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Rate-Loss Mitigation of SC-LDPC Codes Without
Performance Degradation
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Abstract— In research on spatially-coupled low-density
parity-check (SC-LDPC) codes, rate-loss of SC-LDPC codes is
one of the main issues to be addressed. One way to mitigate the
rate-loss is to attach additional variable nodes with an irregular
degree distribution, where the degree distribution is optimized
with a constraint that the belief propagation (BP) threshold
should not be degraded by attaching variable nodes. However,
it is observed that the degree distribution obtained with the
BP threshold constraint induces degradation of the finite-length
performance. In order to address the problem, we propose new
optimization methods to attach additional variable nodes while
minimizing performance degradation. The proposed optimization
methods are based on several design techniques including the
scaling law, local threshold, expected graph evolution, differ-
ential evolution algorithms, the use of a protograph structure,
and puncturing codewords. Using the optimized structure for
additional variable nodes, the rate-loss of SC-LDPC codes can
be reduced by more than 53% without sacrificing the finite-length
performance. It is also shown that the rate-loss mitigation can
be translated into a performance improvement if the proposed
and the conventional SC-LDPC codes are compared at the same
code rate.

Index Terms— Code rate, finite-length performance, low-
density parity-check (LDPC) codes, rate-loss, spatially-coupled
low-density parity-check (SC-LDPC) codes.

I. INTRODUCTION

SPATIALLY-COUPLED low-density parity-check
(SC-LDPC) codes achieve the channel capacity over

general binary memoryless symmetric channels under
iterative belief propagation (BP) decoding [1]. Compared to
uncoupled block LDPC codes, the outstanding performance of
SC-LDPC codes comes from their ability to realize wave-like
decoding [2], which is triggered by boundary low-degree
check nodes [3]. However, SC-LDPC codes suffer from
a rate-loss problem in which the code rate of SC-LDPC
codes is reduced from that of corresponding uncoupled
block LDPC codes. Thus, many works have investigated the
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rate-loss problem of SC-LDPC codes. First, we can reduce
the rate-loss to the desired level simply by adjusting code
parameters such as the chain length L of SC-LDPC codes.
Thus, in general, a large value of L is selected when designing
capacity approaching SC-LDPC codes [3], [4] and decoding
is performed using the windowed decoder [5], [6] to address
the long blocklength. Increasing the chain length, however,
causes the block error rate (BLER) to scale linearly as L
increases [7]. Second, it is possible to construct an SC-LDPC
code with a target rate by coupling block LDPC codes
with a slightly higher rate. However, the SC-LDPC code
cannot achieve the desired outstanding decoding performance
due to the inferior performance of constituting block
codes.

Another way to mitigate the rate-loss is modifying the
code structure of SC-LDPC codes [8]–[12]. In [8], a mod-
ified SC-LDPC code structure is proposed to reduce the
rate-loss but this code structure is not suitable for a slid-
ing window decoder [5], which is a natural way to decode
SC-LDPC codes. In [9]–[12], rate-loss is reduced by attaching
additional variable nodes with regular [9], [10] or irregular
degree distributions [11], [12]. By attaching extra variable
nodes to the boundary check nodes, the code dimension
is increased and accordingly the rate-loss can be kept to
small even with a moderate value of L. In one study [11],
they show that the rate-loss can be substantially mitigated
by optimizing the degree distribution of additional variable
nodes.

However, attaching additional variable nodes leads to a
degradation in decoding performance. In [11], they design
the degree distribution of additional variable nodes under
the BP threshold constraint that the BP threshold should
not change after attaching additional variable nodes. Then,
the asymptotic decoding performance remains unchanged and
it can be expected that the decoding performance will not
be degraded. However, we observe that the SC-LDPC codes
optimized in [11] show the performance degradation in terms
of block error rate (BLER) of finite-length codes despite the
fact that their asymptotic performances are equivalent in terms
of the BP threshold.

With this problem in mind, we propose new optimization
methods to attach additional variable nodes without sacrific-
ing the finite-length performance. First, we separately define
local decoding measures for additional variable nodes such
as a local BLER and local threshold. Then, we derive the
required local BLER to maintain the finite-length performance
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from the scaling law [7] of SC-LDPC codes. Finally, we obtain
the degree distribution of additional variable nodes achiev-
ing the required local BLER by adjusting the local thresh-
old of additional variable nodes with differential evolution
algorithms [13].

In addition, a design constraint is proposed using the
expected graph evolution [7], [14], [15], which is directly
related to the finite-length performance. According to the
analysis of SC-LDPC codes based on the expected graph evo-
lution, decoding failures rarely occur in the initial phase of the
decoding process [7]. However, if too many additional variable
nodes are added at the boundary, a local minimum of the num-
ber of degree-1 check nodes occurs in the initial phase of the
decoding process, which implies the finite-length performance
degradation. Thus, we newly define the local minimum con-
straint that the local minimum of the number of degree-1 check
nodes should not exist in the initial phase. With the local mini-
mum constraint, we reduce the rate-loss further while attaining
the required local BLER. Finally, the rate-loss is mitigated
even further by employing a protograph structure for additional
variable nodes with the precoding [16] and puncturing [17]
techniques.

In summary, a variety of well-known design techniques is
used to solve the problem of the finite-length performance
degradation. Since the design techniques were derived for
the block LDPC or conventional SC-LDPC codes, it is not
a trivial problem to directly apply the design techniques
for SC-LDPC codes with additional variable nodes is not
a trivial problem. In other words, the contribution of this
paper is to modify and combine well-known techniques to
design good finite-length SC-LDPC codes with reduced rate-
loss. From the experimental results, the proposed SC-LDPC
codes with the optimized structure of additional variable
nodes show the finite-length performance nearly identical to
those of conventional SC-LDPC codes while the rate-loss is
significantly mitigated. This makes it possible to construct
capacity approaching SC-LDPC codes even with a moderate L
value. In addition, we show that the gain in the code rate can be
translated into a performance improvement when a comparison
is made under the same code rate.

