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Abstract

Large Language Models (LLMs) like GPT-4 have revolutionized natural language
processing, showing remarkable linguistic proficiency and reasoning capabilities.
However, their application in strategic multi-agent decision-making environments
is hampered by significant limitations including poor mathematical reasoning,
difficulty in following instructions, and a tendency to generate incorrect information.
These deficiencies hinder their performance in strategic and interactive tasks that
demand adherence to nuanced game rules, long-term planning, exploration in
unknown environments, and anticipation of opponents’ moves. To overcome these
obstacles, this paper presents a novel LLM agent framework equipped with memory
and specialized tools to enhance their strategic decision-making capabilities. We
deploy the tools in a number of economically important environments, in particular
bilateral bargaining and multi-agent and dynamic mechanism design. We employ
quantitative metrics to assess the framework’s performance in various strategic
decision-making problems. Our findings establish that our enhanced framework
significantly improves the strategic decision-making capability of LLMs. While
we highlight the inherent limitations of current LLM models, we demonstrate the
improvements through targeted enhancements, suggesting a promising direction
for future developments in LLM applications for interactive environments.

1 Introduction

Large language models (LLMs) such as GPT-4 have demonstrated exceptional proficiency in gener-
ating coherent natural language from textual inputs (Bubeck et al., 2023). These models not only
exhibit strategic thinking akin to humans (Aher et al., 2022; Kwon et al., 2023) but also demonstrate
a remarkable ability to reason flexibly, adeptly handling nuanced and context-specific information
(Suzgun et al., 2022). These achievements have sparked significant interest in their potential for
decision-making in complex environments (Yao et al., 2022; Shen et al., 2024; Wang et al., 2023).

To further integrate LLMs into our society, such as deploying them as fiduciary agents on behalf of
individuals or organizations in a competitive environment where human and AI agents coexist, the
ability to reason strategically is of vital importance. However, due to their inherent limitations in
basic mathematics (Bubeck et al., 2023), instruction following (Jang et al., 2022), and susceptibility
to hallucinations (Chen et al., 2023), the following challenges exist: (i) LLMs may fail to accurately
interpret game rules and objectives expressed in natural language, e.g., form a well-defined utility
function that reflects their preference over possible outcomes (Guo et al., 2023); (ii) LLMs are
generally inept at long-horizon planning to maximize their utility, which is essential in scenarios
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Figure 1: Illustration of STRIDE framework, which consists of a reasoning module powered by LLMs,
a working memory that stores important parameters of the problem instance and intermediate results
of the reasoning process, as well as tools that facilitate reasoning (taking care of low-level computation
and managing the working memory) and acting (converting reasoning texts into executable actions).

where decisions have extended consequences (Huang et al., 2024); (iii) They exhibit poor capabilities
in strategic exploration of unknown environments (Krishnamurthy et al., 2024), which hampers
their ability to optimize decisions on unforeseen conditions; (iv) LLMs have limited capacity in
anticipating opponents’ moves and adapting their strategies accordingly (Park et al., 2024), which
is a crucial aspect for any competitive interaction. These limitations collectively underscore the
challenges in deploying LLMs for nuanced and dynamic strategic reasoning tasks.

In light of these challenges, this paper proposes a LLM agent framework designed to enhance their
STRategic and Interactive DEcision making capability, named STRIDE, as illustrated in Figure 1.
Compared to simply prompting the LLM with a description of the problem setup and potentially
some chain-of-thought examples (Brookins and DeBacker, 2023; Gandhi et al., 2023), STRIDE can
effectively address the aforementioned challenges and enhance the LLM’s reasoning capability in
strategic settings. Specifically, the LLM, which serves as the controller of the whole framework,
orchestrates the reasoning process through a structured Thought sequence, as shown at the top of
Figure 1. Compared with popular frameworks like ReAct (Yao et al., 2022) and Reflexion (Shinn et al.,
2024), whose Thought step typically involves a single step of textual reasoning before interacting with
the environment, which is depicted as the green region of Figure 1, our design is tailored to multi-step
reasoning assisted with tools and memory, as shown in the blue part of Figure 1. Each Thought
unit outlines a sequence of operations to be executed, which consist of tools specifically engineered
to manage the low-level calculations needed in various decision-making scenarios. Additionally,
an external working memory is integrated to preserve crucial parameters. Therefore, Challenge (i)
can be addressed by executing an operation that evaluates the agent’s utility in the Thought unit.
Challenge (ii), which is mainly caused by the information loss in long-context (Liu et al., 2024),
can be addressed by storing important problem parameters and intermediate results in the working
memory. Challenges (iii) and (iv) can be addressed using a combination of demonstrations and
dedicated operations that emulate the behavior of strategic exploration or belief update.

To evaluate our framework, we carefully choose a collection of decision-making problems that
highlight the aforementioned challenges in significant and economically relevant real-world strategic
settings. First, we evaluate our framework in a general single-agent Markov Decision Process (MDP),
which exemplifies Challenges (ii) and (iii). Here the agent needs to strategically explore the unknown
environment to improve their estimate of the transition and reward function, as well as planning
over a long horizon to compute the optimal policy (Sutton and Barto, 2018). Second, we consider a
dynamic mechanism design environment, which offers a multi-agent generalization of MDP where
the mechanism designer seeks to maximize the cumulative sum of rewards over multiple agents based
on agents’ reported reward functions (Bergemann and Välimäki, 2010, 2019). In the multi-agent
mechanism design environment, each agent has private information which evolves over time. This
problem covers Challenges (i)-(iv). The mechanism designer needs to anticipate the agents’ strategic
behavior and makes decisions, i.e., allocation and pricing rules, to ensure that truthfully reporting
the reward function is unilaterally optimal for each agent. This setting encompasses many important
allocation problems such as auctions for sponsored search and display advertising. Third, we consider
an important class of bilateral bargaining games, where a seller and a buyer negotiate on the price
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of a good over a finite number of time steps under complete or incomplete information (Rubinstein,
1982; Fudenberg and Tirole, 1991). This covers Challenges (i), (ii) and (iv), as the agent needs to
assess its utility for reaching a deal at different prices and time steps, inferring the opponent’s private
value based on his/her past responses, as well as predicting the opponent’s future behaviors. The
bargaining environment has many important applications in procurement and supply-chain sourcing
decisions. For each strategic environment, we offer quantitative metrics that allow us to conclude
whether the agent succeeded in making the optimal decisions based on the available information.

Through extensive empirical evaluation on these selected decision-making problems, we show that,
with few demonstrations, the proposed framework can make strategic decisions on new problem
instances with high success rate. This highlights the transformative potential of integrating LLMs with
specialized tools, memory, and control structures to enhance strategic decision-making capabilities.

2 LLM Agent Framework for Strategic Decision Making

In this section, we first present the building components of the STRIDE framework, explain how
these components interact to support strategic decision-making, and then provide a detailed example
by applying it to an autonomous driving scenario, which is modeled as a MDP.

2.1 Main Components of the STRIDE Framework

Our primary strategy to address the four challenges in Section 1 is to provide the LLM with tools
taking care of low-level computation and a working memory retaining important parameters. Most
importantly, we introduce a reasoning module that acts as the central executive, orchestrating the
information flow among components and synthesizing structured Thought sequences to solve complex
problems. Figure 2 provides a flowchart that illustrates how these components collaboratively facilitate
strategic decision-making in an MDP. These components of STRIDE are introduced below.

Tool Set. As shown in Figure 1, the tools utilized by STRIDE are categorized into two distinct groups:
operational tools, which are tailored to support sophisticated reasoning processes, and interaction
tools, designed to enable STRIDE to interact effectively with its environment. What sets our work
apart from previous LLM agents, such as ReAct (Yao et al., 2022) and Reflexion (Shinn et al., 2024),
is the sophisticated integration of these operational tools by the Thought sequence to execute complex
calculations that traditionally pose challenges for LLMs. For instance, these operations can calculate
the utility of the agent based on the outcomes of a game or update the belief about uncertainty on
the environment or the other agents. A combination of such operations allows STRIDE to emulate
various algorithmic behaviors such as dynamic programming to solve MDPs and Bargaining Games,
facilitating a deeper and more precise decision-making process. They also let STRIDE scale to
complex problems by abstracting detailed computations. This scalability is crucial in handling larger
and more challenging scenarios that are beyond the capacity of typical LLM agents. For instance, in
the concrete example to be discussed later, STRIDE can easily handle a state space of size 120. After
completing the reasoning process, the resulting textual description of the LLM’s decision is translated
by the interaction tools into a structured format that is actionable within the specific environment,
such as selecting an action in an MDP or offering a price in a sequential bargaining game.

Reasoning Module. To effectively leverage the operational tools for solving complex problems, we
propose a unique design for the reasoning module, which is empowered by a pretrained LLM like
GPT-4 (Achiam et al., 2023) or Claude (Anthropic, 2024), in the STRIDE framework. Using the
MDP example in Figure 2, the reasoning process starts when the agent is prompted to answer the
question about which action to take at the current time step, as shown on the top right corner. As
the first step to answer this question, the LLM generates a Thought unit 1, whose text field describes
a general plan about what needs to be done for the current reasoning step in order to answer the
question and the operations field comprises an ordered list of operation names that the LLM deems
necessary for completing the current step. For the MDP example in Figure 2, the LLM decides to use
value iteration to compute the optimal policy, and thus the first step of its reasoning is to compute
the Q values associated with the last time step H (see Appendix B for details about value iteration).
To do so, operations named UpdateQbyR and UpdateVbyQ are suggested by the LLM, as shown at

1This is achieved via function calling, which is a commonly supported feature by models like GPT, Claude,
and Gemini. These models are fine-tuned to reliably generate responses following the specified structure.
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Figure 2: In STRIDE, the LLM controls the execution of operations and access to working memory by
a sequence of Thought units. Each Thought unit is a structured data containing: (i) text that suggests
the next step of reasoning and summarize important information; (ii) operations that compute or
retrieve information necessary for reasoning; (iii) exit: a binary value indicating whether the reasoning
process is completed. With proper demonstration and operational tools, STRIDE can emulate various
algorithmic behaviors (e.g. value iteration algorithm) to facilitate strategic decision making.

the bottom of the figure. Note that here the Thought unit only needs to specify which operations
are necessary, that is, only the names are needed. The arguments for each selected operation are
decided by the LLM on separate API calls based on the context history, as shown on the left of the
figure. This particular design choice is motivated by our empirical observation that, letting the LLM
simultaneously decide arguments for multiple operations is more prone to error.

