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Abstract001

There is increasing evidence of Human Label002
Variation (HLV) in Natural Language Inference003
(NLI), where annotators assign different labels004
to the same premise-hypothesis pair. However,005
within-label variation – cases where annota-006
tors agree on the same label but provide diver-007
gent reasoning – poses an additional and mostly008
overlooked challenge. Several NLI datasets009
contain highlighted words in the NLI item as ex-010
planations, but the same spans on the NLI item011
can be highlighted for different reasons, as evi-012
denced by free-text explanations, which offer a013
window into annotators’ reasoning. To system-014
atically understand this problem and gain in-015
sight into the rationales behind NLI labels, we016
introduce LITEX, a linguistically-informed tax-017
onomy for categorizing free-text explanations.018
Using this taxonomy, we annotate a subset of019
the e-SNLI dataset, validate the taxonomy’s re-020
liability, and analyze how it aligns with NLI021
labels, highlights, and explanations. We further022
assess the taxonomy’s usefulness in explana-023
tion generation, demonstrating that condition-024
ing generation on LITEX yields explanations025
that are linguistically closer to human expla-026
nations than those generated using only labels027
or highlights. Our approach thus not only cap-028
tures within-label variation but also shows how029
taxonomy-guided generation for reasoning can030
bridge the gap between human and model ex-031
planations more effectively than existing strate-032
gies.033

1 Introduction034

Natural Language Inference (NLI), a cornerstone035

task in Natural Language Processing (NLP), has036

inspired extensive research on human disagreement037

and model interpretability. A key focus of recent038

work has been Human Label Variation (HLV, Plank039

2022) — cases in which annotators assign differ-040

ent labels to the same premise-hypothesis pair (Nie041

et al., 2020b; Jiang et al., 2023; Weber-Genzel et al.,042

Premise: A man in an Alaska sweatshirt stands behind a 
counter.
Hypothesis: The man is wearing a tank top.

Explanation 1: The man cannot simultaneously be 
wearing a sweatshirt and a tank top.
Explanation 2: A man in Alaska would typically not be 
wearing a tank top, as it is rather cold there most times 
of the year.
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Different highlights

Premise: A crowd is watching a group of men in suits 
with briefcases walk in formation down the street led by 
a woman holding a sign.

Hypothesis: The sign the woman is holding states that 
'Freedom is free'.

Explanation 1: it doesn' t tell you what the sign says.

Explanation 2: There's no explanation that the sign the 
woman is holding state that "Freedom is free".

Different explanations

Same explanation

Same highlight

Example A

Example B

Figure 1: Our LITEX taxonomy reveals within-label
variation not captured by highlights: the same highlights
can yield different explanations (Example B), and vice
versa (Example A).

2024). This variation has been acknowledged as 043

a reflection of subjective judgment (Cabitza et al., 044

2023) and linguistic ambiguity (de Marneffe et al., 045

2012; Uma et al., 2022). Comparatively, the is- 046

sue of within-label variation (Jiang et al., 2023) 047

– cases where annotators agree on the same label, 048

yet provide different explanations or rationales for 049

their decision – has received less attention. Such 050

variation reveals the plurality of valid reasoning 051

strategies and highlights the richness of human in- 052

ference beyond label selection. 053

Free-text explanations offer a rich perspective 054

on reasoning variation. However, their open-ended 055

form makes it difficult to extract information that 056

is directly useful for downstream analysis. As a 057

result, structured formats are often used when col- 058

lecting human explanations. Highlights are one 059

such mechanism (Tan, 2022). Jiang et al. (2023) 060

1



acknowledge that textual highlight spans alone are061

insufficient to capture deeper reasoning distinctions062

including within-label variation, especially when063

explanations focus on different parts of the input or064

rely on different assumptions. As illustrated in Fig-065

ure 1, two explanations in Example B may share the066

same highlighted spans (here sweatshirt and tank067

top) but reflect different reasoning strategies (one068

annotator focuses on the fact that sweatshirt and069

tank top are not typically worn together, whereas070

the other says that one does not wear a tank top071

in Alaska); or conversely, different highlights may072

convey essentially the same explanation, as seen in073

Example A.074

To address this gap, (1) we introduce LITEX, a075

LInguistic Taxonomy of EXplanations for under-076

standing within-label variation in natural language077

Inference. (2) We validate our taxonomy through078

human inter-annotator agreement and model-based079

classification. We further analyze its alignment080

with NLI labels and quantify within-label variation081

by examining category distribution and their sim-082

ilarity—demonstrating the taxonomy’s ability to083

capture different types of explanations. (3) While084

human explanations are costly, LLMs offer a scal-085

able alternative for generating explanations in NLI086

(Chen et al., 2024a). Through generation experi-087

ments, we demonstrate that taxonomy-based guid-088

ance provides a more effective signal for LLMs089

than highlight-based prompts.090

2 Related Work091

Explaining NLI Labels Explanations play a cru-092

cial role in making NLI decisions interpretable. As093

Tan (2022) highlights, explanations vary in form094

and quality, and improving their usefulness requires095

distinguishing between different explanation types096

and recognizing human limitations in producing097

them. Among existing methods, token-level high-098

lights serve as a proxy for explanations, guiding an-099

notators to mark relevant spans that support their la-100

bel choice. Several NLI datasets provide such anno-101

tations (including free-text explanations also), col-102

lected either during labeling (e.g., LiveNLI (Jiang103

et al., 2023) and ANLI (Nie et al., 2020a)) or post-104

hoc (e.g., e-SNLI (Camburu et al., 2018)). Here,105

we focus on both types of explanations (free-text106

and highlights) from e-SNLI.107

Taxonomies of Variation in NLI In the context108

of NLI, earlier taxonomies focused on categorizing109

the kind of inferences present in NLI items (Sam-110

mons et al., 2010; Simons et al., 2011; LoBue and 111

Yates, 2011). Later work proposed a taxonomy 112

that identifies characteristics of the items that can 113

cause variation in annotation (Jiang and de Marn- 114

effe, 2022). Jiang et al. (2023) shifted the focus 115

from the NLI items, collecting free-text explana- 116

tions provided by the annotators themselves, ap- 117

plying Jiang and de Marneffe (2022)’s taxonomy 118

to the explanations. Our work builds on this direc- 119

tion by proposing a taxonomy of explanations for 120

instances that share the same NLI label, aiming to 121

capture within-label variation in reasoning. Com- 122

pared to Jiang et al. (2023), our taxonomy is thus 123

grounded in the explanations. It also makes world 124

knowledge in NLI reasoning explicit. 125

LLM-Based Explanation Generation Recent 126

studies explored the use of LLMs to generate 127

natural language explanations across a range of 128

NLP tasks, aiming to improve transparency and 129

support downstream analysis. Li et al. (2024) 130

proposed prompting LLMs to generate chain-of- 131

thought (CoT) explanations to improve the perfor- 132

mance of small task-specific models. Huang et al. 133

(2023) investigated whether LLMs could generate 134

faithful self-explanations to justify their own pre- 135

dictions during inference. 136

In NLI, Jiang et al. (2023) employed GPT-3 to 137

generate post-prediction explanations (predict-then- 138

explain) and found this strategy to outperform CoT 139

prompting. Chen et al. (2024a) showed that LLMs 140

can effectively generate explanations to approxi- 141

mate human judgment distribution, offering a scal- 142

able and cost-efficient alternative to manual anno- 143

tation. Building on this line of work, we use our 144

proposed taxonomy to guide LLM prompting for 145

more informative and human-aligned explanations. 146

3 LITEX: Linguistically-informed 147

Taxonomy of NLI Reasoning 148

To systematically capture the different types of rea- 149

soning strategies underlying within-label variation 150

in NLI, we propose LITEX, a LInguistic Taxonomy 151

of EXplanation classification, focusing strictly on 152

the reasoning explicitly stated in the explanations. 153

3.1 Taxonomy Categories 154

LITEX organizes explanations into two broad cate- 155

gories based on their reliance on textual evidence 156

or external knowledge, as shown in Table 1. 157

The first broad category, Text-Based (TB) Rea- 158

soning, includes explanations that depend solely 159
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Text-Based Reasoning (TB)

Coreference Q: Does the explanation rely on resolving coreference between entities?
Check: Determine whether the main entities in the premise and hypothesis refer to the same real-world

referent, including via pronouns or phrases.

