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Abstract

Joint Entity and Relation Extraction (JERE) is001
highly susceptible to weak generalization due002
to low-quality training data. Data augmentation003
is a common strategy to enhance model gener-004
alization across different domains. However,005
existing data augmentation methods often over-006
look text relevance and may disrupt semantic007
structures and dependencies, making it difficult008
to generate effective augmented data for im-009
proving model generalization. In this paper, we010
propose Structured Semantic Data Augmen-011
tation (SSDAU), a novel method designed to012
preserve the semantic structure of text during013
augmentation. SSDAU segments text based on014
entity labels and employs an encoder to capture015
semantic features of entities through context016
awareness. It then performs entity semantic017
restructuring to generate augmented data. To018
mitigate potential topic ambiguity and infor-019
mation loss, we apply the BERTTopic model020
to filter out irrelevant topics, ensuring topic021
consistency. We evaluate SSDAU on datasets022
with different annotation types and compare023
its performance on five representative JERE024
models against six popular data augmentation025
baselines. Extensive experiments demonstrate026
that SSDAU generates data with a consistent027
semantic structure, leading to improved JERE028
model performance and surpassing state-of-the-029
art baselines.030

1 Introduction031

Joint Entity and Relation Extraction (JERE) is032

widely used for representation learning on text data033

due to its strong performance in applications such034

as information retrieval (Lin et al., 2020), question035

answering (Abdelaziz et al., 2021), and text sum-036

marization (Zhong et al., 2020). The generaliza-037

tion performance of JERE models heavily depends038

on the quality and scale of the training data. A039

common strategy to enhance generalization is data040

augmentation. Techniques such as MixUp (Cheng041

et al., 2020) and back-translation (Xie et al., 2020) 042

enable efficient expansion of the training set by gen- 043

erating new data with subtle perturbations derived 044

from the original samples. 045

However, a key challenge in applying exist- 046

ing techniques to enhance the generalization of 047

JERE models is that introducing noise or pertur- 048

bations into the original data may weaken entity 049

relevance (Kambhatla et al., 2022). Training on 050

incorrectly generated data can ultimately degrade 051

JERE models’ performance. Additionally, entities 052

are often involved in multiple triples with complex 053

semantic relations and dependencies. Existing data 054

augmentation methods can disrupt the structures 055

and dependencies, leading to issues such as over- 056

lapping relations and cascading (Liu et al., 2020). 057

To address this issue, we propose Structured Se- 058

mantic Data Augmentation (SSDAU) to preserve 059

the semantic structure of text during data augmen- 060

tation. Instead of directly perturbing text, SSDAU 061

aligns triplet text to maintain semantic integrity. 062

First, we use a feature-based encoder to segment 063

the text, ensuring that each segment retains the se- 064

mantics of its neighboring regions. Next, we match 065

segments with similar semantic labels using a de- 066

coder. To maintain structural consistency, we im- 067

plement a text matcher based on semantic similarity. 068

Finally, we substitute text with high similarity to 069

reorganize the original text, generating augmented 070

data while preserving semantic coherence. Inspired 071

by recent techniques such as BertTopic (Grooten- 072

dorst, 2022), we further refine the augmented text 073

by filtering out irrelevant topics using topic model- 074

ing based on BERT and c-TF-IDF. 075

To assess the effectiveness of SSDAU, we com- 076

pared its performance on four widely used datasets 077

with six baseline methods. We evaluated the perfor- 078

mance of different data augmentation techniques 079

on different JERE tasks and models, including 080

Multi-Module Multi-Step (Zheng et al., 2021; Wei 081

et al., 2020), Multi-Module One-Step (Sui et al., 082
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2020; Wang et al., 2020), and One-Module One-083

