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Abstract

Bayesian optimization is a natural candidate for the engineering of antibody ther-
apeutic properties, which is often iterative and expensive. However, finding the
optimal choice of surrogate model for optimization over the highly structured
antibody space is difficult, and may differ depending on the property being opti-
mized. Moreover, to the best of our knowledge, no prior works have attempted
to incorporate structural information into antibody Bayesian optimization. In this
work, we explore different approaches to incorporating structural information into
Bayesian optimization, and compare them to a variety of sequence-only approaches
on two different antibody properties, binding affinity and stability. In addition,
we propose the use of a protein language model-based “soft constraint,” which
helps guide the optimization to promising regions of the space. In doing so, we
explore a wide range of ways in which generative modeling can be incorporated
into Bayesian optimization for antibodies. We find that certain types of structural
information improve data efficiency in early optimization rounds for stability, but
have equivalent peak performance. Moreover, when incorporating the protein
language model soft constraint we find that the data efficiency gap is diminished
for affinity and eliminated for stability, resulting in sequence-only methods that
match the performance of structure-based methods, raising questions about the
necessity of structure in Bayesian optimization for antibodies.

1 Introduction

Therapeutic antibodies are an important class of drugs that are rapidly increasing in popularity for the
treatment of a wide range of challenging diseases [1]. To develop a successful antibody for therapeutic
purposes, it is not only necessary that it binds to its target at the desired strength, but it must also
have satisfactory “developability” properties [2]: for instance, the antibody must be thermostable,
have low hydrophobicity, and express well. Structure-based diffusion generative models have proven
useful in non-iterative antibody engineering [3] and de novo antibody design [4], yet in general yield
antibodies still requiring further refinement to meet the criteria of a valid therapeutic. In order to
satisfy these criteria, it is common to require numerous rounds of iterative optimization using wet
lab experiments. The relatively small datasets involved and the high cost of wet lab experiments
form an ideal setting for a technique such as Bayesian optimization [5], which attempts to optimize
these properties in an uncertainty-guided way. However, successfully applying Bayesian optimization
requires a number of difficult design choices, most notably in the choice of surrogate model and
acquisition function.



A number of works have attempted to elucidate some of these choices, either by proposing new
methods [e.g., 6, 7, 8], or by benchmarking different methods on relevant problems [9]. However, to
the best of our knowledge, none of these works have attempted to incorporate structural informa-
tion, which has been shown to be beneficial for non-Bayesian iterative antibody optimization [10].
Moreover, it is unclear which antibody properties structural information might be relevant for: devel-
opability properties intrinsic to the antibody, or binding properties, a function of the antibody-antigen
(Ab-Ag) interaction. The latter is especially uncertain in the common scenario considered here, where
the binding pose of the antibody to its target is not known, and cannot be reliably predicted [11].

In this work, therefore, we attempt to understand how best to incorporate structural information,
in which situations it is helpful, and how it compares to sequence-only approaches in the low-data
regime that is most amenable to Bayesian optimization. In particular, we aim to address the following
questions:

• How can we incorporate structural information into Bayesian optimization surrogate models?
• For what tasks does structural information aid optimization?
• Does incorporating antibody-specific structural models boost performance over general

protein models?
• Finally, is structural information necessary for good optimization performance?

Additionally, we propose a novel (to the best of our knowledge) means of incorporating sequence-only
prior information through a protein language model “soft constraint,” which we use to help elucidate
answers to these questions. In answering these questions, we thereby explore the incorporation
of a range of deep learning and generative models: structure prediction models [e.g., IgFold 12],
inverse folding models [e.g., ProteinMPNN 13], protein foundation models [e.g., ESM-2 14], and
antibody-specific protein language models [e.g., Sapiens 15].

2 Background

Bayesian optimization [BO 5] is a powerful uncertainty-aware framework for the optimization of
expensive black-box functions. Given potentially noisy observations D = {xi, yi}Ni=1 of the target
function g : X → R, BO constructs an uncertainty-aware surrogate model f from the data. The
surrogate model is then used in tandem with an acquisition function, a : X → R, which is used to
determine which point to query next. The choice of query point is typically achieved by balancing
exploration and exploitation using the surrogate model’s uncertainty. The point and its acquired value
are then appended to D, and the process is repeated until we exhaust our evaluation budget of the
expensive function.