Before the execution of the selected operations, the generated Thought unit undergoes a validation
process based on predefined rules to ensure its integrity. For example, a common rule applied in
our experiments is the mutual exclusivity of the exit condition and the presence of operations: the
Thought unit must not simultaneously specify an exit as true while containing non-empty operations,
as this often indicates a premature termination of the reasoning process. If this conflict occurs, the
system will generate an appropriate error message, append it to the prompt, and prompt the LLM
to revise and resubmit the Thought unit for re-evaluation. This mechanism ensures that operations
proceed only with validated and logically consistent instructions. Enhanced applications of this
functionality involve utilizing an additional LLM to verify whether the newly generated Thought
unit adheres to the reasoning logic and language style presented in the demonstration. This step can
improve consistency and prevent hallucinations. Employing a secondary LLM for cross-verification
not only reinforces the accuracy of the Thought unit but also contributes to the ongoing research in
maintaining coherence and reliability in LLM outputs, which is of independent interest. With the
Thought unit validated, the selected operations will be executed in the specified order. The outcomes
of these operations are then utilized to generate the subsequent Thought unit. This process continues
until Exit is set to be true, signaling the completion of the reasoning process.

Working Memory. As mentioned in Section 1, for long-horizon planning, LLMs may forget
or neglect important information mentioned early in the context history. Moreover, an accurate
description of the problem instance sometimes require parameters of high dimensions, e.g., transition
matrices of MDP. In this case, storing these parameters in the context history is costly and prone to
error. Therefore, STRIDE is equipped with a working memory that stores these parameters, as well
as intermediate results computed by the operational tools during the reasoning process. Information
contains in the working memory is retrieved by the reasoning module for decision making.

2.2 Example: STRIDE Framework in Highway Environment

To illustrate the functionality of STRIDE, we apply it to the Highway Environment (Leurent, 2018) to
optimally control a vehicle as depicted in Figure 3. We provide detailed descriptions of the operational
tools constructed for the LLM and how the Thought sequence uses them for strategic reasoning.

Tabular MDP Formulation. This decision-making problem can be formulated as a tabular MDP
with known transition function P : S ×A → ∆(S) and reward function R : S ×A → R (S and A
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Figure 3: Agent’s objective in Highway Environment is
to control the ego-vehicle, i.e., the green box, to reach
a high speed while avoiding collision with the other
vehicles, i.e., the blue boxes.

denote the state and action spaces, respectively), where each state s ∈ S indexes a unique three-way
tensor representing the time to collision with other vehicles2, and the action setA includes changing
to left lane, idle, changing to right lane, faster, and slower. Here we focus on a
finite-horizon setting, i.e., the agent interacts with the environment for some fixed H steps. At each
step h = 1, 2, . . . ,H , the agent observes the current state sh ∈ S, and then chooses action ah ∈ A.
The environment then produces a reward feedback R(sh, ah) to the agent, with positive reward for
staying in the right lane or maintaining a high speed, and negative reward for any collision, and then
the state transits to sh+1 ∼ P (· | sh, ah). It is known that the optimal policy, in this case, the fastest
way to navigate through the traffic, can be computed using value iteration, which we will refer to as a
reference algorithm for STRIDE. In the next paragraph, we show how to emulate this algorithmic
behavior in the reasoning of STRIDE with specialized operations and demonstration.

Tools and Thought Sequence that Emulate Value Iteration. Value iteration starts from the
end of the horizon H and works backwards to the beginning, such that at each step h ∈ [H], it
updates the Qh(s, a) = R(s, a) +

∑
s′∈S P (s′|s, a)Vh+1(s

′) and Vh(s) = maxa∈A Qh(s, a), with
VH+1(s) = 0,∀s. During interaction, the agent can simply choose ah = argmaxa∈A Qh(sh) for
state sh at each step h. Therefore, to enable the LLM to compute the optimal policy for any MDP
instance in this principled manner, we equip it with the following operations, i.e., a set of primitives
that handle low-level calculations, thereby freeing the LLM to focus on higher-order reasoning.

• UpdateQbyR: add reward R(s, a) to Qh(s, a) for all (s, a) pairs at the specified time step h,
• UpdateQbyPV: add one-step look-ahead value

∑
s′∈S P (s′|s, a)Vh+1(s

′) to Qh(s, a) for all (s, a)
pairs at the specified time step h,

• UpdateV: take maximum Vh(s) = maxa∈A Qh(s, a) for the specified time step h,
• GetQ: retrieve the values of Qh(s, a) for all action a ∈ A at the specified time step h and state s.
• GetArgMax: return the indices corresponding to the maximal value in the given list of numbers

To make the LLM generate Thought sequences that correctly utilize these operations to emulate value
iteration, we employ a structured demonstration generation approach outlined as follows:

• Implement the value iteration algorithm in Python using the provided operations to handle the
computational intricacies;

• Augment the algorithm with annotated code that generates explanatory comments—the Thought
text—at key steps to illustrate the logic and progression of the algorithm;

• Sample a specific instance of the MDP, execute the augmented value iteration algorithm on this
instance, and capture the resulting sequence of operation calls and textual comments.

With the generated demonstration sequence, STRIDE not only performs calculations correctly but also
maintains a logically coherent order when handling various MDP instances. Moreover, the flexible
design of our framework, as detailed in Figure 2, allows it to emulate a broad spectrum of algorithms
beyond value iteration. Consequently, STRIDE offers a flexible framework that can be extended to a
diverse array of problem domains involving strategic decision-making, where algorithmic behavior
of LLMs is critical. In particular, to tailor STRIDE to other domains, it suffices to construct domain-
specific Tool Sets and modify the Thoughts to emulate other algorithms leveraging these tools. As
we will see in the sequel, our framework can be applied to dynamic mechanism design, two-player
bargaining games, and zero-sum Markov games such as Tic-Tac-Toe, where various Tool Sets and
Thoughts are constructed under the STRIDE framework.

3 Experiments

For each decision-making problem mentioned in Section 1, we first construct the operational tools
and generate the corresponding demonstrations following the procedure described in Section 2.2, so
that STRIDE is able to emulate the reference algorithm when solving each problem. Descriptions

2see https://highway-env.farama.org/observations for more details
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of the selected reference algorithms and the constructed operations can be found in Appendix
B. Then to evaluate whether STRIDE can reliably solve new problem instances given provided
demonstrations, we repeat experiments on randomly sampled instances and report the averaged
results. For comparison, we include the following baseline agents: (i) zero-shot Chain-of-Thought
(CoT), (ii) zero-shot CoT with code interpreter, and (iii) few-shot CoT with code interpreter, where
the latter two can utilize the coding capability of LLMs (through OpenAI Assistants API) to write
and execute programs to solve the decision-making problems. Compared with (ii), (iii) is additionally
provided with example implementation of the reference algorithm for each problem. Prompts used
in all the experiments are given in Appendix C. We also conducted additional experiments on other
problem setups like Tic-Tac-Toe and Connect-N games to further demonstrate the generality of
STRIDE. Details about these additional experiments are given in Appendix D.

3.1 Markov Decision Processes

We first evaluate STRIDE and the baselines (GPT-3.5-Turbo-0125 with temperature set to 0 is used
for all agents) on MDP under both known model, where the transition function P and reward function
R are given to the agent in the beginning, and unknown model, where the agent needs to estimate P
and R during online interactions. In the following paragraphs, we first provide a formal definition of
the objective of the agent under each setting, and then discuss the experiment setup and results.

Agent’s Objective in MDP with Known Model. When the transition and reward functions are
known to the agent, the objective of the agent is to find a policy, denoted as π = {πh}Hh=1 with
πh : S → ∆(A) for h ∈ [H], that maximizes the expected cumulative rewards over H time steps:

maxπ Eπ,P

[∑H
h=1 R(sh, ah)

]
:= V π

1 , (1)

where the expectation is with respect to the randomness in state transitions and the stochasticity
of π. Let’s denote the optimal Q value function as Q⋆

h(s, a) for h ∈ [H]. Then for any state sh
encountered by the agent at step h ∈ [H], we check whether the action ah taken by the agent satisfies
ah = argmaxa∈A Q⋆

h(s, a), and report the average success rate in the following experiment.

Experiment Setup and Results. We evaluate on MDPs with horizon length H ∈ {5, 10, 15}, number
of states |S| ∈ {3, 10}, and number of actions |A| ∈ {3, 10}. For each configuration, we repeat
the experiment for 20 times on randomly generated instances, by sampling dense tensors of size
RS×A×S and RS×A as the transition function and reward function, respectively. The average success
rates are reported in Table 1. For STRIDE, we only provide it with a single demonstration that solves
a MDP instance with H = 5, S = 5, A = 5. We can see that STRIDE outperforms the baselines in
terms of finding the optimal policy for the given MDP instances.

Table 1: Success rate in taking the optimal action (20 runs).
H S A zero-shot CoT zero-shot CoT w/ code few-shot CoT w/ code STRIDE
5 3 3 0.58 0.74 0.70 0.98
10 3 3 0.62 0.75 0.69 0.87
5 10 10 0.24 0.48 0.60 0.96
10 10 10 0.21 0.50 0.68 0.82

Agent’s Objective in MDP with Unknown Model. In this setting, P and R are unknown to the agent,
but the agent is allowed to repetitively interact with the same MDP instance for a total number of K
episodes to explore and update its belief about P and R using the observed feedback. The objective
of the agent is to choose a sequence of policies π1, π2, . . . , πK , that minimizes the cumulative regret:

minπ1,π2,...,πK

∑K
k=1

(
V π⋆

1 − V πk

1

)
. (2)

In addition to the challenge of long-horizon planning exemplified by Eq (1), Eq (2) also requires
addressing the exploration-exploitation dilemma. Specifically, the agent needs to strategically balance
between exploring unfamiliar state-action pairs to learn P and R, and exploiting the current knowledge
about P and R to obtain more rewards. A classic solution to this problem is UCB-VI (Azar et al.,
2017), which is used as the reference algorithm for STRIDE. To help the baselines work with long
context history (K ×H interactions in total), an external summarization of the past episodes is added
in their prompts at the beginning of each new episode, similar to Krishnamurthy et al. (2024).
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Figure 4: Comparison of cumulative rewards over episode. We observe that both STRIDE and UCB-
VI exhibit rapid increases in their cumulative rewards, converging by approximately the 10-th episode.
This indicates that STRIDE can effectively explore the environment, by emulating UCB-VI in its
reasoning process. In contrast, the cumulative rewards of other baseline methods display ongoing
fluctuations throughout the episodes, showing poor exploration ability in uncertain environments.