Step (Shang et al., 2022). The experiment results084

demonstrate that SSDAU outperformed state-of-085

the-art methods in improving the generalization of086

JERE models.087

2 Related Work088

Information Extraction JERE is an NLP task089

that maps entities and relations to generate a text-090

to-triplet model, assigning the triple to a new an-091

notation (Fu et al., 2019). Previous JERE models092

often use joint modeling (Ren et al., 2017) or se-093

quential annotation (Zheng et al., 2017) to extract094

entities and relations together, focusing on struc-095

tured learning through manually constructed fea-096

tures or knowledge tables (Miwa and Bansal, 2016).097

However, these manual features limit their perfor-098

mance across applications. To address this, Zhao099

et al. (Zhao et al., 2021) decompose the JERE task100

and modify the classification process for contextual101

learning. They categorize JERE models into three102

types: multi-module multi-step (Zheng et al., 2021;103

Wei et al., 2020), multi-module one-step (Sui et al.,104

2020; Wang et al., 2020), and one-module one-step105

(Shang et al., 2022). The accuracy of these models106

is constrained by the quality of training data, and107

our structured semantic data augmentation method108

can generate high-quality data for both basic and109

downstream JERE applications.110

Semantic Match Semantic matching is a sub-111

task of text matching used to retrieve semantically112

similar texts in search scenarios (Wu et al., 2022).113

Common approaches include cosine similarity, TF-114

IDF, and DSSM (Gao et al., 2021). Recent studies115

show that pre-training semantic classification mod-116

els can compress large amounts of text and improve117

the generalization of semantic matching models118

(Brown et al., 2020). For example, the Similarities119

tool (Zhang Bingyu, 2022) enhances practical ap-120

plications for text semantic matching, especially121

in text relation extraction. Based on existing tech-122

niques, we improve JERE by incorporating text123

semantic matching.124

Data Augmentation Data augmentation is an ef-125

fective and efficient method to improve machine126

learning model performance, especially in data-127

limited environments (Cashman et al., 2020). Com-128

mon techniques in NLP include word replacement129

(Wei and Zou, 2019), word vector replacement130

(Wang and Yang, 2015), masked language model131

replacement (Jiao et al., 2020), back translation 132

(Zhang et al., 2020), and adding noise (Min et al., 133

2020; Yan et al., 2019; Hou et al., 2018). Zhang et 134

al. (Zhang et al., 2015) and Jonas et al. (Mueller 135

and Thyagarajan, 2016) proposed lexical substi- 136

tution to preserve semantics, but this method is 137

limited by the size of the proxemics list. Unlike 138

simple perturbation (Liu et al., 2020) or extra aug- 139

mentor models (Hou et al., 2021; Hu et al., 2019), 140

we propose sampling-based augmentation to gen- 141

erate data with the same semantic structure while 142

maintaining the logic of the samples. 143

3 Method 144

In this section, we first define the problems. Then, 145

we introduce the three main components of SS- 146

DAU: 1) data discretization and reconstruction, 147

2) structured semantic data augmentation, and 3) 148

scoring-based consistency filtering. Figure 1 de- 149

picts the overall framework of SSDAU. 150

3.1 Preliminaries 151

Given set of sentences S = {s1, s2, ..., sN} con- 152

taining L token and K predefined relations R = 153

{r1, r2, ..., rK}, we extract entities and relations to 154

construct triples T = {(hi, ri, ti)}Mi=1 in S, where 155

hi, ti are the head and tail entities, respectively, N 156

represents the number of sentences, M represents 157

the number of triples. We store the knowledge as a 158

three-dimensional matrix ML∗K∗L. 159

Since triplets are the core output format of JERE, 160

we use the triplet as the basic unit of data augmenta- 161

tion and partition the text according to the triplet to 162

obtain three series of text collections. To preserve 163

the contextual semantics of the segmented text, we 164

keep the contextual token l of each segmented text 165

and record the location of each cut point p. 166

3.2 Data Discretization and Reconstruction 167

Encoder We use the triplet as the basic unit of 168

data augmentation to eliminate the noise from tex- 169

tual perturbations. We design a text feature-based 170