The choice of surrogate model and acquisition function is crucial to the success of BO. The most
common model class for BO is the Gaussian process [GP 16]. Using a GP, we model the data
as yi = f(xi) + ϵi, with ϵi ∼ N

(
0, σ2

)
, where we have placed a GP prior on f , given by

f ∼ GP (µ, k). Note that a GP is defined entirely by its mean function, µ : X → R, and its kernel
function, k : X × X → R.

Perhaps the most popular acquisition function for BO is expected improvement [EI 17], due to its
simple closed-form expression for GPs and its strong empirical performance. However, EI by itself is
inadequate for handling constraints on the search space, which is often a requirement for real-world
use: for instance, for antibody development we need to optimize its properties subject to the constraint
that it expresses well, which has to be learned. In order to address this, [18] derived the expected
contrained improvement acquisition function,

a (x) = PF (x) EI (x) , (1)

where PF (·) is the learned probability of feasibility.

3 Methods

We now turn to describing the methods that we use for our comparison of sequence-only and structure-
based Bayesian optimization of antibodies. We provide further mathematical details in Appendix B,
and provide a comprehensive list of evaluated methods in App. Table 1.
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3.1 Pareto-aware batch Bayesian optimization

In typical wet lab setups, we often wish to acquire data in batches, ranging in size from tens to
hundreds of molecules. To enable these large batches, we use the recent qHSRI approach of [19].
This approach finds the Pareto front of predicted mean and standard deviations, and uses a Sharpe
ratio “portfolio approach” to decide which variants to select for the batch, based off the predicted
mean-standard deviation hypervolume.

As opposed to BO over continuous spaces, where powerful multi-start gradient-based optimizers are
typically used, discrete spaces pose an additional challenge when it comes to acquisition function
optimization. We therefore follow [20] and use a genetic algorithm. However, as we wish to find
the predicted mean-standard deviation Pareto front, we turn to NSGA-II [21], a genetic algorithm
designed specifically for Pareto-aware optimization. We refer the reader to App. B.1 for more details
on the qHSRI acquisition function.

3.2 Sequence-only methods

Inspired by recent work [9, 22], we wish to include a strong sequence-only GP baseline. Following
these works, we implement a Tanimoto kernel GP [23] with a constant mean function, using one-hot
encodings as our baseline method, which we denote OneHot-T. Additionally, we use an encoding
derived from the BLOSUM-62 matrix [24], which was shown to be effective in [9] (BLO-T). Finally,
we use the mean-pooled embeddings derived from the ESM-2 650M model [14] as inputs to a
Matérn-5/2 kernel GP (ESM-M).

As an additional baseline, we also compare against LaMBO [6], a complementary sequence-only
approach that acquires sequences by using the latent space of a learned denoising autoencoder. Note
that LaMBO has its own acquisition function, and is therefore the only method that we consider that
does not use qHSRI acquisition.

3.3 Incorporating structural information

One of the main goals of our study is understanding in which scenarios structural information
is useful in antibody property optimization. To that end, we investigate a number of options for
incorporating such information. The first, and simplest, option is to use predicted structures (we
assume we do not have access to ground truth structures, especially for each newly designed antibody
we wish to consider) as direct inputs to a Matérn-5/2 kernel GP. To facilitate this, we predict the
structure using IgFold [12], align the structure to the predicted parental structure, and extract (and
flatten) the alpha-carbon coordinates as the encoding. We denote this model by IgFold-M. Note that
this incorporates only 3D structural information without the identities of the specific amino acids
comprising the protein and without reference to other known proteins or antibodies. We additionally
consider two approaches that combine sequence and structure information. First, we concatenate
these features to the ESM-2 features we use above as inputs, which we denote by IgFold-ESM-M.
Second, we combine the IgFold-M kernel with the BLO-T kernel as a weighted sum kernel, which
we denote by IgFold-BLO-T.

