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ABSTRACT

Benchmarks for competition-style reasoning have advanced evaluation in mathe-
matics and programming, yet physics remains comparatively underfigurexplored.
Most existing physics benchmarks evaluate only final answers, which fail to cap-
ture reasoning processes, while recent stepwise methods rely on heuristic LLM-as-
judge scoring or restrictive linear assumptions, limiting reliability and diagnostic
validity. We introduce PRISM-PHYSICS, a process-level evaluation framework
and benchmark for complex physics reasoning problems. Solutions are repre-
sented as directed acyclic graphs (DAGs) of formulas, explicitly encoding causal
dependencies among intermediate steps to enable fine-grained, interpretable, and
theoretically grounded scoring. We prove the optimality of the DAG represen-
tation and the corresponding scoring policy. Combining with a fully rule-based
method for symbolic formula equivalence matching that we developed, we ensure
consistent validation across diverse formulations without heuristic judgments. Re-
sults show that our evaluation framework is more aligned with human experts’
scoring. Experiments on state-of-the-art LLMs reveal persistent reasoning fail-
ures in physics, while step-level scoring offers both diagnostic insight and rich
signals for later training. By combining structural rigor, theoretical guarantees,
and symbolic validation, PRISM-PHYSICS provides a principled foundation for
advancing process-level evaluation and guiding the development of models with
deeper scientific reasoning capabilities.

1 INTRODUCTION

Benchmarks for competition-style reasoning have advanced rapidly in mathematics (e.g.,
IMO) (Zheng et al., 2021; He et al., 2024; Gao et al., 2024) and programming (e.g., IOI) (Shi
et al., 2024; Zhu et al., 2025; El-Kishky et al., 2025), providing comprehensive testbeds for evaluat-
ing large language models (LLMs). In contrast, physics competitions remain comparatively under-
served, despite requiring not only deep domain knowledge, but also advanced analytical modeling,
multi-step symbolic derivation, and precise numerical computation. These skills are fundamen-
tal indicators of scientific reasoning ability, as they integrate conceptual understanding, modeling
assumptions, and rigorous problem-solving under complex constraint (Jaiswal et al., 2024). Con-
sequently, developing fine-grained evaluation frameworks and benchmarks for competition-level
physics is essential for systematically assessing and advancing LLMs’ capabilities in this critical
domain (Chang et al., 2024; Song et al., 2025).

A major obstacle is that physics derivations are inherently non-linear: solutions frequently branch,
merge, or reuse intermediate results. Existing benchmarks fail to capture this structure due to
three key limitations: 1. Most physics benchmarks rely on multiple-choice or short-answer for-
mats (Wang et al.; Rein et al., 2024), evaluating only the final answer and ignoring the reason-
ing process. Such formats obscure the reasoning process and provide limited diagnostic value for
understanding model capabilities. 2. Most also rely on LLM-as-judge scoring (He et al., 2024;
Xiang et al., 2025), which is prone to hallucinations, prompt sensitivity, and inconsistent grading.
3. While some recent work (Zhang et al., 2025) has made initial attempts at step-by-step scoring,
these approaches often rely on strong assumptions such as strictly linear step ordering or shallow
expression matching that limit the validity and generalizability of the framework. As a result, cur-
rent methodologies remain inadequate for revealing the systematic reasoning failures of LLMs in
physics problem solving.
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Figure 1: Selected model performance on PRISM-Physics. Complete results for all models are pro-
vided in Figure 14. We report Final-Answer Accuracy, Step-level Accuracy, and Response Time.1

To address these limitations, we introduce PRISM-Physics, a process-level evaluation framework
and benchmark that represents physics solutions as directed acyclic graphs (DAGs) of formulas. This
graph-based structure explicitly encodes causal dependencies among intermediate steps, enabling
fine-grained scoring that is theoretically grounded and interpretable. To ensure consistency, we
further develop a fully rule-based symbolic equivalence checker, which provides robust validation
across diverse formulations and removes dependence on heuristic judgments.

Our main contributions are summarized as follows: 1. We construct a large-scale benchmark of
competition-level physics problems with carefully curated, DAG-structured solutions. 2. We pro-
pose a DAG-based scoring policy that explicitly models causal dependencies among formulas, en-
abling fine-grained and interpretable process-level evaluation. We further provide a theoretical proof
of its optimality, showing that it minimizes evaluation ambiguity and aligns naturally with the logi-
cal structure of physics derivations. 3. We develop a fully rule-based symbolic formula equivalence
checker to reliably validate diverse mathematical expressions, ensuring consistent comparison across
alternative formulations and eliminating reliance on heuristic LLM-as-judge scoring. 4. We con-
duct extensive experiments on a broad range of LLMs, revealing persistent challenges in sustaining
coherent reasoning chains and in correctly applying physical principles. Furthermore, we system-
atically compare our evaluation framework with existing approaches, demonstrating its superior
reliability, interpretability, and diagnostic power for evaluating process-level reasoning capabilities.

Taken together, PRISM-Physics establishes the first principled foundation for process-level evalua-
tion in physics, bridging structural rigor, theoretical guarantees, and symbolic validation.

2 RELATED WORK

Physics Benchmark. Physics problems, as a proxy of how LLMs understand Physics, have been
used as benchmarks for LLMs in recent years. Especially, previous work has been using Physics
Olympiad problems for benchmarking LLM reasoning and problem solving abilities. For instance,
OlympiadBench (He et al., 2024) aggregates problems from multiple Olympiads; SeePhy (Xiang
et al., 2025) incorporates visual problems to study how visual ability improves LLM performance;
PhyBench (Qiu et al., 2025) focuses on rigor and originality. While such benchmarks propose
metrics (e.g., EED score (Qiu et al., 2025)), they still focus primarily on final answers and fail to
represent or provide more fine-grained process scores. More recently, process-based evaluation of
LLM reasoning has become a focus. PhysReason (Zhang et al., 2025) evaluates intermediate steps
by checking correctness of expressions and assigning linear scores, but this approach is restricted to
expressions (rather than equations) and cannot represent the dependency logic among steps.

LLM-as-Judge for Problem Solving. Reliable evaluation of physics problem solving requires
assessing not only final answer correctness, but also the validity of intermediate reasoning steps.
Human expert annotation, while generally reliable, is costly and unscalable in large-scale (Gu et al.,
2024; Liu et al., 2023; Ye et al., 2025; Petrov et al., 2025; Mao et al., 2024). Automated LLM-
as-judge methods have shown potential in mathematical and physics tasks, but are still susceptible
to errors from implicit assumptions, symbolic manipulation errors, and misinterpretation of domain
concepts (Zheng et al., 2023; Gu et al., 2024; Ye et al., 2025; Hendrycks et al., 2021; Gulati et al.,
2024; Liu et al., 2024; Lu et al., 2024). This challenge is amplified in physics, where various
physical concepts, constants, and equivalent formulations create many valid variations of the same
expression, making judgment more difficult (Wang et al.; Xu et al., 2025; Zhang et al., 2025).

1Due to space constraints, larger versions of all figures are provided in Appendix H.
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Figure 2: A data example with the proposed DAG structure.

To address these issues, we introduce a formula-based verification framework that directly compares
symbolic expressions for physical and mathematical consistency, offering a faster and more reliable
alternative to costly human annotation (Brence et al., 2023; Gao et al., 2023; Chen et al., 2023;
Cobbe et al., 2021; Hendrycks et al., 2021; Xia et al., 2024; Gao et al., 2025; Li et al., 2024).

3 PRELIMINARY AND FORMULATION

3.1 FORMULA-MATCHING-BASED EVALUATION

A crucial component that distinguishes our evaluation framework from most LLM-as-judge coun-
terparts is that, ours is purely based on rule-based Formula Equivalence Matching, also called as
Formula Matching. More specifically, we say two formulas are matched if they are mathemati-
cally equivalent. In Section 4.1 we will show how we actually match two formulas, and discuss our
improvement against previous works.

3.2 MOTIVATION FOR THE DAG STRUCTURE

Naive process-scoring policies present inherent limitations: strict matching fails to recognize correct
outcomes obtained through alternative derivations, whereas prefix credit overestimates performance
by indiscriminately assigning credit to all prior steps once a single formula is matched. To address
these issues, we represent the reference solution as a directed acyclic graph (DAG) of formulas,
where the edges encode explicit prerequisite relations. With this structure, credit propagates only
along causal chains from matched nodes to their ancestors. This approach (i) avoids the harshness
of strict matching by rewarding justified intermediate work, (ii) prevents the over-crediting of prefix
policies by restricting propagation to prerequisites only, and (iii) offers a representation intuitive for
human reasoning, reliable for LLM annotation, and theoretically complete under mild assumptions.