encoder E (the structure is shown in Figure 2). The 171

input of the encoder is the sentence text S. For 172

each sentence si, we locate the specified text block 173

(qhi
, qri , qti) based on the triplet tags (ρhi

, ρri , ρti), 174

and record the context token (lhi
, lri , lti) and its cut 175

position (phi
, pri , pti). The encoder processes all 176

the input text and gets three output text collections 177

according to the tag types: head entity collection 178

Qh, tail entity collection Qt, and relation entity 179

collection Qr. 180
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Figure 1: Overview of SSDAU. The Data Discretization and Reconstruction component discretizes the text data
S semantically using the Encoder and outputs text collections in the form of segmented sets. The Decoder then
processes these segmented sets to facilitate the Structured Semantic Data Augmentation component, where the
Input View is based on similarity matching, while the Output View focuses on augmenting the data. Finally, the
Scoring-based Consistency Filtering component uses a structured semantic classifier to filter low-resource data,
and the remaining augmented data £ and T are used as augmented data Sg to train a more robust JERE model.

s!
s"
…
s#

ℎ! 𝑇!

𝑇"

𝑇$

ℎ"

ℎ#

ℎ$

𝑟"

𝑟#

𝑟$

…

𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑘𝑒𝑛

𝑡"

𝑡#

𝑡$

ℎ$

ℎ"

𝑡# 𝑡%

𝑡"

𝑡&𝑟'

𝑟"

𝑟& 𝑟#𝑆

𝑟"

…

𝜌%!

𝑟# 𝜌%"

𝑟' 𝜌%#

𝑘" 𝜌&!
𝜌&"

…

𝑘#

𝜌&$𝑘!

𝑘( 𝜌&%

s' ℎ 𝑟 𝑡

𝑝(& 𝑝%& 𝑝)&

𝑙(& 𝑙%& 𝑙)&
𝑞!!
𝑞!"
𝑞!#

𝑞"!
𝑞"!
𝑞"!

𝑞#!
𝑞#!
𝑞#!

𝑄! 𝑄" 𝑄#

Figure 2: The structure of our feature-based encoder.

Decoder We then design a similarity-based text181

matching decoder D. The input of decoder D is182

(Qh, Qt, Qs). The decoder divides the text collec-183

tions according to the relation types and label types184

to get L ∗K ∗L groups B = {B1, B2, ..., BLKL},185

where each group has the same relation type and186

the same label.187

3.3 Structured Semantic Data Augmentation188

Discrete Text Matching We designed a text189

matcher based on the semantic similarity evaluation190

tool Similarities (Zhang Bingyu, 2022) to align the191

decoder’s output. A text block b in an output group192

Bi = b1, b2, . . . , bj from the decoder stores the193

text q, context tokens l, label type ρ, and segmenta-194

tion position p. We perform matching across all b195

in different text corpora Bi, incorporating seman-196

tic, syntactic, and lexical similarity evaluations, as197

well as context token similarity assessments. The198

matching results are normalized to a value between199

0 and 1 and inserted into a priority queue sorted in200

descending order of similarity. Finally, for each Bi,201

we obtain a similarity-based priority queue Pi.202

Data Augmentation After completing the sim- 203

ilarity matching, we filter out data in the prior- 204

ity queue Pi = P1, P2, ..., PKM with a similarity 205

score lower than the threshold ε. For the remaining 206

data, we replace the text content of the correspond- 207

ing text blocks based on the recorded segmentation 208

position l in each block’s information, thereby gen- 209

erating the augmented data. 210

3.4 Scoring-based Consistency Filtering 211

To further improve the quality of the augmented 212

data, we employ a BERTTopic model to identify 213

and retain key terms from topic descriptions. We 214

then filter out augmented data associated with ir- 215

relevant topics, ensuring the topic coherence of the 216

generated text. 217

First, we extract all entities and relations from 218

the text. Then, we encode the tokens using 219

BERT (Kenton and Toutanova, 2019), obtaining 220

the corresponding entity tokens l1, l2, . . . , lL. Next, 221

we combine entities and relations in the form of 222

(lh, r, lt) and perform triplet extraction using joint 223

entity and relation extraction (Shang et al., 2022). 224

Finally, we apply a function to compute the correla- 225

tion between the head and tail entities. The scoring 226

function is defined as: 227

h ⋆ t = ϕ(W [lh; lt]
T + b) (1) 228

where h and t represent the head and tail, respec- 229

tively. ⋆ denotes circular correlation (R × Rd → 230

Rd). W ∈ Rde×2d and b are trainable weights and 231

biases, respectively, where de denotes the dimen- 232

sion of the entity. [; ] is the concatenation operation 233

and ϕ(·) represents the ReLU activation function. 234
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We then incorporate the highly evaluated entity235

