTec-LOCO dataset (see
Tab.7). The nearest neighbors density estimation algorithm better models the density distribution
when the Gaussian assumption is not an accurate description of the data.

E IMPLEMENTATION DETAILS

Histograms. In practice, we use the cumulative histograms as our set features for both data modalities
(of Sec.3.3).
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Table 4: Anomaly detection on the MVTec-LOCO dataset. ROC-AUC (%).
VM AE VAE f-AG MNAD

L
og

ic
al

A
no

m
al

ie
s Breakfast box 70.3 58.0 47.3 69.4 59.9

Juice bottle 59.7 67.9 61.3 82.4 70.5
Pushpins 42.5 62.0 54.3 59.1 51.7
Screw bag 45.3 46.8 47.0 49.7 60.8
Splicing connectors 64.9 56.2 59.4 68.8 57.6
Avg. Logical 56.5 58.2 53.8 65.9 60.1

St
ru

ct
ur

al
A

no
m

. Breakfast box 70.1 47.7 38.3 50.7 60.2
Juice bottle 69.4 62.6 57.3 77.8 84.1
Pushpins 65.8 66.4 75.1 74.9 76.7
Screw bag 37.7 41.5 49.0 46.1 56.8
Splicing connectors 51.6 64.8 54.6 63.8 73.2
Avg. Structural 58.9 56.6 54.8 62.7 70.2

Avg. Total 57.7 57.4 54.3 64.3 65.1

ST SPADE PCore GCAD SINBAD

L
og

ic
al

A
no

m
al

ie
s Breakfast box 68.9 81.8 77.7 87.0 97.7 ± 0.2

Juice bottle 82.9 91.9 83.7 100.0 97.1 ± 0.1
Pushpins 59.5 60.5 62.2 97.5 88.9 ± 4.1
Screw bag 55.5 46.8 55.3 56.0 81.1 ± 0.7
Splicing connectors 65.4 73.8 63.3 89.7 91.5 ± 0.1
Avg. Logical 66.4 71.0 69.0 86.0 91.2 ± 0.8

St
ru

ct
ur

al
A

no
m

. Breakfast box 68.4 74.7 74.8 80.9 85.9 ± 0.7
Juice bottle 99.3 84.9 86.7 98.9 91.7 ± 0.5
Pushpins 90.3 58.1 77.6 74.9 78.9 ± 3.7
Screw bag 87.0 59.8 86.6 70.5 92.4 ± 1.1
Splicing connectors 96.8 57.1 68.7 78.3 78.3 ± 0.3
Avg. Structural 88.3 66.9 78.9 80.7 85.2 ± 0.7

Avg. Total 77.4 68.9 74.0 83.4 88.3 ± 0.7

Table 5: UEA datasets, average ROC-AUC (%) over all classes. (σ presented in Tab. 6)
OCSVM IF LOF RNN ED

EPSY 61.1 67.7 56.1 80.4 82.6
NAT 86.0 85.4 89.2 89.5 91.5
SAD 95.3 88.2 98.3 81.5 93.1
CT 97.4 94.3 97.8 96.3 79.0
RS 70.0 69.3 57.4 84.7 65.4

Avg. 82.0 81.0 79.8 86.5 82.3

DSVDD DAGMM GOAD DROCC NeuTraL Ours

EPSY 57.6 72.2 76.7 85.8 92.6 98.1
NAT 88.6 78.9 87.1 87.2 94.5 96.1
SAD 86.0 80.9 94.7 85.8 98.9 97.8
CT 95.7 89.8 97.7 95.3 99.3 99.7
RS 77.4 51.0 79.9 80.0 86.5 92.3

Avg. 81.1 74.6 87.2 86.8 94.4 96.8

E.1 IMAGE ANOMALY DETECTION

ResNet levels. We use the representations from the 3rd and 4th blocks of a WideResNet50×2 (resulting
in sets size 7× 7 and 14× 14 elements, respectively). We also use all the raw pixels in the image
as an additional set (resized to 224× 224 elements). The total anomaly score is the average of the
anomaly scores obtained for the set of 3rd ResNet block features, the set of 4th ResNet block features,
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Table 6: UEA datasets, average ROC-AUC (%) over all classes including error bounds
OCSVM IF LOF RNN LSTM-ED

EPSY 61.1 67.7 56.1 80.4 ± 1.8 82.6 ± 1.7
NAT 86 85.4 89.2 89.5 ± 0.4 91.5 ± 0.3
SAD 95.3 88.2 98.3 81.5 ± 0.4 93.1 ± 0.5
CT 97.4 94.3 97.8 96.3 ± 0.2 79.0 ± 1.1
RS 70 69.3 57.4 84.7 ± 0.7 65.4 ± 2.1