Experiment Setup and Results. In addition to STRIDE and the aforementioned baselines, we
also include UCB-VI algorithm in the experiments, which serves as a reference. We evaluate on 10
randomly generated MDP instances with H = 5, |S| = 3, and |A| = 3, with the agents repetitively
playing each instance for a total number of K = 40 episodes, and average the results over the 10
instances. In Figure 4, we report how the cumulative rewards collected in each episode change as
the number of episodes experienced by the agent increases. STRIDE reliably emulates the behavior
of UCB-VI algorithm using the provided operations, and thus converges to the optimal policy at
a similar rate as UCB-VI. In comparison, the baselines, though given additional summarization of
history, fail to find the optimal policy as they cannot efficiently explore the environment.

3.2 Dynamic Mechanism Design

Section 3.1 presents the challenges of long-horizon planning and strategic exploration in MDP, which
only involves a single agent. Here we further evaluate STRIDE (GPT-4o-2024-05-13 with temperature
set to 0) on dynamic Vickrey-Clarke-Groves (VCG) mechanism design problem (Bergemann and
Välimäki, 2019), a multi-agent generalization of MDP, which further necessitates the agent’s ability
to anticipate other agents’ behaviors and plan accordingly.

Agent’s Objective in Dynamic Mechanism Design. Consider a mechanism designer and a set of N
agents. The mechanism designer needs to elicit the reward functions {R̃i}Ni=1 from the N agents,
with each R̃i : S ×A → R, and the agents can be untruthful. Based on reported reward functions,
the designer chooses a policy π : S → ∆(A). At each step h ∈ [H], the designer takes action
ah ∼ π(sh), e,g., the allocation of some scarce resource among I agents, and each agent i ∈ [N ]
receives reward Ri(sh, ah), i.e., agent i’s valuation for ah at state sh. After H steps of interactions,
the designer needs to charge each agent i some price pi ∈ R. The objective of each agent i is to
maximize its utility ui(R̃i) = V π(P,Ri)− pi by strategically reporting the reward function R̃i. The
objective of the designer is to maximize the expected cumulative sum of rewards, by strategically
choosing the policy and pricing rule. This can be formulated as the following optimization problem

π⋆, {p⋆i }i∈[N ] := maxπ,{pi}i∈[N]
V π(P,

∑n
i=1 R̃i)

s.t. ui(Ri) ≥ ui(R
′
i),∀R′

i, i
(3)

where the constraint guarantees the incentive compatibility of all agents. The success rate for the
experiments on this problem is computed by considering: (i) whether the chosen action ah satisfies
ah = π⋆

h(sh) for h ∈ [H]; and (ii) whether the charged price pi satisfies |pi − p⋆i | ≤ 0.01.

Experiment Setup and Results. We evaluate on problem instances with horizon H = 5, number
of states |S| = 3, number of actions |A| = 3, and number of agents N ∈ {2, 4, 6}. For each
configuration, we repeat the experiment 10 times on randomly generated instances, by sampling
dense tensors of size RS×A×S and RN×S×A as the transition function and reward functions for N
agents, respectively. The average success rate are reported in Table 2. We observe that the baselines,
despite being capable of computing the optimal action most of the times, cannot generalize the same
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value iteration procedure to compute the VCG price correctly. In comparison, STRIDE can reliably
compute the VCG price on most problem instances, which leads to its higher success rate.

Table 2: Success rate in computing the VCG mechanism (10 runs).
N zero-shot CoT zero-shot CoT w/ code few-shot CoT w/ code STRIDE
2 0.69 0.63 0.70 0.89
4 0.57 0.63 0.54 0.90
6 0.49 0.45 0.44 0.86

3.3 Bargaining Games

We further evaluate STRIDE and the baselines (GPT-4o-2024-05-13 with the temperature set to 0) on
bargaining games, in which a buyer and a seller engage in repeated negotiation for a finite number of
steps. In order to maximize their utility, both the buyer and the seller need to predict the response of
their opponent over long-horizon, based on the potentially incomplete information they have.

Alternating Offer Bargaining under Complete Information. We first consider the elementary yet
seminal setting in which a buyer and a seller engage in a T -step bargaining process (with T <∞)
over price p of the good. Specifically, at time step t = 1, the buyer offers a price to the seller and
the game ends if the seller accepts the offer. Otherwise, the game continues to the next time step
t = 2, where the seller makes a counteroffer. They repeat this process until the deadline T is reached.
Assuming the buyer’s value for the item is 1 and the seller’s cost is 0, then the utility function of the
buyer, denoted as ub, and that of the seller, denoted as us, for some price p at time step t are

ub(p, t) = (1− p) · δt−1
b , if t ≤ T , and 0 otherwise;

us(p, t) = (p− 0) · δt−1
s , if t ≤ T , and 0 otherwise.

(4)

respectively, with δb, δs ∈ [0, 1] being the discount factor of their utilities over time. Note that in this
setting, the buyer’s value 1, the seller’s cost 0, and the values of δb, δs and T are public information.
The optimal decision for either agent, assuming his/her opponent is also acting optimally, i.e., being
rational, is to play the Subgame Perfect Equilibrium (SPE) strategy, which, in this setting, is unique
and can be computed using backward induction (Fudenberg and Tirole, 1991). Description of this
reference algorithm and the operations constructed for STRIDE is given in Appendix B. To evaluate
whether STRIDE and the baselines can make optimal decisions, we let buyer and seller empowered
by the same method to bargain with each other, and report the success rates in reaching SPE.

Experiment Setup and Results. We evaluate on bargaining problems with deadline T ∈ {3, 6, 9}.
In each case, we repeat the experiments on 10 randomly generated instances, by sampling discount
factors δb, δs ∈ U(0.5, 1.0). The average success rates are reported in Table 3. We can see that, none
of the baseline methods attains success rate higher than 0.5, which is because when it is their turn
to offer, they cannot offer a price close to SPE, though being explicitly instructed in the prompt to
assume rational opponent behavior when making decisions. It is worth noting that the existence of
the code interpreter did not provide any advantage this time compared with the results for MDP in
Table 1. Though the LLM did attempt to implement the backward induction algorithms to solve
SPE, they failed to get everything right and produce the correct results. We hypothesize that this
distinction is due to the insufficiency of training data related to the implementation of backward
induction algorithms for bargaining, especially compared with the value iteration algorithm for MDP.

Table 3: Success rate in reaching SPE of single-issue bargaining (10 runs).
T zero-shot CoT zero-shot CoT w/ code few-shot CoT w/ code STRIDE
3 0.50 0.35 0.50 0.79
6 0.50 0.27 0.46 0.91
9 0.34 0.18 0.27 0.74

Moreover, to further illustrate the advantage of being able to strategically reason about the decisions
in bargaining, we pit STRIDE against zero-shot CoT, the best-performing baseline in Table 3. The
results (averaged over 10 randomly generated instances) are summarized in Table 4. We can see that,
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by emulating the reference algorithm, STRIDE guarantees an outcome that is no worse than the SPE
regardless of the role it plays. As mentioned in the previous paragraph, the baseline cannot accurately
compute the SPE price, and thus, when it serves as the buyer who needs to make the initial offer,
often ends up with a sale price that is higher than SPE price, which demonstrates its sub-optimality.

Table 4: Outcomes of STRIDE and zero-shot CoT bargaining with each other.
STRIDE buyer vs zero-shot CoT seller zero-shot CoT buyer vs STRIDE seller

T avg SPE price avg sale price avg SPE price avg sale price
3 0.13 0.13 0.22 0.43
6 0.57 0.56 0.65 0.70
9 0.28 0.27 0.49 0.70

Seller Making Offers under Uncertainty of Buyer’s Value. Now we consider the more challenging
scenario where the buyer’s value, denoted as b ∈ [0, 1], is privately known to himself, and thus the
seller needs to update his/her belief about b based on the observed responses, i.e., buyer’s rejection of
seller’s offers. The seller’s cost (still assumed to be 0) and the prior distribution of b, represented as
a cumulative distribution function F (v), are public information. F (·) is supported on [0, 1] and we
assume F (v) = v, i.e., a uniform distribution. In each time step t = 1, 2, . . . , T , the seller offers a
price and the buyer responds by acceptance or rejection. Similar to Eq (4), their utility functions are

ub(p, t) = (b− p) · δt−1
b , if t ≤ T , and 0 otherwise,

us(p, t) = p · δt−1
s , if t ≤ T , and 0 otherwise.

(5)

Different from the complete information setting where we evaluate the agents by examining whether
the unique SPE is reached, here we consider sequential equilibrium (SE) due to the uncertainty on the
buyer’s value. Fortunately, in the particular setting described above, the SE is still unique (Cramton,
1984), and thus we can similarly evaluate the agents using the success rates of reaching SE. To
compute the SE, we propose a reference algorithm for STRIDE that combines bisection search and
backward induction and construct the specialized tools. More details are given in Appendix B.

Experiment Setup and Results. We evaluate the agents on problems with deadline T ∈ {3, 6, 9}.
In each case, we repeat the experiments on 10 randomly generated instances, by sampling discount
factors δb, δs ∈ U(0.5, 1.0) and buyer’s value b ∈ U(0.1, 0.9). The average success rates are reported
in Table 5. Again, we observe that STRIDE outperforms the baseline methods, as it is able to compute
the SE by emulating the reference algorithm we designed.