3.3 DAG REPRESENTATION OF SOLUTIONS.

Formally, a directed acyclic graph (DAG) is a pair G = (V,E), where V is a finite set of nodes and
E ⊆ V × V is a set of directed edges such that there is no directed cycle in G. That is, there is no
sequence of distinct nodes v1, v2, . . . , vk with k ≥ 2 satisfying (vi, vi+1) ∈ E for all 1 ≤ i < k and
(vk, v1) ∈ E. A DAG thus encodes a partial order over its nodes, which is particularly suitable for
representing stepwise logical or computational dependencies.

In our setting, each solution is systematically converted into such a DAG: 1. Nodes (formulas).
Each v ∈ V denotes a canonicalized LATEX expression representing a mathematically key step (e.g.,
physical law, derived intermediate equation, simplified relation). Canonicalization guarantees syn-
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tactic and semantic consistency across solutions. 2. Edges (dependencies). For (u, v) ∈ E, formula
v is derived from formula u. By construction, the edges reference only prior nodes, thereby ensur-
ing temporal causal consistency and a valid topological ordering aligned with natural reasoning.
3. Minimality. Redundant algebraic steps are removed, retaining only essential formulas, thereby
yielding a concise yet sufficient structure that captures the core reasoning trajectory. 4. Complete-
ness. Every node must be connected by a directed path to at least one designated final answer node.
Thus, all preserved formulas contribute causally to the derivation of the final solution, ensuring that
there are no dangling or irrelevant steps.

The resulting DAG captures the logical skeleton of the solution, where nodes formalize reason-
ing steps and edges encode causal dependencies. In this way, the derivation is made machine-
interpretable, with correctness evaluable both locally (per node) and globally (via entire dependency
chains). This structure provides the foundation for our scoring mechanics (see Section 3.4).

3.4 ANCESTOR CLOSURE SCORING

Definition 1 (Ancestor Closure). Let M ⊆ F be the set of matched reference formulas, and let
Anc(S) := {A ∈ F/S : ∃B ∈ S and a path A ≺ · · · ≺ B}. We define the ancestor closure ofM
as:

Ach(M) := M ∪ Anc(M),

i.e., all matched nodes and all their DAG ancestors (reverse reachability).

By this definition, we formally propose our Ancestor Closure Scoring Policy:

Definition 2 (Ancestor Closure Scoring Policy). LetM be the set of formulas in the reference DAG
that are directly matched by the submission (student solution), then Ancestor Closure Scoring gives
the final score as

S =
|Ach(M)|
|F|

(1)

where F is the set of all formulas in the DAG.

Intuition. In a solution DAG, edges point from prerequisite formulas to their dependents. If a
dependent formula is achieved (matched), then every formula that lies on any directed path into it is
considered achieved as well, because those predecessors are logically required for deriving it. Thus,
we count the union of each matched formula together with all of its prerequisites; the score is simply
the fraction of reference formulas covered by this union.

3.5 JUSTIFICATION SYSTEM AND OPTIMALITY OF DAG

We formulate a good formula-based scoring policy under the following intuition: a scoring policy
should first verify which formulas in the reference solution are matched by the student solution,
then see if some other formulas can be justified by the matched reference formulas. We restrict
attention to complete justifications; partial or approximate justifications are outside the scope of this
formulation. Under such a formulation, we can formally discuss the optimality of our provided DAG
structure as a representation of the formula relations, as well as our scoring policy.

Definition 3 (Justification System). Let F be the set of reference formulas. A justification relation
is a relation⇒⊆ 2F ×F , where X ⇒ B means: once every formula in X is matched, the formula
B is automatically warranted, or in other words, adding formula B into the student solution will
not make any further progress to the final answer. The set F and all justification relations within it
form the justification system (F,⇒).

We define the minimal justification relation ⊢ by

A ⊢ B ⇐⇒ A⇒ B and no proper subset Y ⊂ A satisfies Y ⇒ B.

In this case, A is called a minimal justifier of B.

The minimal justification kernel of a justification system (F ,⇒) is the set

K = {(A,B) ∈ 2F ×F : A ⊢ B}.

4
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Two justification systems (F ,⇒1) and (F ,⇒2) are said to be equivalent if they have the same
minimal justification kernel, i.e.

{(A,B) : A ⊢1 B} = {(A,B) : A ⊢2 B}.
Assumption 1 (Singleton Minimal Justifiers). For every B ∈ F , every minimal justifier of B has
size 1. Equivalently, the justification system can be represented with a binary relation ≺⊆ F × F
such that A ≺ B iff {A} is a minimal justifier of B.
Remark. Intuitively, A ≺ B means A is a prerequisite of B: if B is awarded, A must also be
awarded. Scoring thus flows upward in the DAG: from every scored node B, all ≺-ancestors A are
also scored.
Assumption 2 (Causality). If A ≺ B, then A occurs earlier than B in the reference solution’s
logical order.
Theorem 1 (Bijection between order-keeping justifications and DAGs). Fix F = {F1, . . . , FN}
with the index order 1 < · · · < N . Let Just be the class of justification kernels ⊢⊆ F × F that
satisfy Assumptions 1 and 2 (so Fi ⊢ Fj ⇒ i < j). Let DAG be the class of directed acyclic graphs
G = (F , E) whose edges point forward in the index order (i.e., (Fi, Fj) ∈ E ⇒ i < j).

Define the maps

Φ : Just→ DAG, Φ(⊢) =
(
F , E⊢ := {(A,B) : A ⊢ B}

)
,

Ψ : DAG→ Just, Ψ
(
(F , E)

)
=⊢E where A ⊢E B ⇐⇒ (A,B) ∈ E.

Then:

(i) Φ is injective: if Φ(⊢1) = Φ(⊢2), then ⊢1=⊢2.

(ii) Ψ is injective: if Ψ(G1) = Ψ(G2), then G1 = G2.

Consequently, Φ and Ψ are mutual inverses and yield a bijection Just ∼= DAG.
Remark. By Theorem 1, we can see that the DAG representation is precisely the minimal encoding
of a justification system: it records only the minimal justification kernel and thus contains no redun-
dant rules. At the same time, its closure recovers the full justification system, so the DAG captures
exactly the necessary structure with no loss of information and no superfluous complexity. The proof
of Theorem 1 is given in Appendix A.1

3.6 ADMISSIBILITY OF ANCESTOR CLOSURE SCORING

Intuitively, a good scoring policy would map each formula in the DAG to 1 (achieved) or 0 (not
achieved), then provide score accordingly. More formally, we define an admissable scoring policy
as follows:
Definition 4 (Admissible Scoring Policy). A mapping S : 2F ≺ 2F , where S(M) is the set of
scored formulas for matched setM, is admissible if it satisfies:
1.Matched Inclusion:M⊆ S(M).
2.Ancestor Closure: If B ∈ S(M) and A ≺ B, then A ∈ S(M).(“B justifies A”⇒ back-credit A)
3.Soundness: S(M) ⊆ Ach(M). (no over-credit beyond justified ancestors)
Theorem 2 (Exact Characterization of Scored Formulas). For any matched set M ⊆ F and any
admissible scoring policy S,

S(M) = Ach(M) = M ∪ Anc(M).

Proof of Theorem 2 is given in Appendix A.2.
Remark. Theorem 2 shows our Ancestor Closure Scoring is equivalent to any admissible policy.

4 EVALUATION FRAMEWORK: PRISM-DAG

4.1 RULE-BASED PHYSICS FORMULA EQUIVALENCE MATCHING

A key component of our PRISM-DAG is to decide whether two formulas are equivalent. However,
checking equivalence between physics formulas presents three key challenges: (1) Equivalence of

5
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equations. Checking formula equivalence is more difficult than expression comparison; (2) Con-
stant substitutions. Two equivalent variables might be written in different forms; (3) Unit conver-
sion. Values can be expressed in different units. Prior works often avoid these issues by checking
only final expressions, enforcing specific formats, or relying on LLM-as-Judge for comparison, but
such approaches either miss process-level evaluation or suffer from hallucination.