Syntactic Q: Does the explanation involve a change in sentence structure that preserves meaning?
Check: Determine whether the premise and hypothesis differ in structure, such as active vs. passive,

reordered arguments, or coordination/subordination, while preserving the same meaning.

Semantic Q: Does the explanation involve semantic similarity or substitution of key concepts?
Check: Evaluate whether core words or expressions - including verbs, nouns, and adjectives - are semanti-

cally related between the premise and hypothesis. This includes synonymy, antonymy, lexical
entailment, or category membership.

Pragmatic Q: Does the explanation rely on pragmatic cues like implicature or presupposition?
Check: Look for meaning beyond the literal text - including implicature, presupposition, speaker intention,

and conventional conversational meaning.

Absence
of Mention

Q: Does the explanation point out information not mentioned in the premise?
Check: Check whether the hypothesis introduced information that is neither supported nor contradicted

by the premise - i.e., it is not mentioned explicitly.

Logical
Structure
Conflict

Q: Does the explanation refer to logical constraints or conflict?
Check: Evaluate whether the hypothesis interacts with the premise via logical structures, such as exclusiv-

ity, quantifiers (“only”, “none”), or conditionals, which constrain or conflict with each other.

World Knowledge-Based Reasoning (WK)

Factual
Knowledge

Q: Does the explanation rely on widely shared, intuitive facts acquired through everyday experience?
Check: Determine whether the explanation invokes commonly known facts, such as physical properties

or universal experiences, that are not stated in the premise.

Inferential
Knowledge

Q: Does the explanation rely on real-world norms, customs, or culturally grounded reasoning?
Check: Determine whether the explanation requires reasoning based on general world knowledge, in-

cluding cultural expectations, social norms, or typical causal inferences, that are not stated in the
premise.

Table 1: Guiding questions and decision criteria for our LITEX taxonomy.

on surface-level linguistic evidence found within160

the premise and hypothesis, without appealing to161

world knowledge. Six subtypes are defined: Coref-162

erence, Syntactic, Semantic, Pragmatic, Absence163

of Mention and Logical Structure Conflict.164

The second category, World-Knowledge (WK)165

Reasoning, includes explanations that invoke back-166

ground knowledge or domain-specific information167

beyond what is explicitly stated in the text. Fac-168

tual knowledge refers to widely shared, intuitive169

facts acquired through everyday experience, such170

as fire is hot. Inferential knowledge involves cultur-171

ally or contextually grounded understanding, such172

as recognizing that wearing white to a funeral is173

inappropriate (a norm that varies across cultures)174

(Davis, 2017; Ilievski et al., 2021).175

Table 1 presents guiding questions and decision176

criteria for each taxonomy category to help anno-177

tators identify the reasoning behind explanations.178

These questions, along with illustrative examples179

in Appendix A, clarify the conceptual boundaries180

between categories. For example, to distinguish181

between Logical Structure Conflict and Semantic,182

consider the following two explanations: (a) A man183

cannot be both tall and short at the same time and 184

(b) Tall and short are not the same. Explanation 185

(a) reflects a logical inconsistency, pointing to the 186

mutual exclusivity of properties, and thus labeled 187

as Logical Structure Conflict, whereas explanation 188

(b) highlights lexical contrast or antonymy without 189

explicit logical reasoning, and thus Semantic. 190

3.2 Taxonomy Annotation 191

We randomly selected a subset (1,002 items) of the 192

e-SNLI dataset, in which each item received three 193

post-hoc human-written explanations accompanied 194

by highlights. We conduct LITEX annotations on 195

these explanations. To better capture distinct rea- 196

soning strategies, we manually segment the long 197

explanations that potentially include multiple infer- 198

ences into shorter ones. As a result, the original 199

3,006 explanations are expanded to 3,108. One 200

trained annotator applied LITEX to these 3,108 ex- 201

planations (and the associated premise, hypothesis, 202

and NLI label are provided as context), labeling 203

each with one of the eight categories. 204
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Classifiers Acc P R F1

Random Baseline 12.5 11.8 10.8 10.2
Majority Baseline 31.3 3.9 12.5 6.0

BERT-base 70.2 60.5 57.9 57.8
RoBERTa-base 68.9 48.4 53.4 50.4

Llama-3.2-3B-Instruct 35.7 44.0 35.7 29.1
gpt-3.5-turbo 30.5 31.7 30.5 26.2
gpt-4o 58.3 55.0 54.8 49.2
DeepSeek-v3 52.6 51.9 56.3 47.8

Table 2: Taxonomy classification results (%) on LITEX-
SNLI. Fine-tuning methods are evaluated with a 50/50
data split; Prompt-based methods use taxonomy de-
scriptions with two examples per category. P(recision),
R(ecall), and F1 are at the macro-level.

3.3 Taxonomy Validation205

To validate the consistency and generalizability of206

our LITEX taxonomy, we provide human inter-207

annotator agreement (IAA) and benchmark experi-208

ments on automatic explanation classification.209

IAA We assess the consistency of our human an-210

notations by calculating IAA on a subset of the211

e-SNLI explanations, separate from LITEX-SNLI212

used in our main experiments. Two annotators, the213

one from the initial phase and one newly recruited,1214

annotated 201 explanations from 67 extra e-SNLI215

items, using the proposed taxonomy. The agree-216

ment is high (Cohen’s k of 0.862), suggesting that217

the taxonomy can be applied consistently between218

annotators. Appendix B includes the confusion219

matrix and per-category agreement.220

Taxonomy Classification To validate the taxon-221

omy and test its usefulness for automated classifica-222

tion, we fine-tuned two pre-trained language mod-223

els, BERT-base-uncased (Devlin et al., 2019) and224

RoBERTa-base (Liu et al., 2019), to classify expla-225

nations in LITEX-SNLI to the annotated LITEX226

categories. We also few-shot prompt 4 generative227

AI models: Llama-3.2-3B-Instruct (Meta, 2024),228

GPT-3.5-turbo (Brown et al., 2020), GPT-4o (Ope-229

nAI et al., 2024) and DeepSeek-v3 (DeepSeek-AI230

et al., 2025); see Appendix C for details.231

Table 2 gives the classification results. BERT-232

base and RoBERTa-base achieve strong results on233

this 8-way classification task, with macro-F1 scores234

of 57.8% and 50.4%, and accuracies of 70.2% and235

68.9%, respectively. These results substantially236

surpass both a random baseline of 12.5% and a237

majority-class baseline of 31.3% (based on the238

1Both are trained and paid according to national standards.
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Figure 2: Distribution of LITEX categories on LITEX-
SNLI explanations across NLI labels (n = 3,108).

