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Abstract

We propose a compositional entity modeling
framework for requirement extraction from on-
line job advertisements (OJAs). To more ac-
curately capture the structure of requirements
in OJAs, we reframe the task from identify-
ing single-span annotations to modeling com-
plex, tree-like structures that connect atomic
entity types via typed relationships. Based on
this schema, we introduce GOJA, a high-quality
dataset of 500 German job ads. GOJA captures
the internal semantics of job requirements, in-
cluding roles, tools, experience levels, attitudes,
and their functional context.

We describe the annotation process, report
strong inter-annotator agreement, and bench-
mark transformer models to demonstrate the
feasibility of training on this structure. To illus-
trate the analytical potential of our approach,
we present a focused case study on Al-related
job requirements. We show how our proposed
compositional representation enables new types
of labor market analyses.

1 Introduction

Online Job Advertisements (OJAs) serve as a crit-
ical data source for understanding labor market
dynamics across disciplines such as labor market
research, education, and human resources (Khaouja
et al., 2021). They offer detailed and up-to-date
insights into in-demand skills, required qualifica-
tions, and evolving industry trends. By analyzing
OJAs, researchers can identify skill gaps and in-
form educational planning (Lima et al., 2018; Gi-
abelli et al., 2021; Buchmann et al., 2022; Atalay
et al., 2020, 2023). Job Ads have also been used in
recruiting research (Castilla and Rho, 2023; Kim
and Angnakoon, 2016) and for developing job rec-
ommendation systems via cv matching (Ntioudis
et al., 2022; Smith et al., 2021; Belloum et al.,
2019).

Work on Information Extraction (IE) in OJAs
has mostly focused on skills extraction (see survey

by Senger et al., 2024). Work extracting other in-
formation includes job tasks (Atalay et al., 2018,
2020, 2023), job titles (Baskaran and Miiller, 2023;
Li et al.; Giabelli et al., 2021; Rahhal et al., 2023),
work tools (Giintiirk-Kuhl et al.) and formal qual-
ifications (Brown and Souto-Otero, 2020; Miiller;
Schimke, 2023; Borner et al., 2018). Collectively,
these entities can be summarized as requirements,
reflecting aspects of the position sought that pertain
to the candidate.

Limitations of single-span requirement model-
ing. Most existing approaches to requirement ex-
traction in OJAs rely on flat, span-based annotation
schemes that treat expressions such as "Python",
"ML", or "Previous work experience" as standalone
entities. However, such representations fail to cap-
ture internal structure and logical relations.

Figure 1 illustrates this using three example sen-
tences from a job ad. Each sentence is annotated
with span-based baselines (top) and our framework
(bottom).

In the first sentence, single-span schemes tend to
annotate almost the entire sentence as a single span,
since they cannot represent semantic links—such
as the relation between apply and machine learning
algorithms. This leads to semantically overloaded
spans, as the difference between applying and, for
instance, developing or managing ML systems can-
not be made explicit otherwise. Long spans also
not only increase ambiguity and model error rates
(Zhang et al., 2022b), but also struggle to represent
embedded or conjoined elements (Nguyen et al.,
2024).

In the second sentence, “Python or Java” explic-
itly states these two programming languages as
alternative requirements. Current approaches, how-
ever, mark both terms as independent skills, thus
losing the disjunctive meaning. In addition, the
associated experience level (“familiarity”) is not
modeled as part of the skill expression. In the third
sentence, on the ohter hand, Green et al. (2022)
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Figure 1: Side-by-side comparison of the same three sentences annotated via different requirement modeling
approaches. For (Green et al., 2022) and (Zhang et al., 2022b), we annotated the sentences using their public

annotation guidelines.

annotate ‘“work experience” as a requirement only
when it appears in isolation. When embedded in a
more complex construction, such as being linked
to a specific skill, it remains unannotated.

Finally, expressions that indicate the urgency

or desirability of a requirement—such as “is ex-
pected” or “is a plus” in sentences 2 and 3—are, to
our knowledge, not explicitly annotated in existing
schemes. Yet such phrases carry critical semantic
information.
Contributions. To address these challenges, we
propose a compositional entity modeling frame-
work that decomposes requirement descriptions
into their constituent components and explicitly
models their relationships. Consequently, we
methodologically extend the entity extraction setup
by additionally modeling typed relations between
entities, enabling a structured representation of re-
quirement expressions.

In more detail, our contributions are:

* We propose a compositional framework for
modeling job requirements in OJAs, address-

ing limitations of single-span entity extraction
by modeling entities and their relationships.

» We introduce GOJA!, a manually annotated
gold-standard dataset of 500 German job ad-
vertisements, containing over 22,000 entities
and 13,000 typed relations.

* We demonstrate the feasibility and analyti-
cal value of our approach through (i) descrip-
tive analyses of structural patterns in the data,
(i1) benchmark experiments using transformer-
based models for entity and relation extrac-
tion, and (iii) a focused case study on Al-
related requirements.