pairs with the relations and use the relational repre-236

sentation function R ∈ Rde×4K . The vector func-237

tion is defined as follows:238

υ(lh,rk,lt)
K
k=1

=RTϕ(drop(W [lh; lt]
T+b)) (2)239

where υ represents the score vector and drop(·)240

refers to the dropout strategy (Srivastava et al.,241

2014).242

Next, we add the scoring vector υ to the softmax243

function to predict the corresponding labels. The244

formulated triples are presented as follows:245

ζtriple = −
∑

i,j,k logP (y(li,rk,lj), g(li,rk,lj)|S)
L×K × L

(3)246

where g(li,rk,lj) represents the gold tag obtained247

from annotations. We match all triplets with the248

golden-label triplets to compute the topic score for249

each triplet. Finally, we select the high-scoring250

triplets as the topic relationships for the text. Aug-251

mented data in which these topic relationships have252

been replaced is filtered out, ensuring that the final253

augmented data remains both topic-relevant and254

structurally coherent.255

4 Experiment256

4.1 Experimental Setup257

Baseline We compare SSDAU with six com-258

monly used data augmentation methods, including259

word substitution (WS) (Wei and Zou, 2019), back260

translation (BT) (Xie et al., 2020), noise introduc-261

tion (NI) (Fanghua Ye, 2022), same-tag semantic262

noise (SSN) (Yan et al., 2019), generative models263

(GM) (Hou et al., 2021), and Mixup (Hu et al.,264

2019).265

Protocol We select five models for three differ-266

ent types of JERE tasks: Multi-module Multi-Step267

(PRGC (Zheng et al., 2021), CasRel (Wei et al.,268

2020)), Multi-module One-Step (TPLinker (Wang269

et al., 2020), SPN4RE (Sui et al., 2020)), and One-270

module One-Step (OneRel) (Shang et al., 2022).271

We use the following metrics to measure the272

effectiveness, performance, and adaptability of SS-273

DAU: precision (Prec), F1-score (F1), and Intersec-274

tion over Union (IoU).275

Implementation We conducted all experiments276

on a single server equipped with an Intel Xeon277

Gold 6248 2.50GHz CPU, two Tesla V100 SXM2278

32GB GPUs, and Ubuntu 18.04.6 operating system.279

Table 1: The number of augmented samples produced
by SSDAU at various thresholds on different datasets.

Dataset ε Head Relation Tail Sum.

NY T ∗

0.5 ∼ 0.6 15,062 243 11,300 26,605
0.6 ∼ 0.7 9,439 38 4,631 14,108
0.7 ∼ 0.8 1,825 19 1,365 3,209
0.8 ∼ 0.9 2,927 0 1,137 4,064
0.9 ∼ 1.0 960 0 1,546 2,506

WebNLG∗

0.5 ∼ 0.6 7,082 2,742 8,116 17,940
0.6 ∼ 0.7 3,933 1,946 5,342 11,221
0.7 ∼ 0.8 2,049 2,162 1,557 5,768
0.8 ∼ 0.9 814 2,005 1,021 3,840
0.9 ∼ 1.0 5,463 890 2,929 9,282

NY T

0.5 ∼ 0.6 13,507 234 10,076 23,817
0.6 ∼ 0.7 7,721 36 4,063 11,820
0.7 ∼ 0.8 4,922 13 1,588 6,523
0.8 ∼ 0.9 2,198 0 1,140 3,338
0.9 ∼ 1.0 3,700 0 1,051 4,751

WebNLG

0.5 ∼ 0.6 4,023 3,186 6,028 13,237
0.6 ∼ 0.7 2,673 2,009 4,445 9,127
0.7 ∼ 0.8 968 1,345 1,123 3,436
0.8 ∼ 0.9 309 919 923 2,151
0.9 ∼ 1.0 3,019 444 6,935 10,398