Finally, we consider the recently-proposed Kermut GP model [25], which attempts to combine
structural information with sequence information. This model uses a parental structure (which we
predict using IgFold), and ProteinMPNN [13] predictions from that structure alongside a sequence-
only kernel to build a sequence-structure kernel for GP modeling. Note that this form of structural
information implicitly compares to other known proteins, as ProteinMPNN was trained on a large
set of known structures to estimate probabilities of specific amino acids given a structural motif.
Additionally, Kermut uses zero-shot protein language model (pLM) predictions (defaulting to ESM-2
predictions) as part of its prior mean function. Note that we make some modifications to Kermut,
which we ablate in App. C. We denote the final improved model by Kermut-T.

3.4 Incorporating antibody-specific information

Due to the particularities of antibodies (for instance, their combination of highly conserved frame-
works with hyper-variable complementarity determining regions), we consider incorporating antibody-
specific information into the Kermut model. In particular, we consider replacing the ProteinMPNN
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predictions with those from AbMPNN [26], with the resulting method denoted as AbMPNN-Kermut-
T. We explore various additional modifications in App. C.1.

3.5 Incorporating sequence prior information as a soft constraint

One major issue with many of the above pure-GP methods is that they do not incorporate prior
information about the likelihood of an antibody sequence. Given the exponential size of antibody
space, it would be wasteful to explore unlikely mutations. Moreover, without any information on the
likelihood of certain mutations, BO will likely explore highly “unnatural” mutations that would cause
the protein to fail to express or fold, leading to an inability to obtain meaningful property data.1 To
address this, and inspired by work on constrained BO from Eq. (1), we propose incorporating pLM
predicted probabilities as a “soft constraint” on the acquisition function:

apLM (x) = ppLM (x) a (x) , (2)

where ppLM (·) is the pLM’s (pseudo)-likelihood of a sequence. In practice, we use the pseudo-
likelihood from the Sapiens pLM [15] as a lightweight antibody-specific pLM for this purpose.

4 Experiments

We perform our experimental evaluation in silico, focusing on optimizing binding strength and
stability using in-house oracles that are trained using data from a real-world optimization campaign,
which we describe further in App. B.3. More specifically, we focus on optimizing an antibody’s
predicted dissociation constant (KD) and melting temperature (Tm), starting with 50 examples taken
from the early stages of the campaign. We perform nine acquisitions, aiming to acquire 80 molecules
each iteration. However, in order to ensure the robustness of the BO algorithm, and to increase the
fidelity of our in silico evaluation to the real world, we randomly drop 30 molecules each iteration:
this could be representative of expression failures or other measurement failures that our oracles
might not capture. Finally, we run each experiment three times, and plot the mean performance with
standard error bars. Our experiment therefore hopefully captures meaningful differences between
affinity and developability optimization, while remaining faithful to the low-data regime we wish to
understand better.

4.1 Sequence-only methods

We first investigate the performance of sequence-only methods, without the use of any soft constraints.
We compare the OneHot-T, BLO-T, and ESM-M models, along with LaMBO, in Fig. 1. We see
that for affinity, the Tanimoto kernel models outperform the other methods: note that in the case of
ESM-M, this is consistent with the result found in [9]. For Tm, we see that while ESM-M has strong
initial performance, the Tanimoto kernel models catch up and result in largely equivalent final values.
We note that LaMBO seemingly struggles in both settings, possibly due to the small initial dataset
combined with the need to train a denoising autoencoder from scratch.

4.2 Structure-based methods

We now consider how incorporating structural information affects the optimization of these properties.
We compare the Kermut-T, IgFold-M, IgFold-ESM-M, and IgFold-BLO-T models in Fig. 2. For
reference, we also include the overall best sequence-only model, BLO-T. We first observe that none
of these methods are able to outperform the sequence-only BLO-T approach for affinity, although
IgFold-M performs well in the initial iterations. We hypothesize that this is due to the ability of
IgFold-M to more accurately preserve the starting structure, which we explore further in App. E.
We also see that IgFold-BLO-T, which combines the IgFold-M structure kernel with the BLO-T
sequence kernel, results in a middle ground with decent performance in initial iterations and a peak
performance similar to BLO-T.