2 Compositional Annotation of Job
Advertisements: The GOJA Dataset

This section introduces GOJA. We first review re-
lated datasets in the area of requirement extraction

'We release the created GOJA to the research community
upon acceptance of the paper.




Entity Type

Description

Example

Attitude
Attribute
Experience Level

Formal Qualification

Indicates traits or dispositions desired in candi-
dates.

Provides additional specifications about other
entities.

Indicates the level of knowledge or skills re-
quired.

Identifies certifications or official qualifications
required.

You are adaptable
You design logos for our customer
Experience in Python

Bachelor’s degree in Economics

Industry Defines the industry or sector associated with  You bring relevant experience in the
the job. automotive industry

Occupation Specifies the role or position advertised. We looking for a baker (m/f/d)

Process Represents actions or sequences required to per-  You design Logos
form tasks.

Work Content Describes the object or tool related to a task. You design logos

Relation Type Description Example

Alternative Denotes alternatives between entities. Bachelor’s degree or

minimum of three years professional experience)
Coordination Connects coordinated morphems within sen-  You pre- and post- process texts.

Degree of Autonomy
Detail

Negation
Object Being Trans-
formed (OBT)

Related Entity Parts
(REP)

Specialization
Tool
Urgency

Zero Relation

tences.

Specifies the level of autonomy in task execu-
tion.

Illustrates subcategories or specifics of an entity.

Highlights excluded processes or tasks.

Links processes to the items or entities they af-
fect.

Links separated parts of an entity.

Adds specificity to qualifications or roles.
Connects processes to the tools or methods used.
Indicates the importance or necessity of an en-
tity.

Used where the relation is self-evident.

You help your supervisor prepare presenta-
tions

You are experienced with at least one
programming language like Python

This role does not include care duties.
You design new logos

You set the annual budget up

A Bachelor’s degree in Economics
You design logos using Illustrator

Experience in Python is mandatory

You bring experience in programming

Table 1: Overview of entity and relation types in our proposed annotation scheme. For relation types, the examples
underline the subject and object entity of the respective relation.

from job advertisements, then describe our annota-
tion schema, and finally detail the annotation pro-
cess and resulting dataset statistics.

2.1 Related Datasets

We focus here on publicly available datasets for
requirement extraction from online job advertise-
ments. We restrict our scope to methodologically
relevant datasets used for training or evaluating in-
formation extraction models — excluding purely
analytical corpora (like in Atalay et al. (2020))
Despite the growing interest in this field, dataset
availability remains limited. According to an
overview provided by Zhang et al. (2022b), more
than 80% of skill extraction studies do not release
their datasets or annotation guidelines. To the best
of our knowledge, no publicly available datasets
exist for other requirement types such as job tasks,

job titles, or formal qualifications.

A recent survey by Senger et al. (2024) summa-
rizes the current landscape of skill-related datasets.
Datasets released to the public are: SAYFUL-
LINA (Sayfullina et al., 2018) presents an En-
glish dataset of soft skills, annotated via crowd-
sourcing using a predefined list and binary rele-
vance labels. GREEN (Green et al., 2022) crowd-
source both hard and soft skills in English ads, ad-
ditionally labeling occupations, experience levels,
and qualification indicators. SKILLSPAN (Zhang
et al., 2022b) introduces expert-annotated spans
for both skills and knowledge concepts. KOMPE-
TENCER (Zhang et al., 2022a) provides Danish
span-level annotations aligned with the ESCO tax-
onomy, covering both coarse and fine-grained skill
labels. DECORTE (Decorte et al., 2022) offers
Dutch skill annotations manually mapped to ESCO
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Figure 2: Example of analysis chains for skills and
tasks.

concepts, serving as gold-standard data for evalua-
tion. GNEHM-ICT (Gnehm et al., 2022a) focuses
on Swiss German ICT job ads, annotating related
entities. BHOLA (Bhola et al., 2020) approaches
the task differently, using document-level multi-
label classification of English job ads based on
a predefined skill inventory. FIJO (Beauchemin
et al., 2022) provides French span-level skill an-
notations using sequence labeling. Skills are cat-
egorized into four predefined types—“Thoughts”,
“Results™, “Relational”, and “Personal”’—derived
from public and proprietary taxonomies.

2.2 Proposed Annotation Schema

The key observation underlying our approach is
that fuzzy concepts such as skills and tasks are
often not directly represented in text as discrete,
self-contained entities. Instead, they emerge com-
positionally from smaller, interrelated components.
Our framework formalizes this by analyzing skills
and tasks as chains of atomic entities linked by
relations.

