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Abstract

We present a method for classifying human skill at fetal ultrasound scanning from eye-
tracking and pupillary data of sonographers. Human skill characterization for this clinical
task typically creates groupings of clinician skills such as expert and beginner based on
the number of years of professional experience; experts typically have more than 10 years
and beginners between 0-5 years. In some cases, they also include trainees who are not
yet fully-qualified professionals. Prior work has considered eye movements that necessi-
tates separating eye-tracking data into eye movements, such as fixations and saccades. Our
method does not use prior assumptions about the relationship between years of experi-
ence and does not require the separation of eye-tracking data. Our best performing skill
classification model achieves an F1 score of 98% and 70% for expert and trainee classes re-
spectively. We also show that years of experience as a direct measure of skill, is significantly
correlated to the expertise of a sonographer.

Keywords: Eye-tracking, skill classification, fetal ultrasound

1. Introduction

The definition of human skill in the medical literature is most often quantified by the
number of years of experience a trained medical professional has been practicing for. In
fetal sonography (pregnancy ultrasound screening), this corresponds to the number of years
after qualification. In Wang et al. (2020); Sharma et al. (2021c), a sonographer who has
been scanning for 2 years or less is defined as newly qualified. In Lous et al. (2021), a
trained professional who has been scanning for 10 years or more is considered an expert. In
other clinical sub-specialties such as surgery, skill is referenced to the number of instances
the specific surgery has been performed (Ortega-Morán et al., 2020; Erridge et al., 2018).
Similarly, in dentistry, the number of semesters completed by a trainee is used as a measure
of skill (Castner et al., 2018, 2022). These time-based definitions are over simplified and
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omit other important factors that contribute to skill level. Some examples are the frequency
of scanning over time, quality (Wang et al., 2022) and interpretation of the recorded image
and real-time response to visual feedback (Drukker et al., 2021). Since maternal and fetal
anatomy differs, no two patients will present in the same manner at any given time (Drukker
et al., 2021). These measures of skill are not easily quantifiable, and current definitions used
for skill groupings are domain specific.

In medical studies where eye-trackers have been used for skill assessment, researchers
typically use metrics such as the number of fixations and saccades, and the time taken to
complete the task to differentiate groups of clinicians (Topalli and Cagiltay, 2018; Castner
et al., 2022; Fichtel et al., 2019; Law et al., 2004). For example, Lee and Chenkin (2021)
showed that experts spent significantly less time fixating on a relevant area-of-interest and
had a higher fixation count compared to trainees when viewing video clips of an ultrasound
examination. These studies depend on suitable experts or eye movement classification
algorithms to separate eye-tracking data into fixations, saccades, smooth pursuits, and
areas-of-interest.

Separating eye-tracking data into different eye movements is challenging. Research has
shown that the selected eye movement classification algorithm is heavily dependent on the
chosen parameters, and can return vastly different results within in the same domain-specific
application (Salvucci and Goldberg, 2000). In fetal sonography, separating task-specific eye
tracking into eye movements is made more challenging because of the number of diagnostic
planes that need to be captured and assessed; capturing and reading each anatomical plane
is considered a separate task. In second-trimester scanning specifically, there are 23 planes
to be captured in a 30-40 minutes appointment window (Drukker et al., 2021).

A second question is how to define human skill for this task. In surgery, for instance, it
has been proposed to measure skill by the time taken to complete the task and whether each
suture was closed correctly (Reiley and Hager, 2009). In radiology, how far the radiographer
deviated from the problematic areas could be an indicator that they did not identify the
lesion as quickly as another expert (Manning et al., 2006; Krupinski et al., 2014). These
definitions do not account for the nuances in fetal sonography, where skill metrics based on
eye or probe/hand motion is non-trivial, due to the fast probe movement, fetal movement,
unstructured transitions between numerous anatomical planes, sonographer experience, and
maternal and fetal anatomy (Drukker et al., 2021). We test the hypothesis of whether
grouping sonographer expertise based on years of experience is a suitable measure of skill.