Avg. 82.0 81.0 79.8 86.5 82.3

DeepSVDD DAGMM GOAD DROCC NeuTraL Ours

EPSY 57.6 ± 0.7 72.2 ± 1.6 76.7 ± 0.4 85.8 ± 2.1 92.6 ± 1.7 98.1 ± 0.3
NAT 88.6 ± 0.8 78.9 ± 3.2 87.1 ± 1.1 87.2 ± 1.4 94.5 ± 0.8 96.1 ± 0.1
SAD 86.0 ± 0.1 80.9 ± 1.2 94.7 ± 0.1 85.8 ± 0.8 98.9 ± 0.1 97.8 ± 0.1
CT 95.7 ± 0.5 89.8 ± 0.7 97.7 ± 0.1 95.3 ± 0.3 99.3 ± 0.1 99.7 ± 0.1
RS 77.4 ± 0.7 51.0 ± 4.2 79.9 ± 0.6 80.0 ± 1.0 86.5 ± 0.6 92.3 ± 0.3

Avg. 81.1 74.6 87.2 86.8 94.4 96.8

Table 7: MVTec-LOCO ablation: using no raw-pixels level. ROC-AUC (%).
Mahalanobis (dist. to µ) BoF VLAD Ours

Breakfa. 93.6 84.7 87.9 97.6
Juice bo. 91.6 93.8 97.5 97.0
Pushpins 79.9 78.2 79.1 88.6
Screw b. 68.2 69.9 64.1 81.7
Splicing. 78.2 85.0 89.7 91.1

Average 82.3 82.3 83.7 91.2

and the set of raw pixels. The average anomaly score is weighted by the following factors (1, 1, 0.1)
respectively (see App.F for our robustness to the choice of weighting factor).

Parameters. For the image experiments, we use histograms of K = 5 bins and r = 1000 projections.
For the raw-pixels layer, we used a projection dimension of r = 10 and no whitening due to the low
number of channels. To avoid high variance between runs, we did 32 different repetitions for the
raw-pixel scoring and used the median. We use k = 1 for the kNN density estimation.

Preprocessing. Before feeding each image sample to the pre-trained network we resize it to 224×224
and normalize it according to the standard ImageNet mean and variance.

Considering that classes in this dataset are provided in different aspect ratios, and that similar objects
may look different when resized to a square, we found it beneficial to pad each image with empty
pixels. The padded images have a 1 : 1 aspect ratio, and resizing them would not change the aspect
ratio of the featured objects.

Software. For the whitening of image features we use the ShrunkCovariance function from the
scikit-learn library Pedregosa et al. (2011) with its default parameters. For kNN density estimation
we use the faiss library Johnson et al. (2019).

Computational resources. The experiments were run on a single RTX2080-GT GPU.

E.2 TIME SERIES ANOMALY DETECTION

Padding. Prior to window extraction, the series x is first right and left zero-padded by τ
2 to form

padded series x′. The first window w1 is defined as the first τ observations in padded series S′,
i.e. w1 = x′

1, x
′
2..x

′
τ . We further define windows at higher scales W s, which include observations

sampled with stride c. At scale c, the original series x is right and left zero-padded by c·τ
2 to form

padded series S′c.
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Table 8: Robustness to the choice of λ. Average ROC-AUC (%) on logical anomalies classes.
λ 0.2 0.1 (Ours) 0.05 0.02

90.2 91.2 91.4 90.7

Table 9: MVTec-LOCO ablation: using no raw-pixels level. ROC-AUC (%).
Sim. Avg. No Proj. No Whit. Ours

Breakfa. 84.6 91.7 95.9 97.0
Juice bo. 98.0 97.3 97.5 96.2
Pushpins 63.5 69.3 73.4 73.7
Screw b. 65.0 68.2 72.5 77.5
Splicing. 87.4 84.5 87.9 85.9

Average 79.7 82.2 85.5 86.1

UEA Experiments. We used each time series as an individual training sample. We chose a kernel
size of 9, 100 projection, 20 quantiles, and a maximal number of levels of 10. The results varied
only slightly within a reasonable range of the hyperparameters e.g. using 5, 10, 15 levels yielded an
average ROCAUC of 97, 96.8, 96.8 across the five UEA datasets.

Spoken Arabic Digits processing We follow the processing of the dataset as done by Qiu et al. Qiu
et al. (2021). In private communications the authors explained that only sequences of lengths between
20 and 50 time steps were selected. The other time series were dropped.

Computational resources. The experiments were run on a modest number of CPUs on a computing
cluster. The baseline methods were run on a single RTX2080-GT GPU

E.3 LICENSE:

The package faiss Johnson et al. (2019) used for kNN ”MIT License”.

F LOGICAL ANOMALY DETECTION ROBUSTNESS

We check the robustness of our results for the parameter λ - the weighting between the raw-pixels
level anomaly score to the anomaly score derived from the ResNet features (Sec.5.3). As can be seen
in Tab.8, our results are robust to the choice of λ.

G FURTHER IMAGE ANOMALY DETECTION ABLATION

Density estimation with histogram ablation. We compare our method for density estimation of the
elements collection as explained in Sec.5.4. We evaluate these methods using the 3rd and 4th ResNet
blocks, as the raw pixels level adds significant variance over shading the difference between some of
the alternatives. While ablation may give stronger results in specific cases, our set approach (instead
of the feature average as in Fig.2) together with the random projections and whitening generally
outperforms.

