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Abstract

Joint Entity and Relation Extraction (JERE) is
highly susceptible to weak generalization due
to low-quality training data. Data augmentation
is a common strategy to enhance model gener-
alization across different domains. However,
existing data augmentation methods often over-
look text relevance and may disrupt semantic
structures and dependencies, making it difficult
to generate effective augmented data for im-
proving model generalization. In this paper, we
propose Structured Semantic Data Augmen-
tation (SSDAU), a novel method designed to
preserve the semantic structure of text during
augmentation. SSDAU segments text based on
entity labels and employs an encoder to capture
semantic features of entities through context
awareness. It then performs entity semantic
restructuring to generate augmented data. To
mitigate potential topic ambiguity and infor-
mation loss, we apply the BERTTopic model
to filter out irrelevant topics, ensuring topic
consistency. We evaluate SSDAU on datasets
with different annotation types and compare
its performance on five representative JERE
models against six popular data augmentation
baselines. Extensive experiments demonstrate
that SSDAU generates data with a consistent
semantic structure, leading to improved JERE
model performance and surpassing state-of-the-
art baselines.

1 Introduction

Joint Entity and Relation Extraction (JERE) is
widely used for representation learning on text data
due to its strong performance in applications such
as information retrieval (Lin et al., 2020), question
answering (Abdelaziz et al., 2021), and text sum-
marization (Zhong et al., 2020). The generaliza-
tion performance of JERE models heavily depends
on the quality and scale of the training data. A
common strategy to enhance generalization is data
augmentation. Techniques such as MixUp (Cheng

et al., 2020) and back-translation (Xie et al., 2020)
enable efficient expansion of the training set by gen-
erating new data with subtle perturbations derived
from the original samples.

However, a key challenge in applying exist-
ing techniques to enhance the generalization of
JERE models is that introducing noise or pertur-
bations into the original data may weaken entity
relevance (Kambhatla et al., 2022). Training on
incorrectly generated data can ultimately degrade
JERE models’ performance. Additionally, entities
are often involved in multiple triples with complex
semantic relations and dependencies. Existing data
augmentation methods can disrupt the structures
and dependencies, leading to issues such as over-
lapping relations and cascading (Liu et al., 2020).

To address this issue, we propose Structured Se-
mantic Data Augmentation (SSDAU) to preserve
the semantic structure of text during data augmen-
tation. Instead of directly perturbing text, SSDAU
aligns triplet text to maintain semantic integrity.
First, we use a feature-based encoder to segment
the text, ensuring that each segment retains the se-
mantics of its neighboring regions. Next, we match
segments with similar semantic labels using a de-
coder. To maintain structural consistency, we im-
plement a text matcher based on semantic similarity.
Finally, we substitute text with high similarity to
reorganize the original text, generating augmented
data while preserving semantic coherence. Inspired
by recent techniques such as BertTopic (Grooten-
dorst, 2022), we further refine the augmented text
by filtering out irrelevant topics using topic model-
ing based on BERT and c-TF-IDF.

To assess the effectiveness of SSDAU, we com-
pared its performance on four widely used datasets
with six baseline methods. We evaluated the perfor-
mance of different data augmentation techniques
on different JERE tasks and models, including
Multi-Module Multi-Step (Zheng et al., 2021; Wei
et al., 2020), Multi-Module One-Step (Sui et al.,



2020; Wang et al., 2020), and One-Module One-
Step (Shang et al., 2022). The experiment results
demonstrate that SSDAU outperformed state-of-
the-art methods in improving the generalization of
JERE models.

2 Related Work

Information Extraction JERE is an NLP task
that maps entities and relations to generate a text-
to-triplet model, assigning the triple to a new an-
notation (Fu et al., 2019). Previous JERE models
often use joint modeling (Ren et al., 2017) or se-
quential annotation (Zheng et al., 2017) to extract
entities and relations together, focusing on struc-
tured learning through manually constructed fea-
tures or knowledge tables (Miwa and Bansal, 2016).
However, these manual features limit their perfor-
mance across applications. To address this, Zhao
et al. (Zhao et al., 2021) decompose the JERE task
and modify the classification process for contextual
learning. They categorize JERE models into three
types: multi-module multi-step (Zheng et al., 2021;
Wei et al., 2020), multi-module one-step (Sui et al.,
2020; Wang et al., 2020), and one-module one-step
(Shang et al., 2022). The accuracy of these models
is constrained by the quality of training data, and
our structured semantic data augmentation method
can generate high-quality data for both basic and
downstream JERE applications.