Table 1 provides a full overview of all 8 entity
and 11 relation types in our annotation framework.
Tasks. Tasks are demand-side job elements that
transform inputs into outputs within an economic
context (Autor and Handel, 2013; Rodrigues et al.,
2021). They can be described at varying levels
of granularity. In our schema, the PROCESS entity
captures the action, and the WORK CONTENT entity
specifies its target or context. These are linked via
relations that express semantic dependencies. De-
pending on its role, WORK CONTENT may refer to
an OBJECT BEING TRANSFORMED (OBT)—e.g.,
a thing, concept, person—or to a work tool used to
carry out the process (Fana et al., 2023)

Skills. Skills are defined as the ability to perform
a task effectively (Rodrigues et al., 2021), repre-
senting the supply side of labor. In our framework,
skills are modeled as tasks augmented by EXPE-
RIENCE LEVEL entities. Figure 2 shows how the
task "designing scalable systems" plus the entity
"Experience" form a skill. This skill-task distinc-
tion underscores the importance of compositional

modeling in capturing not just the components of
tasks and skills but also their contextual modifiers.
In this conceptualization, tasks entail certain skills
but not vice versa.

Attitudes. Traits often labeled as soft skills are
represented as ATTITUDE entities in our schema.
Attitudes are psychological, emotional, or behav-
ioral predispositions—e.g., empathy, adaptability,
or stress tolerance—that support effective task per-
formance (Rodrigues et al., 2021). Unlike skills,
which are tied to specific tasks, attitudes pertain to
broader domains of competence.

Other entities and relations. The other entities
and relations have been derived inductively during
annotation guideline development (see Section 2.3)
based on the goals of our framework (e.g., FOR-
MAL QUALIFICATION was introduced because we
were interested in degrees mentioned), their fre-
quent occurrence in patterns (e.g. URGENCY) or
the need to correctly represent the meaning of the
text (e.g. syntactically motivated relations like CO-
ORDINATION or REP). The most arbitrary cate-
gories are ATTRIBUTES and ZERO RELATION. At-
tributes provide additional context that may or may
not be relevant for the analysis. They cannot stand
alone, but specify details about primary entities.
While Attributes may span longer phrases, all other
entity types are defined as concisely as possible to
balance annotation consistency and model perfor-
mance. TThis design reduces complexity for key
entities while capturing optional nuances through
attributes as a flexible catch-all for contextual de-
tails. The ZERO RELATION applies to entities
whose connection is self-evident and needs no fur-
ther specification.

2.3 Dataset Annotation

To prepare a suitable dataset for annotation, we
sampled 500 German job ads from Textkernel’s
Jobfeed corpus, restricting to regular employment
(excluding apprenticeships). A multivariate sam-
pling approach balanced multiple factors (year of
publishing, website source, WZ08 activity, ISCO08
occupation, contract type, and text length), aiming
to minimize selection bias.

We conducted the annotation in two phases: (1)
iterative guideline development and (2) final anno-
tation of 500 OJAs:

Phase 1 Following Reiter et al. (2019), four origi-
nal annotators (A) refined the guidelines over
six rounds on small samples, comparing an-



notations and adjusting rules to ensure consis-
tency and construct validity.

Phase 2 In the final phase (2), 15 researchers (A
plus newly trained annotators B) participated.
Group B received tutorials and performed test
annotations; only those surpassing Krippen-
dorff’s @ > 0.7 proceeded. Each OJA was
then double-annotated and curated by a third
annotator (A). This yielded Krippendorff’s
a = (.88 for entities and o = 0.80 for rela-
tions — values considered reliable by Krip-
pendorff (2018).

Comparing our metrics to other work in the
field, Green et al. (2022) report Cohen’s K = 0.49
and Krippendorff’s o = 0.55, while Zhang et al.
(2022b) report Fleiss’ x between 0.70 and 0.75.
Although the scores are not directly comparable
due to differences in annotation schemes and task
definitions, our results indicate a relatively high
inter-annotator reliability.

2.4 Describing GOJA

Following the annotation process, we compiled the
resulting data we refer to as GOJA ("German Online
Job Advertisements"). GOJA yields 22,506 entities
and 13,324 relations across 500 German-language
OJAs. In this section, we provide an overview
of key dataset properties and highlight composi-
tional patterns that reflect the complexity of re-
quirement expressions in real-world OJAs. Given
our multivariate sampling approach, this distribu-
tion should approximate their occurrence in larger
datasets. Figure 3 illustrates the distribution of key
analytical units—tasks, skills, and attitudes—per
document, as derived from the chains described in
Section 2.2.

Explicit distinction between tasks and skills. No-
tably, concepts that are extracted as skills in other
studies tend to be formulated as tasks in our con-
ceptualization. This observation reflects how most
analyses with OJA data (implicitly) equate job tasks
with skills, i.e. the proficiency in these tasks. How-
ever, as employer-provided training is almost ubig-
uitous in Germany, especially in entry-level jobs
in Germany (Lukowski et al., 2021), candidates
are not expected to master all tasks at the outset.
Consequently, our findings indicate that research
could benefit from investigating why certain tasks
are explicitly associated with an experience level
while others are not.
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Figure 3: Boxplot showing the distributions of Skills,
Tasks and Attitudes per document.