Category
#

Entailment
# (%)

Neutral
# (%)

Contradiction
# (%)

Total

1 76 (22.0) 171 (52.3) 142 (43.0) 389
2 179 (51.9) 139 (42.5) 156 (47.3) 474
≥ 3 90 (26.1) 17 (5.1) 32 (9.7) 139

Table 3: Distribution of NLI items that receive 1, 2, or
>=3 LITEX categories on their explanations (n = 1,002).

dominant category, Inferential Knowledge), em- 239

phasizing the benefits of task-specific supervision. 240

LLMs, when prompted with detailed taxonomy de- 241

scriptions and illustrative examples, also perform 242

better than random and majority-class baselines, 243

further confirming our taxonomy’s learnability. 244

In sum, the findings suggest that the proposed 245

taxonomy is learnable, reinforcing its applicability 246

for both annotation and LLM-based reasoning. 247

3.4 Taxonomy Analysis 248

Co-occurrence of Explanation Categories and 249

NLI Labels Figure 2 plots the distribution of 250

our explanation categories and their co-occurrence 251

with NLI labels. We observe that different expla- 252

nation categories show distinct distributions over 253

NLI labels. Logical Structure Conflict is dominated 254

by contradiction, because this category focuses on 255

capturing logical inconsistency. Syntactic, Seman- 256

tic, and Pragmatic are primarily associated with 257

entailment, suggesting that these reasoning types 258

tend to support alignment. Factual Knowledge and 259

Inferential Knowledge are more evenly distributed 260

across the labels, since world knowledge could be 261

involved in different inference scenarios. Lastly, 262

Absence of Mention aligns strongly with neutral, 263

consistent with its reliance on unstated information. 264

Within-label Variation Table 3 gives the counts 265

of our 1,002 NLI items for which the three (or 266

more) explanations were annotated with 1, 2, or 267
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Figure 3: Boxplot of explanation similarities grouped
by number of LITEX categories on an NLI item.

≥ 3 LITEX categories (cf. §3.2 for explanation268

segmentation). These counts show that within-label269

variation is prevalent in e-SNLI, e.g., 613 out of270

1,002 (61.2%) items received more than one taxon-271

omy category across explanations.272

To quantify it further, we compute pairwise sim-273

ilarity between the explanations for each NLI item274

using standard metrics, following Giulianelli et al.275

(2023) and Chen et al. (2024a). These include lexi-276

cal (word n-gram overlap), morphosyntactic (POS277

n-gram overlap), and semantic similarity (Cosine278

and Euclidean distance), along with BLEU (Pap-279

ineni et al., 2002) and ROUGE-L (Lin, 2004). Fig-280

ure 3 shows similarity metrics grouped by the num-281

ber of categories in the NLI item’s explanations.282

We observe a clear trend: explanation similarity283

declines as the number of taxonomy categories in-284

creases. Explanations sharing the same taxonomy285

category are more similar, validating the taxon-286

omy’s ability to capture within-label variation.287

Highlights vs. Taxonomy We analyze highlight288

span lengths for different explanation categories289

in Figure 4. On average, premises and hypotheses290

contain 13.81 and 7.41 words. Syntactic expla-291

nations have the longest spans in both, reflecting292

sentence-level understanding. Absence of Mention293

highlights are minimal in premises but more in294

hypotheses, marking new mentions in the hypothe-295

ses. Inferential and Factual Knowledge rely on296

short spans, pointing to external knowledge needs.297

These observations demonstrate that the length of298

highlight spans and distribution vary systematically299

across reasoning types, offering evidence that dif-300

ferent types of reasoning reveal distinct linguistic301

patterns in NLI explanations.302
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Figure 4: Average number of highlighted words in each
premise-hypothesis pair across LITEX categories.

4 Explanation Generation using 303

Taxonomy and Highlight 304

To investigate the interpretability and generalizabil- 305

ity of our taxonomy, particularly in comparison to 306

highlight approaches, we experiment on a practical 307

usage: generating explanations with taxonomy or 308

with highlight annotations. The goal is to generate, 309

for a given NLI item and its label, multiple explana- 310

tions that reflect different plausible reasoning paths. 311

While collecting such varied human-authored ex- 312

planations is expensive—and often infeasible to 313

elicit from a single annotator—LLMs offer a scal- 314

able alternative (Chen et al., 2024a). We discuss 315

various prompting paradigms (§4.1) and measure 316

the similarities between LLM-generated and hu- 317

man explanations (§4.2). 318

4.1 Prompting Paradigms 319

We experiment with three prompting paradigms 320

and evaluate our approach on three instruction- 321

tuned LLMs with different capacities: GPT-4o, 322

DeepSeek-v3, and Llama-3.3-70B-Instruct, with 323

full prompt templates presented in Appendix E. 324

Baseline The model only sees the NLI item 325

(premise and hypothesis) and a label, and generates 326

explanations based on this input. 327

Highlight-Guided Adding to the baseline inputs, 328

we include highlight annotations of the premise and 329

hypothesis—as indices (indexed) or tokens marked 330

by surrounding ** in text (in-text). We ask the 331

LLMs to first predict the highlighted tokens in the 332

premise and hypothesis and subsequently gener- 333

ate relevant explanations. We report results in the 334

indexed setup; see Appendix F for similar in-text 335

setup results and when using e-SNLI highlights. 336

Taxonomy-Guided The model is provided with 337

the taxonomy description (Table 1), one example 338
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Mode Word n-gram POS n-gram Semantic NLG Eval Avg_len
1-gram 2-gram 3-gram 1-gram 2-gram 3-gram Cos. Euc. BLEU ROUGE-L

GPT4o baseline 0.291 0.117 0.049 0.882 0.488 0.226 0.556 0.524 0.051 0.272 24.995
highlight (indexed) 0.402 0.124 0.053 0.878 0.481 0.222 0.554 0.522 0.051 0.269 28.240
taxonomy (two-stage) 0.418 0.128 0.071 0.886 0.495 0.242 0.593 0.537 0.071 0.314 19.991
taxonomy (end-to-end) 0.437 0.166 0.083 0.898 0.511 0.255 0.608 0.540 0.074 0.323 26.672

DeepSeek-v3 baseline 0.369 0.087 0.034 0.847 0.449 0.195 0.428 0.490 0.042 0.245 20.288
highlight (indexed) 0.364 0.091 0.037 0.861 0.450 0.196 0.464 0.499 0.034 0.242 27.301
taxonomy (two stage) 0.391 0.122 0.055 0.884 0.475 0.219 0.544 0.522 0.057 0.293 20.894
taxonomy (end-to-end) 0.404 0.140 0.067 0.897 0.486 0.233 0.556 0.528 0.063 0.306 25.960

Llama-3.3-70B baseline 0.392 0.106 0.044 0.863 0.478 0.224 0.466 0.496 0.046 0.250 27.148
highlight (indexed) 0.317 0.065 0.024 0.807 0.408 0.173 0.367 0.478 0.031 0.199 24.987
taxonomy (two-stage) 0.444 0.167 0.082 0.889 0.512 0.256 0.609 0.541 0.078 0.321 22.340
taxonomy (end-to-end) 0.383 0.110 0.048 0.896 0.499 0.232 0.505 0.510 0.047 0.262 28.870

Table 4: Similarity of LLM-generated explanations to human references.