The remainder of the paper is organized as follows.
Section II introduces the SC-LDPC code structure and its
density evolution equations. In Section III, new optimization
methods for the degree distribution of additional variable
nodes are proposed and the finite-length performance of the
proposed SC-LDPC codes is evaluated. In Section IV, the per-
formances of the proposed SC-LDPC codes and conventional
SC-LDPC codes are compared at the same code rate. Finally,
conclusions are given in Section V.

II. CODE STRUCTURE AND DENSITY

EVOLUTION EQUATIONS

A. (l, r, L) SC-LDPC Ensemble

The conventional SC-LDPC ensemble in [3] with vari-
able and check node degrees (3, 6) and chain length L is

represented by the following base matrix

2L︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1

1 1
. . .

1 1
. . . 1 1
. . . 1 1 1 1

1 1 1 1
1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

whose size is (L + 2) × 2L. We mainly consider the degree
pair (l, r) = (3, 6) as a running example in this paper. Each
column and row of the base matrix correspond to a variable
node and a check node in the protograph, respectively, and
2L variable nodes are grouped into L positions, where each
position consists of two variable nodes. A parity check matrix
of a code instance is obtained by lifting the base matrix [18]
with lifting factor z. Let M denote the number of variable
nodes at each position, i.e., M = 2z.

As illustrated in [3], the code structure of SC-LDPC codes
that the degrees of the first and last two check nodes are lower
than 6 results in the following properties. First, it induces
rate-loss from the design rate of uncoupled LDPC codes.
Second, boundary check nodes with low degrees trigger the
wave-like propagation of reliable information, where two
decoding waves propagate from both ends toward the inside
on the Tanner graph. However, two decoding waves are
unnecessary for the windowed decoder which utilizes only one
decoding wave. Thus, a modified SC-LDPC ensemble, denoted
by (l, r, L) ensemble, is introduced in [11] by folding the
last check node. For example, the base matrix of the (3, 6, L)
ensemble is represented as

2L︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1

1 1
. . .

1 1
. . . 1 1
. . . 1 1 1 1

1 1 2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

whose size is (L + 1) × 2L. By folding the last check
node, the decoding wave cannot be triggered from the right
boundary and only one decoding wave is propagated from the
left boundary in the graph. However, the rate-loss is halved
compared to that of the conventional SC-LDPC ensemble for a
given L. Considering the number of variable and check nodes
in (1), the design rate of the (3, 6, L) SC-LDPC ensemble is
given as

R(3,6,L) = 1 − (L + 1)z
2Lz

=
1
2
− 1

2L
(2)

where the first term is the design rate of the uncoupled
(3, 6) regular LDPC ensemble and the second term 1/(2L)
corresponds to the rate-loss, denoted by ΔR(3,6,L). Note that
the design rate and asymptotic properties under BP decoding
of the (3, 6, L) SC-LDPC ensemble represented by (1) are
equivalent to those of the conventional SC-LDPC ensemble
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Fig. 1. Tanner graph of the (3, 6, L, λ(x)) ensemble with z = 2 and λ(x) =
1/3x3+2/3x7. The hatched circles corresponds to additional variable nodes.

with 2L due to the symmetric structure of the conventional
SC-LDPC ensemble.

B. (l, r, L, λ(x)) SC-LDPC Ensemble

To mitigate the rate-loss of the (l, r, L) SC-LDPC ensemble,
the (l, r, L, λ(x)) SC-LDPC ensemble was proposed by attach-
ing additional variable nodes with degree distribution λ(x) to
the (l, r, L) ensemble [11]. We refer to the part of the (l, r, L)
ensemble in the (l, r, L, λ(x)) ensemble as the main region,
that is, the (l, r, L, λ(x)) ensemble consists of the main region
and attached additional variable nodes. For the (3, 6, L, λ(x))
ensemble, additional variable nodes are attached to the first 2z
check nodes in a lifted Tanner graph with lifting factor z such
that the degree of the 2z check nodes becomes 6. For example,
Fig. 1 shows the Tanner graph of (3, 6, L, λ(x)) ensemble
with z = 2 and λ(x) = 1/3x3 + 2/3x7. Let MA denote
the number of additional variable nodes in the lifted Tanner
graph and lavg denote the average degree of additional variable
nodes, i.e., lavg = 1/

∫ 1

0 λ(x)dx. The number of sockets of
additional variable nodes is expressed as MAlavg. Since all
sockets of additional variable nodes are randomly connected
to the first 2z check nodes, the following equation is satisfied
as

MAlavg = 4z + 2z.

Then, the design rate of the (3, 6, L, λ(x)) ensemble is given
as

R(3,6,L,λ(x)) = 1 − (L + 1)z
2Lz + MA

=
1
2
− 1

2
1 − 3/lavg

L + 3/lavg
(3)

where the rate-loss ΔR(3,6,L,λ(x)) is (1 − 3/lavg)/(2L +
6/lavg), which is lower than ΔR(3,6,L) for lavg > 0. The
rate-loss ΔR(3,6,L,λ(x)) is reduced as MA increases, or equiv-
alently, as lavg decreases. Let γA be the mitigation ratio of
ensemble A defined by

γA �
ΔR(3,6,L) − ΔRA

ΔR(3,6,L)
,

which will be used as a comparison measure of the rate-loss
reduction.

C. DE Equations of the (3,6,L, λ(x)) Ensemble

In this paper, the channel is assumed to be the binary erasure
channel (BEC) with erasure probability �. Consider the base
matrix B represented as

B =

2L+1︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 1 1

2 1 1
. . .

1 1
. . . 1 1
. . . 1 1 1 1

1 1 2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

which is a concatenation of the base matrix in (1) and
[4 2 0 . . . 0]T. In terms of the protograph representation,
the base matrix B corresponds to the (3, 6, L, x5) ensemble
with z additional variable nodes of degree 6. However, the base
matrix B is used not only to represent a specific ensemble,
but also to derive the DE equations of the (3, 6, L, λ(x))
ensemble with general λ(x) in a simple form. Note that, when
constructing a code instance from the (3, 6, L, λ(x)) ensemble,
we do not lift the base matrix B but follow the construction
method described in Section II-B.