Comparing the frequency of skills and attitudes,

it can be derived that in terms of typical OJA
text zones (Gnehm, 2018; Gnehm and Clematide,
2020), our analysis reveals that skill segments in
job advertisements predominantly consist of atti-
tudes rather than hard skills.
High frequency of conjoined skills and tasks.
Our analysis reveals that conjoined requirement
structures are common in OJAs. A substantial share
of both tasks (44%) and skills (30%) involve multi-
ple linked components, such as one process affect-
ing several work contents, or one experience level
modifying several tasks or tools. These patterns
occur more frequently than previously reported in
comparable studies (Nguyen et al., 2024) and high-
light the importance of explicitly modeling such
structures. A more detailed breakdown of con-
joined configurations is provided in Appendix A.

3 Applying GoJA

To demonstrate the practical utility of GOJA, we
apply it in two ways. First, we train baseline extrac-
tion models to show that the compositional schema
can be learned by transformer-based architectures.
Second, we use these models to analyze Al-related
requirements in a larger corpus of job ads, illustrat-
ing the analytical benefits of structured, relation-
based modeling.

3.1 Baseline Models

To assess whether the GOJA annotation schema
can be learned effectively, we train transformer-
based models for both entity and relation extraction.
These models form the basis for downstream appli-
cations and enable automated large-scale analysis.



3.1.1 Model Setup

We fine-tune four different pre-trained transformer
models: German BERT (Devlin et al., 2019),
German DistilBERT (Sanh, 2019), jobBERT-de
(Gnehm et al., 2022b)—a variant of German BERT
fine-tuned on German OJA data—and the multilin-
gual XLM-RoBERTa (Conneau, 2019). For entity
extraction, we use a token classification head on
top of the pre-trained models.

For relation classification, we adopt a simple yet
effective approach: Entities participating in a rela-
tion are marked with special tokens [E] and [/E]
within their sentence, and the modified sequence
is passed to a transformer-based sequence classifi-
cation model. To handle candidate entity selection
efficiently, we use a context window of four sen-
tences, based on internal analyses, to determine
potential entity pairs. Additionally, we introduce a
NO RELATION class to distinguish entity pairs that
do not share a relation. Since this results in a class
imbalance, we randomly downsample the No Rela-
tion class to match the total number of instances in
the other relation classes.

Prior to cross-validation, we determined suit-
able hyperparameters via grid search to optimize
model performance. We report the F1-score aver-
aged over five-fold cross-validation, ensuring ro-
bustness across different data splits. The dataset
follows a 70-15-15 split into training, validation,
and test sets, with all reported F1-scores computed
exclusively on the unseen test set to provide a real-
istic assessment of generalization performance.

3.1.2 Performance Overview

Our experimental results are summarized in Ta-
ble 2. We observe that XLM-RoBERTa clearly
outperforms the other three models in both en-
tity extraction and relation classification. Notably,
jobBERT-de also achieves solid performance, im-
proving over German BERT and German Distil-
BERT in both tasks. An interesting finding is that
the performance gap among models is much larger
in the entity subtask than in relation classification.

3.2 Case Study: Analyzing Al-related
Requirements

To illustrate the analytical potential of our schema,
we analyze OJAs mentioning Artificial Intelligence
(AI). Al-related requirements are of growing in-
terest in labor market research. From a corpus of
2.8 million ads, we selected approximately 19,000
matching a curated keyword list derived from a

Model Entity F1 Relation F1

German BERT 0.665 £0.025  0.836 £ 0.008
German DistilBERT 0.517 +0.024  0.788 £+ 0.012
jobBERT-de 0.718 £0.013  0.874 £0.014
XLM-RoBERTa 0.856 £ 0.012  0.911 £ 0.007

Table 2: F1 scores and standard deviation for entity
extraction and relation classification, averaged over five-
fold cross-validation.
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Figure 4: Process verbs associated with robotics as Work
Tool vs. Object Being Transformed (OBT).

computer science ontology (Salatino et al., 2018)
and a public repository (Peede and Stops, 2024).
These ads were processed with our best-performing
models (cf. Table 2), resulting in around 1.9 million
entities and 1.9 million relations. In the following
analysis, we examine Al-related entities and their
relation chains to highlight structured patterns in
job requirement descriptions.

Robotics as Tool and Object. The most central
differentiation in job tasks in our framework lies
in the relations OBT and Work Tool between Work
Content and Process entities. Figure 4 shows the
process verbs most frequently associated with key-
words in robotics in each role, aggregated across
verb variants. When labeled as a Work Tool,
robotics appears in the context of operational ac-
tions such as use, automation, or implementation.
In contrast, robotics as an OBT is associated with
development-oriented verbs such as programming,
integration, or commissioning. These findings high-
light the advantage of contextualizing Process and
Work Content relations to more accurately cap-
ture competence profiles. This distinguishes, for
instance, between operational usage and develop-
mental expertise.

Occupational Framing of Machine Learning.
To further demonstrate the analytical value of our
schema, we examine how the term machine learn-
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Figure 5: Process verbs associated with machine learn-
ing across occupational domains.

ing is embedded in different occupational domains.
We compare two groups based on the German clas-
sification of occupations (K1dB): Occupations in
business management and organisation and Oc-
cupations in computer science, information and
communication technology.