for each of the eight reasoning categories, and the339

full taxonomy. We experiment with two prompting340

setups: two-stage and end-to-end. The two-stage341

setup separates classification and generation—first342

predicting the taxonomy label for a given NLI item,343

then generating explanations conditioned on it. The344

end-to-end approach performs both steps in a single345

prompt. This comparison addresses concerns that346

end-to-end generation may introduce a bias toward347

certain reasoning categories.348

4.2 Model Generation Results349

We evaluate similarities between LLM- and human-350

generated explanations using the same metrics as in351

§3.4. For each generated explanation, we evaluate352

it against the human-written references individually353

by computing all metrics. We then select the best-354

scoring reference for that explanation and retain its355

score. The score for each NLI item is then obtained356

by averaging over all its generated explanations.357

The final reported result is the average of these358

per-item scores across our entire dataset.359

Table 4 reports our generation results. Notably,360

end-to-end taxonomy prompting performs best on361

GPT-4o and DeepSeek-v3, while two-stage prompt-362

ing yields better performance on Llama 3.3. Across363

all models, taxonomy-guided generation achieves364

higher alignment with human explanations than365

both the baseline and highlight-based approaches.366

This is reflected in higher POS tag n-gram overlap,367

which captures morphosyntactic structural similar-368

ity, and in stronger semantic similarity metrics like369

Cosine. In contrast, highlight-guided explanations370

perform comparably or slightly worse than the base-371

line, and tend to have longer average lengths with372

lower lexical and semantic overlap with the refer-373

ences. This suggests that highlighting alone may374

not sufficiently inform the model to produce rele- 375

vant explanations. It is also worth noting that the 376

open-source Llama model performs on par with the 377

closed-source GPT model. 378

While high similarity to human references is de- 379

sirable, overly verbose content may indicate unnec- 380

essary redundancy (Holtzman et al., 2020). From 381

Table 4, we observe that highlight-guided gener- 382

ations tend to produce longer explanations (e.g., 383

28.24 for GPT-4o and 30.42 for DeepSeek-v3) 384

while yielding lower BLEU and ROUGE-L scores 385

compared to both the baseline and taxonomy- 386

guided variants. This indicates that the predicted 387

highlights did not improve alignment with human- 388

written explanations and may instead reflect redun- 389

dancy. Rather, taxonomy-based methods result in 390

higher similarity and more concise explanations. 391

5 Assessing Explanation Coverage: 392

Human vs. LLM Outputs 393

Besides evaluating the similarity between human- 394

written and LLM-generated explanations, the more 395

fundamental question is how much within-label 396

variation can LLM-generated explanations capture. 397

Are LLMs too repetitive and only cover a subset 398

of human explanations? Can LLMs unearth ap- 399

propriate new explanations that are missing from a 400

few human-written ones? This section presents our 401

attempt to measure coverage in LLM-generated ex- 402

planations. Given that LLMs are prompted to gen- 403

erate multiple explanations, we examine whether 404

they can fully cover the semantic space of human 405

explanations and potentially extend beyond it. 406

Figure 5 illustrates this semantic coverage for 407

three representative instances from LITEX-SNLI. 408

From left to right, the examples demonstrate: (1) 409

6



Figure 5: Representative t-SNE visualizations of explanation embeddings. The blue convex hull represents the span
of human-written explanations, while the gray illustrates the spread of GPT4o-generated explanations.

full coverage, where the convex hull of model-410

generated explanations fully encloses the human ex-411

planation points; (2) partial coverage, where model412

generations cover some of the human reference413

points and (3) no coverage, where model outputs414

cover no human explanation point.415

Proposed Measures We propose four measures,416

full coverage, partial coverage, area precision,417

and area recall to analyze the semantic space be-418

tween model- and human-generated explanations419

using t-SNE visualizations and convex hull statis-420

tics (van der Maaten and Hinton, 2008).421

An NLI item is fully covered if all human expla-422

nation reference points are positioned within the423

convex hull spanned by the model explanations.424

Similarly, it is partially covered if at least one hu-425

man reference point is within the model explana-426

tion space. Full and partial coverage computes the427

percentage of 1,002 LITEX-SNLI items whose428

explanations are fully or partially covered within429

the convex hull of the model explanations.430

On the other hand, area precision and recall431

assess for each NLI item, the overlapping area be-432

tween the space spanned by all reference explana-433

tions and that spanned by all model explanations.434

Area precision measures the ratio of the overlap-435

ping area over the area spanned by model expla-436

nations, and area recall over the area spanned by437

human explanations. We report the average of area438

precision and area recall over 1,002 instances.439

Results Table 5 shows that taxonomy-guided ex-440

planation generation consistently achieves the high-441

est full and partial coverage of reference explana-442

tion points. They also yield the highest average443

area recall and precision, in all test cases except the444

GPT4o baseline, indicating that the semantic space445

overlap between taxonomy-guided model explana-446

Coverage Area
Mode Full Partial Rec Prec

GPT4o baseline 1.9 21.6 16.5 5.7
highlight (indexed) 1.1 13.5 10.0 4.7
taxonomy (end-to-end) 10.7 56.1 49.3 5.6

DeepSeek-v3 baseline 4.0 20.5 17.5 2.7
highlight (indexed) 2.3 14.9 12.5 2.9
taxonomy (end-to-end) 17.8 61.8 54.7 3.8

Llama-3.3-70B baseline 1.7 15.4 12.2 2.9
highlight (indexed) 0.5 8.2 6.5 2.5
taxonomy (end-to-end) 16.7 65.2 59.8 5.7

Table 5: Results on the semantic coverage of model
explanations regarding human reference explanations.

tions and human explanations is large. 447

In contrast, baseline and highlight-guided modes 448

show much lower full and partial coverage and 449

smaller overlap ratios. It indicates that the expla- 450

nation spaces are less aligned with human explana- 451

tions. Although highlight-guided outputs tend to 452

form smaller and more concentrated explanation re- 453

gions (as seen in their low area precision), this com- 454

pactness does not mean their explanations are more 455

meaningful. When guided by highlights, the model 456

often fails to generate explanations that reflect the 457

essential ideas expressed by humans. These results 458

highlight that prompting using taxonomy-based 459

guidance is more effective at generating human- 460

aligned explanations in the embedding space. 461

Case Study Table 6 provides a concrete example 462

(the leftmost case in Figure 5) where the human 463

explanations are fully covered by the taxonomy- 464

guided generation but only partially captured by 465

label- and highlight-guided generations. 466

Human explanations focus on spatial proximity 467

(near) and real-world expectations (i.e., coconuts 468

being outdoors). The baseline and highlight-guided 469

explanations also refer to the spatial proximity. 470
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Premise: A person wearing a straw hat, standing outside working a steel apparatus with a pile of coconuts on the
ground.

Hypothesis: A person is near a pile of coconuts.
Label: Entailment

Source Explanations

Human - With a pile of coconuts implies near a pile of coconuts. [Semantic]
- A person standing near a pile of coconuts would be standing outside. [Inferential Knowledge]
- If the person is with the pile of coconuts on the ground, they are near them. [Inferential Knowledge]

Baseline - There is no indication in the content that the person and the coconuts are separated by any significant
distance.
- The use of “near” in the statement aligns with the spatial arrangement described in the content, where the
person and coconuts are part of the same setting.
- The person is described as standing outside, suggesting they are near the objects in the scene.

Highlight - The phrase “standing outside” in the content implies that the person is near the ground where the pile of
coconuts is located, supporting the statement that the person is near the pile of coconuts. ["12,13,14,15,16",
"3,4,5,6,7"]
- The content describes “a pile of coconuts on the ground,” which directly correlates to the statement’s “a pile
of coconuts,” indicating the same pile is being referenced. ["6,7", "3"]
- The person “working a steel apparatus” in the content might suggest proximity to the pile of coconuts since
the work being done is likely related to the coconuts, thus supporting the statement that the person is near
them. ["1,12,16,19", "1,3,7"]

Taxonomy - Standing outside implies proximity to the objects on the ground, including the pile of coconuts. [Inferential
Knowledge]
- The word ‘near’ denotes closeness, which is implied by the person standing in the vicinity of the coconuts.
[Semantic]
- The hypothesis simplifies the structure of the premise by focusing on the person’s proximity to the coconuts,
which is implied by the premise. [Syntactic]

Table 6: Explanations from different generation strategies for one LITEX-SNLI item. For human explanations,
annotator-assigned categories are in purple. Model-generated taxonomy categories and highlight indexes are in blue.