Finally, Kermut-T far outperforms the other methods, including the sequence-only BLO-T model,
when it comes to thermostability. By contrast, its performance on affinity is the worst of the methods

1Indeed, we have observed in our in-house experiments that pure-GP BO does explore mutations that cause
e.g., expression failures.
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considered here. This points to a fundamental difference in the both features necessary for affinity
versus thermostability optimization and the approaches for incorporating structural information.
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Figure 1: Results on binding affinity KD and stability Tm for sequence-only approaches. We plot
the log10-fold improvement in KD over the parental sequence for affinity, and the Tm in ◦C for
thermostability.
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(b) Optimizing for Tm

Figure 2: Results on binding affinity KD and Tm for approaches that incorporate structural informa-
tion. We also include sequence-only BLO-T for reference.

4.2.1 Does incorporating antibody-specific information help?

In Fig. 2 we also include comparisons to AbMPNN-Kermut-T, which replaces the ProteinMPNN
predictions typically used with Kermut with antibody-specific AbMPNN predictions. We observe
that while there is little change in the performance on thermostability, its performance on affinity
is boosted by the change, particularly in its earlier iterations. These results point to the utility of
modality-specific changes. We consider additional modifications to Kermut in App. C.1.

4.3 Do soft constraints help?

We now investigate the effect of incorporating the pLM-based soft constraint of Eq. 1. For clarity,
we only show the best-performing method for each setting (sequence-only, structure-based, with
and without the pLM soft constraint) in Fig. 3; for full results we refer the reader to App. D. For
each method, we use the prefix “C-” to denote the constrained version. We see very little change in
affinity optimization from introducing the soft constraint (indeed, the full results show that it can
occasionally be detrimental). However, we see that the sequence-based C-OneHot-T is now able
to match the performance of the structure-based methods in optimizing thermostability. This result
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Figure 3: Results on binding affinity KD and Tm with the inclusion of a pLM-based soft constraint
for the best-performing sequence-only and structure-based methods in each setting.

dilutes the advantage these structure-based BO methods have to offer over sequence-based methods
in this low-data setting, and eliminates it for thermostability.

5 Discussion & future work

In this work, we have investigated the utility of structure-based BO methods versus sequence-only
BO methods in the context of both antibody-intrinsic properties such as developability and antibody-
target specific properties such as binding affinity. In doing so, we have explored various means
of incorporating sequence and structure deep learning and generative modeling approaches into
Bayesian optimization. This led us to assess the impact of different sequence representations, as well
as different forms of structural information: “purely structural,” working from 3D coordinates alone
(e.g., IgFold-M), and “statistical,” estimating likelihoods of structural motifs based on a training set
of known proteins (e.g., the ProteinMPNN component of Kermut).

We see that for intrinsic properties such as stability, it is important to have a prior which allows
comparison to known proteins, but that this can be either purely sequence based (C-OneHot-T) or
of the “statistical structural” form (Kermut-T). In this case it does not appear to matter whether this
information is antibody-specific.

In contrast, for antibody-target pair specific properties, i.e., binding affinity, peak asymptotic perfor-
mance requires only sequence information, with some benefit from a domain-specific representation
(BLO-T is beneficial, though we do not see any benefits from the sequence representations derived
from ESM). Data efficiency in early iterations is aided by “purely structural” information (IgFold-M),
which serves primarily to minimize perturbations to the structure of the starting molecule (App.
E). Combining the domain-specific sequence representation with this purely structural information
provides a compromise in data efficiency and asymptotic performance (IgFold-BLO-T).

However, while some methods do well on both affinity and thermostability, no single method is
superior on both, indicating that different features are useful in each case and therefore that an
inherent tradeoff exists. One limitation of our work is that the structural information did not include
the target structure in the form of an antibody-antigen complex, as this was not available (as is
often the case). Addressing this in future work might enable structure-based methods to improve
their affinity optimization by encouraging mutations that are more likely to perform well for affinity.
Beyond this, the means of incorporating structural information that we considered here were fairly
simple: an exciting avenue for future work would be to investigate more sophisticated methods of
doing so. Finally, in future work we plan to validate these methods in vitro, and to evaluate whether
these observations carry over to other developability properties.
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learning for affinity prediction of antibodies. arXiv preprint arXiv:2406.07263, 2024.