1.1. Related Work

There are several studies that use eye-tracking data for task-specific skill classification.
However, it is more typical to use tool motion data either on its own or in combination
with other data modalities in applications such as surgery and fetal sonography (Lin et al.,
2006; Megali et al., 2006; Wang et al., 2020), as opposed to only eye-tracking data. A
Hidden Markov model is used in Ahmidi et al. (2010) to classify skill between experts
and novices using both their eye-tracking and tool motion data. A statistical model was
fitted to eye-tracking and tool motion data for experts and novices in endoscopic sinus
surgery (Ahmidi et al., 2012). In the field of fetal sonography, Sharma et al. (2021b) uses
a combination of eye-tracking, pupillary data, and image data to classify newly qualified
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and expert sonographers. To define skill, Ahmidi et al. (2010) uses anatomical knowledge
and operational knowledge of endoscopes as skill indicators. However, in fetal ultrasound,
prior skill characterisation studies that use eye tracking or probe motion have used years
of experience as a skill indicator (Sharma et al., 2021c,b; Wang et al., 2020; Lous et al.,
2021). These studies combine eye-tracking with other data modalities, did not consider
task-agnostic gaze behaviour, and are still largely limited by a year threshold cut-off to
define skill (Ahmidi et al., 2010, 2012; Wang et al., 2020, 2022; Sharma et al., 2021c).

1.2. Contribution

Our main contributions are as follows. We build a task-agnostic skill classification model
using only eye-tracking and pupillary data of sonographers performing fetal ultrasound
scans. We calculate the correlation between years of scanning experience and the proportion
of predicted expert labels of fully qualified sonographers and its significance (at the 5%
level). To determine how well a task-agnostic skill classification model performs on specific
tasks, we calculate the significance for anatomical planes with different levels of difficulty.

2. Method

We present an original skill classification model to differentiate trainee and fully-qualified
sonographers based on their eye gaze characteristics, and use this to evaluate if years of
scanning experience is an indicative measure of skill.

2.1. Skill Classification Model

An expert refers to any fully-qualified (FQ) sonographer, independent of their years of
scanning experience. A trainee refers to a not yet fully-qualified sonographer, who is still
learning how to scan. A teacher is a fully qualified sonographer who is performing the scan
with a trainee present. We define style as in Wang et al. (2020); the gaze of a sonographer
is the outcome of both human skill, and personal scanning style. The purposes of the
skill classification model are 2-fold. The first is to differentiate a trainee and an expert’s
gaze behaviour using eye-tracking and pupillary data. The second is to determine if a
sonographer’s style of scanning affects the performance of the model.

To achieve these aims, we train several groups of models using different experts in the
training dataset.

Group 1: Teacher VS trainee We aim to differentiate gaze of a teacher (FQ sonographer)
and a trainee. We compare the differences between using a sonographer, as 1) the Teacher
and 2) the same sonographer carrying out scans individually. During the training sessions,
due to time constraints, the trainee does not necessarily perform the scan but is instead
given opportunities to try searching for planes with some guidance from the teacher.

Group 2: FQ sonographers VS trainee This group of models aim to differentiate a
population of FQ sonographers from a trainee. Here, FQ sonographers are performing
scans individually and in some instances, with a trainee.

Group 3: FQ sonographer VS trainee The final group of models aim to differentiate a
single FQ sonographer from a trainee. This is a reversed leave-one-out approach, analogous

3



Teng Drukker Papageorghiou Noble

to ‘leave-one-in’. The null hypothesis is that each individual sonographer is able to provide
a representation of the gaze behaviour of all expert sonographers.

We use eye-tracking data collected when sonographers were viewing live B-mode ultra-
sound video streams. Live B-mode video streams are recorded when the sonographer is
actively searching for the required anatomical plane. In contrast, frozen frames result when
the sonographer has frozen the video and is no longer moving the probe. A fetal ultrasound
video typically follows an alternating sequence of live B-mode streams and frozen streams
that are referred to as live B-mode and frozen segments, respectively. Only live B-mode
segments are used for this study.

Instead of labeling the video in terms of the anatomy being assessed at this time as in
Sharma et al. (2021a); Wang et al. (2020, 2022), we consider a task-agnostic approach to
classify skill differences. This reduces the need for manual labelling of segments and builds
a gaze-based skill classification model that is agnostic to the type of anatomical plane being
searched for. To overcome the problem that live B-mode segments are of different lengths,
we extract summarized gaze characteristics for each segment using the scalable feature
extraction approach tsfresh (Christ et al., 2018).