However, the reasoning is less precise and often471

vague, lacking the structure seen in human expla-472

nations. Instead, taxonomy-guided generations are473

not only more coherent and concise, but also cover474

a broader range of reasoning types. In addition475

to producing outputs aligned with Semantic and476

Inferential Knowledge, they provide an additional477

Syntactic-labeled explanation, addressing the sen-478

tence simplification from premise to hypothesis.479

However, while the taxonomy-generated expla-480

nation “standing outside implies proximity to the481

objects on the ground, including the pile of co-482

conuts” captures the essence of the human-written483

“a person standing near a pile of coconuts would be484

standing outside,” it is more abstract and less natu-485

ral when expressing the casual contexts. All gen-486

erated explanations, particularly highlight-guided487

ones, are also longer than the human-written ones,488

echoing the redundancy issue discussed in §4.2.489

6 Conclusion490

This work introduces LITEX, a linguistically-491

informed taxonomy designed to capture different492

reasoning strategies behind NLI explanations, with493

a particular focus on within-label variation. The494

learnability evaluation shows that models, after 495

fine-tuning or few-shot prompting, can effectively 496

classify explanations into our taxonomy, demon- 497

strating its practicality. Further experiments evince 498

that taxonomy guidance consistently helps gener- 499

ation, resulting in model explanations that are se- 500

mantically richer and closer to human explanations 501

than baseline or highlight-based approaches. 502

Overall, our work bridges human reasoning 503

strategies and model predictions in a structured 504

way, providing a foundation for more interpretable 505

NLI modeling. In addition, we enhance the e-SNLI 506

dataset with fine-grained taxonomy categories for 507

explanations, providing a resource to support fu- 508

ture work. While our current evaluation focuses 509

on a specific subset of NLI data, future work will 510

extend this approach to broader variation-aware 511

benchmarks such as ANLI (Nie et al., 2020a) and 512

LiveNLI (Jiang et al., 2023). These extensions will 513

enable a more comprehensive assessment of the tax- 514

onomy’s generalizability across diverse inference 515

settings. Annotations, generated explanations, and 516

code will be released publicly upon publication. 517
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Limitations518

While our taxonomy offers a structured and linguis-519

tically informed perspective to analyze different520

types of explanation in NLI, it has several limita-521

tions. First, the annotation process, though guided522

by detailed definitions, still involves subjective in-523

terpretation from a single annotator, especially for524

borderline categories such as Factual Knowledge525

versus Inferential Knowledge. Second, our taxon-526

omy focuses solely on explicit explanations pro-527

vided in natural language. It does not account for528

the implicit reasoning process that may not be ver-529

balized in text. This may limit the taxonomy’s530

applicability to inferred or implied reasoning, es-531

pecially when applying it to other NLI datasets532

without free-text explanations. Finally, our current533

experiments are conducted on the e-SNLI dataset,534

which may not represent the full spectrum of natu-535

ral language inference.536

Ethical considerations537

We do not foresee any ethical concerns associated538

with this work. All analyses were conducted using539

publicly available datasets and models. No private540
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to support transparency and reproducibility.543
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Figure 6: Inter-Annotator Confusion Matrix for Expla-
nation Category Annotation.

we present the premise, hypothesis, and human ex-733

planation as they appear in the original dataset,734

preserving all original text, including any typos or735

grammatical errors. In Table 7 and Table 8, two736

representative examples are listed for the two broad737

categories: Text-Based (TB) Reasoning and World-738

Knowledge (WK) Reasoning.739

These examples not only illustrate the definition740

and scope of each taxonomy category but also serve741

as the basis for the prompting templates used in742

both our classification and generation experiments.743

B Taxonomy Validation: IAA744

Classification Report745

Figure 6 presents the inter-annotator confusion746

matrix for explanation category annotation, used747

to validate the proposed taxonomy. Overall, we748

observe strong agreement across most categories,749

with especially high consistency in categories such750

as Logical Structure Conflict and Inferential World-751

informed Knowledge. Some confusion appears be-752

tween semantically adjacent categories, such as753

Factual Knowledge vs. Inferential Knowledge, and754

Semantic vs. Syntactic.755

Table 9 reports the full inter-annotator agreement756

(IAA) results for our taxonomy of explanation cat-757

egories. The table shows precision, recall, and758

F1-score for each category, alongside the number759

of instances (support) annotated.760

Most categories, such as Pragmatic-level In-761

ference (F1 = 0.970), Absence of Mention (F1762

= 0.960), and Logical Structural Conflict (F1 =763

0.949), exhibit high agreement, suggesting well-764

defined boundaries and clear annotator understand- 765

ing. However, we observe lower precision in Se- 766

mantic (0.643) and lower recall in Factual World- 767

informed Knowledge (0.652), pointing to poten- 768

tial ambiguities in distinguishing these categories 769

from others, particularly from Inferential World- 770

informed Knowledge. 771

C Taxonomy Validation: LM and LLM 772

Classification 773

In Table 10 the hyperparameter setup of fine-tuning 774

BERT and RoBERTa is listed. We follow a stan- 775

dard supervised classification pipeline, where the 776

model takes as input the concatenated premise, 777

hypothesis, label, and explanation, and predicts 778

the correct explanation category among eight cate- 779

gories. For validation, we measured both the clas- 780

sification accuracy and the macro-F1 score across 781

the explanation categories, as shown in Table 11. 782

We selected the best-performing checkpoint based 783

on the highest macro-F1 on the dev set for final 784

evaluation. 785

We also design a set of experiments to evalu- 786

ate the ability of LLMs to classify NLI explana- 787

tions into one of eight fine-grained explanation cat- 788

egories (as introduced in Section 3). We use a 789

consistent prompting strategy across models, with 790

all prompt templates detailed in Table 13. 791

We experiment with zero-shot prompting (no 792

training examples), one-shot prompting (a single 793

annotated example as demonstration), and few- 794

shot prompting (k = 2 examples per category). 795

Specifically, we experiment on Llama-3.2-3B- 796

Instruct (Meta, 2024), GPT-3.5-turbo (Brown et al., 797

2020), GPT-4o (OpenAI et al., 2024), DeepSeek-v3 798

(DeepSeek-AI et al., 2025)) under six experimental 799

settings: 800

1. without instruction and without examples 801

2. with general task instruction but no examples 802

3. with one example per category 803

4. with two representative examples per category 804

5. with instruction plus one example per category 805

6. with instruction plus two examples per cate- 806

gory 807

For few-shot settings, we selected either one or 808

two representative examples from the training data 809

for each of the eight categories to include in the 810
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prompt. The LLMs are then instructed to clas-811