[10] Aniruddh Raghu, Sebastian W Ober, Maxwell Kazman, and Hunter Elliott. Guided sequence-
structure generative modeling for iterative antibody optimization. In ICLR 2025 Workshop on
Generative and Experimental Perspectives for Biomolecular Design, 2025.

[11] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, 630(8016):493–500, 2024.

[12] Jeffrey A Ruffolo, Lee-Shin Chu, Sai Pooja Mahajan, and Jeffrey J Gray. Fast, accurate
antibody structure prediction from deep learning on massive set of natural antibodies. Nature
communications, 14(1):2389, 2023.

[13] Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F
Milles, Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep
learning–based protein sequence design using ProteinMPNN. Science, 378(6615):49–56, 2022.

[14] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language
models of protein sequences at the scale of evolution enable accurate structure prediction.
bioRxiv, 2022.

[15] David Prihoda, Jad Maamary, Andrew Waight, Veronica Juan, Laurence Fayadat-Dilman,
Daniel Svozil, and Danny A. Bitton. BioPhi: A platform for antibody design, humanization,
and humanness evaluation based on natural antibody repertoires and deep learning. mAbs,
14(1):2020203, 2022.

7



[16] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on
machine learning, pages 63–71. Springer, 2003.

[17] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of Bayesian methods
for seeking the extremum. Towards Global Optimization, 1978.

[18] Jacob Gardner, Matt Kusner, Xu Zhixiang, Kilian Weinberger, and John Cunningham. Bayesian
optimization with inequality constraints. In International Conference on Machine Learning
(ICML), 2014.

[19] Mickael Binois, Nicholson Collier, and Jonathan Ozik. A portfolio approach to massively
parallel Bayesian optimization. Journal of Artificial Intelligence Research, 2025.

[20] Henry Moss, David Leslie, Daniel Beck, Javier Gonzalez, and Paul Rayson. Boss: Bayesian
optimization over string spaces. Advances in neural information processing systems, 2020.

[21] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[22] Ryan-Rhys Griffiths, Leo Klarner, Henry Moss, Aditya Ravuri, Sang Truong, Yuanqi Du,
Samuel Stanton, Gary Tom, Bojana Rankovic, Arian Jamasb, et al. GAUCHE: a library for
Gaussian processes in chemistry. Advances in Neural Information Processing Systems, 36,
2024.

[23] Austin Tripp, Sergio Bacallado, Sukriti Singh, and José Miguel Hernández-Lobato. Tanimoto
random features for scalable molecular machine learning. In Advances in Neural Information
Processing Systems, 2023.

[24] Steven Henikoff and Jorja G Henikoff. Amino acid substitution matrices from protein blocks.
Proceedings of the National Academy of Sciences, 89(22):10915–10919, 1992.

[25] Peter Mørch Groth, Mads Herbert Kerrn, Lars Olsen, Jesper Salomon, and Wouter Boomsma.
Kermut: Composite kernel regression for protein variant effects. In Advances in Neural
Information Processing Systems (NeurIPS), 2024.

[26] Frédéric A Dreyer, Daniel Cutting, Constantin Schneider, Henry Kenlay, and Charlotte M
Deane. Inverse folding for antibody sequence design using deep learning. arXiv preprint
arXiv:2310.19513, 2023.

[27] Nate Gruver, Samuel Stanton, Polina Kirichenko, Marc Finzi, Phillip Maffettone, Vivek Myers,
Emily Delaney, Peyton Greenside, and Andrew Gordon Wilson. Effective surrogate models
for protein design with bayesian optimization. In ICML Workshop on Computational Biology,
2021.

[28] Carolin Benjamins, Shikha Surana, Oliver Bent, Marius Lindauer, and Paul Duckworth.
Bayesian optimisation for protein sequence design: Gaussian processes with zero-shot protein
language model prior mean. In Machine Learning in Structural Biology Workshop at NeurIPS,
volume 2024, 2024.