Gaze Features Following Sharma et al. (2021b) where pupillary data was used to com-
pare differences between sonographers with > 2 years and ≤ 2 years of experience, we cal-
culated the task-evoked pupillary response (TEPR) as a skill classification feature. Briefly,
TEPR measures the change in pupil dilation with respect to a baseline pupil diameter. A
larger change in TEPR is indicative of a higher cognitive load, and vice versa. The equation
for calculating TEPR is given as δdt in Equation (1). Following Sharma et al. (2021b), we
use the minimum pupil diameter dr to represent the sonographer’s pupil diameter while
resting. dt represents the pupil diameter at time t and δdt represents the TEPR at time t.

δdt =
dt − dr

dr
× 100% (1)

We also include gaze data (x and y coordinates) as features. Each live B-mode segment
is represented by a 3× n feature vector, where n is its segment length and 3 is the number
of final features that were used to train the model - gaze x and y co-ordinates and δdt. Note
that n varies from segment to segment. The feature is then reduced to a 1 × m feature
vector, where m is the number of characteristics extracted using Christ et al. (2018).

The feature extraction setting used in tsfresh was EfficientParameters (Christ et al.,
2018) which consist of 74 unique time-series features. This setting was chosen because they
provide an overview of time-series properties that are not computationally expensive to
calculate and is scalable for large datasets. These features cover a range of time-series
properties, such as distribution of data points, correlation properties, stationarity, entropy,
and nonlinear time series analysis (Christ et al., 2018). In fetal ultrasound, due to the
unstructured nature of searching for anatomical planes, the time taken per segment is not
necessarily a fair indicator of skill. Hence we remove features related to length: length, and
ratio value number to time series length, which calculate the length of the segment n
and the number of unique values in the segment divided by n, respectively.

The final dataset consists of a matrix of size d × m, where d is the total number of
segments available.
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Implementation We consider off-the-shelf gradient boosting decision trees which have
been shown to have the best performance on tabular data (Bentéjac et al., 2021) and are
computationally efficient. These models are Categorical Boosting (CatBoost) (Dorogush
et al., 2018), Light Gradient Boosting Machine (LightGBM) (Ke et al., 2017), and Extreme
Gradient Boosting (XGBoost) (Chen and Guestrin, 2016) classifiers. Gradient boosting
decision trees use an ensemble of weak decision trees to build strong predictors (Dorogush
et al., 2018; Friedman, 2001). Briefly, XGBoost is a highly scalable and efficient gradient
tree boosting algorithm that can handle sparse tabular data because of its algorithmic opti-
misations detailed in Chen and Guestrin (2016). LightGBM included two extra optimisation
steps to handle large amounts of data instances and features, decreasing the computational
speed and memory required compared to XGBoost (Ke et al., 2017). CatBoost is simi-
lar to XGBoost and LightGBM but is specifically designed to handle categorical features
(Dorogush et al., 2018), of which there are several in the extracted features from tsfresh.

We performed a 5-fold stratified cross-validation with 75% of our dataset, and tested
on the remaining 20%. We tuned our model parameters using a grid search with 5% of the
dataset. Due to class imbalance where experts form the majority class, we use Synthetic
Minority Oversampling Technique (SMOTE) (Chawla et al., 2002; Sharma et al., 2021b) to
balance our training dataset. Such imbalances in data are not uncommon, where other fetal
sonography studies have also had an imbalanced expert/beginner dataset (Sharma et al.,
2021c; Wang et al., 2020). This imbalance is further amplified when considering separating
sonographers on a per-year (of scanning experience) basis.