We reused the pre-trained BERT model (base-cased 280

English) from Huggingface 1. 281

Dataset We conduct our experiments on two 282

representative English datasets, NYT (Sandhaus, 283

2008) and WebNLG (Gardent et al., 2017). Both 284

types of datasets have two variations: fully anno- 285

tated type (NYT, WebNLG) and partially annotated 286

type (NYT∗, WebNLG∗). 287

Evaluation and Selection of Thresholds Table 288

1 describes the number of augmented samples gen- 289

erated by SSDAU for different sets of semantic do- 290

mains under various similarity thresholds. For the 291

four datasets, we count the number of augmented 292

data under different variable settings for different 293

entities and relations. The results indicate that the 294

number of augmented samples decreases as the 295

threshold value increases. Figure 3 shows the preci- 296

sion of the four augmented datasets under different 297

JERE models with various similarity thresholds. 298

The results suggest that the datasets augmented 299

by SSDAU perform the best under different JERE 300

tasks at a threshold value of 0.7. 301

4.2 Results 302

Comparison with Baselines Table 2 presents the 303

effectiveness (Prec), performance (F1), and adapt- 304

ability (IoU) results of SSDAU and six baselines 305

for different JERE tasks. The results demonstrate 306

1https://huggingface.co/google-bert/bert-base-cased
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Figure 3: Extraction precision of the JERE models with different similarity thresholds. (a), (b), (c), and (d) describe
the precision of different JERE models under different datasets, respectively.

Table 2: Precision (%) , F1 score (%) and Intersection over Union (%) of our proposed SSDAU and baselines in
CasRel model. All results are the the average over multiple patterns and 3 iterations.

Category
Partial Match Exact Match

NYT∗ WebNLG∗ NYT WebNLG

Prec. F1 IoU Prec. F1 IoU Prec. F1 IoU Prec. F1 IoU

Original 90.17 91.45 84.24 90.62 90.25 82.23 92.83 92.17 85.47 90.66 89.08 80.31

WS (Wei and Zou, 2019) 88.82 88.98 80.16 91.47 91.51 84.35 89.91 89.61 81.17 89.66 88.88 79.98
BT (Prabhumoye et al., 2018) 88.97 89.52 81.02 91.77 91.97 85.14 89.10 89.54 81.07 89.46 89.90 81.70
NI (Fanghua Ye, 2022) 89.37 89.91 81.67 92.41 92.16 85.46 88.38 89.70 81.32 88.41 87.64 78.00
SSN (Yan et al., 2019) 89.03 89.55 81.08 91.89 92.44 85.94 88.25 89.77 81.44 84.77 85.93 75.34
GM (Hou et al., 2021) 88.30 89.38 80.79 91.84 92.41 85.89 88.60 89.35 80.75 90.82 89.15 80.42
Mixup (Hu et al., 2019) 90.56 90.06 81.92 91.29 92.22 85.56 91.36 90.16 82.08 90.35 88.50 79.37

