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Abstract
Model training requires significantly more mem-
ory, compared with inference. Parameter efficient
fine-tuning (PEFT) methods provide a means of
adapting large models to downstream tasks us-
ing less memory. However, existing methods ei-
ther introduce latency overhead at inference time
or achieve subpar downstream performance com-
pared with full fine-tuning. In this work we pro-
pose Random Orthogonal Subspace Adaptation
(ROSA), a method that exceeds the performance
of previous PEFT methods by a significant mar-
gin, while maintaining a zero latency overhead
during inference time. In contrast to previous
methods, ROSA is able to adapt subspaces of
larger size, without consuming additional mem-
ory during runtime. As PEFT methods are es-
pecially useful in the natural language process-
ing domain. We evaluate ROSA by finetuning
GPT2 on various Natural Language Generation
(NLG) tasks. Our code is publicly available at
github.com/marawangamal/rosa

1. Introduction
The advent of large language models pre-trained on web-
size corpus (PLMs) has led to remarkably performant mod-
els in the natural language processing domain (Brown et al.,
2020; Devlin et al., 2019). As the size of such models
ranges from hundreds of millions to hundreds of billions of
parameters (Touvron et al., 2023), adapting them to down-
stream tasks is challenging (Peng et al., 2023). Compared
with inference, training requires substantially more memory.
For example, a GPT2 model (128M parameters) together
with an input batch of 8 sequences of length 512 requires
670MB and 1139MB during inference and training respec-
tively (Radford et al., 2019).
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Figure 1: Illustration of ROSA. Parameter matrix W is
factorized using SVD and split into smaller trainable ma-
trices (A,B) and a larger fixed matrix (Wf). The split is
then merged after a specified number of training iterations,
and the process is repeated. ROSA updates an increasingly
larger subspace of W over the course of training while re-
maining memory efficient

To alleviate the burdensome memory requirements of adapt-
ing PLMs to downstream tasks, various memory efficient
methods have been proposed (Houlsby et al., 2019; Lin
et al., 2020; Guo et al., 2021; Hu et al., 2021; Li & Liang,
2021; Lester et al., 2021; Sung et al., 2021; Liu et al., 2022).
The commonality among these methods is the maintenance
of fixed PLM weights while introducing a minimal quantity
of trainable parameters. Although solutions like LoRA (Hu
et al., 2021) and Prompt tuning (Li & Liang, 2021) are effec-
tive and do not impose any additional inference latency, they
limit the expressivity of the adapted models. For instance,
LoRA introduces low-rank matrices that are trainable in par-
allel to fixed pretrained weight matrices. Thus the weights
of the adapted model are limited to subspaces whose sizes
are constrained by device memory.

In this work, we propose ROSA, which expands the expres-
sivity of adapted models, while adhering to device memory
constraints. Following a similar principle as in (Hu et al.,
2021), ROSA satisfies memory restrictions by selectively
fine-tuning low-rank matrices in parallel to fixed pretrained
weight matrices. At the same time, to increase the expressiv-
ity of the adapted model, different subspaces are resampled
throughout training. This process is depicted in Figure 1.
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Under equivalent memory restrictions, ROSA surpasses
preceding techniques like LoRA, as it effectively modifies
larger subspaces. Just like LoRA, ROSA carries a significant
advantage by introducing no additional latency overhead
during inference. In addition, ROSA provides a significant
training speedup compared with a full finetuning baseline.

2. Related Work
Parameter Efficient Finetuning (PEFT) defines a class of
methods to alleviate memory and compute requirements dur-
ing adaptation of large models to downstream tasks. Adapter
layers such as in (Houlsby et al., 2019) introduce layers in
each transformer block, which necessarily leads to a latency
overhead.

Prompt tuning is an efficient means of adapting models
via continuous optimization of prefixes added to input
prompts (Li & Liang, 2021; Lester et al., 2021; Liu et al.,
2022). While such approaches are memory efficient, they
require reserving a portion of the available sequence length
during downstream adaptation. Moreover, prompt tuning
methods can be challenging to optimize as pointed out
in (Hu et al., 2021).

Other notable approaches include (Ben Zaken et al.,
2022) which freezes all parameters except bias terms, and
FISH (Sung et al., 2021) which optimizes a sparse difference
vector to be summed with the original model parameters.

Our work is most similar to LoRA (Hu et al., 2021),
which has been shown to outperform the aforementioned
approaches and to mitigate limitations such as increased
inference latency and reduced sequence length capacity.

3. Method
In this section we describe our proposed approach, ROSA:
Random Orthogonal Subspace Adaptation. Our overarching
goal is to finetune large models in a memory constrained
setting, while remaining competitive with full finetuning.