2.2. Predicting Skill Level of Fully Qualified Sonographers

Figure 1: Example bar chart. Percentage of segments predicted as expert (dark blue) or
trainee (light blue) grouped by the number of years of experience. PC refers to
Pearson’s correlation coefficient. PC > 0 suggests that the years of experience
and percentage of expert segments are positively correlated. PC < 0 suggests
that the years of experience and percentage of expert segments are negatively
correlated. PC = 0 suggests that the years of experience and percentage of
expert segments are neither positively or negatively correlated.
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We predict labels, expert or trainee, for live B-mode segments of FQ sonographers with
a range of years of scanning experience. Then we calculate the proportion of segments that
were labelled as expert and trainee, grouped by years of scanning experience, to test the
hypothesis that years of scanning is analogous to skill (Sharma et al., 2021c; Wang et al.,
2020; Lous et al., 2021). The trained skill classification model can identify expert segments
which are more similar to trainee segments (i.e., expert segments which are misclassified
as trainee segments), and whether the proportion of misclassified segments is significantly
correlated with the number of years of scanning experience.

PCXY =
cov(X,Y )

σXσY
(2)

We test the significance (at the 5% level) of years of experience and percentage of expert
segments using Pearson’s correlation coefficient (PC) (Equation (2)). The variables X and
Y in Equation (2) are years of experience and percentage of expert segments (between 0
and 100%) respectively. σ refers to the standard deviation, and cov refers to the covariance.
The null hypothesis being tested is that there is no significant correlation (PC=0, Figure 1)
between years of experience and percentage of expert segments. Bar charts are used for
visual inspection of the proportions of expert and trainee labels. An example is shown in
Figure 1.

We also investigate how the gaze skill classification model performs at the diagnostic
plane task level. This is done by predicting on labelled diagnostic plane live B-mode seg-
ments. In our work, we use the head circumference (HC), abdominal circumference (AC),
and heart plane finding tasks, which have been used in Wang et al. (2022, 2020); Sharma
et al. (2021b). Briefly, heart plane finding or detection is considered to be more difficult
to search for because the heart is smaller in size compared to the head or abdomen and
requires subtle hand movements to find the heart planes. Therefore on average, we expect
that the more experienced a sonographer is (in years), the more likely their live B-mode
segments would be predicted as expert when considering the heart plane.

3. Data

Trainee 1 Trainee 2 Trainee 3 Trainee 4 Teacher

Number of sessions 6 6 1 1 14

Table 1: Number of unique teacher-trainee scan sessions.

Years of experience 0 1 2 3 5 6 7 8 10 11 14 15 16

Number of sessions 136 115 33 8 22 16 5 4 18 13 104 39 2

Table 2: Number of unique scan sessions performed by fully qualified sonographers.

The sonographer’s eye gaze data was acquired as part of the PULSE1 (ERC-2015-AdG-
694581) project which received ethics committee approval. We focus specifically on second-
trimester scans which were the most commonly conducted. There are two dataset partitions

1. https://eng.ox.ac.uk/pulse/
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used. One partition had a teacher (FQ sonographer with 5 years of experience) training 4
different trainees (under independent scan sessions) (Tab. 1). The second partition had 13
FQ sonographers within 0-16 years of scanning experience (Tab. 2).

Gaze Preprocessing Eye-tracking and pupillary data were collected using a Tobii Eye
Tracker 4C which was sampled at 90 Hz. We follow the pupillary data preprocessing method
outlined in Sharma et al. (2021b), and the eye-tracking data preprocessing method outlined
by Teng et al. (2021). Briefly, we discard any pupil diameters <1.5mm and >9.0mm,
and linearly interpolate any missing values. For gaze data, we discard any segments with
>210ms of gaze data missing and linearly interpolate any other gaps.

3.1. Training Data

Model Grouping Expert’s Data Abbreviation Expertise (years) ≈ Class Imbalance Ratio

Teacher VS
trainee

Teacher 5 3
Teacher+FQ2,5 2-5 12

FQ sonographers
VS trainee

Teacher+FQ0,16 0-16 18
FQ0,16 0-16 14

FQ sonog-
rapher VS
trainee

FQ1,2 1-2 23
FQ2,3 2-3 8
FQ0,3 0-3 17
FQ10,11 10-11 3
FQ14,15 14-15 15

Table 3: Table of groups of experts represented in the training dataset for skill classification,
with their corresponding number of years of scanning experience. The table also
includes a class imbalance ratio of the expert class and trainee segments available
for training; the expert class is the majority class. The abbreviation for these
experts are FQa,b, where FQ stands for fully qualified, and a, b represents the
lower and upper bound of number of years of scanning experience.