sify each explanation by outputting the category812

index (1-8). We evaluate both classification accu-813

racy and the distribution alignment between the814

LLM outputs and the annotated gold human label815

distributions, as reported in Table 12.816

To further assess the impact of supervised adap-817

tation, we finetune Llama-3.2-3B-Instruct using818

LoRA (Hu et al., 2022), a parameter-efficient fine-819

tuning method. We adopt a 50/50 train-test split820

based on pairID. Fine-tuning is conducted using821

SFTTrainer with standard causal language model-822

ing objectives and a maximum input length of 512823

tokens. The LoRA configuration used is displayed824

in Table 14.825

The fine-tuned Llama-3.2-3B model achieves an826

accuracy of 0.509 and a macro-F1 score of 0.302827

on the test set. Detailed per-category results are828

presented in Table 15. While zero-shot prompting829

offers a lightweight baseline, these results suggest830

that parameter-efficient fine-tuning can boost per-831

formance in structured reasoning categories such as832

Logical Structure Conflict and Inferential Knowl-833

edge. However, performance remains limited in834

categories such as Factual Knowledge, which re-835

quire external world knowledge, and Absence of836

Mention, where low performance may be attributed837

to the small number of training examples.838

We accessed GPT-3.5 and GPT-4o via OpenAI’s839

hosted API and DeepSeek-V3 via DeepSeek’s840

hosted API. Experiments with Llama-3.2-3B-841

Instruct were run on a single NVIDIA A100 GPU.842

D Human Highlight IAA843

To understand whether human-generated highlights844

are consistent and reproducible, we conducted a845

highlight-level inter-annotator agreement (IAA)846

study on 201 items from the e-SNLI dataset. Two847

annotators were asked to highlight the parts of the848

premise and hypothesis that support the given ex-849

planation. Each item included the premise, hypoth-850

esis, gold label and the explanation.851

We measured agreement using Intersection over852

Union (IoU). The results are as follows:853

• Annotator 1 vs Annotator 2: 0.889854

• Annotator 1 vs e-SNLI Highlight: 0.659855

• Annotator 2 vs e-SNLI Highlight: 0.712856

These results show that the two annotators had857

high agreement with each other, suggesting that the858

highlighting task is fairly consistent when done 859

by different people. However, their agreement 860

with the original e-SNLI highlights is lower, which 861

means there are some differences in how people 862

choose text spans, even when they agree on the 863

explanation. This suggests that highlight selection 864

has some subjectivity. 865

E Prompting Templates for Generating 866

Model Explanations 867

For the generation experiments, we prompt three 868

LLMs to generate NLI explanations: GPT-4o, 869

DeepSeek-V3, and Llama-3.3-70B-Instruct. We 870

accessed GPT-4o via OpenAI’s hosted API and 871

DeepSeek-V3 via DeepSeek’s hosted API. The gen- 872

eration experiments using Llama-3.3-70B-Instruct 873

were conducted on two NVIDIA A100 GPUs. 874

Table 16 presents the prompt templates used to 875

generate NLI explanations from LLMs. These tem- 876

plates are adapted and refined based on the ap- 877

proach of Chen et al. (2024b). For LLMs that imply 878

a “system” role within their chat format, the “sys- 879

tem” role content is unset to maintain alignment 880

with the design choices applied to other LLMs. 881

F Additional Generation Results 882

Table 17 presents the full evaluation results of our 883

explanation generation experiments, covering two 884

highlight formats (indexed vs. in-text) and both 885

human-provided and model-generated highlights. 886

Human Highlights vs. Model Generated High- 887

lights Overall, model highlights achieve com- 888

parable performance to human highlights across 889

most lexical and semantic metrics, with slight im- 890

provements in certain surface-level features (e.g., 891

BLEU, ROUGE-L). However, these gains are of- 892

ten marginal. Notably, models like Llama-3.3-70B 893

show a larger drop in similarity metrics when using 894

model-generated highlights, indicating that auto- 895

matic highlight classification may not always align 896

with human judgment. 897

Indexed vs. In-text We compare the indexed and 898

in-text variants of human and model highlights to 899

assess whether highlight format affects similarity 900

scores. Across all three models, the performance 901

differences between the two formats are generally 902

minor with the indexed variant performing slightly 903

better. For instance, GPT-4o yields similar scores 904

in both settings (e.g., cosine: 0.549 vs. 0.519 for 905
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human highlights; 0.554 vs. 0.555 for model high-906

lights). The same trend holds for DeepSeek-v3907

and Llama-3.3-70B, where average performance908

differences across metrics remain negligible.909
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Coreference

Premise: The man in the black t-shirt is trying to throw something.
Hypothesis: The man is in a black shirt.
Gold Label: Entailment
Explanation: The man is in a black shirt refers to the man in the black t-shirt.

Premise: A naked man rides a bike.
Hypothesis: A person biking.
Gold Label: Entailment
Explanation: The person biking in the hypothesis is the naked man.

Semantic

Premise: A man in a black tank top is wearing a red plaid hat.
Hypothesis: A man in a hat.
Gold Label: Entailment
Explanation: A red plaid hat is a specific type of hat.

Premise: Three man are carrying a red bag into a boat with another person and boat in the background.
Hypothesis: Some people put something in a boat in a place with more than one boat.
Gold Label: Entailment
Explanation: Three men are people.

Syntactic

Premise: Two women walk down a sidewalk along a busy street in a downtown area.
Hypothesis: The women were walking downtown.
Gold Label: Entailment
Explanation: The women were walking downtown is a rephrase of, Two women walk down a sidewalk along a busy street

in a downtown area.

Premise: Bruce Springsteen, with one arm outstretched, is singing in the spotlight in a dark concert hall.
Hypothesis: Bruce Springsteen is a singer.
Gold Label: Entailment
Explanation: Springsteen is singing in a concert hall.

Pragmatic

Premise: A girl in a blue dress takes off her shoes and eats blue cotton candy.
Hypothesis: The girl is eating while barefoot.
Gold Label: Entailment
Explanation: If a girl takes off her shoes, then she becomes barefoot, and if she eats blue candy, then she is eating.

Premise: A woman wearing bike shorts and a skirt is riding a bike and carrying a shoulder bag.
Hypothesis: A woman on a bike.
Gold Label: Entailment
Explanation: Woman riding a bike means she is on a bike

Absence of Mention

Premise: A person with a purple shirt is painting an image of a woman on a white wall.
Hypothesis: A woman paints a portrait of a person.
Gold Label: Neutral
Explanation: A person with a purple shirt could be either a man or a woman. We can’t assume the gender of the painter.

Premise: A young man in a heavy brown winter coat stands in front of a blue railing with his arms spread.
Hypothesis: The railing is in front of a frozen lake.
Gold Label: Neutral
Explanation: It does not say anything about there being a lake.

Logical Structure Conflict

Premise: Five girls and two guys are crossing an overpass.
Hypothesis: The three men sit and talk about their lives.
Gold Label: Contradiction
Explanation: Three is not two.

Premise: Many people standing outside of a place talking to each other in front of a building that has a sign that says
’HI-POINTE’.

Hypothesis: The group of people aren’t inside of the building.
Gold Label: Entailment
Explanation: The people described are standing outside, so naturally not inside the building.

Table 7: Illustrative examples of the taxonomy (Text-Based Reasoning).
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Factual Knowledge

Premise: Two people crossing by each other while kite surfing.
Hypothesis: The people are both males.
Gold Label: Neutral
Explanation: Not all people are males.

Premise: Here is a picture of people getting drunk at a house party.
Hypothesis: Some people are by the side of a swimming pool party.
Gold Label: Neutral
Explanation: Not all houses have swimming pools.

Inferential Knowledge

Premise: A girl in a blue dress takes off her shoes and eats blue cotton candy.
Hypothesis: The girl in a blue dress is a flower girl at a wedding.
Gold Label: Neutral
Explanation: A girl in a blue dress doesn’t imply the girl is a flower girl at a wedding.

Premise: A person dressed in a dress with flowers and a stuffed bee attached to it, is pushing a baby stroller down the
street.

Hypothesis: An old lady pushing a stroller down a busy street.
Gold Label: Neutral
Explanation: A person in a dress of a particular type need neither be old nor female. A street need not be considered busy

if only one person is pushing a stroller down it.