SSDAU 92.00 92.05 85.27 92.80 92.95 86.83 91.74 92.90 86.74 91.58 89.94 81.77

that SSDAU consistently outperforms the baseline307

in terms of the effectiveness of data augmentation308

for various JERE tasks. In terms of performance,309

SSDAU achieves the best F1 scores and generates310

positive outcomes, unlike the six baselines that neg-311

atively impact JERE models. Regarding adaptabil-312

ity, the results of IoU for augmented data indicate313

that our method performs better across different314

JERE models. These findings highlight the excel-315

lent adaptability of our approach in low-resource316

JERE tasks.317

In comparison to Back Translation (Xie et al.,318

2020) and Generative Models (Hou et al., 2021),319

maintaining the semantic structure of the text320

proves to be more effective than preserving se-321

mantic continuity. Contrasted with Noise Introduc-322

tion (Fanghua Ye, 2022) and Same-tag Semantic323

Noise (Yan et al., 2019), the method that maps dis-324

crete text by tags exhibits superior performance to325

adding noise directly. In contrast to Word Substitu-326

tion (Wei and Zou, 2019) and Mixup (Cheng et al.,327

2020), labeled discrete texts demonstrate superior328

properties in JERE data augmentation tasks com-329

pared to unlabeled samples. Based on these results,330

we conclude that the method of data augmentation331

by preserving the structured semantics of the text332

is superior to existing data augmentation strategies. 333

Figure 4 displays the training results of SSDAU 334

with six baselines under the CasRel model at vari- 335

ous iterations throughout the training process. The 336

results reveal that SSDAU consistently achieves 337

optimal performance across different iteration num- 338

bers. These findings suggest that the augmented 339

data produced by SSDAU is beneficial for enhanc- 340

ing JERE models. Additionally, SSDAU consis- 341

tently delivers promising enhancements on four 342

datasets in contrast to traditional methods. 343

Performance on Different JERE Tasks Table 344

3 displays the effectiveness of SSDAU and base- 345

lines for various JERE models. The results indicate 346

that the SSDAU-augmented dataset exhibits im- 347

provements across different types of JERE models, 348

such as 3.03% improvement on precision for the 349

WebNLG∗
g dataset in SPN and a 0.94% improve- 350

ment for the NY Tg dataset in the TPLinker model. 351

These outcomes demonstrate the feasibility of our 352

approach for augmenting unstructured texts into 353

structured semantic data for JERE tasks. More- 354

over, we observe that SSDAU performs better on 355

partially annotated type datasets than on fully anno- 356

tated type datasets. Notably, our method achieves 357

about a 3% improvement with the NYT∗ of the 358
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Figure 4: The effects of various baselines on different datasets are examined. Specifically, (a), (b), (c), and (d)
illustrate the precision of the data augmentation baseline at different iterations, with the CasRel model serving as
the prediction model.

Table 3: The precision of different models under different datasets. Each cell (A/B) represents the performance
of training with the original dataset (A) and the data augmented by SSDAU (B). Values in bold indicate the
improvement.

Model NYT∗ WebNLG∗ NYT WebNLG

SPN (Sui et al., 2020) 91.44/91.95 93.81/96.84 92.67/92.64 90.21/90.88
PRGC (Zheng et al., 2021) 93.33/93.36 94.00/94.46 93.54/94.40 89.92/91.32
CasRel (Wei et al., 2020) 88.97/91.47 91.77/92.13 89.10/91.74 89.46/91.58
OneRel (Shang et al., 2022) 90.17/92.00 90.62/92.80 92.83/92.90 90.66/91.60
TPLinker (Wang et al., 2020) 90.23/92.21 90.89/91.34 91.33/92.27 89.12/89.93

CasRel model and the WebNLG∗ dataset of the359

SPN model.360

4.3 Ablation Study361

We conduct an ablation study on the NY T ∗ and362

WebNLG∗ benchmarks to evaluate three compo-363

nents: data discretization and reconstruction, struc-364

tured semantic data augmentation, and scoring-365

based consistency filtering. Throughout this pro-366

cess, we maintain consistent settings across all com-367

ponents.368

Data Discretization and Reconstruction First,369

we remove the pre-processing component, Data370

Discretization and Reconstruction, and instead di-371

rectly split the data based on the triad message,372

without semantic tags (No Label Split). Addition-373

ally, we apply conventional text splitting meth-374

ods, including the no-split and complete full-split375

schemes (Gao et al., 2020).376

As shown in Table 4, we evaluate the effective-377

ness of the pre-processing components both before378

and after removal using precision as a metric. Our379

results demonstrate that the Data Discretization380

and Reconstruction component outperforms the381

no-pre-processing approach, with an improvement382

of approximately 2.02%-3.20%. Furthermore, we383

find that incorporating semantic tagging prompts384

positively impacts discrete text data augmentation385

in low-resource JERE tasks.386

Table 4: Ablation study for SSDAU. “No Split” denotes
not splitting the text. “No Label Split” denotes splitting
by semantics without semantic tag. “Full Split” denotes
complete splitting of the words in the text.

Dataset NYT∗ WebNLG∗ Avg.