Semantic Match Semantic matching is a sub-
task of text matching used to retrieve semantically
similar texts in search scenarios (Wu et al., 2022).
Common approaches include cosine similarity, TF-
IDF, and DSSM (Gao et al., 2021). Recent studies
show that pre-training semantic classification mod-
els can compress large amounts of text and improve
the generalization of semantic matching models
(Brown et al., 2020). For example, the Similarities
tool (Zhang Bingyu, 2022) enhances practical ap-
plications for text semantic matching, especially
in text relation extraction. Based on existing tech-
niques, we improve JERE by incorporating text
semantic matching.

Data Augmentation Data augmentation is an ef-
fective and efficient method to improve machine
learning model performance, especially in data-
limited environments (Cashman et al., 2020). Com-
mon techniques in NLP include word replacement
(Wei and Zou, 2019), word vector replacement
(Wang and Yang, 2015), masked language model

replacement (Jiao et al., 2020), back translation
(Zhang et al., 2020), and adding noise (Min et al.,
2020; Yan et al., 2019; Hou et al., 2018). Zhang et
al. (Zhang et al., 2015) and Jonas et al. (Mueller
and Thyagarajan, 2016) proposed lexical substi-
tution to preserve semantics, but this method is
limited by the size of the proxemics list. Unlike
simple perturbation (Liu et al., 2020) or extra aug-
mentor models (Hou et al., 2021; Hu et al., 2019),
we propose sampling-based augmentation to gen-
erate data with the same semantic structure while
maintaining the logic of the samples.

3 Method

In this section, we first define the problems. Then,
we introduce the three main components of SS-
DAU: 1) data discretization and reconstruction,
2) structured semantic data augmentation, and 3)
scoring-based consistency filtering. Figure 1 de-
picts the overall framework of SSDAU.

3.1 Preliminaries

Given set of sentences S = {s1, s2,..., SN} con-
taining L token and K predefined relations R =
{r1,r2,...,7Kk }, We extract entities and relations to
construct triples 7" = {(h;, r;, t;) };2, in S, where
h;, t; are the head and tail entities, respectively, N
represents the number of sentences, M represents
the number of triples. We store the knowledge as a
three-dimensional matrix M L*K*L

Since triplets are the core output format of JERE,
we use the triplet as the basic unit of data augmenta-
tion and partition the text according to the triplet to
obtain three series of text collections. To preserve
the contextual semantics of the segmented text, we
keep the contextual token [ of each segmented text
and record the location of each cut point p.

3.2 Data Discretization and Reconstruction

Encoder We use the triplet as the basic unit of
data augmentation to eliminate the noise from tex-
tual perturbations. We design a text feature-based
encoder E (the structure is shown in Figure 2). The
input of the encoder is the sentence text S. For
each sentence s;, we locate the specified text block
(qn; 9r,;» qt;) based on the triplet tags (pp,, pr;, pt;)
and record the context token ({5, , [, l¢;) and its cut
position (py,, pr;, Pt;).- The encoder processes all
the input text and gets three output text collections
according to the tag types: head entity collection
@4, tail entity collection (), and relation entity
collection Q),..
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Figure 1: Overview of SSDAU. The Data Discretization and Reconstruction component discretizes the text data
S semantically using the Encoder and outputs text collections in the form of segmented sets. The Decoder then
processes these segmented sets to facilitate the Structured Semantic Data Augmentation component, where the
Input View is based on similarity matching, while the Output View focuses on augmenting the data. Finally, the
Scoring-based Consistency Filtering component uses a structured semantic classifier to filter low-resource data,
and the remaining augmented data £ and 7 are used as augmented data S, to train a more robust JERE model.
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Figure 2: The structure of our feature-based encoder.

Decoder We then design a similarity-based text
matching decoder D. The input of decoder D is
(Qn, Qt, Qs). The decoder divides the text collec-
tions according to the relation types and label types
to get L« K = L groups B = {B1, Ba, ..., Bk},
where each group has the same relation type and
the same label.