Table 5: Success rate in reaching SE of single-issue bargaining with one-sided uncertainty (10 runs).
T zero-shot CoT zero-shot CoT w/ code few-shot CoT w/ code STRIDE
3 0.47 0.29 0.38 0.79
6 0.44 0.32 0.30 0.75
9 0.49 0.38 0.23 0.69

Conclusion

This paper presented the STRIDE framework, enhancing LLMs’ strategic decision-making capabili-
ties. Through integrating a structured Thought process with external working memory and operational
tools, STRIDE enables LLMs to overcome significant limitations such as strategic exploration and
dynamic opponent interaction. Our evaluations across diverse decision-making scenarios validate
STRIDE’s effectiveness, suggesting its potential as a robust tool for strategic thinking in complex
environments. For further development of the STRIDE framework, we propose the following research
avenues. (i) Currently, STRIDE utilize specially designed Python functions as tools to facilitate the
formation of strategies and the choice of actions by the agents in bilateral bargaining, an interesting
direction is to replace it with models trained using data collected during interactions. (ii) Automatic
synthesis of operations: Another interesting direction would be developing LLMs specifically fine-
tuned on implementing primitives that handle the low-level calculations of various decision-making
problems. (iii) Fine-tuning on the Thought Sequence: To further enhance LLM’s understanding and
execution of the Thought sequence as well as the associated operations, we can fine-tune the model
on the sequences generated using the procedure described in Section 2.2.
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A Related Work

Evaluating LLMs’ Reasoning Capability in Strategic Environments. Recent advancements in
LLMs have spurred investigations into their capacity for strategic reasoning. There have been several
contributions recently studying the behavior of LLMs in strategic settings, e.g., matrix games like
Dictator and Prisoner’s Dilemma (Brookins and DeBacker, 2023; Lorè and Heydari, 2023; Fan et al.,
2023; Akata et al., 2023; Guo et al., 2023). These works have been particularly interested in assessing
whether LLMs can perform strategic or rational reasoning effectively with minimal initial input, often
referred to as zero-shot prompting. Recent work by Davidson et al. (2024) and Bianchi et al. (2024)
also used bargaining games to evaluate the strategic reasoning of LLMs. Their findings in general
suggest that while LLMs can sometimes generate plausible strategies, they often lack consistency and
a deep understanding of game dynamics. Another pivotal study by Gandhi et al. (2023) proposed to
enhance the strategic reasoning of LLMs by providing few-shot chain-of-thought (CoT) examples for
matrix games and multi-turn bargaining games, and showed that LLMs are capable of generalizing
the demonstration to new game instances, but still has difficulties in games with complex rules or
long horizon. A recent work by Huang et al. (2024) also made a similar observation about the limited
capability of LLMs to generalize to various game instances, despite using CoT to enhance reasoning.

Applications of LLM-based Agents beyond Strategic Reasoning. While our focus is on enhancing
the strategic reasoning capabilities of LLMs, it is important to acknowledge the broader applications
of LLM-based agents that do not primarily focus on strategic tasks (Wang et al., 2024), such as social
simulation, e.g., building virtual environment with LLM-based agents to simulate social phenomena
(Park et al., 2023; Aher et al., 2023), scientific research assistant, e.g., utilize LLMs for automating the
design, planning, and execution of scientific experiments (Boiko et al., 2023), software development,
e.g., let multiple LLM agents communicate and collaborate through natural language to complete the
software development life cycle (Qian et al., 2023), and robotics, e.g., equip LLM with a wide range of
manipulation and navigation skills to control a mobile manipulator robot (Ahn et al., 2022). This wide
range of applications has led to various design of the LLM agent architecture to enhance its capability
in the specific domain, but typically, an LLM agent architecture features memory (Zhu et al., 2023)
and planning (Yao et al., 2022) modules that enable LLMs to recall past behaviors and plan future
actions in a dynamic environment, and a set of tools (Qin et al., 2023) that facilitate mathematical
computation, accessing internal or external memory, and interacting with the environment.

LLM-Enhanced Reinforcement Learning Algorithms. The works mentioned in the previous
two paragraphs, as well as the STRIDE framework proposed in this paper, utilize LLMs as the
decision maker, that is, LLMs are fed prompts containing the current state of the environment, and
they generate action recommendations based on this input. The reasoning process that produces the
recommendation, regardless of whether it follows certain algorithmic behavior as STRIDE, happens
in the language space. Another distinct line of research, emerging primarily from the reinforcement
learning community, instead integrates LLMs into traditional reinforcement learning algorithms to
leverage the common sense knowledge that LLMs acquire during pretraining (Hao et al., 2023; Liu
et al., 2023; Zhou et al., 2023; Zhao et al., 2024). In this way, the reasoning process is hard-coded
in programming language like Python, which defines how different components interact with each
other. Currently, the most prevalent approach in this domain is the integration of LLMs into Monte
Carlo tree search (MCTS) algorithms, where they typically serve as tree traversal policy (Zhao et al.,
2024), action pruner (Liu et al., 2023), world model (Hao et al., 2023), and evaluation function (Liu
et al., 2023). In comparison, our approach is much more flexible in the sense that we can repurpose
the reasoning process of STRIDE to emulate different algorithmic behaviors using various tools
and demonstrations. In particular, as demonstrated in our additional experiments, apart from the
model-based RL algorithms like UCB-VI, we can also make STRIDE reason as tree-search algorithms
like Minimax. And as discussed in Section 2.2, this flexibility extends the utility of our approach
well beyond decision-making problems.

B Reference Algorithms for STRIDE

As discussed in Section 2, the main strength of STRIDE lies in its capability of emulating various
algorithmic behaviors in its Thought process to solve decision-making problems that are challenging
to LLMs. In this section, we provide the descriptions of the reference algorithms that STRIDE
emulates when solving the problems in Section 3.
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Algorithm 1 Value Iteration for MDPs with Known Model.
1: Initialize VH+1(s) = 0,∀s ∈ S
2: ▷ Question: Compute the Optimal Policy.
3: for step h = H,H − 1, · · · , 1 do
4: ▷ Thought: Now we can continue to compute the Q-values for the current step h.
5: ▷ Operation: call UpdateQbyR with inputs {time_step: h}
6: ▷ Operation: call UpdateQbyPV with inputs {time_step: h}
7: ▷ Operation: call UpdateVbyQ with inputs {time_step: h}
8: for each state s ∈ S do
9: for each action a ∈ A do

10: Qh(s, a) = R(s, a) +
∑

s′∈S P (s′|s, a)Vh+1(s
′)

11: Vh(s) = maxa∈A Qh(s, a)

12: ▷ Thought: I have finished value iteration. Now exit reasoning.
13: for step h = 1, 2, · · · , H do
14: Observe state sh
15: ▷ Question: Which action I should take?
16: ▷ Thought: I should choose the action that maximizes the computed Q values.
17: ▷ Operation: call GetQ with inputs {time_step: h, cur_state: sh}
18: ▷ Operation: call GetArgMax with inputs {q_vals: [. . . ]}
19: ▷ Exit: I should choose Action ah as it maximizes the Q values. Now exit reasoning.
20: Take action ah = argmaxa∈A Qh(sh, a)
21: Observe reward r(sh, ah) = R(sh, ah) + ϵ and state transits to sh+1

B.1 Value Iteration & Upper Confidence Bound Value Iteration

For MDP with known and unknown model, the reference algorithms selected for STRIDE are Value
Iteration (VI) and Upper Confidence Bound Value Iteration (UCB-VI). Here we provide description
of these two algorithms in Algorithm 1 and Algorithm 2, as well as some simplified comments (e.g.,
results returned by the operations are omitted for simplicity) showing how we augment the algorithm
during the demonstration generation procedure as discussed in Section 2.2.

Operational Tools. The following operational tools are provided to the LLM to help it emulate the
behavior of VI and UCB-VI:

• UpdateQbyR: add reward R(s, a) to Qh(s, a) for all (s, a) pairs at the specified time step h,
• UpdateQbyPV: add one-step look-ahead value

∑
s′∈S P (s′|s, a)Vh+1(s

′) to Qh(s, a) for all (s, a)
pairs at the specified time step h,

• UpdateV: take maximum Vh(s) = maxa∈A Qh(s, a) for the specified time step h,
• GetQ: retrieve the values of Qh(s, a) for all action a ∈ A at the specified time step h and state s.
• GetArgMax: return the indices corresponding to the maximal value in the given list of numbers
• UpdateQbyBonus: add exploration bonus to the Q values for all state-action pairs at the specified

time step
• UpdateMDPModel: update the estimation of the reward and transition function of MDP based on

the observed quadruple (old state, action, new state, reward)

MDP with Known Model. With these operational tools, STRIDE is capable of computing the
optimal policy of MDP with known model by emulating Algorithm 1.

MDP with Unknown Model. Similarly, STRIDE can emulate Algorithm 2 when facing MDP
with unknown model, which only needs two additional operations that (i) update the estimation for
the unknown reward and transition function, and (ii) update Q values with the exploration bonus,
respectively.

B.2 Dynamic Programming for Dynamic Mechanism Design

For dynamic mechanism design problem, the reference algorithm selected for STRIDE is described
in Algorithm 3, which is modified based on the Markov VCG mechanism of Lyu et al. (2022). It is
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Algorithm 2 Value Iteration Upper Confidence Bound for MDPs with Unknown Model
1: Initialize VH+1(s) = 0,∀s ∈ S
2: for episode t = 1, 2, . . . , T do
3: ▷ Question: Compute the Optimistic Policy for Exploration.
4: for step h = H,H − 1, · · · , 1 do
5: ▷ Thought: Now we can continue to compute the Q-values for the current step h.
6: ▷ Operation: call UpdateQbyR with inputs {time_step: h}
7: ▷ Operation: call UpdateQbyPV with inputs {time_step: h}
8: ▷ Operation: call UpdateQbyBonus with inputs {time_step: h}
9: ▷ Operation: call UpdateVbyQ with inputs {time_step: h}

10: for each state s ∈ S do
11: for each action a ∈ A do
12: ▷ Action: call Python function to calculate Q value for (s, a)
13: Qh(s, a) = R̂(s, a) +

∑
s′∈S P̂ (s′|s, a)Vh+1(s

′) + b(N(s, a))

14: Vh(s) = maxa∈A Qh(s, a)

15: ▷ Thought: I have finished value iteration. Now exit reasoning.
16: for step h = 1, 2, · · · , H do
17: Observe state sh
18: ▷ Question: Which action I should take?
19: ▷ Thought: I should choose the action that maximizes the computed Q values.
20: ▷ Operation: call GetQ with inputs {time_step: h, cur_state: sh}
21: ▷ Operation: call GetArgMax with inputs {q_vals: [. . . ]}
22: ▷ Exit: I should choose Action ah as it maximizes the Q values. Now exit reasoning.
23: Take action ah = argmaxa∈A Qh(sh, a)
24: Observe reward r(sh, ah) = R(sh, ah) + ϵ and state transits to sh+1

25: ▷ Question: Update estimations of P and R.
26: ▷ Thought: I should update my estimation using the observed (sh, ah, sh+1, rh).
27: ▷ Operation: call UpdateMDPModel with inputs {s: sh, a: ah, s_prime: sh+1, r: rh}
28: ▷ Thought: My estimation is updated. Now exit reasoning.
29: N(sh, ah) = N(sh, ah) + 1, N(sh, ah, sh+1) = N(sh, ah, sh+1) + 1

30: P̂ (sh+1|sh, ah) = N(sh,ah,sh+1)
N(sh,ah)

, R̂(s, a) = R̂(s, a)× N(sh,ah)−1
N(sh,ah)

+ r(sh,ah)
N(sh,ah)

known that the unique solution to Eq (3) is the VCG mechanism i.e.,

π⋆ := argmaxπ V
π(P,

∑N
i=1 R̃i),

p⋆i := V π∗
−i(P,

∑
j ̸=i R̃j)− V π∗

(P,
∑

j ̸=i R̃j), for i = 1, 2, . . . , n,

where π∗
−i := argmaxπ V

π(P,
∑

j ̸=i R̃j). Similar to Eq (1), Eq (B.2) can be solved by separately
computing policies π⋆ and {π∗

−i}Ni=1 via value iteration, and then evaluating π⋆ on MDP instances
with transition function P and reward function

∑
j ̸=i R̃j for i = 1, 2, . . . , N .