Table 8: Illustrative examples of the taxonomy (World Knowledge-Based Reasoning).
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Taxonomy Categories precision recall f1-score support

Coreference N/A N/A N/A N/A
Syntactic 1.000 0.786 0.800 28
Semantic 0.643 1.000 0.783 9
Pragmatic 0.941 1.000 0.970 16
Absence of Mention 0.923 1.000 0.960 12
Logical Structural Conflict 0.922 0.979 0.949 48
Factual Knowledge 0.789 0.652 0.714 23
Inferential Knowledge 0.892 0.892 0.892 65

accuracy 0.891 201
macro 0.873 0.901 0.878 201

weighted 0.897 0.891 0.889 201

Table 9: IAA: classification report.

Hyperparameter BERT RoBERTa

Learning Rate Decay Linear Linear
Weight Decay 0.0 0.0
Optimizer AdamW AdamW
Adam ϵ 1e-8 1e-8
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Warmup Ratio 0% 0%
Learning Rate 2e-5 3e-5
Batch Size 8 8
Num Epoch 4 3

Table 10: Hyperparameter used for fine-tuning BERT
and RoBERTa models.
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roberta-base bert-baseExplanation Category data split
(train/dev/test) Precision Recall F1 Precision Recall F1

40/20/40 0.00 0.00 0.00 0.00 0.00 0.00Coreference 50/0/50 1.00 0.04 0.07 0.00 0.00 0.00

40/20/40 0.58 0.63 0.61 0.54 0.68 0.61Semantic 50/0/50 0.57 0.68 0.62 0.54 0.64 0.59

40/20/40 0.64 0.74 0.68 0.61 0.77 0.68Syntactic 50/0/50 0.62 0.76 0.69 0.62 0.80 0.69

40/20/40 0.53 0.74 0.62 0.57 0.65 0.61Pragmatic 50/0/50 0.59 0.63 0.61 0.60 0.58 0.59

40/20/40 1.00 0.23 0.38 0.95 0.42 0.58Absence of Mention 50/0/50 0.93 0.52 0.67 0.96 0.41 0.57

40/20/40 0.81 0.83 0.82 0.78 0.87 0.82Logical Structure Conflict 50/0/50 0.81 0.83 0.82 0.78 0.88 0.83

40/20/40 0.61 0.51 0.55 0.57 0.50 0.53Factual Knowledge 50/0/50 0.62 0.55 0.59 0.61 0.56 0.58

40/20/40 0.75 0.81 0.78 0.79 0.76 0.77Inferential Knowledge 50/0/50 0.79 0.82 0.80 0/80 0.79 0.80
Summary

40/20/40 0.67 0.70acuuracy 50/ 0/50 0.67 0.70

40/20/40 0.47 0.49 0.47 0.60 0.58 0.58maro avg 50/ 0/50 0.48 0.53 0.50 0.61 0.58 0.58

40/20/40 0.61 0.67 0.64 0.68 0.70 0.68weighted 50/0/50 0.65 0.69 0.66 0.68 0.70 0.69

Table 11: RoBERTA and BERT fine-tuning results.

Classifiers Accuracy Precision Recall F1 Invalid predictions
macro weighted macro weighted macro weighted

Llama-3.2-3B-Instruct 0.357 0.440 0.581 0.373 0.357 0.291 0.310 0 (0.00%)
+ instruction 0.229 0.379 0.465 0.281 0.229 0.227 0.256 918 (29.54%)
+ one example per category 0.340 0.393 0.540 0.343 0.340 0.255 0.293 23 (0.74%)
+ two example per category 0.160 0.243 0.302 0.252 0.160 0.139 0.163 277 (8.91%)
+ instruction + one example per category 0.357 0.440 0.581 0.272 0.357 0.291 0.310 0 (0.00%)
+ instruction + two example per category 0.538 0.484 0.591 0.402 0.538 0.397 0.522 0 (0.00%)

gpt-3.5-turbo 0.289 0.264 0.351 0.286 0.289 0.239 0.279 0 (0.00%)
+ instruction 0.366 0.314 0.431 0.357 0.366 0.295 0.336 0 (0.00%)
+ one example per category 0.175 0.162 0.244 0.155 0.175 0.139 0.182 28 (0.90%)
+ two example per category 0.297 0.281 0.403 0.265 0.297 0.237 0.308 1 (0.03%)
+ instruction + one example per category 0.274 0.286 0.393 0.264 0.274 0.236 0.290 36 (1.16%)
+ instruction + two example per category 0.305 0.317 0.420 0.301 0.305 0.262 0.303 8 (0.26%)

gpt-4o 0.433 0.402 0.495 0.409 0.433 0.321 0.411 0 (0.00%)
+ instruction 0.410 0.465 0.536 0.438 0.410 0.357 0.404 0 (0.00%)
+ one example per category 0.594 0.530 0.619 0.486 0.594 0.476 0.583 0 (0.00%)
+ two example per category 0.589 0.545 0.631 0.532 0.589 0.491 0.579 0 (0.00%)
+ instruction + one example per category 0.583 0.550 0.643 0.548 0.583 0.491 0.578 0 (0.00%)
+ instruction + two example per category 0.574 0.541 0.648 0.552 0.574 0.492 0.573 0 (0.00%)

DeepSeek-v3 0.340 0.306 0.409 0.389 0.340 0.268 0.312 1 (0.03%)
+ instruction 0.422 0.423 0.508 0.480 0.422 0.369 0.388 0 (0.00%)
+ one example per category 0.540 0.483 0.592 0.514 0.540 0.461 0.529 0 (0.00%)
+ two example per category 0.560 0.498 0.611 0.520 0.560 0.475 0.552 0 (0.00%)
+ instruction + one example per category 0.495 0.504 0.603 0.544 0.495 0.453 0.474 0 (0.00%)
+ instruction + two example per category 0.526 0.519 0.626 0.563 0.526 0.478 0.515 0 (0.00%)

Table 12: LLM as classifiers results.
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Mode General Instruction Prompt

without instruction and example "role": "user", "content":
You are an expert in solving Natural Language Inference tasks. Your task is to classify the
following explanations into one of the categories listed below. Each category reflects a
specific type of inference in the explanation between the premise and hypothesis. Here are
the categories:
1. Coreference
2. Syntactic
3. Semantic
4. Pragmatic
5. Absence of Mention
6. Logical Structure Conflict
7. Factual Knowledge
8. Inferential Knowledge

+ instruction "role": "user", "content":
You are an expert in solving Natural Language Inference tasks. Your task is to classify the
following explanations into one of the categories listed below. Each category reflects a
specific type of inference in the explanation between the premise and hypothesis.
Here are the categories:
1. Coreference - The explanation resolves references (e.g., pronouns or demonstratives)
across premise and hypothesis.
2. Syntactic - Based on structural rephrasing with the same meaning (e.g., syntactic
alternation, coordination, subordination). If the explanation itself is the rephrasing of the
premise or hypothesis, it should be included in this category.
3. Semantic - Based on word meaning (e.g., synonyms, antonyms, negation).
4. Pragmatic - This category would capture inferences that arise from logical implications
embedded in the structure or semantics of the text itself, without relying on external context
or background knowledge.
5. Absence of Mention - Lack of supporting evidence, the hypothesis introduces information
that is not supported, not entailed, or not mentioned in the premise, but could be true.
6. Logical Structure Conflict - Structural logical exclusivity (e.g., either-or, at most, only,
must), quantifier conflict, temporal conflict, location conflict, gender conflict etc.
7. Factual Knowledge - Explanation relies on common sense, background, or
domain-specific facts. No further reasoning involved.
8. Inferential Knowledge - Requires real-world causal, probabilistic reasoning or unstated
but assumed information.
Respond **only with the number (1–8)** corresponding to the most appropriate category.