CasRel Baseline 90.17 90.62 90.39
SSDAU 92.00 92.80 92.40

Ablation for Pre-processing
No Split 89.32 90.17 89.75
No Label Split 90.33 90.42 90.38
Full Split 88.64 89.76 89.20

Ablation for Augmentation
(h,t) 64.21 73.83 69.02
(r) 77.42 84.31 80.87
(h,r,t) 90.41 91.13 90.77
(h,r,h) 85.66 88.53 87.10
(t,r,t) 82.12 84.44 83.28

Ablation for Filtering
No Filtering 89.92 90.84 90.38

Structured Semantic Data Augmentation We 387

evaluate the effectiveness of the augmentation com- 388

ponent by using the exact match method to measure 389

the similarity between pre-processed discrete texts 390

and generate augmented data accordingly. In this 391

process, the labels of the composed discrete texts 392

are substituted with the labels of the augmented 393

data. The augmented data is then classified based 394

on the type of triplet, used to train the model, and 395

its utility is assessed after the removal of the aug- 396

mentation component. 397
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Table 5: Semantic consistency verification of augmented text. ν is the syntactic coherence.

Source
Text = South Africa, and the rest of Africa.
Triple = [[Africa, /location/location/contains, South Africa]]
Structured Semantic = location contain location

Syntax Matching

Text1 = South Africa is a part of Africa. ν = 0.516
Text2 = North Africa, and the rest of Africa. ν = 0.923
Triple = [[Africa, /location/location/contains, North Africa]]
Structured Semantic = location contain location

As shown in Table 4, the augmented data con-398

sists of five types of triplet tags. Among these,399

only the augmented texts in the third group (h, r, t)400

exhibit a modest positive effect (0.38%) on JERE401

tasks. In contrast, the other four types negatively402

impact the precision of JERE tasks. When the aug-403

mentation component is removed, the threshold404

restriction is lifted, allowing low-quality data to be405

included in the augmentation process. This results406

in a significant increase in negative data, thereby407

reducing the model’s precision.408

Furthermore, the augmentation component helps409

preserve the semantic structure and facilitates the410

mapping between augmented texts and triplet la-411

bels. Without this component, the text extraction412

process is disrupted, leading to performance degra-413

dation in JERE tasks. The findings highlight a414

substantial decrease in the precision of JERE mod-415

els upon removing the augmentation component,416

underscoring the critical role of semantically struc-417

tured data augmentation.418

Scoring-based Consistency Filtering We assess419

the impact of the consistency filtering component420

in SSDAU. Table 4 shows the precision of the JERE421

models with and without filtered data. The results422

demonstrate that the filtered data positively impacts423

the model’s precision, whereas dthe precision de-424

creases when low-quality augmented data are not425

removed. This highlights the importance of consis-426

tency filtering in maintaining the model’s precision.427

4.4 Analysis428

Semantic coherence analysis. During the seman-429

tic coherence analysis of SSDAU, we follow a two-430

step process to ensure semantic consistency in the431

augmented text. First, we augment all texts by432

considering similarities between annotations of the433

same type and entity text, while preserving the434

semantic annotations (e.g., "location contains lo-435

cation"). Next, we use Biber Tagger (A. Bergman,436

2022) to match triplet texts with identical tags. The437

high degree of syntactic agreement between Text1438
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Figure 5: The comparison between the number of text
after augmentation with SSDAU and the initial one for
different types of datasets.

and Text2 is demonstrated in Table 5. We filter 439

out texts with low relevance (below 0.8) and incor- 440

porate the remaining data into the training set as 441

augmented data, ensuring the semantic consistency 442

of the augmented text. 443

In Section 3.3, we explain that during the sim- 444

ilarity matching process, we distinguish between 445

entities and relations in the triplets, performing 446

separate similarity matching for entity texts and 447

replacing all triplets containing the modified texts. 448

This approach effectively addresses the issue of 449

mutually exclusive relations caused by textual cor- 450

relation, ensuring the semantic consistency of the 451

augmented text with the original. 452

Training Cost and Convergence. Figure 5 pro- 453

vides details about the original and augmented texts 454

containing varying numbers of triplets. We focus 455

specifically on scenarios where an entity appears 456
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Table 6: Augmented data generated by SSDAU. Black texts are the original examples. Red texts are the discrete
text. Blue texts are the precondition for text segmentation and augmentation. ε1 is the entity similarity threshold
and ε2 is the relation similarity threshold.