3.1. ROSA

In LoRA (Hu et al., 2021), low rank matrices that are train-
able are added in parallel to fixed pretrained weight ma-
trices. The rank of the matrices is typically chosen such
that the training procedure satisfies device memory con-
straints. However, constraining the updates to a fixed low
rank subspace limits the adapted model’s expressivity. Thus,
we decouple the adapted model’s expressivity from device
memory constraints by sampling new subspaces throughout
the training procedure.

Crucially, to avoid losing progress throughout training,
newly sampled low rank matrices are initialized using pa-

Table 1: Runtime of one training epoch of finetuning of
GPT2-S (128M parameters), using ROSA and LoRA on a
single GPU (Quadro RTX 8000) with an input batch of 8
sequences of length 512.

Model Latency (s)
Baseline 657
LoRA 333
ROSA 332

rameters from the fixed weight matrices, by decomposing
weight matrices using SVD (other approaches such as QR
decomposition could equivalently be used). In more detail,
given a model with parameter matrices W(k)

2 Rm(k)⇥n(k)

,
a subspace sampling step consists of factorizing weight ma-
trices using SVD,

W(k) = U(k)
R0 ⌃

(k)
R0 V

(k)>
R0 +U(k)

R00⌃
(k)
R00V

(k)>
R00 , (1)

where RANK(W(k)) = R0 + R00. After sampling the sub-
space, training is performed with the gradients computed
only with respect to the R00 subspace which consists of
R00(m(k)+n(k)) parameters. In contrast, full fine-tuning re-
quires optimizing m(k)n(k) parameters. Thus, ROSA leads
to a reduction of trainable parameters ⇢train given by

⇢train =
m(k)n(k)

R00(m(k) + n(k))
. (2)

We explore two different strategies for selecting the sub-
space used during training: selecting the subspace spanned
by (i) random selection of singular vectors and (ii) selec-
tion of singular vectors corresponding to the R00 smallest
singular values.

Though each subspace sampling step is expensive,
O(max(n(k),m(k))3), it is only performed once every
epoch. In practice the sample step adds negligible time
to the training procedure as shown in Table 1.

3.2. Memory efficiency

In contrast to inference, training necessitates considerably
more memory usage. During inference, each parameter
requires 4 bytes of storage (assuming single precision arith-
metic). Meanwhile, additional memory is consumed during
training for storing gradients (4 bytes per parameter), inter-
nal states of momentum-based optimizers like ADAM (8
bytes per parameter) and intermediate activations used in
back-propagation.

Thus, by optimizing only a smaller subspace of parameters
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(a) Validation set bits per character (BPC) training curves of ROSA
and LoRA. Different ranks for trainable parameter matrices are
used, and are conveyed as ratios of the rank used compared with
the baseline (full rank during full finetuning)

(b) Validation set bits per character (BPC) training curves of ROSA,
using different sampling strategies.

Figure 2: Finetuning of GPT2-S on the E2E dataset

we reduce the training memory burden of parameters by:

4⇢train

1 + ⇢train
(3)

Equation (3) approaches 4, as ⇢train increases, giving us
an upper bound of 4⇥ memory reduction. In our analysis,
typically ⇢train 2 [5, 50].

3.3. LoRA as a special case of ROSA

Low Rank Adaption (LoRA) introduces trainable parame-
ters in the form of low-rank matrices added in parallel to
original matrices, during the fine-tuning stage (Hu et al.,
2021). That is, given a model with parameter matrices
W(k), LoRA replaces these matrices with

Figure 3: Validation set bits per character (BPC) training
curves of ROSA and LoRA finetuning of GPT2-S on the
ELI5 dataset. Different ranks for trainable parameter ma-
trices are used, and are conveyed as ratios of the rank used
compared with the baseline (full rank during full finetuning)

cW(k) = W(k) +A(k)B(k). (4)

where A(k)
2 Rm(k)⇥R and A(k)

2 RR⇥n(k)

. Our formula-
tion in (1) bears close resemblance to (4). ROSA can be seen
as a generalization of LoRA with sampling only conducted
once. Different from LoRA, ROSA splits weight matrices
into two orthogonal subspaces, one of which is used to ini-
tialize the weights of the trainable matrices. In contrast,
LoRA updates a subspace that is initialized randomly and
spanned by columns of the fixed parameter matrix.

3.4. Limitations of ROSA

While ROSA achieves better performance than previous
state-of-the-art adaptation methods such as LoRA, it bears
one main limitation compared with other methods. Namely,
it requires storage of the whole model after it is adapted for
a downstream task.

Other adapter methods try to simultaneously address two
challenges (1) reducing memory usage during training, to
ease the hardware barrier when adapting large models to a
single downstream task and (2) reducing disk space usage
when adapting a base model to many downstream tasks.