Figure 5 shows the process verbs most frequently

associated with machine learning in both groups,
aggregated across lexical variants. In ICT-related
occupations, machine learning is predominantly
linked to development-oriented processes such as
developing, implementing, and optimizing. In con-
trast, business-related roles emphasize more strate-
gic or organisational actions such as realizing, ap-
plying, or conceptualizing.
PyTorch or TensorFlow? Our schema captures
logical relations such as disjunctions, e.g., in
phrases like “experience with PyTorch or Tensor-
Flow”.

Among job ads mentioning both frameworks,
57.4% explicitly encode this as an Alternative
relation—indicating that only one is required. The
remaining 42.6% list both without a linking rela-
tion, leaving the requirement ambiguous.

How urgent is AI? To assess the framing of Al-
related experience requirements, we analyzed an-
notation chains of the form:

Work Content — Experience Level M
Attribute

For each Attribute, we applied a zero-shot
classification using an mDeBERTa-based NLI
model (Laurer et al., 2024). Based on the sur-
face form of the attribute (e.g., “nice to have”,
“required”, “ideally”), we assigned one of three
urgency levels: required, preferable, or unimpor-
tant.

Table 3 shows that only 1.4% of Al-related cases
are marked as required, while 97.2% are preferable.

Type Required Unimportant Preferable
Al-related 1.4% 1.4% 97.2%
Non-Al-related 8.9% 2.5% 88.6%

Table 3: Distribution of urgency classifications for
experience-related requirements based on NLI predic-
tions over structured entity chains.

Non-Al mentions more often indicate mandatory
expectations.

These findings suggest that Al is still largely
framed as an optional asset, reflecting early-stage
adoption. This helps explain how emerging tech-
nologies enter occupational profiles—first as desir-
able attributes, later as standardized requirements.
Summary These examples demonstrate the analyt-
ical value of our schema and dataset, enabling the
exploration of semantically rich questions. Analy-
ses like modeling urgency or identifying alterna-
tives are only accessible through structured annota-
tions. While single-span approaches might approx-
imate them via inference pipelines (cf. Section 4),
our schema captures such distinctions natively and
directly.

We acknowledge that the first two examples, in-
volving robotics and machine learning, could in
principle also be distinguished through normalized
flat outputs, even though we did not perform tax-
onomy normalization in this study. Nevertheless,
the structural clarity of our schema simplifies such
normalization and facilitates direct integration into
taxonomies—particularly in the presence of long
spans, conjoined expressions, or ambiguous struc-
tures (cf. Section 1, 2.4).

Beyond facilitating analysis, the structured out-
put also supports taxonomy development itself: by
applying these methods to larger datasets and clus-
tering co-occurring process expressions, empirical
structures can inform or revise existing classifica-
tion systems. Finally, we emphasize that this study
is a proof of concept. Several entity types, such as
Formal Qualification, Job Title, or Sector,
as well as longer relational chains, remain unex-
plored—highlighting the substantial potential for
future work.

4 Discussion

Our findings confirm that compositional model-
ing is not only conceptually well-founded but
also empirically feasible and analytically valu-
able. GOJA demonstrates that detailed, structured



representations of requirements can be annotated
with high reliability and effectively predicted by
transformer models. It should be noted, however,
that comparability with previous work—such as
Zhang et al. (2023)—is limited, as most existing ap-
proaches rely on flat span-based annotation of iso-
lated concepts. Reported extraction performance
in these studies varies widely depending on how
skills are defined, with simpler formulations often
yielding higher scores at the cost of structural and
semantic depth (cf. Alexopoulos, 2020).
Emerging compositional approaches in OJA re-
search. Recent studies have begun to address the
structural limitations of single-span extraction. As
shown in Figure 1 Zhang et al. (2022b) extend
span-based labeling by allowing nested annotations,
while Nguyen et al. (2024) formulate extraction as
a generative task to improve flexibility. Gnehm
et al. (2022a) demonstrate that deeper semantic pat-
terns can indeed be extracted from flat annotations
— but only through additional decomposition steps
that segment and classify subcomponents of long
spans post hoc. Compared to these approaches, our
method offers several concrete advantages: it is
more efficient than generative models, as it relies
on standard encoder-based architectures; it han-
dles conjoined expressions more reliably (Nguyen
et al., 2024) by representing them structurally; and
it enables selective modeling of relevant informa-
tion—allowing the model to ignore contextually
unimportant modifiers. Crucially, our schema en-
codes explicit semantic relationships, which not
only increases representational richness and accu-
rateness but also supports new types of research
questions, as demonstrated in our case study on
Al-related requirements.

Broader applicability. Compositional modeling
of entities and concepts is not unique to our ap-
proach; it also underlies many relation extraction
tasks where relations between entities construct
higher-order concepts. While traditional relation
extraction typically operates on classic named enti-
ties, our method starts from predefined conceptual
structures and decomposes them into text-based
components. Despite differences in granularity,
both approaches transform lower-level units into
more complex representations.