Let Ni denote the set of column indices of non-zero ele-
ments in the ith row in B and Mj denote the set of row indices
of non-zero elements in the jth column in B. Also, let y

(�)
i,j

denote the average erasure probability of messages sent from
the ith check node to the jth variable node in B at iteration
�. Likewise, let x

(�)
i,j denote the average erasure probability of

messages sent from the jth variable node to the ith check node
in B at iteration � and x

(�)
j denote the erasure probability of the

jth variable node in B at iteration �. Note that the first variable
node in B corresponds to additional variable nodes. Set the
initial conditions as x

(0)
i,j = � if Bi,j �= 0. Then, the evolution

of y
(�)
i,j , x

(�)
i,j , and x

(�)
j can be expressed as

y
(�)
i,j = 1 −

∏
j′∈Ni

(
1 − x

(�−1)
i,j′

)Bi,j′−δj,j′

x
(�)
i,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�λ

⎛
⎝∑

i′

Bi′,jy
(�)
i′,j∑

i′′
Bi′′,j

⎞
⎠ , for (i, j)=(1, 1) and (2, 1)

�
∏

i′∈Mj

(
y
(�)
i′,j

)Bi′,j−δi,i′
, otherwise

x
(�)
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�L

⎛
⎝∑

i′

Bi′,jy
(�)
i′,j∑

i′′
Bi′′,j

⎞
⎠ , for j = 1

�
∏

i′∈Mj

(
y
(�)
i′,j

)Bi′,j

, otherwise

(5)

where δ represented the Kronecker delta function and L(x) =∫ x

0 λ(z) dz/
∫ 1

0 λ(z) dz [19]. The BP threshold �(3,6,L,λ(x)) is

defined as the maximum � for which x
(�)
j goes to zero for all

j as � increases. Likewise, the BP threshold �(3,6,L) of the
(3, 6, L) ensemble is obtained in the same way by setting the
erasure probability of messages from additional variable nodes
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equal to zero, i.e., x
(�)
i,j = 0 for j = 1. Note that �(3,6,L) for

L ≥ 11 converges to �SC � 0.4881 [2], [3].1

III. OPTIMIZATION OF DEGREE DISTRIBUTION λ(x)
A. Optimization of Degree Distribution
λ(x) in Previous Work

The design objective of the (3, 6, L, λ(x)) SC-LDPC ensem-
ble is to optimize degree distribution λ(x) that maximize
γ(3,6,L,λ(x)), or equivalently, minimize lavg while preserving
the performance of the (3, 6, L) SC-LDPC ensemble. The
approach proposed in [11] is to minimize lavg with the
constraint of �(3,6,L,λ(x)) = �SC. The optimization problem
is solved by linear programming and the resulting degree
distribution λ1(x) is obtained as

λ1(x) = 0.0193x2 + 0.3439x3 + 0.5310x6 + 0.1058x7.

The average variable node degree of λ1(x) is computed as
lavg = 5.5117 and γ(3,6,20,λ1(x)) = 0.5564, i.e., the rate-loss
is mitigated by 55.6%. Since the BP threshold �(3,6,L,λ1(x))

is unchanged from the BP threshold �(3,6,L) under the BP
threshold constraint, the (3, 6, L, λ1(x)) ensemble is equiv-
alent to the (3, 6, L) ensemble in terms of the asymptotic
performance. However, the equivalent asymptotic performance
does not guarantee the equivalent finite-length performance.

Let P(3,6,L) and P(3,6,L,λ(x)) be the BLERs of the (3, 6, L)
and (3, 6, L, λ(x)) ensembles, respectively, under windowed
decoding [5] with window size W = 12. For the win-
dowed decoding scheme of the (3, 6, L, λ(x)) ensemble,
the window decoder receives the channel values of the first
(W − 1)M variable nodes in the (3, 6, L) ensemble together
with the channel values of the MA additional variable nodes
during the first windowed decoding. Then, the number of bits
included in the first window becomes (W −1)M +MA, which
is lower than the number of bits WM included in the first
window when decoding the (3, 6, L) ensemble. Thus, it is fair
to compare the (3, 6, L) and (3, 6, L, λ(x)) ensembles in terms
of windowed decoding. After this initial decoding process,
the windowed decoding scheme of the (3, 6, L, λ(x)) ensemble
follows the conventional windowed decoding scheme. Note
that we set the window size W to a sufficiently large value
so that the windowed decoding performance does not differ
significantly from the BP decoding performance, which is
required to utilize the scaling law of SC-LDPC codes in the
next subsection.

Fig. 2 shows the BLERs of the (3, 6, 20) and
(3, 6, 20, λ1(x)) SC-LDPC ensembles with M = 1,000,
where the finite-length performance of the (3, 6, 20, λ1(x))
ensemble is degraded compared to that of the (3, 6, 20)
ensemble. To investigate the cause of the performance
degradation, we define the local BLER P(3,6,L,λ(x)) as the
probability that at least one of the additional variable nodes
is not recovered. If all additional variable nodes are recovered
during the decoding process of the (3, 6, L, λ(x)) ensemble,
the probability that at least one of the remaining variable

1Since the BP threshold of the conventional SC-LDPC ensemble converges
to the MAP threshold of underlying LDPC codes, 0.4881, for L ≥ 22,
the same effect arises for the (3, 6, L) ensemble for L ≥ 11.

Fig. 2. Block erasure rates of the (3, 6, 20) SC-LDPC code,
the (3, 6, 20, λ1(x)) SC-LDPC code in [11], and the proposed (3, 6, 20, B1)
code along with their local BLERs.

nodes in the main region is not recovered is equivalent to
P(3,6,L). Thus, P(3,6,L,λ(x)) is given as

P(3,6,L,λ(x)) = P(3,6,L,λ(x)) +
(
1 − P(3,6,L,λ(x))

)
P(3,6,L)

≈ P(3,6,L), for P(3,6,L,λ(x)) � P(3,6,L) (6)

where the last approximation is satisfied if the local BLER
P(3,6,L,λ(x)) is sufficiently lower than that of the (3, 6, L)
ensemble. In other words, the local performance of additional
variable nodes should be much better than the performance
of the main region in order to maintain the finite-length
performance. However, Fig. 2 shows that P(3,6,20,λ1(x)) is
instead higher than P(3,6,20) for � ≤ 0.455, which leads
to the performance degradation of P(3,6,L,λ(x)). In contrast,
the performance of the proposed (3, 6, 20,B1) code, which
will be introduced in Section III-E, is nearly identical to that
of the (3, 6, 20) SC-LDPC code. In the following subsections,
we will introduce the design procedure to obtain the proposed
SC-LDPC codes.