In our work, we considered different FQ sonographers to represent experts in our training
dataset for skill classification. These models were outlined in Section 2.1 as Teacher VS
trainee, FQ sonographers VS trainee and FQ sonographer VS trainee. Teacher VS trainee
models used the same sonographer where they taught (Teacher) and performed scans on
their own (FQ2,5). Due to data imbalance (Tab. 2), we use sonographers with the most
(top 5) gaze data in Tab. 2 to represent our expert population for our FQ sonographer VS
trainee models.

We set aside 20% of the FQ data in Tab. 2, abbreviated as FQ0,16, for training and
testing our skill classification model. The remaining 80% is used to predict skill level of
FQ sonographers. Any anatomy-specific segments were labelled using optical character
recognition.
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4. Results

4.1. Skill Classification

Table 4 shows the results of the model’s performance on the test set across the 5 folds. On
average, both LightGBM and XGBoost outperform CatBoost. This is not unexpected since
the number of continuous features in the dataset is more than the number of categorical
features. Given that class imbalance favours the majority class (expert), it is not surprising
that the performance of the expert class is much better than that of the trainee class, with
average F1 scores of at least 94%. The best performing model based on the trainee class
performance uses an XGBoost architecture and FQ10,11 as the expert. It achieves an F1
score of 95% for the expert class and 88% for the trainee class.

Model LightGBM XGBoost CatBoost

Data Expert Trainee Expert Trainee Expert Trainee

Teacher 0.94±0.01 0.79±0.02 0.94±0.01 0.78±0.03 0.91±0.00 0.71±0.01
Teacher+FQ2,5 0.97±0.00 0.72±0.04 0.97±0.00 0.74±0.02 0.95±0.01 0.62±0.04

Teacher+FQ0,16 0.98±0.00 0.60±0.02 0.98±0.00 0.60±0.02 0.95±0.01 0.38±0.03
FQ0,16 0.98±0.00 0.70±0.03 0.98±0.00 0.66±0.04 0.96±0.00 0.50±0.01

FQ1,2 0.99±0.00 0.71±0.04 0.99±0.00 0.74±0.01 0.97±0.00 0.58±0.02
FQ2,3 0.98±0.00 0.71±0.03 0.97±0.00 0.65±0.03 0.96±0.00 0.54±0.01
FQ0,3 0.99±0.00 0.84±0.02 0.99±0.00 0.80±0.02 0.98±0.00 0.68±0.04
FQ10,11 0.95±0.00 0.86±0.01 0.95±0.01 0.88±0.02 0.94±0.01 0.84±0.02
FQ14,15 0.98±0.00 0.72±0.02 0.98±0.00 0.71±0.02 0.95±0.01 0.52±0.02

Table 4: Average F1 scores using the different training datasets described in Tab. 3. In
bold, the best performing model Teacher VS trainee model using LightGBM, the
best performing model FQ sonographers VS trainee model using LightGBM, the
best performing FQ sonographer VS trainee model using XGBoost.

Teacher VS trainee: A comparison of Teacher and Teacher+FQ2,5 shows a 7% decrease
in performance, suggesting that an expert’s gaze is affected by the presence of a trainee. It
could be that the expert teaches trainees in a specific textbook manner, but uses their own
style when scanning individually.

FQ sonographers VS trainee: The best performing model which considers a range of
years of experience achieves a 98% and 70% F1 score for expert and trainee classes respec-
tively. This model only included sonographers performing scans individually. By including
gaze data where the teacher was actively training a trainee, Teacher+FQ0,16, the perfor-
mance drops by 10%.

FQ sonographer VS trainee: The performance of the trainee class depends on which
experts were used in training, with F1 scores between 71% and 86% (Table 4, LightGBM).
When comparing similar years of experience, FQ14,15 and FQ10,11, FQ0,3 and FQ1,2, there
is a difference of at least 13% (Table 4). These results suggest that when considering a skill
classification model, a sonographer’s style is also a factor that is not easily disentangled
from their skill. As a result, misclassification of trainee segments is dependent on the style
of the expert’s gaze.
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4.2. Skill Prediction of Fully Qualified Sonographers

We calculate the proportion of expert segments predicted by the models on 80% of FQ0,16

and use bar charts to display the average proportion of segments predicted as trainee and
expert. We use the LightGBM model as overall it had the best results (Table 4). For
brevity, we show the bar charts of the top 3 sonographer-specific datasets which returned
the best performing models: Teacher, FQ10,11, FQ0,3.