To enable fine-grained and rigorous process-based scoring, we propose a two-stage algorithm for
physics formula equivalence checking:

[Stage 1] Constant Substitution. We substitute certain variables with their expressions. Variables,
constants, and units are normalized into predefined form for consistency.

[Stage 2] Solution Set Equivalence Check. For two equations with N variables, one variable is
randomly chosen as the target, the remaining N − 1 are assigned random values, then and the target
is solved to compare whether the solution sets are equivalent. This process is repeated for multiple
iterations. Solution set equivalence serves as a proxy for equation equivalence.

Details of the equivalence matching procedure and algorithm are given in Appendix B.1 and Algo-
rithm 1 in Appendix B.2, which successfully resolve these difficulties.

4.2 SCORING PIPELINE

Given a student solution and a problem with annotated DAG, we can summarize our evaluation
process PRISM-DAG as three steps, details shown in Algorithm 2 in Appendix B.3.

Formula Extraction and Normalization. Given a student’s solution, all mathematical expressions
are first extracted and rewritten into our dataset’s standardized canonical form, discarding invalid
expressions such as syntactically malformed formulas or irrelevant numerical fragments.

Formula Matching. Each standardized student formula is compared against the reference DAG of
the solution according to Section 4.1, which outputs a set of matched formulas in the DAG.

Scoring. Finally, we score the student solution according to the Ancestor Closure Scoring Policy in
Section 3.4 with the DAG and the set of matched formulas.

5 PRISM-PHYSICS BENCHMARK

5.1 BENCHMARK OVERVIEW

We first collect and preprocess the data to satisfy the need of our scoring pipeline, then do difficulty
annotation and domain categorization to give more fine-grained results for analysis. An example of
our dataset is shown in Figure 2.

5.2 DATA COLLECTION AND PREPROCESSING

Three-Step Rewriting Pipeline.

To guarantee both internal consistency and external evaluability, every sample in the dataset is pro-
cessed through a structured three-stage rewriting pipeline. Each stage focuses on eliminating ambi-
guity and enforcing standardization, while preserving the fidelity of the original content: (1) For-
mula normalization. All mathematical expressions are standardized in LATEX, with uniform rules for
symbolic equivalence and numerical precision; (2) Context clarification. Problem statements are
rewritten to define all variables and answer requirements explicitly, removing ambiguities; (3) DAG
construction. Each solution is represented as a directed acyclic graph (DAG) of formulas, verified
by rule-based and LLM-based checks.

Verification and Quality Control. At each stage, an LLM-based module verifies formatting, clarity,
and dependency rules; failures trigger corrective feedback and regeneration.

Fine-Grained Enhancements. Beyond the main pipeline, we applied several refinements: en-
forcing significant-figure rules, explicitly defining all constants and variables, and unifying answer
formatting. See Appendix C for further details and prompts.
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5.3 ANNOTATION & ANALYSIS
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Figure 3: Statistics of PRISM-PHYSICS hi-
erarchical topics and difficulty level.

Difficulty Annotation. Each problem is assigned a
composite difficulty label that integrates LLM-based
ratings of conceptual depth and computational bur-
den with an entropy-based DAG complexity mea-
sure. The three components are combined into a uni-
fied score, which is mapped to Easy, Medium, Hard,
capturing both the content difficulty and the reason-
ing complexity of the solution.

Physics Domain Categorization. Each problem is
categorized into one of seven key physics domains:
(1) Mechanics, (2) Electromagnetism, (3) Optics, (4)
Atomic, Nuclear, and Particle Physics, (5) Thermo-
dynamics and Statistical Physics, (6) Quantum Me-
chanics, and (7) Solid State Physics and Miscella-
neous Topics. Further details and prompts are pro-
vided in Appendix D.

6 EXPERIMENTS

6.1 SETTING

We evaluate our proposed PRISM-DAG evaluation
framework on the benchmark. We consider two experimental settings: a text-only setting, where the
problem statement is presented as plain text, and a multimodal setting, where relevant diagrams or
figures are included alongside the text.

Models. We evaluate a diverse set of frontier LLMs. To guide the models in generating reasoning-
augmented responses, we design zero-shot COT prompts that encourage step-by-step derivations.
All models are run with a unified inference configuration, including fixed temperature, maximum
generation length, and identical prompt templates, to ensure fair comparison across settings.

Evaluation Framework Baselines. For comparison, we evaluate against: (1) LLM-as-Judge
Scoring, where an LLM evaluates both the final answer and the solution process given grading
prompts(following the evaluation setting of SeePhy (Xiang et al., 2025)); (2) PSAP-S (Zhang et al.,
2025), an existing process-based framework with strong step-format and ordering assumptions,
replicated per its original implementation for fair comparison. Details are provided in Appendix E.

6.2 SUMMARY OF EXPERIMENT FINDINGS

We conduct a comprehensive set of experiments, including overall performance evaluation via step-
level final-answer accuracy, physics-domain analysis, modality and reasoning-level comparisons,
error analysis, and alignment with human expert judgments. Below is a concise summary of our key
experimental findings:

• Overall, frontier LLMs struggle to maintain coherent multi-step physics derivations despite strong
performance on simpler tasks, and performance declines sharply with increasing difficulty.

• Hard problems exhibit a sharp divergence between step-level and final-answer accuracy (final-
answer accuracy ≲ 10%), yielding extremely sparse rewards, while step-level scoring more faith-
fully captures partial reasoning competence and can serve as a dense signal for RL and data curation.

• Domain analysis reveals weaknesses in Quantum Mechanics, and most errors arise from incorrect
physical assumptions (CAE), algebraic and computational mistakes (DCE) and Modeling & Process
Understanding Errors(MPUE), providing guidance for future model training and improvement.

• Multimodal input offers strong step-level gains for larger models but provides limited or even neg-
ative benefits for smaller models, where diagrams serve mainly a presentational role.

• Deeper reasoning modes consistently enhance accuracy but require significantly more computation,
highlighting a central efficiency challenge for scaling reasoning performance.
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Table 1: Step-level Accuracy and Final-Answer Accuracy across difficulty levels (Easy, Medium,
Hard, and Avg.) for evaluated models.

Model Reasoning Easy Medium Hard Avg.

Final Step Time Final Step Time Final Step Time Final Step Time

Open-source Chat LLMs

Deepseek-V3 F 30.70 58.91 13.55 18.11 50.21 17.63 7.97 43.78 19.64 18.48 50.67 17.06
Qwen2.5-72B-Instruct-Turbo F 24.31 48.74 13.17 11.02 37.51 17.21 4.74 32.77 18.74 12.96 39.35 16.49
Llama-4-Scout-17B-16E F 21.11 46.99 13.73 11.22 35.32 17.35 2.85 28.34 19.10 11.37 36.51 16.84
Llama-3.3-70B-Instruct-Turbo F 22.81 45.42 22.16 12.20 34.65 21.89 2.66 24.66 24.18 12.17 34.51 22.78

Open-source Reasoning LLMs

Deepseek-R1 T 27.51 52.16 345.28 16.73 50.62 468.81 10.82 46.30 585.86 18.02 49.59 471.30
GPT-OSS-20B T 18.55 31.92 12.30 7.48 19.14 14.66 3.42 11.76 14.86 9.51 20.54 13.99
GPT-OSS-120B T 21.75 42.97 9.39 11.22 30.60 13.49 2.85 19.75 14.77 11.57 30.66 12.66
Qwen3-235B-A22B-Instruct T 30.28 55.78 29.22 14.96 39.93 38.56 5.50 31.73 41.79 16.42 42.00 36.78

Proprietary Chat LLMs

Claude-sonnet-4 F 29.00 54.97 23.63 17.32 47.65 28.52 8.16 39.13 29.23 17.75 46.95 27.24
GPT-4o-mini F 18.76 40.82 12.20 7.09 26.88 14.51 2.28 21.05 15.17 9.04 29.18 14.02
GPT-4.1 F 30.06 58.68 13.91 16.93 53.56 22.24 8.73 48.82 28.98 18.15 53.50 22.00