3.3 Structured Semantic Data Augmentation

Discrete Text Matching We designed a text
matcher based on the semantic similarity evaluation
tool Similarities (Zhang Bingyu, 2022) to align the
decoder’s output. A text block b in an output group
B; = by,ba,...,b; from the decoder stores the
text ¢, context tokens [, label type p, and segmenta-
tion position p. We perform matching across all b
in different text corpora B;, incorporating seman-
tic, syntactic, and lexical similarity evaluations, as
well as context token similarity assessments. The
matching results are normalized to a value between
0 and 1 and inserted into a priority queue sorted in
descending order of similarity. Finally, for each B;,
we obtain a similarity-based priority queue F;.

Data Augmentation After completing the sim-
ilarity matching, we filter out data in the prior-
ity queue P; = Py, P, ..., Pgps with a similarity
score lower than the threshold €. For the remaining
data, we replace the text content of the correspond-
ing text blocks based on the recorded segmentation
position [ in each block’s information, thereby gen-
erating the augmented data.

3.4 Scoring-based Consistency Filtering

To further improve the quality of the augmented
data, we employ a BERTTopic model to identify
and retain key terms from topic descriptions. We
then filter out augmented data associated with ir-
relevant topics, ensuring the topic coherence of the
generated text.

First, we extract all entities and relations from
the text. Then, we encode the tokens using
BERT (Kenton and Toutanova, 2019), obtaining
the corresponding entity tokens Iy, lo, ..., 1. Next,
we combine entities and relations in the form of
(Ip,7,1;) and perform triplet extraction using joint
entity and relation extraction (Shang et al., 2022).
Finally, we apply a function to compute the correla-
tion between the head and tail entities. The scoring
function is defined as:

hxt = ¢(Wiln; li]" +b) (1)

where h and ¢ represent the head and tail, respec-
tively. x denotes circular correlation (R x R? —
RY). W € R%*2d and b are trainable weights and
biases, respectively, where d. denotes the dimen-
sion of the entity. [; ] is the concatenation operation
and ¢(-) represents the ReLU activation function.



We then incorporate the highly evaluated entity
pairs with the relations and use the relational repre-
sentation function R € R%*4K_ The vector func-
tion is defined as follows:

U(lh,rk,lt)kK 1:RT¢(dr0p(W[lh; T+0) ()

where v represents the score vector and drop(-)
refers to the dropout strategy (Srivastava et al.,
2014).

Next, we add the scoring vector v to the softmax
function to predict the corresponding labels. The
formulated triples are presented as follows:

Zi,j,k lOQP(y(li,rk,lj)» (s ,risly) |S) 3)
LxKXxL

Ct'riple = —

where g, », 1) represents the gold tag obtained
from annotations. We match all triplets with the
golden-label triplets to compute the topic score for
each triplet. Finally, we select the high-scoring
triplets as the topic relationships for the text. Aug-
mented data in which these topic relationships have
been replaced is filtered out, ensuring that the final
augmented data remains both topic-relevant and
structurally coherent.

4 Experiment

4.1 Experimental Setup

Baseline We compare SSDAU with six com-
monly used data augmentation methods, including
word substitution (WS) (Wei and Zou, 2019), back
translation (BT) (Xie et al., 2020), noise introduc-
tion (NI) (Fanghua Ye, 2022), same-tag semantic
noise (SSN) (Yan et al., 2019), generative models
(GM) (Hou et al., 2021), and Mixup (Hu et al.,
2019).

Protocol We select five models for three differ-
ent types of JERE tasks: Multi-module Multi-Step
(PRGC (Zheng et al., 2021), CasRel (Wei et al.,
2020)), Multi-module One-Step (TPLinker (Wang
et al., 2020), SPN4RE (Sui et al., 2020)), and One-
module One-Step (OneRel) (Shang et al., 2022).

We use the following metrics to measure the
effectiveness, performance, and adaptability of SS-
DAU: precision (Prec), Fl-score (F1), and Intersec-
tion over Union (IoU).