Operational Tools. The following operational tools are provided to the LLM:

• UpdateQbyRExcluding: add immediate rewards, excluding the reward of excluded_agent, to the
Q values for all state-action pairs at current time step. If excluded_agent is set to None, all agents’
rewards are used.

• UpdateQbyPVExcluding: add the one-step look-ahead value, excluding the reward of ex-
cluded_agent, to the Q values for all state-action pairs at current time step. If excluded_agent is set
to None, all agents’ rewards are used.

• UpdateVExcluding: update the V values, excluding the reward of excluded_agent, based on the
computed Q values for the current time step. If excluded_agent is set to None, all agents’s rewards
are used.

• GetQExcluding: retrieve Q values, that excludes the rewards of excluded_agent, for all actions at
the current state and time step. If excluded_agent is set to None, the Q values computed using all
agents’ rewards will be returned.

• EvaluatePolicyExcluding: evaluate the optimal policy on an fictitious MDP that excludes the
reward function of excluded_agent.
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Algorithm 3 Dynamic VCG Mechanism Design
1: Initialize VH+1(s) = 0, VH+1,−i(s) = 0,∀s ∈ S
2: ▷ Question: Compute the optimal policy that maximizes all agents’ reported rewards.
3: for step h = H,H − 1, · · · , 1 do
4: ▷ Thought: Now we can continue to compute the Q-values for the current step h.
5: ▷ Operation: call UpdateQbyRExcluding with {time_step: h, excluded_agent:None}
6: ▷ Operation: call UpdateQbyPVExcluding with {time_step: h, excluded_agent:None}
7: ▷ Operation: call UpdateVbyQExcluding with {time_step: h, excluded_agent:None}
8: for each action a ∈ A do
9: Qh(s, a) =

∑N
i Ri(s, a) +

∑
s′∈S P (s′|s, a)Vh+1(s

′)

10: Vh(s) = maxa∈A Qh(s, a)

11: ▷ Thought: I have finished value iteration. Now exit reasoning.
12: Denote the optimal policy as π⋆

h(s) := argmaxa∈A Qh(s, a) for h ∈ [H], s ∈ S
13: for step h = 1, 2, · · · , H do
14: Observe state sh
15: ▷ Question: Which action I should take?
16: ▷ Thought: I should choose the action that maximizes the computed Q values.
17: ▷ Operation: call GetQExcluding with {time_step: h, cur_state: sh, excluded_agent=None}
18: ▷ Operation: call GetArgMax with {q_vals: [. . . ]}
19: ▷ Exit: I should choose Action ah as it maximizes the Q values. Now exit reasoning.
20: Mechanism designer takes action ah = argmaxa∈A Qh(sh, a)
21: Agent i observes reward ri(sh, ah) = Ri(sh, ah) + ϵ for i ∈ [N ] and state transits to sh+1

22: for agent i = 1, 2, · · · , N do
23: ▷ Question: Now compute the VCG price for agent i.
24: for step h = H,H − 1, · · · , 1 do
25: ▷ Thought: Now we can continue to compute the Q-values for the current step h.
26: ▷ Operation: call UpdateQbyRExcluding with {time_step: h, excluded_agent: i}
27: ▷ Operation: call UpdateQbyPVExcluding with {time_step: h, excluded_agent: i}
28: ▷ Operation: call UpdateVbyQExcluding with {time_step: h, excluded_agent: i}
29: for each state s ∈ S do
30: for each action a ∈ A do
31: Qh,−i(s, a) =

∑
j ̸=i Rj(s, a) +

∑
s′∈S P (s′|s, a)Vh+1,−i(s

′)

32: Vh,−i(s) = maxa∈A Qh,−i(s, a)

33: p⋆i = V1,−i(s1)− V π∗
(P,

∑
j ̸=i R̃j)

34: ▷ Thought: Now we know the optimal value of this fictitious MDP that ignores agent i’s
rewards. Next we should evaluate policy π⋆ on this fictitious MDP.

35: ▷ Operation: call EvaluatePolicyExcluding with {excluded_agent: i}
36: ▷ Thought: Then the VCG price for agent i is simply their difference ... Now exit reasoning.

• GetArgMax: return the indices corresponding to the maximal value in the given list of numbers
• GetMax: return the maximal value in the given list of numbers

With these operational tools, STRIDE is capable of computing the dynamic VCG mechanism by
emulating Algorithm 3.

B.3 Backward Induction for Bargaining in Complete Information Setting

For alternating offer bargaining under complete information, the reference algorithm selected for
STRIDE is the backward induction algorithm described in Algorithm 4, which given parameter of
the game, including buyer’s discount δb, seller’s discount δs, and deadline T , can compute the SPE of
the game.

Operational Tools. The following operational tools are provided to the LLM:

• CalcUtil: calculate buyer or seller’s utility using Eq (4), with the role of the agent, the specified
price and time step as inputs.
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Algorithm 4 Backward Induction to Compute SPE of Bargaining under Complete Information
1: ▷ Question: Compute the SPE Prices via Backward Induction.
2: for time step t = T, T − 1, · · · , 1 do
3: ▷ Thought: Compute the SPE price for time t, based on the results computed for time t+ 1
4: if t = T then
5: if current_player = Buyer then
6: ▷ Operation: call BackwardOneStep with {agent: buyer, op_u: 0.0, t: T}
7: The SPE price pT := 0.0
8: else
9: ▷ Operation: call BackwardOneStep with {agent: seller, op_u: 0.0, t: T}

10: The SPE price pT := 1.0

11: else
12: if current_player = Buyer then
13: ▷ Operation: call BackwardOneStep with {agent: buyer, op_u: us(pt+1, t+ 1), t: t}
14: The SPE price pt := argmaxp ub(p, t), s.t. us(p, t) ≥ us(pt+1, t+ 1)
15: else
16: ▷ Operation: call BackwardOneStep with {agent: seller, op_u: ub(pt+1, t+ 1), t: t}
17: The SPE price pt := argmaxp us(p, t), s.t. ub(p, t) ≥ ub(pt+1, t+ 1).
18: ▷ Operation: call CalcUtil with {agent: seller, price: pt, t: t}
19: ▷ Operation: call CalcUtil with {agent: buyer, price: pt, t: t}
20: Buyer utility ub(pt, t), Seller utility us(pt, t)

21: ▷ Thought: SPE prices for all time steps are calculated. Now exit reasoning.

Algorithm 5 Response to Offer in Bargaining with Complete Information
1: Inputs: current_player, price p, time t, SPE prices {pt}Tt=1
2: ▷ Question: Should I accept or reject opponent’s offer?
3: ▷ Thought: I should first compute the utility I get by accepting the offer, and then the utility I get

by rejecting the offer and making a counter offer using the SPE price in the next time step.
4: ▷ Operation: call CalcUtil with inputs {agent: current_player, price: p, t: t}
5: ▷ Operation: call GetSPEPrice with inputs {t: t+ 1}
6: ▷ Operation: call CalcUtil with inputs {agent: current_player, price: pt+1, t: t+ 1}
7: if current_player = buyer then
8: ua = ub(p, t), ur = ub(pt+1, t+ 1)
9: else

10: ua = us(p, t), ur = us(pt+1, t+ 1)

11: if ua ≥ ur then
12: ▷ Thought: I should accept the offer. Now exit reasoning.
13: return Accept
14: else
15: ▷ Thought: I should reject the offer. Now exit reasoning.
16: return Reject

• BackwardOneStep: compute the SPE price using one step of backward induction reasoning based
on the opponent’s utility if he/she choose to reject the offer at current time step (see the constrained
optimization problem in line 14 and line 17 in Algorithm 4)

• GetSPEPrice: retrieve the previously computed SPE price for the specified time step

With these operational tools, STRIDE is capable of computing the SPE by emulating Algorithm 4.
SPE can be used to predict the future offer to be made by the opponent, assuming the opponent is
rational and that the opponent believes the player to be rational as well. When facing a new offer p
made by the opponent at time step t, STRIDE will emulate Algorithm 5 to produce a response.

B.4 Backward Induction for Bargaining in Incomplete Information Setting

Since the seller is uncertain about the value b of the buyer, at each time step t the seller decides the
offer price pt based on his/her belief constructed using observations up to time step t − 1, which
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is denoted as U(0, bt−1), i.e., the true value b is uniformly distributed in [0, bt−1] (with b0 = 1).
Therefore, different from SPE considered in complete information setting, SE specifies not only the
strategies of the players, but also the belief, which in our case is the sequence {b0, b1, . . . , bT−1}. In
classic economics literature (Sobel and Takahashi, 1983; Cramton, 1984), this sequence is obtained
by: (i) backward induction from time T to time 1, which results in b0 expressed as a function of
bT−1; (ii) as the initial belief b0 = 1, we can solve this equation to obtain the value of bT−1. This
provides an analytical form for {b0, b1, . . . , bT−1} using the parameters δb, δs, T . To make the inner
logic more transparent during reasoning, we replace this analytical solution with a bisection search
when designing the reference algorithm for STRIDE, with its full description given in Algorithm 6.

Algorithm 6 Backward Induction to Compute SE of Bargaining under Incomplete Information
1: ▷ Question: Compute the SE Prices via Bisection Search and Backward Induction.
2: ▷ Thought: I need to first compute my belief about buyer’s value at time step T-1 under sequential

equilibrium, denoted bT−1, which can be done via bisection search. I should terminate when the
value b′0 computed based on b′T−1 gets close enough to my actual initial belief b0 = 1.0.