[29] Henry Moss, Sebastian W Ober, and Tom Diethe. Return of the latent space COWBOYS:
Re-thinking the use of VAEs for Bayesian optimisation of structured spaces. In International
Conference on Machine Learning (ICML), 2025.

[30] Taeyoung Yun, Kiyoung Om, Jaewoo Lee, Sujin Yun, and Jinkyoo Park. Posterior inference with
diffusion models for high-dimensional black-box optimization. In International Conference on
Machine Learning (ICML), 2025.

[31] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Gaussian
process optimization in the bandit setting: No regret and experimental design. In International
Conference on Machine Learning (ICML), 2010.

[32] Kevin K Yang, Nicolo Fusi, and Alex X Lu. Convolutions are competitive with transformers for
protein sequence pretraining. Cell Systems, 15(3):286–294, 2024.

[33] Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson.
Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. Advances
in neural information processing systems, 31, 2018.

[34] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, (ICLR), 2015.

[35] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimiza-
tion. Mathematical programming, 45(1):503–528, 1989.

8



A Related work

BO for proteins has received an increasing amount of attention in recent years. [20] developed kernels
for protein BO and proposed using genetic algorithms for acquisition function optimization. [27]
compare different surrogate models for protein BO. [6, 7] propose LaMBO and LaMBO-2, which
attempt to perform multi-objective BO by navigating the latent spaces of generative models, with
the latter being evaluated on antibody yield and affinity properties. [28] propose incorporating pLM
zero-shot predictions into the prior mean of a GP model for protein BO. Similar to our work, [9]
evaluate different surrogate models for BO for antibody affinity; however, their evaluation is limited
to sequence-only models, affinity, and single-variant acquisitions, limiting their wider applicability.
More recently, [8] perform BO using a pLM trained on antibody families. Finally, our pLM soft
constraint is similar in formulation to recent works combining generative modeling and Bayesian
optimization [29, 30]; however, these works focus on modifying generative modeling sampling to
perform BO instead of modifying a standard acquisition function.

B Additional methods details

In this section, we give mathematical descriptions of certain methods, where we believe it helpful.

B.1 Portfolio-based acquisition

We briefly describe the qHSRI acquisition function of [19] that we use for batch acquisition. Note that
we adjust the equations to be suitable for objective function maximization, which better suits our task.
Suppose we have a set of l potential candidates xi for the batch, each with predicted mean-standard
deviation ai =

(
ai1, a

i
2

)
= (m (xi) , s (xi)).2 Then, we define

ri = pii,

Qij = pij − piipjj ,

pij =

 ∏
1≤t≤2

(
min

(
ait, a

j
t

)
−Rt

) /

 ∏
1≤t≤2

(f∗
t −Rt)

 ,

where f∗
t is the maximum observed value for the dimension in the set of candidates, and R is a lower

reference point. Then, the “portfolio allocation” is given by z∗ ∈ [0, 1]
l where

z∗ = argmax
z∈[0,1]l

h (z) =
r⊤z√
z⊤Qz

s.t.
l∑

i=1

zi = 1.

The final batch is given by selecting the candidates with the q highest zi values. This acquisition
function favors candidates on the predicted mean-standard deviation Pareto front. Intuitively, this
approach can be seen as a method for selecting different values of the β parameter in the upper
confidence bound acquisition function [31]:

aUCB (x) = m (x) + βσ (x) ,

where m (·) and σ (·) are the posterior mean and standard deviation, and forming a batch from
optimizing the resulting acquisition functions separately.

In order to modify this with our pLM soft constraint, we multiply the resulting ri values by the pLM
likelihoods. Note that we modify the genetic algorithm to optimize for pLM probabilities alongside
the predicted mean and standard deviations.

B.2 Kermut

We briefly describe the salient features of the Kermut model [25] for our analysis. The Kermut model
is a GP model with a particular choice of kernel and mean function. The kernel is made up of a
structure component and a sequence component in a weighted sum:

k (x,x′) = πkstruct (x,x
′) + (1− π)kseq (x,x

′) .