Table 13: Instruction prompts for LLMs as classifiers.
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Hyperparameter Value

Model Llama-3.2-3B-Instruct
Gradient Accumulation 4
Max Sequence Length 512
Warmup Steps 50
Scheduler Cosine
Learning Rate 2e-4
Batch Size 4
Num Epoch 3
Trainer SFTTrainer (TRL)

Table 14: Training hyperparameters used for LoRA fine-
tuning on Llama-3.2-3B. LoRA settings: r = 8, α = 16,
dropout = 0.05.

Explanation Category Precision Recall F1

Coreference 0.429 0.052 0.092
Semantic 0.250 0.489 0.331
Syntactic 0.548 0.182 0.273
Pragmatic 0.273 0.200 0.231
Absence of Mention 0.000 0.000 0.000
Logical Structure Conflict 0.735 0.758 0.746
Factual Knowledge 0.138 0.041 0.064
Inferential Knowledge 0.562 0.861 0.680

Summary
accuracy 0.509
F1 Score (macro) 0.302

Table 15: LoRA fine-tuning results using Llama-3.2-3B-
Instruct on the explanation categorization task.
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Mode General Instruction Prompt

baseline You are an expert in Natural Language Inference (NLI). Please list all possible
explanations for why the following statement is {gold_label} given the content below
without introductory phrases.
Context: {premise}, Statement: {hypothesis}

highlight indexed You are an expert in Natural Language Inference (NLI). Your task is to generate possible
explanations for why the following statement is {gold_label}, focusing on the
highlighted parts of the sentences.
Context: {premise}, Highlighted word indices in Context: {highlighted_1}
Statement: {hypothesis}, Highlighted word indices in Statement: {highlighted_2}
Please list all possible explanations without introductory phrases.

highlight in-text You are an expert in Natural Language Inference (NLI). Your task is to generate possible
explanations for why the following statement is {gold_label}, focusing on the
highlighted parts of the sentences. Highlighted parts are marked in "**".
Context: {marked_premise} Statement: {marked_hypothesis}
Please list all possible explanations without introductory phrases.

highlight generation You are an expert in NLI. Based on the label ’gold_label’, highlight relevant word
indices in the premise and hypothesis. Highlighting rules: For entailment: highlight at
least one word in the premise. For contradiction: highlight at least one word in both the
premise and the hypothesis. For neutral: highlight only in the hypothesis.
Premise: {premise}, Hypothesis: {hypothesis}, Label: {gold_label}
Please list **3** possible highlights using word index in the sentence without
introductory phrases. Answer using word indices **starting from 0** and include
punctuation marks as tokens (count them). Respond strictly this format:
Highlight 1:
Premise_Highlighted: [Your chosen index(es) here]
Hypothesis_Highlighted: [Your chosen index(es) here]
Highlight 2: ...

taxonomy (two-stage) You are an expert in Natural Language Inference (NLI). Given the following taxonomy
with description and one example, generate as many possible explanations as you can
that specifically match the reasoning type described below. The explanation is for why
the following statement is {gold_label}, given the content.
The explanation category for generation is: {taxonomy_idx}: {description}
Here is an example: Premise: {few_shot[’premise’]}, Hypothesis:
{few_shot[’hypothesis’]}
Label: {few_shot[’gold_label’]}, Explanation: {few_shot[’explanation’]}
Now, consider the following premise and hypothesis:
Context: {premise} Statement: {hypothesis}
Please list all possible explanations for the given category without introductory phrases.

taxonomy end-to-end You are an expert in Natural Language Inference (NLI). Your task is to examine the
relationship between the following content and statement under the given gold label, and:
First, identify all categories for explanations from the list below (you may choose more
than one) that could reasonably support the label. Second, for each selected category,
generate all possible explanations that reflect that type.
The explanation categories are:
{taxonomy_idx}: {description}
Context: {premise}, Statement: {hypothesis}, Label: {gold_label}
Please list all possible explanations without introductory phrases for all the chosen
categories.
Start directly with the category number and explanation, following the strict format
below:
1. Coreference: - [Your explanation(s) here]
... (continue for all reasonable categories)

taxonomy two-stage (classification) You are an expert in Natural Language Inference (NLI). Your task is to identify all
applicable reasoning categories for explanations from the list below that could reasonably
support the label. Please choose at least one category and multiple categories may apply.
One example for each category is listed as below:
{examples_text}
Given the following premise and hypothesis, identify the applicable explanation
categories:
Premise: {premise} Hypothesis: {hypothesis} Label: {gold_label}
Respond only with the numbers corresponding to the applicable categories, separated by
commas, and no additional explanation.

Table 16: Instruction prompts for LLMs to generate NLI explanations (all prompts are issued as user messages in
the chat format).
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Mode Cosine Euclidean 1gram 2gram 3gram BLEU ROUGE-L Avg_len
Word POS Word POS Word POS

GPT4o
baseline 0.556 0.524 0.291 0.882 0.117 0.488 0.049 0.226 0.051 0.272 24.995
human highlight (indexed) 0.549 0.521 0.395 0.882 0.116 0.478 0.050 0.219 0.047 0.264 30.771
human highlight (in-text) 0.519 0.511 0.367 0.873 0.085 0.442 0.031 0.187 0.034 0.269 28.606
model highlight (indexed) 0.554 0.522 0.402 0.878 0.124 0.481 0.053 0.222 0.051 0.269 28.240
model highlight (in-text) 0.555 0.523 0.380 0.888 0.109 0.468 0.044 0.208 0.044 0.270 28.160
model taxonomy (two-stage) 0.593 0.537 0.418 0.886 0.128 0.495 0.071 0.242 0.071 0.314 19.991
model taxonomy (end-to-end) 0.608 0.540 0.437 0.898 0.166 0.511 0.083 0.255 0.074 0.323 26.672

DeepSeek-v3
baseline 0.428 0.490 0.369 0.847 0.087 0.449 0.034 0.195 0.042 0.245 20.288
human highlight (indexed) 0.463 0.498 0.358 0.864 0.084 0.436 0.033 0.184 0.035 0.243 29.293
human highlight (in-text) 0.551 0.522 0.362 0.885 0.091 0.449 0.033 0.191 0.036 0.261 28.527
model highlight (indexed) 0.464 0.499 0.364 0.861 0.091 0.450 0.037 0.196 0.034 0.242 27.301
model highlight (in-text) 0.447 0.457 0.341 0.869 0.073 0.422 0.026 0.171 0.030 0.248 31.328
model taxonomy (two stage) 0.544 0.522 0.391 0.884 0.122 0.475 0.055 0.219 0.057 0.293 20.894
model taxonomy (end-to-end) 0.556 0.528 0.404 0.897 0.140 0.486 0.067 0.233 0.063 0.306 25.960

Llama-3.3-70B
baseline 0.466 0.496 0.392 0.863 0.106 0.478 0.044 0.224 0.046 0.250 27.148
human highlight (indexed) 0.453 0.484 0.362 0.859 0.082 0.446 0.031 0.194 0.035 0.228 29.912
human highlight (in-text) 0.499 0.505 0.348 0.875 0.059 0.415 0.019 0.165 0.024 0.270 34.827
model highlight (indexed) 0.367 0.478 0.317 0.807 0.065 0.408 0.024 0.173 0.031 0.199 24.987
model highlight (in-text) 0.400 0.486 0.300 0.831 0.047 0.385 0.014 0.150 0.021 0.227 29.763
model taxonomy (two-stage) 0.609 0.541 0.444 0.889 0.167 0.512 0.082 0.256 0.078 0.321 22.340
model taxonomy (end-to-end) 0.505 0.510 0.383 0.896 0.110 0.499 0.048 0.232 0.047 0.262 28.870

Table 17: Full evaluation results for LLM-generated explanations (lexical, morphosyntactic, semantic, and summa-
rization levels).
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