Proprietary Reasoning LLMs

Gemini-2.5-Flash T 29.00 51.35 33.00 15.55 43.12 46.54 7.59 35.04 53.53 16.96 42.86 44.77
Gemini-2.5-Pro T 31.98 60.29 64.11 23.43 56.87 84.16 12.90 49.68 98.91 22.41 55.42 83.07
GPT-5 Low 31.13 57.48 27.78 20.08 54.6 36.12 11.39 49.32 43.36 20.48 53.65 36.05
GPT-5 Medium 32.20 59.04 46.35 20.87 55.19 68.13 13.85 51.74 81.75 21.94 55.18 66.11
GPT-5 High 30.92 60.21 100.13 21.26 57.00 135.50 10.06 51.52 159.06 20.35 56.08 132.73
GPT-5-mini Low 26.01 52.12 30.08 14.96 44.13 37.76 7.02 38.45 42.38 15.62 44.63 36.98
GPT-5-mini Medium 29.21 55.86 45.08 17.52 49.40 59.95 8.92 42.15 71.21 18.15 48.87 59.26
GPT-5-mini High 29.85 57.25 154.26 19.09 53.22 198.31 11.20 47.89 226.00 19.68 52.61 194.27
Grok-4 T 26.44 53.02 170.60 17.52 49.45 235.19 9.11 44.34 267.56 17.35 48.77 226.39
o4-mini T 23.88 48.56 27.84 13.58 39.21 33.76 6.07 31.83 37.50 14.16 39.54 33.22

Multimodal Large Language Models

Claude-sonnet-4 F 27.29 54.21 16.46 16.53 49.06 20.90 6.31 40.5 23.19 16.33 47.68 20.31
Gemini-2.5-Flash T 30.49 54.08 37.10 19.09 48.18 53.21 9.30 36.41 62.87 19.21 45.90 51.57
Gemini-2.5-Pro T 34.33 60.91 67.30 21.46 59.35 88.51 14.42 54.16 102.04 23.01 58.02 86.64
GPT-4.1 F 28.57 58.64 18.60 15.55 52.67 24.99 7.40 43.92 29.12 16.75 51.47 24.44
GPT-5 Medium 31.90 60.53 60.35 22.27 56.94 80.05 12.30 50.93 93.70 21.84 55.98 78.59
GPT-5-mini Medium 28.78 54.14 49.65 16.27 47.13 63.55 9.90 44.42 70.97 17.95 48.37 61.80
Grok-4 T 28.88 56.34 196.36 17.14 51.33 241.64 8.81 46.89 335.71 17.95 51.37 260.04

• Our DAG-based, rule-base evaluator aligns more closely with human experts than LLM-as-judge
baselines.

6.3 MAIN RESULTS

Table 1 and Figure 1 show Step-level Accuracy and Final-Answer Accuracy across difficulty levels.
Performance consistently declines and response time increases with problem difficulty, reflecting
LLMs’ sensitivity to longer reasoning chains, more demanding modeling, and higher computational
effort.

Step-level vs. Answer-level Evaluation. As shown in Table 1, final-answer and step-level evalua-
tions diverge sharply with problem difficulty. Final-answer accuracy drops by over 40% from easy
to medium tasks and falls below 10% on hard problems, indicating that models struggle to sustain
reliability through long reasoning chains. In contrast, step-level evaluation shows that models still
gain partial credit by correctly handling significant parts of the derivation. Even on hard problems,
they apply key principles or derive valid intermediate equations before failing at later stages.

These results demonstrate that final-answer scoring alone severely underestimates reasoning ability,
whereas step-level evaluation provides a more faithful measure of process competence under com-
plex tasks. Moreover, step-level signals open promising avenues for training and data curation: If
evaluation relies solely on final answers, rewards on difficult problems become extremely sparse.
Instead, step-level scoring provides rich intermediate reward signals, offering valuable guidance
for reinforcement learning and a principled basis for constructing higher-quality training data.

Physics Domain Category Analysis. We analyze LLM performance across physics domains and
difficulty levels, as shown in Figure 4. Models exhibit varying accuracy across different types,
with the highest performance observed in Thermodynamics and Statistical Physics and the lowest

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

in Quantum Mechanics. Step-level evaluation further exposes weaknesses in reasoning coherence,
and accuracy consistently drops from Easy to Hard problems across all domains.
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Figure 4: Step-level and final-answer accuracy across Physics Domain Categories and Difficulty Levels.

6.4 MODALITY AND REASONING-LEVEL COMPARISONS

Text Models vs. Multimodal Models. The effect of multimodal input varies across model families.
In general, adding images provides stronger gains at the step level than at the final-answer level,
highlighting its role in supporting intermediate reasoning. However, for smaller or weaker models,
multimodal input can even be detrimental, as diagrams in physics problems often serve a presen-
tational rather than informational role, with the critical content already conveyed in text. Figure is
provided in Appendix E.2.

Across Different Reasoning Level. As shown in Figure 5, we observe that reasoning-oriented
models exhibit consistently higher accuracy than chat-oriented models, but this improvement consis-
tently comes with substantially longer response times. We further evaluate GPT-5 and GPT-5-mini
under three reasoning modes (low, medium, high). Results indicate a consistent improvement in
accuracy with increasing reasoning effort. However, for GPT-5, the average latency of the medium
mode is 83.38% higher than the low mode, while the high mode is 268.18% higher. GPT-5-mini
shows the same pattern. These results confirm that deeper reasoning consistently improves accuracy
while incurring proportional increases in computational cost. Notably, while o4-mini was previ-
ously claimed to be a good reasoning model, its performance here is relatively poor; one possible
explanation is that, as a distilled model, it suffers from limited generalization and thus struggles with
complex reasoning tasks beyond its training distribution.
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Figure 5: Comparison of accuracy and
response time across reasoning levels.
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6.4.1 ERROR ANALYSIS

We perform error analysis on the first incorrect step detected in each solution as shown in Figure 6,
using a unified taxonomy that integrates process-level physics reasoning errors with formula-level
derivation errors. The classification covers seven categories (detailed definitions are provided in
Appendix G.2): (1) Diagram Analysis Error (DAE), (2) Physics Theorem Application Error (PTAE),
(3) Modeling and Process Understanding Error (MPUE), (4) Condition or Assumption Error (CAE),
(5) Variable Relationship Error (VRE), (6) Derivation and Computation Error (DCE), and (7) Unit
Dimension Error (UDE).

The dominant error types across models are Condition/Assumption Errors (CAE), which arise when
models set up inconsistent or incorrect physical assumptions; Derivation & Computation Errors
(DCE), which occur when models make mistakes in algebraic manipulation or calculation; and
Modeling & Process Understanding Errors (MPUE), which reflect failures in mapping the problem
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into the correct physical model or reasoning process. This indicates that LLMs often fail both in
establishing consistent physical conditions and in executing algebraic reasoning.

6.5 EVALUATION FRAMEWORK ANALYSIS

We further evaluated PRISM-DAG with human annotations to assess effectiveness.

Annotation Setup. We randomly sampled 70 problems (10 from each domain) along with their
corresponding DeepSeek-V3 (text-only) solutions. Each problem–solution pair was independently
evaluated by two human experts to reduce variance. We let the experts grade by their own profes-
sional judgment without the DAG. In cases where the two experts’ scores differed substantially, a
third annotator was invited to adjudicate and determine the final score.

Results. We quantified the agreement between framework-generated scores and human annota-
tions using Kendall’s τb correlation coefficient, along with statistical significance testing via both
asymptotic and permutation-based p-values (see Appendix F.1 for details). Higher τb values indicate
stronger concordance, with significance levels verifying the robustness of the observed correlations.

Table 2: Comparison of annotation alignment.

Method τb ↑ Asymptotic p-value ↓ Permutation p-value ↓
LLM-as-Judge 0.294 6.90×10−3 6.00×10−3

PSAS-S 0.213 2.20×10−2 2.09×10−2

PRISM-DAG 0.346 1.31× 10−4 1.00× 10−4

Table 2 demonstrates the clear superiority
of PRISM-DAG. LLM-as-Judge is purely
outcome-based, assigning only binary 0/1
scores, while PSAS-S, though process-based,
evaluates steps independently without model-
ing causal dependencies. Both baselines are
LLM-based, whereas our non-LLM PRISM-
DAG explicitly accounts for causality across
steps, leading to stronger alignment with human judgments. We analyzed failure cases from our
evaluator and two baselines to understand strengths and limitations. Details are provided in Ap-
pendix F.2.

7 CONCLUSION AND FUTURE WORK

We introduced PRISM-PHYSICS, a benchmark and a process-level evaluation framework that en-
codes physics solutions as DAGs and employs rule-based symbolic equivalence checking for reli-
able, fine-grained scoring.