Figure 2(a) shows the proportion of expert-trainee labels, where the expert used in
the training dataset was the Teacher with 5 years of experience. Note that sonographers
with 2 and 5 years of experience have the highest proportion of their segments labelled as
expert. This is because the Teacher also performed some scan sessions individually, which
was presented in the FQ0,16 dataset. In the FQ0,16 dataset, the sonographer had 2 years
of experience. At the time of teaching, they had 5 years of experience.

(a) Expert: Teacher. (b) Expert: FQ0,3.

(c) Expert: FQ10,11.

Figure 2: Percentage of segments predicted as expert (dark blue) or trainee (light blue)
on FQ0,16, grouped by the number of years of experience. The experts used for
training the model are: Teacher, FQ0,3 and FQ10,11.

Both Figure 2(b) and Figure 2(c) show that the number of years of scanning is pos-
itively correlated with the proportion of segments being labelled as experts. The PC is
significant (p-value < 0.05). This is unlike Figure 2(a) where the coefficient is -0.07 and is
not significant.

9



Teng Drukker Papageorghiou Noble

Teacher Teacher+FQ0,16 Teacher+FQ2,5 FQ0,16

p-value 0.82 0.41 0.95 0.44
PC -0.07 -0.26 -0.02 0.25

FQ1,2 FQ2,3 FQ0,3 FQ10,11 FQ14,15

p-value 0.15 0.46 0.00 0.00 0.0
PC -0.47 -0.24 0.84 0.92 0.80

Table 5: Table of Pearson’s coefficient (PC) and p-values between years of experience and
percentage of expert segments predicted.

4.3. Anatomy Specific Skill

We also investigate how well our task-agnostic gaze skill classification model performs when
considering specific anatomical planes. The anatomical planes that were considered are
head circumference (HC), abdominal circumference (AC), and heart. The anatomy-specific
PC results are shown in Table 6 which suggests that there is little significant correlation for
anatomical planes AC and HC (2 out of 9 models show a significant correlation). Conversely,
there is some significant correlation for heart planes (4 out of 9). These results suggest that
there is significant difference in gaze behaviour between FQ sonographers when searching
for the heart, but not for the HC and AC. The results of Sharma et al. (2021c,b) show that
the heart is more difficult to search for because of its relatively smaller size in comparison
to the abdomen and brain. Therefore, it is not surprising that the number of years of
experience in scanning is positively correlated with the proportion of expert segments for
the heart (Figure 3(a) and Figure 3(b)).

Teacher+FQ2,3 FQ1,2 FQ0,3 FQ10,11 FQ14,15

AC 0.58 0.82
HC 0.62 0.78
Heart -0.61 0.74 0.86 0.58

Table 6: Table of Pearson’s coefficient (PC) between years of experience and percentage of
expert segments predicted for head circumference (HC), abdominal circumference
(AC), and heart. We only show the correlation coefficients which were found to
be significant at the 5% level. Teacher, Teacher+FQ0,16, FQ0,16 and FQ2,3 did
not have any significant coefficients. Empty entries correspond to p-value > 0.05.
Entries with a coefficient value correspond to p-values < 0.05.

Furthermore, we show the bar charts for FQ0,3 and FQ10,11. Visually, they confirm
the results of the significance test, where there is a noticeable increase in predicted expert
segments with years of experience for FQ10,11 compared to FQ0,3 for AC and HC.

A comparison between Figure 3(a) and 3(b) also show that there is a larger proportion of
predicted expert segments when being compared against FQ sonographer with less scanning
experience, FQ0,3 (0-3 years), than that of FQ10,11 (10-11 years). The same behaviour can
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(a) Expert: FQ0,3.

(b) Expert: FQ10,11.