B. Required Local BLER of Additional Variable Nodes

While minimizing the finite-length performance degrada-
tion, we aim to find λ(x) for which mitigation ratio γ is
maximized. To be specific, for given target BLER P

∗ and
parameter k, we need to find λ(x) achieving P(3,6,L,λ(x)) =
kP(3,6,L) = kP

∗, where k > 1 is set to a value near 1.
The design procedure to find such λ(x) is summarized
below.

1) First, we obtain the target erasure probability �∗ at which
P(3,6,L) = P

∗ using the scaling law of the SC-LDPC
ensemble.

2) Second, the required local BLER P
∗

to achieve
P(3,6,L) = P

∗ is obtained from (8).
3) Finally, we can obtain λ(x) to achieve P = P

∗
at �∗

through differential evolution by adjusting an optimiza-
tion parameter called the local threshold �(3,6,L,λ(x)).
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Fig. 3. Block erasure rates of the (3, 6, L) SC-LDPC codes for (L, M) =
(20, 1000), (L, M) = (20, 1500), and (L, M) = (40, 1000) from
Monte Carlo simulation (soild lines) along with their estimated performances
(dashed lines) from the scaling law with scaling parameter α = 4.419 and
α = 3.978.

The scaling law of the (3, 6, L) ensemble is described
as [7], [14]

P(3,6,L) ≈ θ�L√
2ια

√
M(�SC − �)

exp
(
−M

α2(�SC − �)2

2

)
(7)

where α and θ are the scaling parameters. For the conventional
SC-LDPC ensemble with two-sided decoding waves, the scal-
ing parameters are given as α = 6.25 and θ = 0.57 [14].
For the (3, 6, L) ensemble with one-sided decoding wave,
the scaling parameter α becomes α = 6.25/

√
2 ≈ 4.419 [7].

In Fig. 3, we plot the estimated BLER from the scaling law
along with the actual performance computed by a Monte
Carlo simulation for the (3, 6, 20) ensemble with M = 1000.
As shown in Fig 3, the estimated performance with α =
4.419 and the actual performance differ somewhat because
the derivation of the scaling parameter α = 4.419 in [14]
is based on various assumptions resulting in an incorrect
prediction of the actual performances. To capture the actual
performance more correctly, we adjust the scaling parameter α
by comparing the Monte Carlo simulation result. Fig. 3 shows
that the estimated performance with α = 0.9× 4.419 ≈ 3.978
can predict the actual performance more correctly. In addition,
the refined scaling parameter α = 3.978 enables one to
predict the actual performance for the other parameters such as
(L, M) = (20, 1500) and (L, M) = (40, 1000). Thus, we use
the refined scaling parameter α = 3.978 henceforth. After
obtaining the refined alpha value from a Monte Carlo simula-
tion of a code instance once, we can predict the finite-length
performance for other code ensembles without additional
Monte Carlo simulations. Thus, using the refined scaling law,
we can obtain �∗ at which P(3,6,L) = P

∗ = 10−4 as described
in Table I. Note that �∗ decreases as L increases given that the
finite-length performance of the (3, 6, L) ensemble is degraded
as L increases.

Next, we compute the required local BLER P
∗

such that
P(3,6,L,λ(x)) achieves kP

∗ at erasure probability �∗. From (8),

TABLE I

ERASURE PROBABILITY ε∗ AT WHICH P(3,6,L) = P
∗ = 10−4

FOR VARIOUS L AND M

the required local BLER P
∗

is represented as

P
∗

=
P(3,6,L,λ(x)) − P(3,6,L)

1 − P(3,6,L)
=

(k − 1)P∗

1 − P∗ . (8)

Then our objective can be described as finding λ(x) which
achieves the required local BLER P

∗ at �∗.

C. Minimizing the Rate-Loss While Achieving
the Required Local BLER

In order to find λ(x) achieving the required local BLER P
∗

at the target erasure probability �∗, first we define the local
threshold �(3,6,L,λ(x)) of the (3, 6, L, λ(x)) ensemble as the

maximum � for which the erasure probability x
(�)
1 of additional

variable nodes goes to below a small value such as 10−3 as
� increases. As the BP threshold �(3,6,L,λ(x)) represents the
asymptotic performance of the overall codeword, the local
threshold �(3,6,L,λ(x)) is a performance measure specialized for
additional variable nodes. In general, �(3,6,L,λ(x)) needs to be
higher than �SC to achieve the required local BLER P

∗ � P
∗.

However, for λ1(x), the local threshold �(3,6,L,λ1(x)) is equal
to �(3,6,L) = 0.4881, which implies that λ1(x) is not a proper
degree distribution to achieve the required local BLER P

∗
.

A differential evolution algorithm, presented in
Algorithm 1, is proposed to find a degree distribution
achieving the input local threshold �. Similar to the differential
evolution algorithms in [20]–[22], Algorithm 1 is initialized
with a set of randomly generated degree distributions and
generate the improved set of degree distributions through the
mutation, crossover, and selection steps. We apply the method
of DE/rand/1/bin with per-vector dither [23] for the mutation
step as the differential evolution algorithm in [22]. During
the selection step, a trial degree distribution is selected if
it satisfies two constraints which one is related to the local
threshold and the other is related to average variable node
degree. Due to the constraint on the average variable node
degree, a degree distribution with a lower average degree is
generated as the generation progresses.