Experiments reveal persistent reasoning failures in frontier LLMs, underscoring the challenge of
sustaining coherent derivations in physics. PRISM-PHYSICS establishes a principled and inter-
pretable foundation for process-level evaluation, enabling more robust benchmarks and advancing
LLMs toward deeper scientific reasoning, while its step-level signals provide both training guidance
and a principled basis for higher-quality data.

Although PRISM-PHYSICS currently focuses on physics, our evaluation framework is domain-
agnostic and can be readily extended to other subjects such as mathematics, chemistry, and biology.
In future work, we also plan to use the benchmark for post-training LLMs, particularly to study the
benefits of incorporating process-level signals during RL-based fine-tuning.

Furthermore, our framework is designed to be easily adapted to existing datasets. We therefore
encourage both current and future benchmark developers to adopt our framework alongside their
original evaluation methods, in order to provide more comprehensive and consistent assessments.

10
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ETHICS STATEMENT.

This work uses publicly available physics competition problems and solution materials. No private
or sensitive data are involved. All datasets were curated and processed with the goal of supporting
fair and reproducible evaluation of large language models.

REPRODUCIBILITY STATEMENT.

We are committed to ensuring full reproducibility of the results in this paper. To this end, we will
release the following upon acceptance:

Data: All benchmark datasets introduced in this work will be publicly available, together with
documentation describing their collection and processing.

Code for Reproduction: We will provide all scripts necessary to reproduce the experiments and
results reported in the paper, including data preprocessing, evaluation, and analysis.

Framework Adaptation Tools: We will release additional code to allow other benchmark developers
to easily convert their datasets into our standardized format, enabling seamless evaluation within our
framework.

Due to anonymity and submission guidelines, these resources are not included with the submission.
However, we will make them publicly accessible upon publication to support transparency, repro-
ducibility, and extensibility of our benchmark.
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A DAG STRUCTURE DETAILS

A.1 PROOF OF THEOREM 1

Proof. (i) If Φ(⊢1) = Φ(⊢2), then their edge sets coincide: E⊢1
= E⊢2

. By definition of E⊢, this
is equivalent to

{(A,B) : A ⊢1 B} = {(A,B) : A ⊢2 B},
hence ⊢1=⊢2.

(ii) If Ψ(G1) = Ψ(G2), then their kernels coincide: ⊢E1
=⊢E2

. Unwinding the definition,

(A,B) ∈ E1 ⇐⇒ A ⊢E1
B ⇐⇒ A ⊢E2

B ⇐⇒ (A,B) ∈ E2,

so E1 = E2 and thus G1 = G2.

Order-keeping ensures that Φ(⊢) ∈ DAG (acyclic by Assumption 2; all edges point forward), and
that Ψ(G) ∈ Just (singletons and forward edges by construction). Finally,

Ψ(Φ(⊢)) =⊢ and Φ(Ψ(G)) = G

hold by definition of E⊢ and ⊢E .

A.2 PROOF OF THEOREM 2

Proof. (⊆). Soundness gives
S(M) ⊆ Ach(M).

(⊇). Matched Inclusion gives
M⊆ S(M).

By Ancestor Closure, if B ∈ S(M) and A ≺ B, then A ∈ S(M). Applying this repeatedly from
every B ∈M along all reverse paths implies

Anc(M) ⊆ S(M).

Hence
Ach(M) ⊆ S(M).

Combining both directions yields the equality:

S(M) = Ach(M).

B EVALUATION FRAMEWORK DETAILS

B.1 EQUIVALENCE MATCHING DETAILS

Given a standard solution (composed of multiple formulas in a DAG structure) and an LLM solution
(composed of multiple formulas), we compare every possible pair of one solution-formula and one
LLM-formula. In practice, this process runs on CPUs can be efficiently parallelized, hence its time
consumption is very small compared to other steps in our benchmarking pipeline (e.g. serialized
generation of tokens with LLMs). The rest of this section discusses in detail how we compare two
physics formulas.

As described, checking whether two physics formulas are equivalent faces several critical difficul-
ties, where we provide a more detailed discussionn:

1. Equivalence of equations. Formula Matching (i.e. checking equivalence of two formulas)
is harder than Expression Matching (i.e. checking equivalence of two expressions). Previ-
ous work for expression matching mainly use tree-based formula parsing (Qiu et al., 2025).
However, such tree-based parsing is not powerful enough to compare formulas.
For result-based judges or expression-based judges, one could check equivalent expressions
only, but checking equivalent formulas is critical for more fine-grained process-based score.
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2. Constant substitutions. In physics two equivalent variables might be written in different
forms. For example, the coulomb force F = kQq/r2 can be written as F = Qq/(4πϵ0r

2):
these two expressions are equivalent, but they are in different forms. Sometimes universe
constants can be expressed in detailed numbers, for example: E = mc2 = m ∗ (3.0 ∗
108m/s)2

3. Unit conversion. Values can be expressed in different units. For example, f = 50 Hz =
50 s−1, using different units results in equivalent but seemingly different formulas.

We show our proposed algorithm for formula equivalence matching (i.e., comparing whether two
equations are equivalent) in Algorithm B.2.

First, we conduct substitution of certain variables: this includes Math constants (e.g. π, e,etc.),
Physics constants (e.g. k = 1

4πε0
, c0 = 1√

ε0µ0
,etc.), constants or values provided in the problem

(e.g. provided length, etc.), described as ‘Stage 1’ in the algorithm.

After unifying all variables across formulas, we move forward to the iterated process of choosing
a target variable – randomly assign values to other variables – solving for the target variable. The
equivalence of solution sets are used as proxy for comparing equivalence of these two equations. In
practice, we conduct at most Nmax = 40 iterations. In each iteration, one target variable is selected
randomly, and other variables are assigned random values in [2, 20]. Each iteration would generate
one out of three possible outcomes: (1) not-rejecting equivalence trial; (2) rejecting equivalence
trial; and (3) failure trial (in cases when both equations have no solutions). For each iteration,
if both equations have solutions and their solution sets are equal within some tolerance threshold
(relevant difference ε = 10−6), it is classified as (1) not-rejecting equivalence trial; if their solution
number is different or their solution sets are not equal within certain threshold, this trial is classified
as (2) rejecting equivalence trial; while if both equations provide no solutions, such trial is classified
as (3) failure trial. We continue to run iterations until we have enough successful solutions (at least
Nsucc = 10) or we reach the maximum number of iterations (Nmax = 40). Then we reject the
equivalence if the number of successful trials is less than Nsucc = 10 or there exists a trial that is a
rejection equivalence trial. 2.

Here we discuss some of these design choices.

More-than-one Iterations. In common cases, given sufficient tolerance, the p − value of one
iteration is small enough to reject the equivalence of non-equivalent equations. In practice, the
tolerance is set to 10−6 considering possible computing errors. However, this would lead to false
non-rejecting in special cases, when using only one iteration. Consider these two formulas: f1 :
x = A0 + A1t

2δ and f2 : x = A0 + 2A1t
2δ where A0 ∼ A1 ∼ 1, t ∼ 1, δ ∼ 10−8. If we select x

or A0 as target variable and randomly assign values to other variables, the difference in solutions of
these two formulas would lie within the tolerance, and hence it cannot reject nonequivalence of these
two formulas. In this case, using A1 or t as the target variable would reject the equivalence, making
false non-rejecting rate of one iteration be around 0.5, which is way larger than what we expect. In
our multi-iteration settings, the false non-rejecting rate of the 10-iteration examine process would
be around 10−3 in this case, which is satisfactory enough.

Positive Sampling Intervals. Here we randomly sample most variables in a positive interval, i.e.,
[2, 20]. This is because most variables in physics problems are provided as positive ones, and using
negative intervals for sampling may lead to false rejections. For example, T = 2π

√
a3/GM and

T = 2πa
√
a/GM (Kepler’s Third Law) are considered equivalent in most physics settings: the

semi-major axis a of planet orbits should always be positive. Here, we simply set our sampling
interval to be positive to avoid false rejections caused by similar reasons.

2Some optimizations for reducing time consumption are also used in practice (e.g. rejecting equivalence of
formulas once after the first rejecting equivalence trial), which are trivial and have no impact to the output of
this algorithm, hence we omit them here for clarity
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B.2 ALGORITHM OF EQUIVALENCE MATCHING

Algorithm 1: Equivalence Check for Two Physics Equations
Input : Two equations E1, E2 (symbolic); constants map C (symbol 7→ symbol or value);

sampling range R = [a, b]; tolerance ε; limits Tmax (time), Nmax (trials), Nsucc (min
successful trials), Neq (min equalities).