In contrast, ROSA focuses only on the former problem.
Therefore, ROSA is better suited for use cases targetting a
single downstream task, while other PEFT methods might
be more suitable when targeting many downstream tasks.
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Table 2: GPT2 (128M parameters) finetuned using LoRA
and ROSA on the E2E NLG dataset. ROSA outperforms
LoRA in perplexity at various levels of compressed training

Model # Trainable PPL #
Parameters

GPT2-S (FT) 124M 1.70
GPT2-S (LoRA) 1.3M 3.51
GPT2-S (LoRA) 2.8M 3.51
GPT2-S (LoRA) 5.6M 3.54
GPT2-S (LoRA) 11.2M 3.64
GPT2-S (ROSA) 1.4M 3.50
GPT2-S (ROSA) 2.9M 3.02
GPT2-S (ROSA) 5.7M 2.46
GPT2-S (ROSA) 11.3M 2.19
GPT2-M (FT) 354M 1.52
GPT2-M (LoRA) 4.7M 2.63
GPT2-M (LoRA) 9.8M 2.68
GPT2-M (LoRA) 20.1M 2.68
GPT2-M (LoRA) 40.1M 2.87
GPT2-M (ROSA) 4.9M 2.91
GPT2-M (ROSA) 10.1M 2.51
GPT2-M (ROSA) 20.3M 2.18
GPT2-M (ROSA) 40.3M 1.93
GPT2-L (FT) 774M 1.34
GPT2-L (LoRA) 11.8M 1.83
GPT2-L (LoRA) 23.6M 1.85
GPT2-L (LoRA) 47.2M 1.86
GPT2-L (LoRA) 94.4M 1.86
GPT2-L (ROSA) 12.2M 2.28
GPT2-L (ROSA) 24.0M 2.01
GPT2-L (ROSA) 47.6M 1.79
GPT2-L (ROSA) 94.8M 1.60

4. Experiments
We evaluate the finetuning performance of ROSA on GPT2
variants (124 - 774 M parameters), for two Natural Lan-
guage Generation (NLG) tasks. Namely, generating text
using the E2E NLG (Novikova et al., 2017) and ELI5 (Fan
et al., 2019) datasets. In our experiments, we sample new
ROSA subspaces once per epoch. Our implementation uses
the huggingface transformers library (Wolf et al., 2020). We
finetune all models for 5 epochs using stochastic gradient
descent with an initial learning rate of 2e-4, a linear learning
rate schedule, 500 warmup steps and a batch size of 8.

4.1. Language Modelling with the E2E Dataset

We conducted a comparative analysis between ROSA and
LoRA in terms of their finetuning performance, as shown
in Table 2. Notably, ROSA consistently outperforms LoRA
with a significant margin in terms of perplexity. For ex-
ample, ROSA achieves a +1.4 improvement in perplexity
over LoRA for the finetuning of GPT2-S with 11M train-
able parameters. Additionally, the training curves depicted
in Figure 2a demonstrate that increasing the rank of the

Table 3: GPT2 (128M parameters) finetuned using LoRA
and ROSA on the ELI5 NLG dataset. ROSA outperforms
LoRA in perplexity at various levels of compressed training

Model # Trainable PPL #
Parameters

GPT2-S (FT) 124.4M 5.26
GPT2-S (LoRA) 1.3M 5.50
GPT2-S (LoRA) 2.8M 5.59
GPT2-S (LoRA) 5.6M 5.50
GPT2-S (LoRA) 11.2M 5.73
GPT2-S (ROSA) 1.4M 5.42
GPT2-S (ROSA) 2.9M 5.38
GPT2-S (ROSA) 5.7M 5.35
GPT2-S (ROSA) 11.3M 5.31

trainable matrix benefits ROSA, whereas LoRA does not
exhibit the same advantage. This observation aligns with the
findings reported by the authors of LoRA (Hu et al., 2021).

4.2. Language modelling with the ELI5 NLG dataset

We further compare the finetuning performance between
ROSA and LoRA on the ELI5 dataset. Looking at Table 3,
we observe once more that (i) ROSA consistently outper-
forms LoRA and (ii) ROSA benefits from increasing rank,
whereas the performance of LoRA remains relatively con-
stant.

4.3. Empirical evaluation of subspace selection
strategies

We now compare the two approaches proposed in Sec-
tion 3.1 for subspace selection. Namely, we compare se-
lection of spanning singular vectors at random compared
with selecting singular vectors with lowest corresponding
singular values. Figure 2b illustrates that random selection
consistently outperforms the explicit selection scheme. For
this reason, all other experiments use a random sampling
strategy.

5. Conclusion & Future Work
In this work we explored ROSA, a memory efficient fine-
tuning method that does not limit expressiveness of adapted
models. We demonstrated that ROSA consistently outper-
forms LoRA and also attains better performance with in-
creasing rank (a property that is absent in LoRA). In future
work we aim to explore properties of the effective subspaces
updated by ROSA. Additionally, we plan to perform more
comprehensive experiments by using larger models and as-
sessing ROSA on Natural Language Understanding (NLU)
benchmarks.
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