Implementation We conducted all experiments
on a single server equipped with an Intel Xeon
Gold 6248 2.50GHz CPU, two Tesla V100 SXM2
32GB GPUs, and Ubuntu 18.04.6 operating system.

Table 1: The number of augmented samples produced
by SSDAU at various thresholds on different datasets.

Dataset € Head Relation Tail Sum.

0.5~0.6 15,062 243 11,300 26,605

0.6~0.7 9,439 38 4,631 14,108
NYT* 0.7~0.8 1,825 19 1,365 3,209
08~09 2927 0 1,137 4,064
09~1.0 960 0 1,546 2,506
05~06 7,082 2742 8,116 17,940
06~0.7 3933 1,946 5,342 11,221
WebNLG" 0.7~0.8 2,049 2,162 1,557 5,768
0.8~0.9 814 2,005 1,021 3,840
09~1.0 5,463 890 2,929 9,282
0.5~0.6 13,507 234 10,076 23,817
0.6~0.7 7,721 36 4,063 11,820
NYT 0.7~0.8 4922 13 1,588 6,523
0.8~0.9 2,198 0 1,140 3,338
09~1.0 3,700 0 1,051 4,751
05~0.6 4,023 3,186 6,028 13,237
06~0.7 2,673 2,009 4,445 9,127
WebNLG 0.7~0.8 968 1,345 1,123 3,436
0.8~0.9 309 919 923 2,151
09~1.0 3,019 444 6,935 10,398

We reused the pre-trained BERT model (base-cased
English) from Huggingface !.

Dataset We conduct our experiments on two
representative English datasets, NYT (Sandhaus,
2008) and WebNLG (Gardent et al., 2017). Both
types of datasets have two variations: fully anno-
tated type (NYT, WebNLG) and partially annotated
type (NYT*, WebNLG").

Evaluation and Selection of Thresholds Table
1 describes the number of augmented samples gen-
erated by SSDAU for different sets of semantic do-
mains under various similarity thresholds. For the
four datasets, we count the number of augmented
data under different variable settings for different
entities and relations. The results indicate that the
number of augmented samples decreases as the
threshold value increases. Figure 3 shows the preci-
sion of the four augmented datasets under different
JERE models with various similarity thresholds.
The results suggest that the datasets augmented
by SSDAU perform the best under different JERE
tasks at a threshold value of 0.7.

4.2 Results

Comparison with Baselines Table 2 presents the
effectiveness (Prec), performance (F1), and adapt-
ability (IoU) results of SSDAU and six baselines
for different JERE tasks. The results demonstrate

"https://huggingface.co/google-bert/bert-base-cased
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Figure 3: Extraction precision of the JERE models with different similarity thresholds. (a), (b), (c), and (d) describe
the precision of different JERE models under different datasets, respectively.

Table 2: Precision (%) , F1 score (%) and Intersection over Union (%) of our proposed SSDAU and baselines in
CasRel model. All results are the the average over multiple patterns and 3 iterations.

Partial Match Exact Match
Category NYT* WebNLG* NYT WebNLG
Prec. F1 IoU Prec. F1 IoU  Prec. F1 IoU Prec. F1 IoU

Original 90.17 9145 8424 90.62 90.25 82.23 92.83 92.17 85.47 90.66 89.08 80.31
WS (Wei and Zou, 2019) 88.82 8898 80.16 91.47 91.51 8435 8991 89.61 81.17 89.66 88.88 79.98
BT (Prabhumoye et al., 2018) 88.97 89.52 81.02 91.77 91.97 85.14 89.10 89.54 81.07 89.46 89.90 81.70
NI (Fanghua Ye, 2022) 89.37 8991 81.67 9241 92.16 8546 88.38 89.70 81.32 88.41 87.64 78.00
SSN (Yan et al., 2019) 89.03 89.55 81.08 91.89 92.44 8594 8825 89.77 81.44 84.77 8593 75.34
GM (Hou et al., 2021) 88.30 89.38 80.79 91.84 92.41 85.89 88.60 89.35 80.75 90.82 89.15 80.42
Mixup (Hu et al., 2019) 90.56 90.06 81.92 91.29 9222 85.56 91.36 90.16 82.08 90.35 88.50 79.37
SSDAU 92.00 92.05 85.27 92.80 92.95 86.83 91.74 92.90 86.74 91.58 89.94 81.77

that SSDAU consistently outperforms the baseline
in terms of the effectiveness of data augmentation
for various JERE tasks. In terms of performance,
SSDAU achieves the best F1 scores and generates
positive outcomes, unlike the six baselines that neg-
atively impact JERE models. Regarding adaptabil-
ity, the results of IoU for augmented data indicate
that our method performs better across different
JERE models. These findings highlight the excel-
lent adaptability of our approach in low-resource
JERE tasks.