Output: Equivalent ∈ EQUIVALENT, INEQUIVALENT; diagnostics (neq, nneq, nfail).

Stage 1: Constant Variable Substitution; Procedure SUBSTITUTECONSTANTS(E, C)
Substitute all string-valued entries in C into E ; // units/expressions; one
pass, no recursion

Substitute all numeric-valued entries in C into E ; // e.g., e, c0, xf

return updated E
E1 ← SUBSTITUTECONSTANTS(E1, C); E2 ← SUBSTITUTECONSTANTS(E2, C);
Stage 2: Equivalent Check by Solving in Random Conditions;
neq ← 0, ;nneq ← 0, ;nfail ← 0, ; k ← 0; V ← free variables appearing in E1 ∪ E2;
Function SOLVETARGET(E, x⋆, θ, Tmax)

return solution set S of E for target x⋆ under assignment θ to V \ x⋆ within time Tmax

Function ALLCLOSE(S1,S2, ε)
return TRUE iff the two finite sets match pairwise within relative/absolute tolerance ε

while k < Nmax do
k ← k + 1; pick x⋆ ∼ Unif(V ) ; // random target variable
sample θ(v) ∼ Unif(R) for each v ∈ V \ x⋆ ; // random values for
non-target variable
S1 ← SOLVETARGET(E1, x

⋆, θ, Tmax) ;
S2 ← SOLVETARGET(E2, x

⋆, θ, Tmax) ;
if S1 or S2 is nonempty then

if ALLCLOSE(S1,S2, ε) then
neq ← neq + 1 ; // current trial does not reject equivalence

else
nneq ← nneq + 1 ; // current trial rejects equivalence

end
else

nfail ← nfail + 1 ; // current trial fails and cannot be used for
judging equivalence

end
if (neq + nneq) ≥ Nsucc and k ≥ Nsucc then

break
end

end
Decision; if neq ≥ Neq and nneq = 0 then

return EQUIVALENT ; // Enough valid trials and no trial rejects
equivalence

end
else

return INEQUIVALENT ; // Exists trial rejecting equivalence or no
enough valid trials

end

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.3 ALGORITHM OF SCORING PIPELINE

Algorithm 2: PRISM-DAG: Evaluation via DAG-Structured Rubric (3 Steps)
Input : Reference DAG G = (V,E); each node v ∈ V has formula ϕ(v) and prerequisite set

Pred(v); student solution text S.
Output: Score s ∈ [0, 1]; matched set M ⊆ V ; achieved set A ⊆ V .

Step 1: Extract and Normalize Student Formulas;
F̂ ← ExtractFormulas(S) ; // raw math expressions
F ← ∅;
foreach f ∈ F̂ do

g ← Canonicalize(f) ;
if IsValid(g) then

F ← F ∪ {g}
end

end
Step 2: Match to Reference DAG (Reference Nodes Only);
M ← ∅;
foreach v ∈ V do

if ∃ g ∈ F s.t. Equivalent(ϕ(v), g) then
M ←M ∪ {v}

end
end
Step 3: Dependency Tracing and Scoring;
A← ∅;
Procedure MARKANCESTORS(u)

if u /∈ A then
A← A ∪ {u};
foreach p ∈ Pred(u) do

MARKANCESTORS(p)
end

end
foreach v ∈M do

MARKANCESTORS(v)
end
s← |A| / |V |
return (s,M,A);

B.4 SCORING EXAMPLE

Figure 7 illustrates an example of how a student’s (or LLM’s) solution is scored using formula
matching and DAG-based back-propagation scoring.

Step A (Formula Matching): each formula in the student’s solution is aligned one-to-one with the
reference solution, with equivalent formulas connected by green lines. For clarity, not all formula
pairs are drawn. Grey arrows denote the dependency relations (DAG) between formulas in the
reference solution.

Step B (Back-Propagation scoring): once a derived formula in the DAG is matched, correctness
is propagated backwards along the dependency graph, allowing upstream formulas to be credited
as well. Correctly credited formulas are highlighted in orange, and the back-propagation path is
indicated by orange arrows.

Step C (Score Calculation): the final score is calculated by adding the points of correctly credited
formulas. In this example, the student achieves a score of 90/100.
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Figure 7: Scoring pipeline example. A) Formula matching aligns student and reference formulas.
B) Back-propagation grading highlights correctly credited formulas along the dependency DAG. C)
The final score is computed as the sum of credited points, yielding 90/100 in this case.

C DATASET CURATION DETAILS

C.1 DATA SOURCE AND COLLECTION

Our primary source of questions and detailed step-by-step solutions is the book Major American
Universities Ph.D. Qualifying Questions and Solutions. The problems were extracted from PDF
format, reorganized in Markdown for readability, and further converted into JSON for structured
storage. Notably, this book has been widely adopted as a training resource for advanced physics
competitions, ensuring both the difficulty and the pedagogical value of the collected problems.
Problems requiring purely textual answers (e.g., “Describe . . . ”, “Is . . . stable?”) were set aside
in a separate collection and are excluded from the current framework.

C.2 THREE-STEP REWRITING PIPELINE DETAILS

To ensure consistency and evaluability, each sample is processed through a three-stage pipeline:

1. Formula normalization. All mathematical expressions are rewritten into a uniform canon-
ical format in LATEX. This normalization supports precise symbolic equivalence checking,
preventing mismatches due to notational variation. For numerical problems, explicit rules
on the number of significant figures are enforced, ensuring consistent standards across all
answers.

2. Context clarification. Each problem statement is rewritten to make all variable definitions
and final answer requirements explicit. Where the original text leaves meanings implicit
(e.g., undefined symbols or missing constants), clarifications are added to resolve ambi-
guities. The result is a self-contained problem statement that can be understood without
external assumptions.

3. DAG construction. Each worked-out solution is converted into a directed acyclic graph
(DAG) of formulas according to the requirement in Section 3.3. We first verify if it satisfies
the requirements via rule-based methods before the LLM-based verification.

Verification and Quality Control At the end of each stage, we employ an LLM-based verifica-
tion module to check compliance with formatting, clarity, and dependency rules. If the verifica-
tion fails—such as when ambiguities persist in variable definitions or the DAG contains extraneous
steps—the stage is repeated with targeted corrective feedback. This iterative loop of generation and
verification ensures robustness, yielding uniformly high-quality results across the dataset.

Fine-Grained Enhancements Beyond the main pipeline, several additional refinements were sys-
tematically applied:
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• Numerical precision. For problems with numerical answers, explicit enforcement of
significant-figure rules was introduced in the problem statement.

• Explicit constants. All physical constants and context-dependent variables appearing in
either the problem or the solution were explicitly defined in the rewritten version.

• Answer formatting. Uniform formatting standards for final answers were applied to the
problem context, including required units and symbolic representations.

Individually, these refinements may appear minor; collectively, they substantially improve the
machine-actionability, reliability, and pedagogical clarity of the dataset.

Figure 8: Overview of the Three-Step Rewriting Pipeline

C.3 PROMPTS FOR THREE-STEP REWRITING PIPELINE

Here are all the prompts we adopt for rewriting.

Format Instructions

1) One Formula Per Block
- Each formula must be wrapped in its own $$...$$ block.
-Avoid chaining multiple equalities or expressions in a single block.
-Exception: Chained variable comparisons in inequalities are allowed only if explicitly required.

2) No Terminal Punctuation
-Do not end any formula block with punctuation marks (e.g. ,, ., ;).

3) SI Unit Format
-Always write units using \unit{} to ensure proper parsing (e.g., \unit{m}, \unit{m/s}).