Figure 3: Percentage of segments predicted as expert (dark blue) or trainee (light blue) for
anatomical planes HC, AC and Heart in FQ0,16, grouped by number of years of
experience. The experts used for training the model are: FQ0,3 and FQ10,11.

also be observed in Figure 2(b) and Figure 2(c). These results suggest that it is ‘more
difficult’ to have gaze patterns of a sonographer who has been scanning for several years. It
is likely that sonographers developed their own style over time, possibly moving away from
their scanning style from earlier years when they first qualified.

5. Discussion

In our work, we have shown that the performance of a gaze skill classification model is
dependent on the sonographer representing the expert population. We then used the model
to predict whether a FQ sonographer’s years of experience is positively correlated to the
proportion of expert segments predicted. The Pearson’s correlation coefficient test showed
that when using FQ0,3, FQ10,11, and FQ14,15 as the expert benchmark, there is a significant
positive correlation between the number of scanning years and the percentage of expert
segments. These results suggest that, without making any prior assumptions about the
relationship between scanning years and expertise, there is a positive correlation between
the 2 variables. With more years of scanning experience, a FQ sonographer is likely to
have a higher proportion of predicted expert segments. This relationship is also seen when
sonographers are searching for heart planes.

The trainee class was highly imbalanced in some of the training data, such as FQ0,3

and FQ1,2. A comparison of FQ0,3 and FQ10,11, which had an imbalance ratio of 17 and 3

11



Teng Drukker Papageorghiou Noble

respectively, returned similar results for the best-performing model. When comparing FQ0,3

and FQ1,2, both had between 0-3 years of experience but a 13% difference in performance for
the trainee class. Similarly, FQ10,11 and FQ14,15 had a 14% difference. These results suggest
that although class imbalance could have caused the minority class (trainee) to perform
worse than the expert class, it is more likely that the gaze behaviour of a sonographer is
dependent on their scanning style, causing different representations of experts to return a
range of model performances.

Some considerations of the dataset which are important to note are as follows. The
PULSE data was collected from a single site and used the same ultrasound scanning ma-
chine. We also only consider second trimester scans in our work. The fetus in the first
and third trimesters would present differently during the scan, and it would be useful to
see whether our method can generalise across different trimesters, and between different
ultrasound machines.

6. Conclusion

In this paper, we have presented a skill classification model, where experts were defined as
fully qualified sonographers independent of their years of scanning experience, and trainees
were defined as sonographers learning how to scan. Our best performing model considering
a range of years of experience used a LightGBM and returned F1 scores of 98% and 70%
for expert and trainee classes respectively. We have also showed that sonographer gaze
behaviour is indicative of both skill and style, with performance differences of up to 16%.
Finally, without making any prior assumptions of the correlation between years of experience
as a direct measure of skill, we show that there is a significant positive correlation between
years of scanning and expertise when considering task-agnostic gaze characteristics and
task-specific planes such as the heart.
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Thérése Eder, Fabian Hüttig, and Constanze Keutel. Scanpath comparison in medical
image reading skills of dental students. pages 1–9. ACM, 6 2018. ISBN 9781450357067.
doi: 10.1145/3204493.3204550.

Nora Castner, Jonas Frankemölle, Constanze Keutel, Fabian Huettig, and Enkelejda Kas-
neci. Lstms can distinguish dental expert saccade behavior with high “plaque-urracy”.
pages 1–7. ACM, 6 2022. ISBN 9781450392525. doi: 10.1145/3517031.3529631.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research, 16:321–357, 6 2002.
ISSN 1076-9757. doi: 10.1613/jair.953.

Tianqi Chen and Carlos Guestrin. Xgboost. pages 785–794. ACM, 8 2016. ISBN
9781450342322. doi: 10.1145/2939672.2939785. URL https://dl.acm.org/doi/10.

1145/2939672.2939785.

Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr. Time series
feature extraction on basis of scalable hypothesis tests (tsfresh – a python package).
Neurocomputing, 307:72–77, 9 2018. ISSN 09252312. doi: 10.1016/j.neucom.2018.03.067.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting
with categorical features support. 10 2018. URL http://arxiv.org/abs/1810.11363.