Source

Text: At Arkansas , the freshman Mitch Mustain led the Razorbacks in a 24-23 double-
overtime upset of Alabama.
Triples: Mitch Mustain(people)|Arkansas(place)|place_lived

Razorbacks(group)|Mitch Mustain(people)|contain

Head
→

Head

Condition: Tagh = people, Tagt = place, Tagr = place_lived,Θh ≥ ε1.
Text: At Arkansas, the freshman Amy Grant led the Razorbacks in a 24-23 double-ov-
ertime upset of Alabama.
Triples: Amy Grant(people)|Arkansas(place)|place_lived

Razorbacks(group)|Amy Grant(people)|contain

Tail
→
Tail

Condition: Tagh = people, Tagt = place, Tagr = place_lived,Θt ≥ ε1.
Text: At Nashville, the freshman Mitch Mustain led the Razorbacks in a 24-23 double-
overtime upset of Alabama.
Triples: Mitch Mustain(people)|Nashville(place)|place_lived

Razorbacks(group)|Mitch Mustain(people)|contain

Relation
→

Relation

Condition: Tagh = people, Tagt = place,Θr ≥ ε2.
Text: At Arkansas, the freshman Mitch Mustain led the Razorbacks in a 24-23 double-
overtime upset of Alabama.
Triples: Mitch Mustain(people)|Arkansas(place)|location

Razorbacks(group)|Mitch Mustain(people)|contain

in multiple triplet relations and categorize the texts457

based on the number of triplets to evaluate the effec-458

tiveness of SSDAU for such texts. By classifying459

the augmented data according to triplet counts and460

incorporating it into the training set, we assess the461

performance of different JERE models using the462

same test set. The results demonstrate the effec-463

tiveness of SSDAU for texts with different triplet464

counts. Our method proves valuable across texts465

with varying numbers of triplets, showing that as466

the number of triplets in the training set decreases,467

the availability of augmented data increases, lead-468

ing to improved model precision.469

4.5 Case Study470

Table 6 presents three cases of SSDAU applied to471

JERE tasks. In the first case, we replace the head en-472

tity ”Mitch Mustain” with ”Amy Grant” while473

preserving the semantic label and other text in-474

tact. In the second case, we substitute the tail en-475

tity ”Arkansas” with ”Nashville” while main-476

taining the original semantic labels and other477

texts. In the third case, we modify all the478

text except for the entity and change the se-479

mantic label from ”people|people|placelived” to480

”people|people|location.” Our data augmentation481

approach can expand texts without introducing ad-482

ditional noise, resulting in natural and diverse aug-483

mentations. Compared to existing methods, SS-484

DAU’s augmented data resolves diversity and qual-485

ity issues more effectively.486

5 Conclusion 487

We propose SSDAU, a data augmentation paradigm 488

designed to perform instance augmentation for low- 489

resource JERE tasks by labeling the semantic seg- 490

mentation of entity texts and assessing similarity 491

within neighboring semantic regions. Compared to 492

traditional methods, SSDAU effectively addresses 493

the challenge of data scarcity in low-resource sce- 494

narios and mitigates issues such as reduced textual 495

relevance and overlapping relations. These find- 496

ings suggest that preserving the semantic structure 497

of texts through structured semantic tags can be a 498

promising approach for text data augmentation. 499

Limitations 500

Although the proposed SSDAU outperforms all 501

baseline methods, it still has some limitations. 502

Firstly, while we alleviate the need for high-quality 503

data in SSDAU by filtering low-quality data, in- 504

corporating more high-quality data may further 505

improve SSDAU’s performance. Secondly, we im- 506

prove Similarities for structured semantic matching 507

of long texts through pre-processing The efficiency 508

of our approach can be enhanced by utilizing a 509

more efficient semantic text-matching component. 510

In future work, it would be interesting to validate 511

our approach in real-time using newly acquired 512

high-quality data and explore the development of 513

semantic text matching components that deliver 514

superior results for long texts. 515
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