Notice that the numbers should be put outside the unit, i.e. use $3\unit{km/h}$ instead of
$\unit{3km/s}$.
4) Strip Extra Formatting Commands
REMOVE the following:

-Delimiters: \left, \right
-Fonts/Styles: \mathrm, \mathit, \mathbf, \text
-Spacing: \,, \;, \!, ˜, \quad, \qquad
-Multi-line: \begin{aligned}...\end{aligned}

5) Standard Calculus Notation
Use canonical forms for all calculus expressions:

-Derivatives: \frac{dy}{dx}
-Partial derivatives: \frac{\partial f}{\partial x}
-Integrals: \int_0ˆt v dt (omit spacing commands)
-Summations: \sum_{i=1}ˆn x_i

Rewriting Prompt - First Stage

You are an expert in Physics, and you are going to rewrite a given problem and solution into a standard
form. The formatting requirements are below:

Format Instructions
Moreover, you should make sure that the answers can be graded correctly, you should make sure the
written form of the final answer is unified, which means: 1) You should make sure all variables needed
in the solution, no matter in the final answer or in the intermediate steps, are defined or specified in the
problem, either in the context or in the subproblems. e.g. ’You should use Ek for kinetic energy, Ep for
potential energy, E for total energy, M for the mass of the central body, m for the mass of the satellite, R
for the radius of the orbit.’
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2) You should make sure all variables and concepts are defined clearly in the problem.
3) For all accurate values, don’t write them in decimals but fractions instead. For example instead of
y = 2.25x you should write y = 9

4
x. However if you believe the value is approximate (for example you

think 2.25 is not an accurate value) then you should leave it as decimals.
4) You should try to avoid putting a representation in a formula block, but instead use equations or inequal-
ities. For example instead of writing ”The maximum energy is 2E0”, you should write Emax = 2E0 and
put the definition of Emax in the problem context. Even if it is hard to represent it with a single vari-
able, you should write ans = · · · , and mention that the final answer should be written in this form in the
problem context.
Now according to the requirements, please rewrite the problem and solution below.

The sample
Your output should be in the same json format, keeping all entries even if unmodified. Don’t
forget any single entry or your output would be invalid. Your response should be formatted as
‘‘‘json\n<your_rewritten_json>\n‘‘‘, and nothing other than the rewritten json should be
in your output.

Rewriting Prompt - Second Stage

You are an expert in Physics, and you are going to rewrite a given problem to make it clearer. More
specifically, we wish to clarify the requirement for the final answer of each problem, which means:
1) You should add an entry ’final answer form’ which has three options ’algebraic’, ’numerical’ and
’text-based’ representing the form of the final answer. ’text-based’ means the final answer is not a cal-
culation result or a derived formula, but instead a text description or statement. Notice that this only
depends on the final answer in the standard solution, therefore each subquestion can only have one fi-
nal answer form. If this is the same for all subproblems, you may write it as an entry of the whole
problem, else you may add an entry for each subproblem separately. In any way, this should be a separate
entry as item[’final answer form’] for the whole problem or item[’subquestions’][i][’final answer form’]
for the i-th subquestion.
A hint on how to decide if an answer is algebraic or numerical: if the answer is a formula with mul-
tiple variables and each side of the formula has variables, it is algebraic; if there is only one vari-
able or variables only exist in one side, it is numerical (e.g. $v_s=3\times 10ˆ7\unit{m/s}$,
$\rho_{min}\approx 1.5\times 10ˆ3 \unit{kg/mˆ3}$ are both numerical answers.)
Only the final formula would decide if it is algebraic or numerical.
2) You should add an entry ’final answer instructions’ based on the final answer form. Similar to ’fi-
nal answer form’, it should be either an entry of the whole problem (if the instruction is suitable for the
whole problem) or separate entries for each subquestion. The instruction should contain the following
information based on the final answer form:
a) If the final answer is algebraic, you should specify the format of the final answer in the problem, e.g.,
’Your final answer should be given in the form of vmin = ..., and your response should be written with
H,T,m, g’. The variable requirement for the final answer should fully match the final answer in the
standard solution and make there’s no redundant variables (for example, if Ek = 1

2
mv2, then you should

at most provide two variables among Ek,m, v for the final answer)
b) If the final answer is numerical, you should instead write ’Your final answer should express ... as a
numerical value’, and if the final answer is an approximate value, you should also specify the number
of significant figures needed according to the standard answer. Moreover you should add an entry like
’significant figures’: 3 to the problem or subproblem.
c) If the final answer is text-based, you should try to restrict the form of final statement, for example you
should write ’Your final answer should be ’The equilibrium is stable/unstable.”, so that we can seek for
the sentence to judge the correctness of the student answer. Now according to the requirements, please
rewrite the problem and solution below.

The sample
Your output should be in the same json format, keeping all entries even if unmodified, and add your new
entries as required. Don’t forget any single entry or your output would be invalid. Make sure you output
a valid json. DO NOT put any hint for the final answer in the instruction! Only give some information to
regularize the format!
Your response should be formatted as ‘‘‘json\n<your\_rewritten\_json>\n‘‘‘, and noth-
ing other than the rewritten json should be in your output.
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Rewriting Prompt - Third Stage

You are an expert in Physics, and you are setting up a grading standard for a given problem. More
specifically, your job is to find the ’core formulas’ in the solution. These core formulas should reflect some
significant progress in solving the problem and thus you think they are worth some credit. Moreover, you
have to organize them in a given format to set up a grading standard.
1) You should organize the core formulas in a list, each formula represented by a dict including the
following entries:

{
” i n d e x ” : t h e i n d e x of t h e formula , c o u n t i n g from 1 .
” f o r m u l a ” : t h e c o n t e n t o f t h e formula , which s h o u l d be a s t r i n g

wrapped wi th double − d o l l a r ( $$ ) symbols .
” dependency ” : t h i s i s t h e c r u c i a l p a r t o f t h e g r a d i n g s t a n d a r d . The

dependency s h o u l d be a l i s t o f i n d i c e s showing which p r e v i o u s
f o r m u l a s t h i s one depends on , which i n d i c a t e s w i t h o u t t h o s e
p r e v i o u s f o r m u l a s t h i s f o r m u l a can ’ t be d e r i v e d . N o t i c e t h a t on ly
d i r e c t c a u s a l i t i e s s h o u l d be c o n s i d e r e d , f o r example i f A l e a d s t o
B and B l e a d s t o C , you don ’ t need t o p u t A i n t h e dependency of

C . A f o r m u l a can n e v e r depend on a n o t h e r f o r m u l a a f t e r i t .
” i s f i n a l a n s w e r ” : ( o p t i o n a l ) t h i s i s t r u e i f t h i s f o r m u l a i s t h e

f i n a l answer o f a subprob lem or t h e whole problem . The l a s t
f o r m u l a among a l l s h o u l d a lways be a f i n a l answer .

}

2) Every formula in the grading standard must exist in the original solution, you should not create any new
formula in the grading standard, and you should not make any modification to the formulas: just directly
copy them from the solution.
3) You should ensure that for an isolated question or subquestion, if the final answer is correct, the student
should receive full score for it. That means, any formula should be ’reachable’ from the final answer (or
at least the final answer of one subproblem) in the dependency graph. If the final answer contains more
than one formuls, you may simply mark multiple formulas as final answers.
Below are some examples for you to better understand the requirement.
...
Now, according the requirement, please write the grading standard for the problem and solution below.
The sample

Reviewing Prompt - First Stage

You are a professor, and now you should review whether your assistant correctly rewrote the problem and
solution into a standard form. More specifically, he should make sure the written form of the final answer
is unified, so that the student answers can be graded correctly. Below was your instruction to him which
he should satisfy:
Problem Requirement as in the rewriting prompt
Moreover, the formulas should also satisfy the following formatting requirements:
Format Instructions
You should return something like ’<judge>valid</judge><reason>...</reason>’ or
’<judge>invalid</judge><reason>...</reason>’. You may think before your final out-
put. Keep the reason concise.
Below are some examples for you to understand it better:
...
Now, according to the instructions, you should decide if your assistant has rewritten the problem and
solution correctly. Below is the problem and solution rewritten by your assistant:
The Sample

The reviewing prompt for the second and third stage are basically the same with the first stage, only
changing the requirement according to that in the rewriting prompt.
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C.4 REWRITING EXAMPLES

PRISM-PHYSICS Rewriting Example - Stage 1

Problem: A bucket of mass M (when empty) initially at rest and containing a mass of water
is being pulled up a well by a rope exerting a steady force P The water is leaking out of the
bucket at a steady rate such that the bucket is empty after a time τ .Find the velocity of the
bucket at the instant it becomes empty.

Original OCR Solution:
Let the total mass of the bucket and water be M ′ . Then

M ′ = M +m− mt

T
,

where m is the initial mass of the water. As the leaking water has zero velocity relative to the
bucket,the equation of motion is

M ′ dv

dt
= P −M ′g,

or

dv =
P −M ′g

M ′ dt =

(
P

M +m− m
T t
− g

)
dt.

The velocity of the bucket at the instant it becomes empty is

v =

∫
0

Pdt

M +m− m
T t
− gT =

PT

m
ln

(
M +m

M

)
· gT .