Ablating the number of bins and the number of projections. While generally we would like to have
as many random projections as possible; and a large number of bins per histogram (as long we
have enough statistics to estimate the occupancy in each of them) we find that in practice the values
we choose are large enough. We show in Tab.10,11 that while significantly lower values in these
parameters degrade our performance, the benefit from using larger values saturates.

H TIME SERIES ANOMALY DETECTION ABLATIONS

Number of projections. Using a high output dimension for projection matrix P increases the
expressively but also increases the computation cost. We investigate the effect of the number of
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Table 10: Ablation for different values of (number of random projection). Average ROC-AUC results
on MVTec-LOCO, logical. K = 5, σ = 0.6 (%).

r 2000 1000 500 200 100

Avg. Logical 91.2 91.2 90.6 89.6 86.1

Table 11: Ablation for different values of K (number of bins). Average ROC-AUC results on
MVTec-LOCO, logical. r = 1000, σ = 0.6 (%).

K 20 10 5 4 3 2

Avg. Logical 91.1 91.3 91.2 91.2 90.8 90.2

projections on the final accuracy of our method. The results are provided in Fig. 5. We can observe
that although a small number of projections hurts performance, even a moderate number of projections
is sufficient. We found 100 projections to be a good tradeoff between performance and runtime.

Number of bins. We compute the accuracy of our method as a function of the number of bins per
projection. Our results ( Fig. 5) show that beyond a very small number of bins - larger numbers are
not critical. We found 20 bins to be sufficient in all our experiments.

Effect of Gaussian density estimation. Standard projection methods such as HBOS Goldstein
& Dengel (2012) and LODA Pevnỳ (2016) do not use a multivariate density estimator but instead
estimate the density of each dimension independently. We compare using a full and per-variable
density estimation in Tab. 12. We can see that our approach achieves far better results, attesting to the
importance of modeling the correlation between projections.

Comparing projection sampling methods. We compare three different projection selection pro-
cedures: (i) Gaussian: sampling the weights in P from a random Normal Gaussian distribution
(ii) Using an identity projection matrix: P = I . (iii) PCA: selecting P from the eigenvectors of
the matrix containing all (raw) features of all training windows. PCA selects the projections with
maximum variation but is computationally expensive. The results are presented in Tab. 13. We find
that the identity projection matrix under-performed the other approaches (as it provides no variable
mixing). Surprisingly, we do not see a large difference between PCA and random projections.

Effect of number of pyramid levels and window size. We ablate the two hyperparameters of the
time-series feature extraction: the number of pyramid windows used L, and the number of samples
per window τ (see Sec.4.2). We find that in both cases the results are not sensitive to the chosen
parameters (Tab.14,15).

I USING THE CENTRAL LIMIT THEOREM FOR SET ANOMALY DETECTION

We model the features of each window f as a normal set as IID observations coming from a probability
distribution function p(f). The distribution function is not assumed to be Gaussian. Using a Gaussian
density estimator trained on the features of elements observed in training is unlikely to be effective
for element-level anomaly detection (due to the non-Gaussian p(f)).

Figure 4: Ablation of accuracy vs. the number of projections (left) and the number of bins (right).
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Table 12: An ablation of projection sampling methods. ROC-AUC (%).
EPSY RS NA CT SAD

No whitening 62.1 70.9 93.6 98.5 78.8
Whitening 98.1 92.3 96.1 99.7 97.8

Table 13: An ablation of projection sampling methods. ROC-AUC (%).
EPSY RS NA CT SAD

Id. 97.1 90.2 91.8 98.2 78.3
PCA 98.2 91.6 95.8 99.7 96.7
Rand 98.1 92.3 96.1 99.7 97.8

Figure 5: Ablation of accuracy vs. the number of projections (left) and the number of bins (right).

Table 14: An ablation of time-series number of pyramid levels. ROC-AUC (%), L = 9.
τ 5 8 10 (Ours) 12 15

Avg. Time-series 96.7 96.9 96.8 96.8 96.7

Table 15: An ablation of time-series window size. ROC-AUC (%), τ = 10.
L 5 7 9 (Ours) 11 13

Avg. Time-series 96.8 96.8 96.8 96.8 96.6
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An alternative formulation to the one presented in section 3, is that each feature f is multiplied by
projection matrix P , and then each dimension is discretized and mapped to a one-hot vector. This
formulation therefore maps the representation of each element to a sparse binary vector. The mean
of the representations of elements in the set recovers the normalized histogram descriptor precisely
(therefore this formulation is equivalent to the one in section 3). As the histogram is a mean of
the set of elements, it has superior statistical properties. In particular, the Central Limit Theorem
states that under some conditions the sample mean follows the Gaussian distribution regardless of the
distribution of windows p(f). While typically in anomaly detection only a single sample is presented
at a time, the situation is different when treating samples as sets. Although the windows are often
not IID, given a multitude of elements, an IID approximation may be approximately correct. This
explains the high effectiveness of Gaussian density estimation in our formulation.
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