2Recall that we find the candidates by running a genetic algorithm to find the (approximate) predicted
mean-standard deviation Pareto front.
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The sequence kernel is chosen to be a squared exponential kernel on the mean-pooled embeddings
from ESM-2. The structure kernel involves three parts, summed over the effect from each residue
that differs from the parental sequence:

kstruct (x,x
′) =

∑
i∈M

∑
j∈M ′

k1struct
(
xi,x

′
j

)
,

where M and M ′ are the sets of mutated residues (with respect to the parental). k1struct itself is made
up of three separate kernels:

k1struct (x,x
′) = λkH (x,x′) kp (x,x

′) kd (x,x
′) .

Here, λ > 0 is a scalar, kH represents a Hellinger distance-based kernel on probabilities from an
inverse folding model, kp represents an exponential kernel on the inverse folding probabilities, and
kd is a kernel acting on the physical distance between residues.

The final component of Kermut is the prior mean function, which is chosen to be
m(x) = αf0 (x) + β.

In this case, f0 (·) is chosen to be an ESM-2 zero-shot log-likelihood ratio between variant and
wild-type sequences:

f0 (x) =
∑
i∈M

log p (xi)− log p
(
xWT
i

)
.

Note that for multiple mutations, the sum of each individual mutation is taken independently, instead
of re-calculating the (pseudo-)log likelihood based on all mutations.

B.3 Affinity and thermostability oracles

The oracles we used were derived from ensembles of 10 CARP/ByteNet regressors [32]. The affinity
ensemble was pretrained on approximately 285,000 sequences from phage display, processed using
Next Generation Sequencing (NGS), and fine-tuned on 6,881 sequences with KD data obtained from
Bio-Layer Interferometry (BLI). Our thermostability ensemble was pretrained on approximately
537,000 sequences from NGS phage display, and 9556 Tm datapoints obtained from NanoDSF.
The affinity ensemble achieved a test cross-validated Spearman correlation of 0.95, whereas the
thermostability ensemble achieved a correlation of 0.72. Note that for our evaluation, we only use
the first model of the ensemble for computational speed. Finally, we use 159 variants from the early
stages of the campaign as the starting set for subsampling for our BO runs.

C An ablation study on Kermut

Here, we briefly compare different versions of Kermut, motivating the modifications that we take
forward. The first set of modifications, which we denote as Kermut-M, involves a few minor changes,
but attempts to keep the overall model largely unchanged. We first modify the Kermut code to ensure
that everything is computed in double precision. We also disable GPyTorch’s fast_computations
settings [33] to ensure exact, Cholesky-based GP inference. We additionally replace the Adam-based
training [34] with BoTorch’s fit_gpytorch_mll method, which uses L-BFGS [35]. Finally, we
notice that the parameterization of the final Kermut kernel is effectively

k (x,x′) = σ2
fπkstruct (x,x

′) + (1− π)kseq (x,x
′) ,

where σ2
f is the GP signal variance, kstruct (·, ·′) is the structure kernel, kseq (·, ·′) is the sequence

kernel, and π ∈ (0, 1) is a weighting. We hypothesize that a better parameterization is instead

k (x,x′) = σ2
f (πkstruct (x,x

′) + (1− π)kseq (x,x
′)) ,

and implement this instead.

Finally, given the relative performance of ESM-based embeddings and one-hot Tanimoto kernels,
and given the much greater computational cost of the ESM embeddings, we investigate replacing the
default ESM embedding RBF sequence kernel with the one-hot Tanimoto kernel, leading to Kermut-T.
Note that we otherwise retain the modifications used in Kermut-M.

We plot the results of these experiments on our in silico evaluation in Fig. 4, showing that Kermut-M
and Kermut-T match if not outperform the baseline Kermut, justifying our modifications.
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Figure 4: Results on binding affinity KD and Tm for different modifications of Kermut.
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Figure 5: Results on binding affinity KD and Tm for antibody-specific modifications of Kermut.