In comparison to Back Translation (Xie et al.,
2020) and Generative Models (Hou et al., 2021),
maintaining the semantic structure of the text
proves to be more effective than preserving se-
mantic continuity. Contrasted with Noise Introduc-
tion (Fanghua Ye, 2022) and Same-tag Semantic
Noise (Yan et al., 2019), the method that maps dis-
crete text by tags exhibits superior performance to
adding noise directly. In contrast to Word Substitu-
tion (Wei and Zou, 2019) and Mixup (Cheng et al.,
2020), labeled discrete texts demonstrate superior
properties in JERE data augmentation tasks com-
pared to unlabeled samples. Based on these results,
we conclude that the method of data augmentation
by preserving the structured semantics of the text

is superior to existing data augmentation strategies.
Figure 4 displays the training results of SSDAU
with six baselines under the CasRel model at vari-
ous iterations throughout the training process. The
results reveal that SSDAU consistently achieves
optimal performance across different iteration num-
bers. These findings suggest that the augmented
data produced by SSDAU is beneficial for enhanc-
ing JERE models. Additionally, SSDAU consis-
tently delivers promising enhancements on four
datasets in contrast to traditional methods.

Performance on Different JERE Tasks Table
3 displays the effectiveness of SSDAU and base-
lines for various JERE models. The results indicate
that the SSDAU-augmented dataset exhibits im-
provements across different types of JERE models,
such as 3.03% improvement on precision for the
WebN LG} dataset in SPN and a 0.94% improve-
ment for the NY'T;, dataset in the TPLinker model.
These outcomes demonstrate the feasibility of our
approach for augmenting unstructured texts into
structured semantic data for JERE tasks. More-
over, we observe that SSDAU performs better on
partially annotated type datasets than on fully anno-
tated type datasets. Notably, our method achieves
about a 3% improvement with the NYT* of the
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Figure 4: The effects of various baselines on different datasets are examined. Specifically, (a), (b), (c), and (d)
illustrate the precision of the data augmentation baseline at different iterations, with the CasRel model serving as

the prediction model.

Table 3: The precision of different models under different datasets. Each cell (A/B) represents the performance
of training with the original dataset (A) and the data augmented by SSDAU (B). Values in bold indicate the

improvement.
Model NYT* WebNLG* NYT WebNLG
SPN (Sui et al., 2020) 91.44/91.95 93.81/96.84 92.67/92.64 90.21/90.88
PRGC (Zheng et al., 2021) 93.33/93.36 94.00/94.46 93.54/94.40 89.92/91.32
CasRel (Wei et al., 2020) 88.97/91.47 91.77/92.13 89.10/91.74 89.46/91.58
OneRel (Shang et al., 2022) 90.17/92.00 90.62/92.80 92.83/92.90 90.66/91.60
TPLinker (Wang et al., 2020) 90.23/92.21 90.89/91.34 91.33/92.27 89.12/89.93

CasRel model and the WebNLG™* dataset of the
SPN model.

4.3 Ablation Study

We conduct an ablation study on the NYT™ and
WebN LG* benchmarks to evaluate three compo-
nents: data discretization and reconstruction, struc-
tured semantic data augmentation, and scoring-
based consistency filtering. Throughout this pro-
cess, we maintain consistent settings across all com-
ponents.

Data Discretization and Reconstruction First,
we remove the pre-processing component, Data
Discretization and Reconstruction, and instead di-
rectly split the data based on the triad message,
without semantic tags (No Label Split). Addition-
ally, we apply conventional text splitting meth-
ods, including the no-split and complete full-split
schemes (Gao et al., 2020).