Lior Drukker, Harshita Sharma, Richard Droste, Mohammad Alsharid, Pierre Chatelain,
J Alison Noble, and Aris T Papageorghiou. Transforming obstetric ultrasound into data
science using eye tracking, voice recording, transducer motion and ultrasound video.
Scientific Reports, 11:14109, 2021. ISSN 2045-2322. doi: 10.1038/s41598-021-92829-1.
URL https://doi.org/10.1038/s41598-021-92829-1.

S Erridge, H Ashraf, S Purkayastha, A Darzi, and M H Sodergren. Comparison of gaze
behaviour of trainee and experienced surgeons during laparoscopic gastric bypass. British
Journal of Surgery, 105:287–294, 2 2018. ISSN 0007-1323. doi: 10.1002/bjs.10672.

Eric Fichtel, Nathan Lau, Juyeon Park, Sarah Henrickson Parker, Siddarth Ponnala, Shi-
mae Fitzgibbons, and Shawn D. Safford. Eye tracking in surgical education: gaze-based
dynamic area of interest can discriminate adverse events and expertise. Surgical En-
doscopy, 33:2249–2256, 2019. ISSN 14322218. doi: 10.1007/s00464-018-6513-5. URL
http://dx.doi.org/10.1007/s00464-018-6513-5.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29, 10 2001. ISSN 0090-5364. doi: 10.1214/aos/1013203451.

13

https://link.springer.com/10.1007/s10462-020-09896-5
https://link.springer.com/10.1007/s10462-020-09896-5
https://dl.acm.org/doi/10.1145/2939672.2939785
https://dl.acm.org/doi/10.1145/2939672.2939785
http://arxiv.org/abs/1810.11363
https://doi.org/10.1038/s41598-021-92829-1
http://dx.doi.org/10.1007/s00464-018-6513-5


Teng Drukker Papageorghiou Noble

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/

file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

Elizabeth A Krupinski, Joseph Chao, Rainer Hofmann-Wellenhof, Lynne Morrison, and
Clara Curiel-Lewandrowski. Understanding visual search patterns of dermatologists as-
sessing pigmented skin lesions before and after online training. Journal of Digital Imaging,
27:779–785, 12 2014. ISSN 1618-727X. doi: 10.1007/s10278-014-9712-1.

Benjamin Law, M. Stella Atkins, A. E. Kirkpatrick, and Alan J. Lomax. Eye gaze patterns
differentiate novice and experts in a virtual laparoscopic surgery training environment.
pages 41–48. ACM Press, 2004. ISBN 1581138253. doi: 10.1145/968363.968370.

Wei Feng Lee and Jordan Chenkin. Exploring eye-tracking technology as an assessment
tool for point-of-care ultrasound training. AEM Education and Training, 5, 4 2021. ISSN
24725390. doi: 10.1002/aet2.10508.

Henry C. Lin, Izhak Shafran, David Yuh, and Gregory D. Hager. Towards automatic skill
evaluation: Detection and segmentation of robot-assisted surgical motions. Computer
Aided Surgery, 11:220–230, 1 2006. ISSN 1092-9088. doi: 10.3109/10929080600989189.

Maela Le Lous, Fabien Despinoy, Margaux Klein, Elisa Fustec, Vincent Lavoue, and Pierre
Jannin. Impact of physician expertise on probe trajectory during obstetric ultrasound: A
quantitative approach for skill assessment. Simulation in Healthcare, 16, 2021. ISSN 1559-
2332. URL https://journals.lww.com/simulationinhealthcare/Fulltext/2021/

02000/Impact_of_Physician_Expertise_on_Probe_Trajectory.10.aspx.

David Manning, Susan Ethell, Tim Donovan, and Trevor Crawford. How do radiologists do
it? the influence of experience and training on searching for chest nodules. Radiography,
12:134–142, 5 2006. ISSN 1078-8174. doi: 10.1016/j.radi.2005.02.003. URL http://www.

sciencedirect.com/science/article/pii/S1078817405000131.

G. Megali, S. Sinigaglia, O. Tonet, and P. Dario. Modelling and evaluation of surgical per-
formance using hidden markov models. IEEE Transactions on Biomedical Engineering,
53:1911–1919, 10 2006. ISSN 0018-9294. doi: 10.1109/TBME.2006.881784.

Juan Francisco Ortega-Morán, J. Blas Pagador, Vicente Luis del Campo, Juan Carlos
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