Unlike traditional relation extraction approaches
that usually operate over classic named entities, our
method starts from conceptual units and builds in-
terpretable structures over text spans.We believe
that the broader NLP community, particularly in

application-driven fields such as industry, computa-
tional social science (CSS), and digital humanities
(DH), could benefit from a more extensive discus-
sion on compositionality in text and its relation to
conceptual modeling. Our findings highlight the
limitations of treating many information extraction
IE tasks purely as named entity recognition (NER)
problems.

5 Conclusion and Outlook

This paper introduced a compositional entity mod-
eling framework for requirement extraction from
Online Job Advertisements (OJAs). Rather than
modeling requirements as isolated spans, our ap-
proach captures their internal structure by anno-
tating typed entities and their semantic relations.
Based on this framework, we present GOJA, a gold-
standard dataset of 500 annotated German job ads,
demonstrating high annotation consistency and the
feasibility of training extraction models on this
structured representation.

Our work opens several avenues for future re-
search. While our dataset focuses on German OJAs,
future studies could explore whether compositional
modeling yields similar benefits across languages
and domains. More extensive benchmarking, in-
cluding additional evaluation metrics (e.g., triple-
level accuracy), aggregation of higher-order con-
cepts (e.g., tasks and skills), and advanced architec-
tures (e.g., joint entity-relation extraction or graph-
based models Shaowei et al., 2022; Wu et al., 2020),
could provide further insights.

Beyond extraction, requirement modeling often
involves aligning extracted content with external
taxonomies or ontologies. Since such resources can
be represented as graphs (see Dorpinghaus et al.,
2023), the structured output of our schema — in-
cluding relational chains and alternatives — may
support hierarchical or joint taxonomy alignment.
Furthermore, our case study already illustrated the
analytical potential of structured representations;
scaling this approach to larger and longitudinal
datasets may enable systematic investigations into
emerging skills, requirement trends, and taxonomy
alignment.

In conclusion, our framework contributes a ro-
bust foundation for analyzing complex require-
ments in job advertisements and encourages
broader discussion around compositional represen-
tations in applied information extraction tasks.



6 Limitations

While our compositional entity modeling frame-
work shows promising results in capturing com-
plex semantic dependencies in online job adver-
tisements, several limitations and deliberate design
decisions should be acknowledged.

Limited Large-Scale Empirical Validation.
Although our experiments indicate that the pro-
posed method can more effectively capture the intri-
cate structure of job requirements compared to flat
entity extraction methods, conclusively validating
this claim would require large-scale empirical com-
parisons across diverse modeling paradigms. Such
an endeavor would involve developing and bench-
marking multiple models on datasets comprising
millions of OJAs and assessing their performance
across various downstream applications (e.g., skill
gap analysis, regional labor market assessments).
Given the substantial scope and resource require-
ments, this comprehensive evaluation remains be-
yond the scope of the current study.

Design Decisions in Entity and Relation Def-
initions. A central design choice of our frame-
work is to consistently label similar textual com-
ponents with the same entity type—specifically,
using work content for elements that denote the
object or subject within a sentence. For example,
a machine mentioned in a job advertisement is al-
ways annotated as Work content, irrespective of
whether the context involves repairing or operat-
ing machinery. The semantic differences between
these contexts are then captured through distinct
relation types: when the machine is directly acted
upon (as in repairing machinery), the relation OBT
is used, whereas if it serves as an instrument (as
in operating machinery), the relation Tool is ap-
plied. This choice was made, because we believe it
would enhance annotation consistency and model
performance.

Then, other relational distinctions, such as Alter-
native, emerge directly from the logical structure
of the text. However, decisions regarding when to
introduce a new entity versus representing seman-
tic nuances solely through relations (e.g., the case
of Specialization, which often maps to attributes)
proved challenging and, in some cases, inherently
arbitrary. These design choices could affect both
the generalizability of the framework and the inter-
pretability of the extracted structures. Balancing
the need for annotation consistency with the cap-
ture of fine-grained semantic distinctions remains

an open challenge and a potential limitation of our
approach.

Context Window and Sentence Splitting. For
relation classification, we sample candidate entity
pairs within a context window defined by sentence
boundaries. This decision was based on analyses
suggesting that sentences provide a natural and less
arbitrary segmentation unit compared to tokens or
words. However, sentence splitting in job advertise-
ments is challenging due to unconventional punc-
tuation, enumerations, and gender-neutral formula-
tions in German. Such issues can lead to subopti-
mal context sizes, potentially affecting the capture
of relevant relational dependencies. Future work
should investigate more robust segmentation strate-
gies.

Token Alignment Issues. Our annotations are
performed at the character level and subsequently
aligned with tokenized text. In rare cases, dis-
crepancies between token boundaries and anno-
tated spans occur. Although internal analysis indi-
cates that these misalignments are marginal, they
nonetheless represent a potential source of error
that might slightly affect extraction performance
during inference. Addressing these alignment chal-
lenges is an important direction for future research.
Note, that this problem did not affect the model
performances presented in Section 3.1.