As a running example, we set L = 20, M = 1000, P
∗ =

10−4, and k = 1.1. From Table I, �∗ is 0.45 and the required
local BLER P

∗
becomes roughly 10−5 by (8). By varying

the input local threshold � of Algorithm 1, we can find a
degree distribution of additional variable nodes achieving P

∗

at �∗. In detail, we increase � by 0.005 from �SC until the
obtained degree distribution achieves P

∗
at �∗. The other input

parameters are fixed as Np = 100, G = 10,000, lmin =
3, lmax = 10, F = 0.5, pc = 0.85. For � = 0.4936, we obtain
the degree distribution λ2(x) = 0.7009x5 + 0.2991x6 from
Algorithm 1, where the local BLER P(3,6,20,λ2(x)) is lower
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Algorithm 1 Differential Evolution Algorithm to Design λ(x)
Input: Np, G, lmin, lmax, F, pc, �
1: Initialization: Generate a set of degree distributions,

{λ1(x), . . . , λNp(x)}, randomly with minimum degree lmin

and maximum degree lmax, where λi(x) =
lmax∑

j=lmin

λi,jx
j−1.

2: for g = 1 : G do
3: Mutation: For each i ∈ {1, . . . , Np}, generate a mutant

polynomial mi(x) =
lmax∑

j=lmin

mi,jx
j−1 as

mi(x) = λr1(x) + (F + β(1 − F ))(λr2 (x) − λr3(x))

where r1, r2, and r3 are randomly-chosen distinct values
in the range {1, . . . , NP } and β is a random variable
distributed uniformly on [0, 1]. If a coefficient of mi(x)
is negative, it is set to be zero.

4: Crossover: For each i ∈ {1, . . . , Np}, generate a trial

degree distribution ti(x) =
lmax∑

j=lmin

ti,jx
j−1 as

ti,j =

{
λi,j with probability pc

mi,j with probability 1 − pc

for j ∈ {lmin, . . . , lmax}. If ti(1) is not 1, we randomly
select non-zero coefficients of ti(x) and adjust the coef-
ficients to satisfy ti(1) = 1.

5: Selection: Using the DE equations (5), for each ti(x),
check the following constraints:

i) x
(�)
1 goes to below 10−3 at input local threshold �.

ii) 1/
∫ 1

0 ti(x)dx < 1/
∫ 1

0 λi(x)dx.

If the constraints are satisfied, then set λi(x) = ti(x).
6: end for
7: Select λi(x) such that 1/

∫ 1

0
λi(x)dx is the minimum.

than P
∗

= 10−5 at � = �∗ = 0.45. However, the corresponding
mitigation ratio γ(3,6,20,λ2(x)) is 0.4908, which is lower than
γ(3,6,20,λ1(x)) = 0.5564. It means that the (3, 6, L, λ2(x))
ensemble achieves the required local BLER at the cost of the
reduced mitigation ratio compared to the results for λ1(x).

D. Local Minimum Constraint for Optimization Algorithm

In this subsection, we show that the trade-off between the
local BLER and the mitigation ratio can be improved by using
the expected graph evolution. The BP and local thresholds are
the upper limit of the channel parameters for which decoding
is successful. In contrast, the expected graph evolution [15]
shows the decoding behavior for a given channel parameter,
which can be utilized in an analysis of the finite-length
performance. In [7], the expected number of degree-1 check
nodes under peeling decoding is obtained by solving a system
of differential equations. Also, in [24], the upper bound of
the expected number of degree-1 check nodes is obtained
from DE, which requires less computational complexity com-
pared to solving a system of differential equations. Due to
the low computational complexity, a constraint obtained from

Fig. 4. Evolution of r
(�)
1 (ε) of the (3, 6, 20) and (3, 6, 20, λ(x)) SC-LDPC

ensembles with λ1(x), λ2(x), and λ3(x) at ε = 0.4681 and ε = 0.4781.

the expected graph evolution can be used for the proposed
optimization algorithm.

Let r
(�)
1 (�) be the upper bound of the normalized number

of degree-1 check nodes connected to variable nodes in the
main region of the (3, 6, L, λ(x)) ensemble at iteration � with
erasure probability � under BP decoding. Then r

(�)
1 (�) is given

as [14]

r
(�)
1 (�) =

2L+1∑
j=2

x
(�−1)
j −

2L+1∑
j=2

x
(�)
j

where x
(�)
j is obtained by the DE equations in (5). Fig. 4

shows the evolution of r
(�)
1 (�) at � = �SC − 2 × 10−2 =

0.4681 and � = �SC − 10−2 = 0.4781, respectively. For the
(3, 6, 20) ensemble, there exist three phases in the evolution of
r
(�)
1 (�); the initial phase, the critical phase, and the third phase.

In [7], the scaling law of SC-LDPC codes is derived with the
assumption that decoding failures rarely occur in the initial
phase. The assumption is justified considering the property that
the value of r

(�)
1 (�) in the initial phase decreases steadily to the

value of the critical phase. However, for the (3, 6, 20, λ1(x))
and (3, 6, 20, λ2(x)) ensembles, a local minimum appears in
the initial phase as an additional factor of decoding failures,
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Fig. 5. r
(�)
1 (ε) and Pr(failure at x

(�)
1 ) against x

(�)
1 at ε = 0.4781 for the

(3, 6, 20, λ1(x)) SC-LDPC ensemble.

which implies that the finite-length performance is predicted
to be degraded.

The predication of the finite-length performance actually
requires not only the expected value of r

(�)
1 (�) but also the sec-

ond order moments of r
(�)
1 (�) [7]. However, computing the sec-

ond order moments requires a large amount of computations,
which is undesirable for the optimization process. Moreover,
the expectation of r

(�)
1 (�) is sufficient to find a design condition

affecting decoding failures. In order to verify that the emerged
local minimum becomes a factor of decoding failures, we plot
the evolution of r

(�)
1 (0.4781) as a function of x

(�)
1 for the

(3, 6, 20, λ1(x)) ensemble in Fig. 5. In addition, we compute
the empirical probability Pr(failure at x

(�)
1 ), which is defined

as the probability that the average erasure probability of
additional variable nodes is equal to x

(�)
1 when the decoder

declares a decoding failure in the finite-length code simulation.
In Fig. 5, we plot Pr(failure at x

(�)
1 ) with a different y-axis,

where Pr(failure at x
(�)
1 ) is obtained from 105 transmissions

of the (3, 6, 20, λ1(x)) ensemble with z = 2,000. By com-
paring the two plots in Fig. 5, we can confirm that decoding
failures are likely to occur at the local minimum of r

(�)
1 (�),

which implies that the local minimum is a significant factor
of decoding failures.