As shown in Table 4, we evaluate the effective-
ness of the pre-processing components both before
and after removal using precision as a metric. Our
results demonstrate that the Data Discretization
and Reconstruction component outperforms the
no-pre-processing approach, with an improvement
of approximately 2.02%-3.20%. Furthermore, we
find that incorporating semantic tagging prompts
positively impacts discrete text data augmentation
in low-resource JERE tasks.

Table 4: Ablation study for SSDAU. “No Split” denotes
not splitting the text. “No Label Split” denotes splitting
by semantics without semantic tag. “Full Split” denotes
complete splitting of the words in the text.

Dataset NYT* WebNLG* Avg.
CasRel Baseline 90.17 90.62 90.39
SSDAU 92.00 92.80 92.40
Ablation for Pre-processing

No Split 89.32 90.17 89.75
No Label Split 90.33 90.42 90.38
Full Split 88.64 89.76 89.20
Ablation for Augmentation

(h,t) 64.21 73.83 69.02
(r) 77.42 84.31 80.87
(h,r,t) 90.41 91.13 90.77
(h,r;h) 85.66 88.53 87.10
(tr,) 82.12 84.44 83.28
Ablation for Filtering

No Filtering 89.92 90.84 90.38

Structured Semantic Data Augmentation We
evaluate the effectiveness of the augmentation com-
ponent by using the exact match method to measure
the similarity between pre-processed discrete texts
and generate augmented data accordingly. In this
process, the labels of the composed discrete texts
are substituted with the labels of the augmented
data. The augmented data is then classified based
on the type of triplet, used to train the model, and
its utility is assessed after the removal of the aug-
mentation component.



Table 5: Semantic consistency verification of augmented text. v is the syntactic coherence.

Text = South Africa, and the rest of Africa.

Source Triple = [[Africa, /location/location/contains, South Africa]]
Structured Semantic = location contain location
Text]l = South Africa is a part of Africa. v =0.516
. Text2 = North Africa, and the rest of Africa. v =0.923
Syntax Matching

Triple = [[Africa, /location/location/contains, North Africa]]

Structured Semantic = location contain location

As shown in Table 4, the augmented data con-
sists of five types of triplet tags. Among these,
only the augmented texts in the third group (h, r, t)
exhibit a modest positive effect (0.38%) on JERE
tasks. In contrast, the other four types negatively
impact the precision of JERE tasks. When the aug-
mentation component is removed, the threshold
restriction is lifted, allowing low-quality data to be
included in the augmentation process. This results
in a significant increase in negative data, thereby
reducing the model’s precision.

Furthermore, the augmentation component helps
preserve the semantic structure and facilitates the
mapping between augmented texts and triplet la-
bels. Without this component, the text extraction
process is disrupted, leading to performance degra-
dation in JERE tasks. The findings highlight a
substantial decrease in the precision of JERE mod-
els upon removing the augmentation component,
underscoring the critical role of semantically struc-
tured data augmentation.

Scoring-based Consistency Filtering We assess
the impact of the consistency filtering component
in SSDAU. Table 4 shows the precision of the JERE
models with and without filtered data. The results
demonstrate that the filtered data positively impacts
the model’s precision, whereas dthe precision de-
creases when low-quality augmented data are not
removed. This highlights the importance of consis-
tency filtering in maintaining the model’s precision.

4.4 Analysis

Semantic coherence analysis. During the seman-
tic coherence analysis of SSDAU, we follow a two-
step process to ensure semantic consistency in the
augmented text. First, we augment all texts by
considering similarities between annotations of the
same type and entity text, while preserving the
semantic annotations (e.g., "location contains lo-
cation"). Next, we use Biber Tagger (A. Bergman,
2022) to match triplet texts with identical tags. The
high degree of syntactic agreement between T'ext1
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Figure 5: The comparison between the number of text
after augmentation with SSDAU and the initial one for
different types of datasets.

and T'ext2 is demonstrated in Table 5. We filter
out texts with low relevance (below 0.8) and incor-
porate the remaining data into the training set as
augmented data, ensuring the semantic consistency
of the augmented text.

In Section 3.3, we explain that during the sim-
ilarity matching process, we distinguish between
entities and relations in the triplets, performing
separate similarity matching for entity texts and
replacing all triplets containing the modified texts.
This approach effectively addresses the issue of
mutually exclusive relations caused by textual cor-
relation, ensuring the semantic consistency of the
augmented text with the original.