3: l = 0, h = 1, B′
T−1 = (l + h)/2

4: ▷ Operation: Call ComputeBt with inputs {time_step: 1, b_last: B′
T−1}

5: b′0 = ComputeBt(1, b′T−1)

6: while |b′0 − 1.0| ≥ 10−3 do
7: if b′0 ≤ 1.0 then
8: ▷ Thought: Since b′0 is smaller than b0, I should focus on the region [b′T−1, h] next time.
9: l = b′T−1

10: else
11: ▷ Thought: Since b′0 is larger than b0, I should focus on the region [l, b′T−1] next time.
12: h = b′T−1

13: b′T−1 = (l + h)/2
14: ▷ Operation: Call ComputeBt with inputs {time_step: 1, b_last: B′

T−1}
15: b′0 = ComputeBt(1, b′T−1)

16: ▷ Thought: Since |b′0 − 1.0| < 10−3, the value of my initial belief computed based on B′
T−1 is

close enough to the actual value b0 = 1. Therefore, B′
T−1 is an accurate approximation of BT−1

in SE. Now I can start backward induction to compute the SE prices from time T to 1.
17: for t = T, T − 1, . . . , 1 do
18: if t = T then
19: ▷ Operation: Call function SOLVELAST with inputs {b_last: B′

T−1}.
20: ut, pt = SolveLast(B′

T−1) # seller’s expected utility and price under SE
21: else
22: ▷ Operation: Call function SOLVE with inputs {u: ut+1, p: pt+1, t: t}.
23: ut, pt = Solve(ut+1, pt+1, t) # seller’s expected utility and price under SE
24: ▷ Thought: Now I need to continue to time step t− 1.
25: ▷ Thought: I have reached t = 1. Exit reasoning now.

We provide the following operational tools to STRIDE to help it emulate Algorithm 6:

• CalcUtil: calculate buyer or seller’s utility using Eq (5), with the role of the agent, the specified
price and time step as inputs.

• ComputeBt: compute what seller’s belief about buyer’s value would be at the current time step,
given a guess of seller’s belief at time step T − 1 (description given in Algorithm 7)

• SolveLast: compute seller’s expected utility and the corresponding price at the last time step
(description given in Algorithm 8)

• Solve: compute the expected utility and the corresponding price at the current time step, based on
the results computed for the next time step (description given in Algorithm 9)

• GetSEPrice: retrieve the previously computed SE price for the specified time step

Then similar to the complete information setting, when deciding whether to accept an offer from the
seller, the buyer can compare the utility he/she can get by accepting the current offer, and the utility
he/she can get by waiting for seller’s offer in the next time step. For the latter, as the buyer assumes
the seller is rational, the next offer from seller is predicted using the SE price from Algorithm 6.
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Algorithm 7 ComputeBt
1: Inputs time_step, the time index of current belief, and b_last, the belief at time step T .
2: Initialize constants {cτ}Tτ=2 with cT = 0.5 and cτ = (1−δb+δbcτ+1)

2

2(1−δb+δbcτ+1)−δscτ+1
for τ ≥ 2.

3: Set t = time_step, bT−1 = b_last
4: for τ = T − 1, T − 2, . . . , t do
5: bτ−1 = 2(1−δb+δbcτ+1)−δscτ+1

1−δb+δbcτ+1
bτ

6: return bt−1

Algorithm 8 SolveLast
1: Inputs b_last, the belief at time step T .
2: Set bT−1 = b_last
3: Compute SPE price pT := argmaxp p ·

bT−1−p
bT−1

= 1
2bT−1

4: Compute expected utility uT := pT · bT−1−pT

bT−1
= 1

4bT−1

5: return uT , pT

Algorithm 9 Solve
1: Inputs u, seller’s expected utility at t+1, p, the associated price, and t, the current time step.
2: Set ut+1 = u, pt+1 = p, and t = t
3: Compute SPE price

pt := argmax
p

bt−1 − bt
bt−1

p+
bt

bt−1
ut+1, s.t. bt = δb(bt − pt+1)

= (1− δb)bt + δbpt+1

4: Compute expected utility ut =
bt−1−bt
bt−1

pt +
bt

bt−1
ut+1

5: return ut, pt

C Prompts of the STRIDE Framework and Baselines

The prompts used for the LLM agents in Section 3 consist of three parts, which we mark using
different colors in this section: a system prompt setting the role of the agent (gray), followed by a
formal description of the decision-making problem to be solved (light blue), and then parameters of
the problem instance (light green). The system prompt is problem-agnostic, which is given below.

System prompt for zero-shot CoT

You are a world class intelligent agent capable of solving various classes of decision making
problems. For each decision making problem you encounter next, you will be given the
description of the problem setup and your objective. You need to carefully reason about the
problem step-by-step, and make optimal decisions for the encountered problem instance.

System prompt for zero-shot CoT w/ code interpreter

You are a world class intelligent agent capable of solving various classes of decision making
problems. For each decision making problem you encounter next, you will be given the
description of the problem setup and your objective. You need to carefully reason about the
problem step-by-step, and make optimal decisions for the encountered problem instance. You
are provided with a code interpreter. You should write and run code to answer the questions.
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System prompt for few-shot CoT w/ code interpreter

You are a world class intelligent agent capable of solving various classes of decision making
problems. For each decision making problem you encounter next, you will be given the
description of the problem setup and your objective. Your need to carefully reason about the
problem, and make optimal decisions for the encountered problem instance. You are provided
with a code interpreter and an example implementation. You should write and run code to
answer the questions following the example.

System prompt for STRIDE

You are a world class intelligent agent capable of solving various classes of decision making
problems. For each decision making problem you encounter next, you will be given the
description of the problem setup and your objective. Your need to carefully reason about the
problem step-by-step, and make optimal decisions for the encountered problem instance. You
are provided with a set of tools that handle low-level calculations and examples showing you
how to use these tools to solve this problem.

In the remainder of this section, we will provide the prompts describing the decision making problems
and the problem parameters to the agents.

C.1 MDP with Known Model

The following are the prompts we provide to all agents to describe the formulation and the agent’s
objective in MDP when the model, i.e., the transition function and reward function, is known.

Description of MDP with known model

A finite horizon tabular Markov Decision Process (MDP) is a model for decision-making in
scenarios where outcomes are influenced by both randomness and controlled decisions, with
decisions being made over a finite number of time steps.

Components:

State Space S: s0, s1, . . . , s|S|−1, where |S| is the total number of states.

Action Space A: a0, a1, . . . , a|A|−1, where |A| is the total number of actions.

Transition probability matrix P : a three-dimensional tensor with shape |S| × |A| × |A|, where
each entry represents the probability of transitioning from one state after taking a specific
action to another state.

Reward matrix R: a matrix with shape |S| × |A|, where each entry gives the mean of the
immediate reward received after taking an action in a state.

Horizon length H: The total number of time steps the decision process is constrained to.

Interaction protocol:

For time step h = 1, 2, . . . ,H

Agent takes an action ah ∈ A based on the current state sh

Agent receives reward rh := R[sh, ah] + ηh, where ηh ∼ N (0, 1)

The environment transits to the next state sh+1 with probability P [sh, ah, sh+1]
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Goal of the agent:

Maximize expected cumulative rewards E
[∑H

h=1 R[sh, ah]
]
, where the expectation is w.r.t.

randomness of agent’s policy and state transition.

For zero-shot CoT, which can only read the parameters from context, we print the complete transition
matrix P and reward matrix R as shown below, where the empty curly brackets {} are substituted
with actual values of the problem instance.

Description of problem instance

Now you are going to play in a finite-horizon tabular Markov decision process, with length
of horizon {} (with time indices starting from h=0 to {}), number of states |S|={}, number of
actions |A|={}. The transition matrix P is: {} and reward matrix R is {}.

For zero-shot CoT w/ code, few-shot CoT w/ code and STRIDE, which can read the parameters
from their working memory or an external file, instead of directly printing the transition and reward
matrices in context, we state in the prompt where these values can be accessed.

Description of problem instance

Now you are going to play in a finite-horizon tabular Markov decision process, with length
of horizon {} (with time indices starting from h=0 to {}), number of states |S|={}, number of
actions |A|={}. The transition matrix P and reward matrix R are stored in working memory.

C.2 MDP with Unknown Model

The following are the prompts we provide to all agents to describe the formulation and the agent’s
objective in MDP when the model, i.e., the transition function and reward function, is unknown.

Description of MDP with unknown model

A finite horizon tabular Markov Decision Process (MDP) is a model for decision-making in
scenarios where outcomes are influenced by both randomness and controlled decisions, with
decisions being made over a finite number of time steps.

Components:

State Space S: s0, s1, . . . , s|S|−1, where |S| is the total number of states.

Action Space A: a0, a1, . . . , a|A|−1, where |A| is the total number of actions.

Transition probability matrix P : a three-dimensional tensor with shape |S| × |A| × |A|, where
each entry represents the probability of transitioning from one state after taking a specific
action to another state.

Reward matrix R: a matrix with shape |S| × |A|, where each entry gives the mean of the
immediate reward received after taking an action in a state.

Horizon length H: The total number of time steps the decision process is constrained to.

Number of episodes K: The total number episodes the MDP is repeatedly played by the agent,
where in each episode, the agent starts fresh, makes a series of H decisions and then the episode
ends. Note that learning achieved in earlier episodes influences the behavior in later episodes.
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Unknown model of the environment: The transition probability matrix P and reward matrix
R are unknown to the agent, and the agent needs to estimate them based on the collected
observations and improve its policy after each episode.

Interaction protocol:

For episode k = 0, 1, 2, . . . ,K − 1:

For time step h = 0, 1, 2, . . . ,H − 1:

Agent takes an action ak,h ∈ A based on the current state sk,h

Agent receives reward rk,h := R[sk,h, ak,h] + ηk,h, where ηk,h ∼ N (0, 1)

The environment transits to the next state sk,h+1 with probability P [sk,h, ak,h, sk,h+1]

Agent can update its estimation of matrix P and R based on the newly observed quadruples
(sk,h, ak,h, sk,h+1, rk,h+1) for h = 0, 1, 2, . . . ,H − 1

Goal of the agent:

Maximize expected cumulative rewards E
[∑K−1

k=0

∑H−1
h=0 R[sh, ah]

]
, where the expectation is

w.r.t. randomness of agent’s policy and state transition.

For STRIDE, since it can automatically update, store, and read the estimated transition and reward
matrices in working memory, we simply use the following description about the problem instance for
all episodes.

Description of problem instance

Now you are going to play in a finite-horizon tabular Markov decision process, with length
of horizon {} (with time indices starting from h=0 to {}), number of states |S|={}, number of
actions |A|={}. The transition matrix P and reward matrix R are unknown to you, so you need
to estimate them based on interaction history.