We define the local minimum constraint such that r
(�)
1 (�)

should not have a local minimum in the initial phase for
� < �(3,6,L). By including the local minimum constraint
in the selection step of Algorithm 1,2 the optimized degree
distribution λ3(x) achieving the required local BLER P

∗
can

be obtained with the local threshold � = 0.4901 as

λ3(x) = 0.01067x3 + 0.63926x4 + 0.35007x9

and γ(3,6,20,λ3(x)) = 0.5088. Fig. 4 shows that a local mini-

mum of r
(�)
1 (�) does not exist for the (3, 6, 20, λ3(x)) ensem-

ble. By removing the harmful factor affecting the finite-length
performance, the mitigation ratio γ(3,6,20,λ3(x)) = 0.5088 is
improved compared to γ(3,6,20,λ2(x)) = 0.4908. In the next
subsection, a design method of attached additional variable

2To reduce the optimization complexity, we check the local minimum
constraint at the two points of ε = εSC − 2 × 10−2 and ε = εSC − 10−2 .

nodes is introduced to increase γ even further by employing
a protograph structure.

E. Optimizing the (3,6,L,B) Ensemble

As noted in Section II-C, the base matrix in (4) is used
to represent the DE equations of the (3, 6, L, λ(x)) ensemble
in a simple form. However, if the base matrix in (4) is lifted
with lifting factor z, the resulting codes correspond to the
(3, 6, L, x5) ensemble with z additional variable nodes of
degree 6. In other words, the node and edge distributions of
additional variable nodes can be represented by a base matrix
instead of λ(x). Let B′ denote the attached base matrix deter-
mining the structure of additional variable nodes. For example,
B′ = [4 2 0 . . . 0]T for the base matrix in (4). By changing
the non-zero entries of B′, we can optimize the structure for
additional variable nodes. For B′ = [4 2 0 . . . 0]T, however,
the number of non-zero entries to be optimized is only two.
In order to increase the search space, we first consider the
pre-lifting base matrix of (1) with lifting factor z1, where
z = z1 × z2, after which we attach B′ of size 2z1 × zA to the
pre-lifted base matrix as⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 P

B′ Π1,1 Π1,2

Π2,1 Π2,2 Π2,3 Π2,4

Π3,1 Π3,2 Π3,3 Π3,4
. . .

Π4,3 Π4,4
. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

where P is a matrix of size 1 × zA and Πi,j is a random
permutation matrix of size z1 × z1. Note that we include a
degree-1 variable node using the precoding technique [16]
while the last variable node in B′ is punctured to maintain the
design rate. Let B = [P;B′] and the (3, 6, L,B) SC-LDPC
ensemble denote the ensemble corresponding to (9). Since the
matrix size of (9) is (1 + (L + 1)z1) × (1 + zA + 2Lz1),
the design rate of the (3, 6, L,B) ensemble is given as

R(3,6,L,B) = 1 − (L + 1)z1z2

2Lz1z2 + zAz2

=
1
2
− 1

2
1 − zA

2z1

L + zA
2z1

.

Compared to the (3, 6, L, λ(x)) ensemble, the (3, 6, L,B)
ensemble has advantages such as the practical advantage of
using the protograph structure and the possibility of improv-
ing the local performance of additional variable nodes by
employing degree-1 variable nodes. However, the number of
additional variable nodes is restricted to multiples of zA after
lifting the base matrix (9), placing a restriction on the range
of the mitigation ratio γ(3,6,L,B).

To increase the available values of the mitigation ratio,
we consider puncturing β fraction of the additional variable
nodes. After lifting the base matrix in (9) with lifting factor
z2, the numbers of degree-1 variable nodes and additional
variable nodes in B are z2 and MA = zAz2, respectively.
Then, β fraction of the z2 degree-1 variable nodes and the
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first (zA−1)z2 additional variable nodes are punctured, where
punctured variable nodes are selected randomly. The number
of randomly punctured variable nodes is p = βzAz2 and the
resulting design rate of the (3, 6, L,B) ensemble is given as

R(3,6,L,B) = 1 − (L + 1)z1z2 − p

(2Lz1z2 + zAz2) − p

=
1
2
− 1

2
1 − zA

2z1
− β zA

2z1

L + zA
2z1

− β zA
2z1

. (10)

Using the DE equations for protograph based ensembles [3],
the optimization of B and β can be performed in the similar
way of the optimization of λ(x) as shown in Algorithm 2.
For input local thresholds � = 0.4901, � = 0.4896, and � =
0.4891, the obtained base matrices B1, B2, and B3 are given
as

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 2
1 0 0 0 2
0 1 0 0 2
0 1 1 0 1
0 0 0 2 1
1 0 1 1 1
1 0 2 1 0
1 0 2 1 0
2 2 0 0 0
0 2 0 0 1
0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 2
1 1 0 2 0
0 0 1 0 2
0 1 0 0 2
2 0 0 0 1
0 2 0 0 1
0 0 2 1 0
1 0 1 1 1
1 0 1 1 1
0 0 0 1 1
0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 2
0 0 1 0 2
1 1 1 0 1
0 1 0 1 2
1 0 0 0 2
0 0 0 1 1
0 0 1 0 1
2 0 0 1 0
0 2 0 1 1
1 1 2 0 0
1 0 0 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where z1 = 5 and zA = 5. The corresponding β’s for B1,
B2, and B3 are β1 = 0.05 β2 = 0.07, and β3 = 0.09,
respectively. The (3, 6, L,B1) ensemble is comparable to the
(3, 6, L, λ3(x)) ensemble because their local thresholds are
equivalent and both ensembles are optimized with the local
minimum constraint. However, mitigation ratio γ(3,6,20,B1) =
0.5360 is improved relative to γ(3,6,20,λ3(x)) = 0.5088.
Compared to the (3, 6, L, λ1(x)) ensemble, mitigation ratio

Algorithm 2 Design Algorithm of B
Input: Np, G, F, lmin, lmax, emax, pc, �

∗

1: Initialization: For generation g = 0, generate a set of base
matrices of size 2z1×z1, {B1, . . . ,BNp}, where each entry
of Bt is randomly chosen in the set of {0, . . . , emax}. For
t ∈ {1, . . . , Np}, obtain the local threshold �(Bt) and the
local minimum r∗1(�,Bt) of r

(�)
1 (�) in the initial phase,

where set r∗1(�,Bt) = 1 if there is no local minimum. If
�(Bt) ≥ �∗, find the maximum puncturing fraction βA(Bt)
to achieve �(Bt) = �∗.