Training Cost and Convergence. Figure 5 pro-
vides details about the original and augmented texts
containing varying numbers of triplets. We focus
specifically on scenarios where an entity appears



Table 6: Augmented data generated by SSDAU. Black texts are the original examples. Red texts are the discrete
text. Blue texts are the precondition for text segmentation and augmentation. € is the entity similarity threshold

and ¢4 is the relation similarity threshold.

Text: At Arkansas , the freshman Mitch Mustain led the Razorbacks in a 24-23 double-

overtime upset of Alabama.

Source Triples: Mitch Mustain(people)| Arkansas(place)|place_lived
Razorbacks(group)|Mitch Mustain(people)|contain
Condition: T'agn, = people, T'ag: = place, Tag, = place_lived, Op > €;.
Head Text: At Arkansas, the freshman Amy Grant led the Razorbacks in a 24-23 double-ov-
— ertime upset of Alabama.
Head Triples: Amy Grant(people)|Arkansas(place)|place_lived

Razorbacks(group)| Amy Grant(people)|contain

Condition: T'agn, = people, T'ag, = place, Tag, = place_lived, O > €.
Tail Text: At Nashville, the freshman Mitch Mustain led the Razorbacks in a 24-23 double-

— overtime upset of Alabama.

Tail Triples: Mitch Mustain(people)|Nashville(place)|place_lived
Razorbacks(group)|Mitch Mustain(people)|contain

Condition: T'agn, = people, Tag: = place, O, > ea.

Relation
— overtime upset of Alabama.
Relation

Text: At Arkansas, the freshman Mitch Mustain led the Razorbacks in a 24-23 double-

Triples: Mitch Mustain(people)|Arkansas(place)|location

Razorbacks(group)|Mitch Mustain(people)|contain

in multiple triplet relations and categorize the texts
based on the number of triplets to evaluate the effec-
tiveness of SSDAU for such texts. By classifying
the augmented data according to triplet counts and
incorporating it into the training set, we assess the
performance of different JERE models using the
same test set. The results demonstrate the effec-
tiveness of SSDAU for texts with different triplet
counts. Our method proves valuable across texts
with varying numbers of triplets, showing that as
the number of triplets in the training set decreases,
the availability of augmented data increases, lead-
ing to improved model precision.

4.5 Case Study

Table 6 presents three cases of SSDAU applied to
JERE tasks. In the first case, we replace the head en-
tity " Mitch Mustain” with ” Amy Grant” while
preserving the semantic label and other text in-
tact. In the second case, we substitute the tail en-
tity ”Arkansas” with ” Nashuville” while main-
taining the original semantic labels and other
texts. In the third case, we modify all the
text except for the entity and change the se-
mantic label from “people|people|placejived” to
“people|people|location.” Our data augmentation
approach can expand texts without introducing ad-
ditional noise, resulting in natural and diverse aug-
mentations. Compared to existing methods, SS-
DAU’s augmented data resolves diversity and qual-
ity issues more effectively.

5 Conclusion

We propose SSDAU, a data augmentation paradigm
designed to perform instance augmentation for low-
resource JERE tasks by labeling the semantic seg-
mentation of entity texts and assessing similarity
within neighboring semantic regions. Compared to
traditional methods, SSDAU effectively addresses
the challenge of data scarcity in low-resource sce-
narios and mitigates issues such as reduced textual
relevance and overlapping relations. These find-
ings suggest that preserving the semantic structure
of texts through structured semantic tags can be a
promising approach for text data augmentation.

Limitations

Although the proposed SSDAU outperforms all
baseline methods, it still has some limitations.
Firstly, while we alleviate the need for high-quality
data in SSDAU by filtering low-quality data, in-
corporating more high-quality data may further
improve SSDAU’s performance. Secondly, we im-
prove Similarities for structured semantic matching
of long texts through pre-processing The efficiency
of our approach can be enhanced by utilizing a
more efficient semantic text-matching component.
In future work, it would be interesting to validate
our approach in real-time using newly acquired
high-quality data and explore the development of
semantic text matching components that deliver
superior results for long texts.
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