Comparison with Flat Entity Extraction. A
potential counterargument is that extracting longer
spans as single units might allow for semantic
and logical connections to be resolved in down-
stream processing. However, research (Zhang et al.,
2022b) has shown that longer, compositionally rich
spans are increasingly difficult for models to ex-
tract reliably. Thus, while flat entity extraction
may delay the need to capture internal structure, it
does not remove the underlying challenge of rep-
resenting complex requirement semantics in job
advertisements.
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A Dataset Details

Data Sampling. To reduce biases, for example due
to data shift or OJAs differing between jobs or in-
dustry sectors, we applied a multivariate sampling
approach. Table 4 explains the different variables
used.

Analysis of Conjoined Structures To illustrate the
structural complexity of requirement expressions
in Online Job Advertisements (OJAs), Figure 6
presents a breakdown of frequently observed con-
joined patterns. These include, for example, single
processes linked to multiple work contents, or ex-
perience levels associated with multiple tasks or
tools. The visualization aggregates entity chains
into abstracted patterns to support interpretability.

Pattern ‘ Frequency
Process Work Content
1706
Process Process Work Content
... 609
Process Work Content Work Content
e 707
Experience Level Task
245
Experience Level Task Task
. 105
Experience Level Tool
284
Experience Level Tool Tool
106

Figure 6: Frequency of conjoined requirement struc-
tures in GOJA. Each pattern groups structurally similar
chains; entities denoted as n represent arbitrarily many
nodes of the same type.

Annotation guidelines. Annotation guidelines can
be accessed under https://github.com/TM4VE
TR/Public_Stea_Annotationsguide

Annotators. All annotators (A+B) work in the
same organization as the authors of this article.
They are all native German speakers and hold at
least the equivalent of a Bachelor’s degree, with
diverse backgrounds in social sciences, (digital)
humanities, economics, and psychology. All have

13

at least some experience in labor market research,
which is advantageous given the complex structure
of the operationalization of the concepts. Four of
the annotators are male, and eleven are female.

All annotations were conducted during regular
working hours, and the annotators did not receive
any additional payment beyond their regular salary.
All B participated voluntarily following a call for
participation.

The annotators were informed about the purpose
of the annotation process, and in exchange for their
contribution, they were promised priority access to
the final dataset.

Additional IAA scores. Tables 5 and 6 show the
IAA results per class.

Entity and relation counts. Table 7 displays of
the amount of annotated entities and relations in
our dataset.

B Experimental Setup Details

To ensure reproducibility, we provide additional
details on our experimental setup:
Hyperparameters. Table 8 and Table 9 provide
details regarding the hyperparameters used in our
experiments.
Hardware: All models were trained on an
NVIDIA L40 GPU with 48 GB VRAM.
Class Imbalance: The “No Relation” class was
downsampled to match the total number of in-
stances in other relation classes.
Cross-Validation: A stratified 5-fold cross-
validation was performed using the same five ran-
dom seeds across all models.

Licences:

C Additional Analysis

Figures 7 and 8 display the aggregated confusion
matrices for entity extraction and relation classi-
fication, respectively, across five runs per model.
As they do use numeric labels for space reasons,
the label mapping presented in Tables 11 and 12
respectively.

C.0.1 Error Analysis

Our error analysis aims to explain model perfor-
mance differences on a per-class level and to un-
derstand the relationship between model predic-
tions, inter-annotator agreement (IAA), and error
patterns. Figure 9 presents per-class F1 scores and
std. deviations, while confusion matrices (Figures 7
and 8) illustrate detailed prediction errors. Our
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Factor

Description

Year of Publishing
Source Website
WZ08 Activity
ISCOO08 Occupation
Contract Type

Text Length

Job ads from the years 2016 and 2022.
Job portals and company websites.
Selection from the economic sections of the WZ08 classification.
First level of the ISCO08 occupational classification.

Only permanent and fixed-term contracts (excluding apprenticeships, internships,

etc.).

Various text lengths, measured using spaCy tokenization.

Table 4: Factors in the Multivariate Sampling Approach for Job Ad Selection
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Figure 7: Aggregated confusion matrices for entity extraction (row-normalized over 5 runs for each model)

Entity Type

Work Content
Attitude

Attribute
Occupation

Industry

Experience Level
Formal Qualification
Process

IAA (Krippendorff’s o)

0.75
0.87
0.60
0.83
0.55
0.85
0.87
0.78

Table 5: Inter-Annotator Agreement (Krippendorft’s o)
for Entity Types

analysis shows that superior macro-F1 scores of
XLM-RoBERTa stem primarily from its ability to
handle difficult classes rather than from general
peak performance.
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Weak classes. Entity extraction errors cluster
around three difficult classes: Formal Qualification
(FQ), Attribute, and Industry. Relation extraction
errors are concentrated in Degree of Autonomy
and REP. Attribute and Industry are conceptually
difficult, reflected in low IAA scores. Attribute
acts as a broad, catch-all category with long and
inconsistent spans, while Industry annotations are
limited to candidate-focused sections, causing am-
biguity about what qualifies as an industry men-
tion. Both classes are frequently confused with
the Outside (O) label, as shown in the confusion
matrices, which is less critical since these errors
often reflect borderline cases rather than clear mis-
classifications.