2: for g = 1 : G do
3: Mutation: For each t ∈ {1, . . . , Np}, generate a mutant

matrix Mt as follows:

[Mt]i,j = [Br1 ]i,j + (F + β(1−F ))([Br2]i,j − [Br3]i,j)

where [X]i,j denote the (i, j) component of matrix X.
If a entry of Mt is not integer or larger than emax,
the entry is replaced by the closet integer value among
{0, 1, . . . , emax}.

4: Crossover: For each t ∈ {1, . . . , Np}, generate a trial
matrix Tt as follows:

[Tt]i,j =

{
[Bt]i,j with probability pc

[Mt]i,j with probability 1 − pc.

5: Selection: For each Tt, obtain the local threshold �(Tt)
and the local minimum r∗1(�,Tt). If �(Tt) ≥ �∗, find
the maximum puncturing fraction βA(Tt) to achieve
�(Tt) = �∗. Update Bt to Tt when one of the following
conditions is satisfied.

1) If r∗1(�,Bt) �= 1, r∗1(�,Tt) > r∗1(�,Bt).
2) If r∗1(�,Bt) = 1, �(Bt) < �∗, �(Tt) > �(Bt).
3) If r∗1(�,Bt) = 1, �(Bt) ≥ �∗, βA(Tt) > βA(Bt).

6: end for
Select Bt such that βA(Bt) is the maximum.

γ(3,6,20,B1) = 0.5360 is slightly lower than γ(3,6,20,λ1(x)) =
0.5564. However, as shown in Fig. 2, the BLER of the
(3, 6, 20,B1) ensemble is nearly identical to that of the
(3, 6, 20) ensemble unlike the (3, 6, 20, λ1(x)) ensemble.
Table II displays γ together with the ratio of the BLER
of ensemble A to that of the (3, 6, 20) ensemble at � =
0.45. In Table II, we compare the ensembles introduced so
far. While the (3, 6, 20, λ1(x)) ensemble proposed in [11]
shows significant performance degradation, the performance
loss is not noticeable for the ensembles proposed in this
paper. The performance is maintained by introducing the local
threshold and differential evolution algorithms. Comparing
the (3, 6, 20, λ1(x)) ensemble and (3, 6, L, λ2(x)) ensemble
shows that there is a trade-off between the rate-loss mitiga-
tion ratio and the finite-length performance. The trade-off is
improved for the (3, 6, L, λ3(x)) ensemble by introducing the
expected graph evolution and for the (3, 6, L,B1) ensemble
by introducing the protograph structure.

By following the same design procedure used when L = 20
and M = 1000, we can optimize the (3, 6, L,B) ensemble for
other parameters of L and M . Note that the optimized results

Authorized licensed use limited to: Seoul National University. Downloaded on May 12,2023 at 14:24:48 UTC from IEEE Xplore.  Restrictions apply. 



KWAK et al.: RATE-LOSS MITIGATION OF SC-LDPC CODES WITHOUT PERFORMANCE DEGRADATION 63

TABLE II

COMPARING THE (3, 6, 20, λ1(x)), (3, 6, 20, λ2(x)), (3, 6, 20, λ3(x)),
AND (3, 6, 20, B1) SC-LDPC ENSEMBLES WITH RESPECT TO
MITIGATION RATIO γ AND THE RATIO OF BLERS AT ε = 0.45

Fig. 6. Design rates of the (3, 6) regular LDPC ensemble, the (3, 6, L)
SC-LDPC ensemble, and the (3, 6, L, B) SC-LDPC ensemble along with
optimized B and corresponding γ for various values of L when M = 1000.

Fig. 7. Block error rates of the (3, 6, L) SC-LDPC codes and the proposed
(3, 6, 20, B) codes for (L, M) = (20, 1000), (L, M) = (60, 1000), and
(L, M) = (20, 1500).

depend on L and M , as target erasure probability �∗ changes
according to the selection of L and M . As an example, for
L = 60 and M = 1000, the required local threshold is 0.4891,
which is lower than the required local threshold 0.4901 for
the case when (L, M) = (20, 1000). Thus, we select B3 for
the (3, 6, 60,B) ensemble instead of B1. Fig. 7 shows that
performance degradation is also not observed for the case
when (L, M) = (60, 1000). In Fig. 6, we plot the design
rates of the (3, 6, L) and the (3, 6, L,B) ensembles for various
values of L. At each point of the design rate of the optimized
(3, 6, L,B) ensemble, the corresponding B and γ(3,6,L,B) are
shown, where the mitigation ratio is higher than 0.53 for
all values of L. In other words, the rate-loss is mitigated
by more than 53% while the performance degradation is

not noticeable for the both case (L, M) = (20, 1000) and
(60, 1000). In addition, Fig. 7 shows that the same result is
obtained for (L, M) = (20, 1500).

Remark 1: Comparing the conventional SC-LDPC ensem-
ble and the proposed SC-LDPC ensemble in terms of degree
distribution, one can notice that two SC-LDPC ensembles
have different degree distributions. While the conventional
SC-LDPC ensemble has boundary low-degree check nodes,
where the wave-like propagation of reliable message is
triggered [3], the boundary check nodes for the proposed
SC-LDPC ensemble is no longer low-degree because of the
attached additional variable nodes. Only after recovering the
additional variable nodes, the degree of boundary check nodes
becomes low as the conventional SC-LDPC codes. In this
point of view, the design objective of additional variable
nodes can be expressed by adding variable nodes as much
as possible while ensuring recovering of additional variable
nodes. In order to do that, we first derived the local BLER
of additional variable nodes required for the correct decoding
without performance degradation in Section III-B, and then
we found the degree distribution of additional variable nodes
that satisfies the required local BLER in Section III-C. Thus,
additional variable nodes with the obtained degree distribu-
tion are correctly decoded without scarifying the decoding
performance and the wave-like propagation is triggered as
the conventional SC-LDPC codes. In addition, a design con-
straint called local minimum constraint is proposed to further
optimize the additional variable nodes while guaranteeing the
correct decoding in Section III-D.