C.1 Further antibody-specific improvements of Kermut

We now try to ablate different modifications that we could make to Kermut, in hopes of improving its
performance. We focus first on replacing the protein-related deep models involved in Kermut with
antibody-specific versions. To this end, we individually ablate:

• replacing ProteinMPNN with AbMPNN (AbMPNN-Kermut-T);

• replacing ESM-2 in the prior mean with a pLM trained on SAbDab (AbSeq-Kermut-T);

• replacing the prior mean with a simple learned constant (Const-Kermut-T); and,

• given the success of the BLOSUM-based encoding in the sequence-based models, replacing
the one hot encoding in the Tanimoto sequence kernel module with the BLOSUM-based
encoding (Kermut-BLO-T).

Finally, we attempt combining all the antibody-specific models (AbMPNN and SAbDab-trained
MLM) and the BLOSUM encoding into a final variation, AbBoth-Kermut-BLO-T.

We show these results in Fig. 5. These results show that overall, the antibody-specific modifications
are helpful. However, Kermut-B seems to perform the best out of all methods, as the combination of
all the antibody-based modifications do not seem to be beneficial together. Finally, we observe that
the use of some form of pLM in the prior mean seems beneficial, particularly for Tm.
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Figure 6: Results on binding affinity KD and Tm with the inclusion of a pLM-based soft constraint.
Note that we separate out sequence-only (top) and structure-based (bottom) methods for clarity.

D Full soft constraint results

We plot the full results for the soft constraint experiment, separated by sequence-only and structure-
based methods, in Fig. 6.

E Structural exploration results

In Figure 7 we plot the (predicted) RMSDs between the parental and the proposals over the course
of BO iterations. We see that the sequence-based approach diverges further from the parental in
structure-space than the structure-based approach. This indicates that the structure-based method is
better able to hone in on the structural conformation that is most promising for the property at hand.
In particular, for affinity, we do not expect the conformation to change drastically from the parental
antibody’s conformation when doing iterative optimization.

F A summary of our methods

In Table 1 we summarize the methods evaluated in our work, describing how each of them utilizes
sequence and/or structure information.
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Figure 7: Measuring structural exploration from parental when optimizing (a) binding affinity KD

and (b) Tm. RMSDs are computed after aligning the IgFold-predicted structures for both the parent
and proposed sequences. We compare RMSDs for BLO-T, representing sequence-only optimization,
and IgFold-M, representing structure-only optimization.

Method Name Prior Mean Seq Rep Seq Kernel Struct Seq-Struct Combo Constraint
OneHot-T const One-hot Tanimoto None NA None
C-OneHot-T const One-hot Tanimoto None NA Sapiens pl
BLO-T const BLOSUM Tanimoto None NA None
C-BLO-T const BLOSUM Tanimoto None NA Sapiens pl
ESM-M const ESM2 emb Matérn-5/2 None NA None
C-ESM-M const ESM2 emb Matérn-5/2 None NA Sapiens pl
IgFold-M const None NA IgFold coords None None
C-IgFold-M const None NA IgFold coords None Sapiens pl
IgFold-ESM-M const ESM2 emb None IgFold coords Concat, Matérn-5/2 None
C-IgFold-ESM-M const ESM2 emb None IgFold coords Concat, Matérn-5/2 Sapiens pl
IgFold-BLO-T const BLOSUM Tanimoto IgFold coords Add kernels None
C-IgFold-BLO-T const BLOSUM Tanimoto IgFold coords Add kernels Sapiens pl
Kermut-T ESM2 pll One-hot Tanimoto Composite Add kernels None
C-Kermut-T ESM2 pll One-hot Tanimoto Composite Add kernels Sapiens pl
AbMPNN-Kermut-T ESM2 pll One-hot Tanimoto Composite (Ab) Add kernels None
C-AbMPNN-Kermut-T ESM2 pll One-hot Tanimoto Composite (Ab) Add kernels Sapiens pl
Const-Kermut-T const One-hot Tanimoto Composite Add kernels None
AbSeq-Kermut-T SAbDab pll One-hot Tanimoto Composite Add kernels None
Kermut-BLO-T ESM2 pll BLOSUM Tanimoto Composite Add kernels None
AbBoth-Kermut-BLO-T SAbDab pll BLOSUM Tanimoto Composite (Ab) Add kernels None

Table 1: Summary of methods evaluated in this work.
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