A similar pattern appears in relation classifica-
tion: Degree of Autonomy and REP have low TAA
scores and few examples, resulting in low F1 scores.
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Figure 8: Aggregated confusion matrices for relation classification (row-normalized over 5 runs for each model)
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Figure 9: Mean F1-score across all models for each entity and relation class. The color gradient represents the

standard deviation of F1-scores across runs.

In contrast, other classes with low IAA scores, such
as Zero Relation and Specialization, perform better
due to having more examples. The high perfor-
mance of Negation, despite having few examples,
further suggests that performance depends on both
conceptual clarity and class frequency.

FQ as a notable outlier. Although the FQ class ex-
hibits high IAA scores and clear conceptual bound-
aries, it performs poorly for all models except
XLM-RoBERTa. Confusion matrices reveal that
weaker models seldom predict FQ-I at all. Be-
sides the general overprediction of the outside class,
the models show different behavior in regard to
FQ. DistilBERT models frequently predict Work
Content-I, Attribute-1, or Experience Level-I in-
stead of FQ-I. Manual inspection shows that these

15

models often switch from FQ-B to the inside tag
of another entity type mid-span. Both the internal
splitting of spans and the confusion between seman-
tically distinct entity types are notable and unex-
pected. In contrast, BERT and jobBERT-de models
display a different error pattern: they tend to pre-
dict FQ-B but fail to continue the span with FQ-I,
predicting another FQ-B. Only XLLM-RoBERTa is
able to predict FQ reliably.

D Information About Use Of Al
Assistants

We used Al assistants as a tool to support both
the writing and coding aspects of this research. In
particular, Al-assisted tools were employed to gen-



Relation Type IAA (Krippendorff’s o)
Alternative 0.75
Coordination 0.75
Degree of Autonomy 0.62
Detail 0.62
Negation 0.90
Object Being Trans- 0.72
formed (OBT)

Related Entity Parts 0.67
(REP)

Specialization 0.68
Tool 0.61
Urgency 0.78
Zero Relation 0.52

Table 6: Inter-Annotator Agreement (Krippendorff’s o)
for Relation Types

erate initial drafts of text, suggest improvements in
language and structure, and assist with coding tasks.
All Al-generated content was thoroughly reviewed,
refined, and integrated by the authors to ensure ac-
curacy, clarity, and alignment with our research
objectives. The use of Al was solely aimed at
increasing efficiency in routine tasks, and final de-
cisions and edits were made by the research team.

E Ethics statement

Our study is purely academic in nature, and we do
not foresee any significant risks or adverse impacts
arising from our approach. The dataset used con-
sists of non-public job advertisements and has been
processed strictly for research purposes, with all
sensitive information anonymized prior to analy-
sis. Given that our methodology is applied solely
for analytical and evaluation objectives, we believe
that our work does not pose any harm.
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Entities Count
Work Content 5285
Attribute 4685
Process 4461
Attitude 2172
Occupation 2105
Industry 1615
Experience Level 1412
Formal Qualification 771
Relations Count
Zero Relation 4322
OBT 3648
Specialization 1345
Tool 1157
Alternative 597
Detail 585
Coordination 482
Urgency 466
Degree of Autonomy 325
REP 312
Negation 85

Table 7: Number of annotated entities and relations per
class



Task XLM-RoBERTa jobBERT-de, German DistilBERT
BERT

Entity Extraction 7 epochs 9 epochs 15 epochs

Relation Classification 6 epochs 8 epochs 12 epochs

Table 8: Number of epochs per model

Hyperparameter

Value

Batch Size

Learning Rate
Weight Decay
Adam Betas

Adam Epsilon

Max Gradient Norm
Scheduler

Warmup Ratio

64 (XLM-RoBERTa:

16)

5e-5

0

(0.9, 0.999)
le-8

1.0

Linear

0.0

Table 9: Hyperparameter details
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Model License

MoritzLaurer/DeBERTa-v3-base-mnli-fever-docnli-ling-2c = MIT License

google-bert/bert-base-german-cased MIT License
distilbert/distilbert-base-german-cased Apache License 2.0
agne/jobBERT-de CC-BY-NC-SA 4.0
FacebookAl/xIlm-roberta-base MIT License

Table 10: Model licences

Label number | Label name
0 0]
1 Industry-B
2 Industry-I
3 Work Content-B
4 Work Content-I
5 Experience Level-B
6 Experience Level-1
7 Occupation-B
8 Occupation-I
9 Attitude-B
10 Attitude-1
11 Process-B
12 Process-1
13 Formal Qualification-B
14 Formal Qualification-I
15 Attribute-B
16 Attribute-I

Table 11: Entity label mapping

Label number | Label number
0 Zero Relation
1 OBT
2 Specialization
3 Tool
4 Alternative
5 Detail
6 Urgency
7 Coordination
8 REP
9 Degree of Autonomy
10 Negation
11 no-rel

Table 12: Relation label mapping
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