Remark 2: Note that our proposed design method can be
applied to other SC-LDPC codes as long as the degree
of boundary check nodes is lower than other check nodes.
Thus, the rate-loss of other SC-LDPC codes such as irregular
SC-LDPC codes [3] and non-uniformly coupled SC-LDPC
codes [25] can be mitigated by using the proposed design
method in a similar manner.

IV. PERFORMANCE COMPARISON

Thus far, the performances of the (3, 6, L) and (3, 6, L,B)
ensembles have been compared for the same value of L
since we have been focusing on whether or not performance
degradation occurs by attaching additional variable nodes.
In this section, the performances of the two ensembles are
compared at the same design rate.

To achieve a given design rate, the (3, 6, L) ensemble
requires a large value of L compared to the (3, 6, L,B) ensem-
ble. From the design rates in (2) and (10), the relationship
between L1 and L2 satisfying ΔR(3,6,L1) = ΔR(3,6,L2,B) is
given as

L1 =
L2 + zA

2z1
− β zA

2z1

1 − zA
2z1

− β zA
2z1

. (11)

For example, the design rates of the (3, 6, 43), (3, 6, 87),
and (3, 6, 123) ensembles are almost the same as those of
the (3, 6, 20,B1), (3, 6, 40,B2), and (3, 6, 60,B3) ensembles,
respectively. In Fig. 8, the BLERs of each pair of ensembles
are compared for M = 1000, which shows that the proposed
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Fig. 8. Comparison of BLERs of the (3, 6, L) and (3, 6, L,B) ensembles
for different values of L and the same design rate.

Fig. 9. BP thresholds of the punctured (3, 6, L) and (3, 6, L, B) ensembles
to achieve the target design rate 0.5 by puncturing.

(3, 6, L,B) ensemble is superior to the conventional (3, 6, L)
ensemble for all pairs. The performance improvement of
the (3, 6, L,B) ensemble comes from the small value of
L because the BLER scales linearly with the chain length
L [7]. We expect that the performance improvement observed
in Fig. 8 continues for all pairs of L1 and L2 satisfying (11)
because L1 is a linear function of L2.

Furthermore, the random puncturing technique in [17] can
be used to match the design rate. Let β be the fraction of punc-
tured bits for each position. For the additional variable nodes
of the (3, 6, L,B) ensemble, the total fraction of punctured
bits becomes β + β. According to [17], the design rate R(β)
and the BP threshold �(β) of a punctured code with puncturing
fraction β are expressed in terms of the design rate R(0) and
the BP threshold �(0) of the unpunctured mother code as

R(β) =
R(0)
1 − β

�(β) = 1 − 1 − �(0)
1 − β

. (12)

Using (12) and the design rates of the (3, 6, L) ensemble and
the (3, 6, L,B) ensemble in (2) and (10), the required value
of β to achieve target design rate R∗ can be obtained for each
value of L. From the obtained value of β, the BP thresholds
of the punctured (3, 6, L) and (3, 6, L,B) ensembles can also
be obtained. Fig. 9 shows the numerically calculated BP

Fig. 10. Comparison of BLERs of the punctured (3, 6, 60), (3, 6, 60, λ3(x)),
and (3, 6, 60, B) SC-LDPC codes with M = 1,000. In addition, the decoding
performances of the (3, 6) block LDPC code, the (3, 7, 12) SC-LDPC code,
and the punctured (3, 6, 12) SC-LDPC code are included. The code rate of
all codes is equal to 0.5. The decoding of the SC-LDPC codes is performed
by windowed decoding with W = 12 and constraint length 12,000.

thresholds of the punctured (3, 6, L) and (3, 6, L,B) ensem-
bles to achieve a target design rate R∗ = 0.5 by puncturing.
For the (3, 6, L,B) ensemble, the required β is lower than
that of the (3, 6, L) ensemble due to the reduced rate-loss,
and accordingly the BP threshold of the (3, 6, L,B) ensem-
ble is much close to that of the corresponding unpunctured
ensemble �SC. The high BP threshold directly influences the
finite-length performance as shown in Fig. 10, where the
punctured (3, 6, 60) and (3, 6, 60,B3) codes are compared.
As a reference, the performance of (3, 6) block LDPC code
is included in Fig. 10. In addition, we include the decod-
ing performance of the punctured (3, 6, 60, λ3(x)) SC-LDPC
code in Fig. 10, which is similar to the performance of the
(3, 6, 60,B3) code. However, the (3, 6, 60,B3) code is more
hardware friendly than the (3, 6, 60, λ3(x)) code because addi-
tional variable nodes in the (3, 6, 60,B3) code is represented
by the protograph representation. In addition, we include the
performance of the (3, 7, 12) SC-LDPC code in Fig. 10, which
shows that constructing an SC-LDPC code from block LDPC
codes with a slightly higher rate is not a proper way to achieve
the target rate. Instead, the result shows that the best way
to obtain the target rate is to puncture some variable nodes
of the SC-LDPC code with additional variable nodes. Lastly,
the performance of the punctured (3, 6, 12) SC-LDPC code
with code rate 0.5 is evaluated for a fair comparison, which
does not show improved performance.

V. CONCLUSION

In this paper, a design method is proposed to mitigate
the rate-loss of SC-LDPC codes without degradation of the
finite-length performance. Based on a comprehensive study
on the finite-length performance of the SC-LDPC codes with
additional variable nodes, we proposed the design method
and obtained the optimized structure for additional variable
nodes that significantly mitigate the rate-loss. For variable
and check node degrees (3, 6) as an example, we showed
that the rate-loss can be reduced by more than 53% while
the finite-length performance is not degraded. In other words,
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the proposed design method increases the practical value of the
SC-LDPC code in that it solves one of the major drawbacks
of the SC-LDPC code.
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