For all the baselines, since they cannot reliably summarize the interaction history and construct the
estimation of P and R, we explicitly provide the estimation of P and R and the count of visitation of
state-action pairs as shown below. This is similar to the “externally summarized interaction history"
in the prompt for multi-armed bandit problems used by Krishnamurthy et al. (2024).

Description of problem instance

Now you are going to play in a finite-horizon tabular Markov decision process, with length
of horizon {} (with time indices starting from h=0 to {}), number of states |S|={}, number of
actions |A|={}. The transition matrix P and reward matrix R are unknown to you. Your current
estimation of transition matrix P is {}, your current estimation of reward matrix R is {}, and
your count of visitation of all the state-action pairs is {}.

C.3 Dynamic Mechanism Design Problem

The following are the prompts we provide to all agents to describe the formulation and the agent’s
objective in Dynamic Mechanism Design problem, when the model, i.e., the transition function and
reward function, is known.

Description of dynamic mechanism design problem

22



The dynamic mechanism design problem involves creating allocation and pricing rules for
decision-making, where the value of resource to the agents changes over time as the state of
the environment changes.

Components:

Players: a mechanism designer and a set of N agents State Space S: s0, s1, . . . , s|S|−1, where
|S| is the total number of states.

Action Space A: a0, a1, . . . , a|A|−1, where |A| is the total number of actions. Each action
represents the mechanism designer’s allocation of some scarce resource among N agents.

Transition probability matrix P : a three-dimensional tensor with shape |S| × |A| × |A|, where
each entry represents the probability of transitioning from one state after taking a specific
action to another state.

Reward matrix R: a three-dimensional tensor with shape N × |S| × |A|, where each matrix
R[i, :, :] represents the reward matrix of an agent i for i = 1, 2, . . . , N , and each of its entry
gives the mean of the immediate reward received by agent i after the mechanism designer takes
an action in a state.

Horizon length H: The total number of time steps the decision process is constrained to.

Interaction protocol:

Before the interaction starts, each agent i reports a reward matrix (can be different from its true
reward matrix R[i, :, :]), denoted as R̃[i, :, :], to the designer. Based on agents’ reported reward
matrix, the designer chooses a policy π : S → ∆(A) and prices {pi}Ni=1 to be charged to each
agent.

For time step h = 1, 2, . . . ,H:

Mechanism designer takes an action ah ∼ π(sh) based on the policy π and the current state sh
Each agent i receives reward R[i, sh, ah] for i = 1, 2 . . . , N The environment transits to the
next state sh+1 with probability P [sh, ah, sh+1]

After the interaction, the mechanism designer charges each agent i with some price pi

Goal of the agents:

Each agent wants to maximize its utility ui = E
[∑H

h=1 R[i, sh, ah]
]
−pi, that is, the difference

between the expected cumulative rewards, where the expectation is w.r.t. randomness of
designer’s policy and state transition, and the price charged by the mechanism designer. As the
agents cannot directly take actions, their only leverage is to decide whether to truthfully report
their reward matrix to the designer.

Goal of the mechanism designer:

Maximize the expected cumulative rewards of all agents E
[∑N

i=1

∑H
h=1 R[i, sh, ah]

]
, where

the expectation is w.r.t. randomness of designer’s policy and state transition. As the designer
only observes agents’ reported reward matrix R̃, to fulfil its objective, the designer needs to
guarantee, with its policy and pricing strategy, no agent i has incentive to report R̃[i, :, :] that is
different from the true reward matrix R[i, :, :] unilaterally.

It is known that VCG mechanism guarantees truthfulnes of the agents, and uniquely maximizes
the objective. It is defined as follows:

π⋆ = argmax
π

Eπ,P

[ N∑
i=1

H∑
h=1

R̃[i, sh, ah]

]
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p⋆i = Eπ⋆
−i,P

[∑
j ̸=i

H∑
h=1

R̃[j, sh, ah]

]
− Eπ⋆,P

[∑
j ̸=i

H∑
h=1

R̃[j, sh, ah]

]
for i = 1, 2, . . . , N , where π⋆

−i = argmaxπ Eπ,P

[∑
j ̸=i

∑H
h=1 R̃[j, sh, ah]

]
is the optimal

policy for a MDP with transition probability matrix P and reward matrix
∑

j ̸=i R̃[j, :, :], that is,
excluding the reward matrix of agent i itself.

Now as a strategic decision maker, your job is to compute the VCG mechanism based on the
given transition probability matrix P and the reward matrix R reported by the agents. Then you
should take an action at each time step and charges prices to each agent at the end, according
to your computed VCG mechanism.

Description of problem instance

Now you are going to play in a finite-horizon dynamic mechanism design problem, with
number of agents N={}, length of horizon {} (with time indices starting from h=0 to {}),
number of states |S|={}, number of actions |A|={}. The transition matrix P is:{} and reward
matrix R reported by the agents is {}.

C.4 Single-Issue Bargaining under Complete Information

The following are the prompts we provide to all agents to describe the formulation and the agent’s
objective in single-issue bargaining under complete information.

Description of single-issue bargaining under complete information

The alternating offer bargaining game is a negotiation framework between two players, a
buyer and a seller, aimed at determining the price of an item. This strategic game plays out
over several rounds with a finite deadline, emphasizing the tactics of bargaining under time
constraints.

Components:

Players: Two (Buyer and Seller).

Buyer’s Value: 1 (the maximum price the buyer is willing to pay). Seller’s Value: 0 (the
minimum price the seller is willing to accept).

Discount Factors (δb and δs): Represents how much each player values immediate transactions
over future possibilities, where δb, δs ∈ (0, 1). Utility associated with future offers are
discounted by δt−1

b and δt−1
s for the buyer and the seller, respectively, where t indicates the

current round.

Buyer’s Utility: If a price p is agreed upon at time step t <= T , then buyer’s utility is
ub = (1− p) ∗ δt−1

b .

Seller’s Utility: If a price p is agreed upon at time step t <= T , then seller’s utility is
ub = (p− 0) ∗ δt−1

s .

Deadline: If no sale is agreed upon by the end of time T, the negotiation fails, and no transaction
occurs, in which case, both agents get 0 utility.
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Complete Information: All details about the item’s value range, the structure of the rounds, and
the potential outcomes are common knowledge.

Interaction Protocol:

Decision Turns: Starting with the buyer, players alternate in making price offers. The player
making an offer proposes a price within the range from the seller’s value to the buyer’s value.

Responses: The opponent can either accept the proposed price, resulting in a sale and the game
ending, or reject the offer, in which case the negotiation advances to the next round.

Goal of the agents:

The seller aims to maximize the sale price while the buyer seeks to minimize it. Each agent’s
goal is to negotiate a price as close as possible to their value (1 for the seller, 0 for the buyer)
while considering the risk of no agreement by the deadline.

Description of problem instance

# For buyer

This is the beginning of a new game instance, where you will play as the buyer. Your discount
factor δb={}, seller’s discount factor δs={}, and the deadline T={}. In the following, you
should make your decision by assuming your opponent is rational as well.

# For seller

This is the beginning of a new game instance, where you will play as the seller. Your discount
factor δs={}, buyer’s discount factor δb={}, and the deadline T={}. In the following, you
should make your decision by assuming your opponent is rational as well.

C.5 Single-Issue Bargaining under Incomplete Information

The following are the prompts we provide to all agents to describe the formulation and the agent’s
objective in single-issue bargaining under incomplete information.

Description of single-issue bargaining under incomplete information

This is a finite horizon bargaining game with one-sided uncertainty, in which the uninformed
bargainer, the seller, makes all the offers and the informed bargainer, the buyer, can only
decides to accept or reject the offer.

Components:

Players: Buyer (informed) and Seller (uninformed).

Buyer’s Value: b (the maximum price the buyer is willing to pay).

Seller’s Value: 0 (the minimum price the seller is willing to accept).

Discount Factors (δb and δs): Represents how much each player values immediate transactions
over future possibilities, where δb, δs ∈ (0, 1). Utility associated with future offers are
discounted by δt−1

b and δt−1
s for the buyer and the seller, respectively, where t indicates the

current time step.

Buyer’s Utility: If a price p is agreed upon at time step t <= T , then buyer’s utility is
ub = (b− p) ∗ δt−1

b .

Seller’s Utility: If a price p is agreed upon at time step t <= T , then seller’s utility is
ub = (p− 0) ∗ δt−1

s .

25



Deadline: If no sale is agreed upon by the end of time T, the negotiation fails, and no transaction
occurs, in which case, both agents get 0 utility.

Information Asymmetry: Buyer himself knows the true value of b, which is drawn from a
known distribution F (v) supported on [0, 1]. We assume F (v) = v, i.e., Buyer’s value b is
sampled from a uniform distribution. The seller does not know b but knows the distribution
F (v).

Interaction Protocol:

Decision Turns: In each time step t = 1, 2, . . . , T , it is always Seller who makes an offer pt
within the range of [0,1].

Responses: Buyer can either accept the proposed price, resulting in a sale and the game ending,
or reject the offer, in which case the negotiation advances to the next time step.

Goal of the agents:

Seller’s Objective: Maximize their expected payoff over the horizon of the game without
knowing the true value of b. The seller must strategically decide on the prices pt to offer in each
time step, considering the declining number of opportunities to make a sale and the distribution
of b inferred from the buyer’s responses.

Buyer’s Objective: Maximize their surplus, which is the difference between the true value b
and the price paid p, if a transaction occurs. The buyer needs to decide whether to accept or
reject the seller’s offers based on the value b and the likelihood of a more favorable price in
subsequent time steps, considering the finite number of time steps.

Description of problem instance

# For buyer

This is the beginning of a new game instance, where you will play as the buyer. Your discount
factor δb={}, seller’s discount factor δs={}, and the deadline T={}. Your value b = {}, which
is uniformly sampled from [0, 1]. In the following, you should make your decision by assuming
your opponent is rational as well.

# For seller

This is the beginning of a new game instance, where you will play as the seller. Your discount
factor δs={}, buyer’s discount factor δb={}, and the deadline T={}. The buyer’s value b is
unknown to you, but you know it is uniformly sampled from [0, 1]. In the following, you should
make your decision by assuming your opponent is rational as well.

C.6 Tic-Tac-Toe

The following are the prompts we provide to all agents to describe the formulation and the agent’s
objective for the Tic-Tac-Toe game. The prompts also detail the agents’ goals and initial game setup.

Description of Tic-Tac-Toe Game
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Tic-Tac-Toe is a classic two-player game where players take turns marking spaces in a 3x3
grid, aiming to place three of their marks in a horizontal, vertical, or diagonal row to win.
Components:

• Players: Two players, usually denoted as Player X and Player O.
• Board: A 3x3 grid where each cell can be empty, marked with an X, or marked with

an O.
• Marks: Each player has a unique mark (X or O) that they place on the board.

Interaction Protocol:
• Players take turns starting with Player X.
• On each turn, a player marks an empty cell on the grid with their mark (X or O).
• The game continues until a player has three of their marks in a horizontal, vertical, or

diagonal row, or all cells are filled resulting in a draw.
Rules:

1. Players alternate turns, with Player X always going first.
2. A player can only mark an empty cell.
3. The game ends when one player achieves a row of three marks horizontally, vertically,

or diagonally, or when all cells are filled with no winner (a draw).
Goals of the Players:

• Player X: Maximize the chances of placing three X’s in a row before Player O does.
• Player O: Maximize the chances of placing three O’s in a row before Player X does.

Winning Conditions:
• A player wins if they place three of their marks in a horizontal, vertical, or diagonal

row.
• If all cells are filled without any player achieving three marks in a row, the game

results in a draw.
Game Setup:

1. The game begins with an empty 3x3 grid.
2. Players decide who will be Player X and who will be Player O.
3. Player X makes the first move.

Objective:
Each player aims to either achieve a row of three of their marks or to block the opponent from
doing so. Strategic planning and anticipation of the opponent’s moves are crucial to winning
the game.

Description of problem instance

Now you are going to play a game of Tic-Tac-Toe. The current state of the board is {}. It is
player {}’s turn. Your objective is to place three of your marks in a horizontal, vertical, or
diagonal row to win while preventing your opponent from doing the same.

C.7 Connect-N

The following are the prompts we provide to all agents to describe the formulation and the agent’s
objective for the Connect-N game. The prompts also detail the agents’ goals and initial game setup.

Description of Connect-N
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Connect-N is a generalized version of Connect-4, where two players alternate turns dropping
colored discs into a vertically suspended grid. The objective is to form a horizontal, vertical, or
diagonal line of N discs. The game introduces a gravity effect where discs drop to the lowest
available position within a column, adding a unique strategic dimension to the gameplay.
Components:

• Players: Two players, typically referred to as Player X and Player O, who use different
colored discs.

• Board: A grid with configurable dimensions, larger than the typical 3×3 Tic-Tac-Toe
board.

• Discs: Each player has an ample supply of discs in their respective colors.
Interaction Protocol:

• Players take turns, starting with Player X.
• On each turn, a player chooses a column to drop a disc into. The disc falls, affected

by gravity, to the lowest available position within the column.
• The game continues until a player forms a line of N discs in a row (horizontally,

vertically, or diagonally) or the board is completely filled, resulting in a draw.
Rules:

1. Players must alternate turns, with Player X always going first.
2. A player can only choose a column that has available space.
3. The game ends when one player forms a line of N discs or when all columns are filled

without any player achieving this, which results in a draw.
Goals of the Players:

• Player X: Strategize to connect N of their discs in a row vertically, horizontally, or
diagonally before Player O.

• Player O: Similarly, aim to connect N of their discs in a row while blocking Player
X’s attempts.

Winning Conditions:
• A player wins by aligning N of their discs in a row in any direction.
• The game results in a draw if the entire board is filled without either player achieving

N in a row.
Game Setup:

1. The game starts with an empty board of the chosen dimensions.
2. Players decide who will play first (Player X) and choose their disc colors.
3. Player X makes the first move by dropping a disc into one of the columns.

Objective:
Each player aims to strategically drop their discs to form a line of N while preventing their
opponent from doing the same. Anticipating the opponent’s moves and effectively using the
gravity-affected game-play are critical to securing a victory.

Description of problem instance

Now, you are going to play a game of Connect-N, where two players alternate turns dropping
discs into a vertically suspended grid. The objective is to form a line of N discs in a row, either
horizontally, vertically, or diagonally. The current state of the board is {}, the current player
is Player {}, the number of discs required to win is {}. Your objective is to strategically drop
your discs to form a line of {} discs while preventing your opponent from doing the same.

D Additional Experiments

In this section, we conduct additional experiments that evaluate STRIDE and the baseline agents
(GPT-3.5-Turbo-0125 with the temperature set to 0) on Tic-Tac-Toe and Connect-N Games. For
these two games, we provide STRIDE with tools and demonstration that make it emulate the Minimax
algorithm as shown in Algorithm 10.
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D.1 Tic-Tac-Toe

Agent’s Objective in Tic-Tac-Toe. The primary objective for each agent is to win the Tic-Tac-Toe
game by placing three markers in the same row, column, or diagonal before the opponent. If a win
is not feasible, the secondary objective is to aim for a tie, preventing the opponent from winning.
Each agent strives to select the optimal action based on the game’s current state. If both players play
optimally, the game results in a tie.

Experiment Setup and Results. In addition to the baselines mentioned in Section 3, here we also
include RAFA with Monte Carlo Tree Search (MCTS) (Liu et al., 2023) and RAFA with Minimax. For
CoT w/ code, the LLM has been instructed to implement the Minimax algorithm to play the game,
and for the RAFA agents, the search breadth denoted B, is set to 4. In addition to the original RAFA
MCTS implementation3, we implemented RAFA with Minimax as an extra baseline. We adopt the
memory structure from their original implementation to store optimal actions and use similar prompts
and interactions with the LLM to expand the game tree and assess game states. Additionally, for
RAFA with Minimax, we set the search depth, denoted U , to the maximum value 9.

In our experiments, STRIDE is equipped with operational tools to emulate a Breadth-First version
of the Minimax algorithm with alpha-beta pruning (see Algorithm 10). Starting from depth 0 and
progressing to the maximum depth — determined by the total number of empty cells on the board —
the algorithm evaluates potential outcomes at each node: +1 for a win, −1 for a loss, and 0 for a tie
or non-terminal states. Utilizing backward induction, the algorithm recursively refines and updates
these scores, ensuring that the decision path optimizes the expected outcome at each node from the
current player’s perspective. These scores are stored in STRIDE’s working memory. When STRIDE
agent starts playing the game, it retrieves the scores for each possible action and then selects the
action with maximal or minimal score depending on the player’s role. We repeat the experiments on
a fixed set of parameters for 10 runs, with the initial player being ‘X’ and an empty board to start the
game. The results are presented in Table 6.

Table 6: Model performances in Tic-Tac-Toe (10 runs).
Outcome RAFA w/ Minimax RAFA w/ MCTS zero-shot CoT zero-shot CoT w/ code STRIDE

X Wins (%) 50 60 70 80 20
Tie (%) 30 20 0 20 80

O Wins (%) 20 20 30 0 0

STRIDE vs. Baseline Models We also conducted experiments that pit STRIDE against baseline
models in Tic-Tac-Toe, including zero-shot CoT, zero-shot CoT w/ code, and RAFA w/ MCTS. We
instructed zero-shot CoT w/ code to implement the Minimax algorithm, and for RAFA w/ MCTS, we
set B = 4 and U = 4. The experiments were conducted over 10 runs, with STRIDE playing as player
‘X’ and the baseline models as player ‘O’. The outcomes are summarized in Table 7.

Table 7: STRIDE against Baseline Models in Tic-Tac-Toe (10 runs)
Matchup STRIDE Wins (%) Tie (%) Opponent Wins (%)

STRIDE vs zero-shot CoT 90 10 0
STRIDE vs zero-shot CoT w/ code 80 20 0
STRIDE vs RAFA w/ MCTS 50 50 0

D.2 Connect-N

Agent’s Objective in Connect-N. In Connect-N, available moves can be made in the lowest empty
space of each column. The agent aims to drop its discs to form a line of N while preventing its
opponent from doing the same. Each agent attempts to choose the best possible action based on the
game’s state. Similar to Tic-Tac-Toe, the game ends with a draw if both players play optimally.

Experiment Setup and Results We conduct experiments with two configurations: (1) Connect-3
on a 3 × 3 board and (2) Connect-4 on a 4 × 4 board. Similar to the Tic-Tac-Toe game, STRIDE

3https://github.com/agentification/RAFA_code
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simulates the Breadth-First Minimax algorithm with pruning (see Algorithm 10) to find the optimal
action in Connect-N. It first simulates every possible move and scores each node at each game’s depth
(1 for a win, -1 for a loss, and 0 for a tie or non-leaf node), then uses backward induction to update
the scores for each game state. Using its working memory, STRIDE stores the computed scores for
all possible actions at various depths. When the game starts, it selects the best action based on the
computed scores. The results (averaged over 10 runs) are summarized in Tables 8 and 9.

Table 8: Model performances in Connect-3 (10 runs).
Outcome zero-shot CoT zero-shot CoT w/ code STRIDE

X Wins (%) 60 90 30
Tie (%) 40 0 70

O Wins (%) 0 10 0

Table 9: Model performances in Connect-4 (10 runs).
Outcome zero-shot CoT zero-shot CoT w/ code STRIDE

X Wins (%) 50 80 50
Tie (%) 10 0 50

O Wins (%) 40 20 0

We provide the following operational tools to STRIDE to help it emulate Algorithm 10:

• CalculateScores: expand every action at each depth and calculate the score for the nodes.
• GetScores: retrieve the computed scores for all actions at the specified depth of the game tree.

Algorithm 10 BFS Minimax with Alpha-Beta Pruning
1: function BFSALPHABETA(root, α, β)
2: queue← new Queue()
3: parentMap← new Dictionary() ▷ To store parent-child relationships
4: queue.enqueue({root, α, β})
5: scores← new Dictionary() ▷ To store scores temporarily
6: while queue is not empty do
7: {node, current_alpha, current_beta} ← queue.dequeue()
8: if node is a terminal state then
9: scores[node]← U(node) ▷ Utility of terminal state

10: else
11: value← −∞ if node.isMaximizingPlayer() else∞
12: for all child ∈ Children(node) do
13: queue.enqueue({child, current_alpha, current_beta})
14: parentMap[child]← node

15: if node in parentMap then
16: parent← parentMap[node]
17: eval← scores[node]
18: if parent.isMaximizingPlayer() then
19: scores[parent]← max(scores[parent], eval)
20: current_alpha← max(current_alpha, scores[parent])
21: else
22: scores[parent]← min(scores[parent], eval)
23: current_beta← min(current_beta, scores[parent])
24: if current_beta ≤ current_alpha then
25: break ▷ Pruning
26: return scores[root]
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