Error:
1. The problem statement uses τ , but the recognized solution incorrectly shows T
2. In the final equation, the minus sign − was misrecognized as a multiplication symbol ·.

Rewritten Solution :
Let the total mass of the bucket and water at time t be M ′.

M ′ = M +m− mt

τ
The equation of motion for the bucket (plus remaining water) is

M ′ dv

dt
= P −M ′g

Rearranging gives

dv =

(
P

M +m− m
τ t
− g

)
dt

The velocity v of the bucket at time t = τ (when empty) starting from rest is

vempty =

∫ τ

0

Pdt

M +m− m
τ t
− gτ

Evaluating the integral yields

vempty =
Pτ

m
ln

(
M +m

M

)
− gτ

where vempty is the velocity of the bucket at the instant it becomes empty.
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PRISM-PHYSICS Full Sample Example

{
”id”: 1001,
”context”: ”A static charge distribution produces a radial electric field given by\n$$\n\

mathbf{E} = A \frac{eˆ{−b r}}{r} \mathbf{e} r\n$$\nwhere $A$ is a constant with
units \unit{V\cdot m}, $b$ is a constant with units \unit{mˆ{−1}}, and $r$ is the radial
distance from the origin in \unit{m}. You should use $\rho$ for the charge density in \
unit{C/mˆ3}, $\varepsilon 0$ for the vacuum permittivity in \unit{Cˆ2/(N\,mˆ2)}, $\
delta(\mathbf{r})$ for the Dirac delta function, and $Q$ for the total charge in \unit{C}.
When asked for the total charge, provide your answer as\n$$\nQ=...\n$$\nwhere $Q$
denotes the total charge.”,

”source”: ””,
”images”: [
{

”caption”: ”Fig. 1.1”,
”location”: ”...”
}

],
”subquestions”: [
{

”letter”: ”a”,
”subproblem”: ”Find the charge density $\rho$ (in \unit{C/mˆ3}) that produces the

given electric field, including both the regular part as a function of $r$ and any singular (
delta function) contributions at the origin. State your result for $\rho$ explicitly. You may
sketch its form with reference to Fig. 1.1.”,

”solution”: ”The charge density $\rho$ is given by Gauss’s law in differential form:\
n$$\n\rho = \varepsilon 0 \nabla \cdot \mathbf{E}\n$$\nThe electric field is\n$$\n\
mathbf{E} = A \frac{eˆ{−b r}}{r} \mathbf{e} r\n$$\nThe divergence in spherical
coordinates for a radial function $f(r) \mathbf{e} r$ is\n$$\n\nabla \cdot (f(r) \mathbf{
e} r) = \frac{1}{rˆ2} \frac{d}{dr} (rˆ2 f(r))\n$$\nFor $f(r) = A \frac{eˆ{−b r}}{r}$, we
compute\n$$\nf(r) = A \frac{eˆ{−b r}}{r}\n$$\n$$\nrˆ2 f(r) = A r eˆ{−b r}\n$$\n$$\
n\frac{d}{dr}(A r eˆ{−b r}) = A \frac{d}{dr}(r eˆ{−b r})\n$$\n$$\n\frac{d}{dr}(r e
ˆ{−b r}) = eˆ{−b r} − b r eˆ{−b r}\n$$\n$$\n\frac{d}{dr}(A r eˆ{−b r}) = A eˆ{−b r} −
A b r eˆ{−b r}\n$$\n$$\n\nabla \cdot \mathbf{E} = \frac{1}{rˆ2} (A eˆ{−b r} − A b r
eˆ{−b r})\n$$\n$$\n\nabla \cdot \mathbf{E} = \frac{A eˆ{−b r}}{rˆ2} − \frac{A b e
ˆ{−b r}}{r}\n$$\nHowever, the Laplacian of $\frac{1}{r}$ in three dimensions also
gives a delta function:\n$$\n\nablaˆ2 \left( \frac{1}{r} \right) = −4 \pi \delta(\mathbf{
r})\n$$\nSo the divergence, including the singularity at the origin, is\n$$\n\nabla \cdot
\mathbf{E} = −A b \frac{eˆ{−b r}}{rˆ2} + 4 \pi A \delta(\mathbf{r})\n$$\nTherefore,
the charge density is\n$$\n\rho = −\varepsilon 0 A b \frac{eˆ{−b r}}{rˆ2} + 4 \pi \
varepsilon 0 A \delta(\mathbf{r})\n$$\nThe final answer should be written as\n$$\n\
rho = −\varepsilon 0 A b \frac{eˆ{−b r}}{rˆ2} + 4 \pi \varepsilon 0 A \delta(\mathbf{r
})\n$$”,

”final answer form”: ”algebraic”,
”final answer instructions”: ”Your final answer should be given in the form $\rho = ...

$, and your response should be written only with $A, b, r, \varepsilon 0, \delta(\mathbf{r
})$.”
},
{

”letter”: ”b”,
”subproblem”: ”What is the total charge $Q$ (in \unit{C}) present for the above

charge density? Express $Q$ using the variables defined. Write the final answer using the
form $Q=...$”,

”solution”: ”The total charge $Q$ is given by\n$$\nQ = \int {\mathbb{R}ˆ3} \rho
dV\n$$\nWith $\rho = −\varepsilon 0 A b \frac{eˆ{−b r}}{rˆ2} + 4 \pi \varepsilon 0 A
\delta(\mathbf{r})$, we have\n$$\nQ = \int {\mathbb{R}ˆ3} \Bigl[−\varepsilon 0 A b
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\frac{eˆ{−b r}}{rˆ2} \Bigr] dV + \int {\mathbb{R}ˆ3} 4 \pi \varepsilon 0 A \delta(\
mathbf{r}) dV\n$$\nThe first term becomes (working in spherical coordinates):\n$$\n\
int {\mathbb{R}ˆ3} −\varepsilon 0 A b \frac{eˆ{−b r}}{rˆ2} dV = −\varepsilon 0 A b \
int {0}ˆ{\infty} \int {0}ˆ{\pi} \int {0}ˆ{2\pi} \frac{eˆ{−b r}}{rˆ2} rˆ2 \sin\theta d\
phi d\theta dr\n$$\n$$\n= −\varepsilon 0 A b \int {0}ˆ{\infty} eˆ{−b r} dr \int {0}ˆ{\
pi} \sin\theta d\theta \int {0}ˆ{2\pi} d\phi\n$$\n$$\n\int {0}ˆ{\infty} eˆ{−b r} dr = \
frac{1}{b}\n$$\n$$\n\int {0}ˆ{\pi} \sin\theta d\theta = 2\n$$\n$$\n\int {0}ˆ{2\pi}
d\phi = 2\pi\n$$\n$$\n−\varepsilon 0 A b \cdot \frac{1}{b} \cdot 2 \cdot 2\pi = −4\
pi \varepsilon 0 A\n$$\nThe second term is\n$$\n\int {\mathbb{R}ˆ3} 4 \pi \
varepsilon 0 A \delta(\mathbf{r}) dV = 4 \pi \varepsilon 0 A\n$$\nTherefore,\n$$\nQ
= −4\pi \varepsilon 0 A + 4\pi \varepsilon 0 A\n$$\n$$\nQ = 0\n$$”,

”final answer form”: ”numerical”,
”final answer instructions”: ”Your final answer should be $Q=0$.”
}

],
”grading standard”: [
{

”index”: 1,
”formula”: ”$$\rho = \varepsilon 0 \nabla \cdot \mathbf{E}$$”,
”dependency”: []
},
{

”index”: 2,
”formula”: ”$$\mathbf{E} = A \frac{eˆ{−b r}}{r} \mathbf{e} r$$”,
”dependency”: []
},
{

”index”: 3,
”formula”: ”$$\nabla \cdot (f(r) \mathbf{e} r) = \frac{1}{rˆ2} \frac{d}{dr} (rˆ2 f(r

))$$”,
”dependency”: []
},
{

”index”: 4,
”formula”: ”$$f(r) = A \frac{eˆ{−b r}}{r}$$”,
”dependency”: [

2
]
},
{

”index”: 5,
”formula”: ”$$rˆ2 f(r) = A r eˆ{−b r}$$”,
”dependency”: [

4
]
},
{

”index”: 6,
”formula”: ”$$\frac{d}{dr}(A r eˆ{−b r}) = A \frac{d}{dr}(r eˆ{−b r})$$”,
”dependency”: [

5
]
},
{

”index”: 7,
”formula”: ”$$\frac{d}{dr}(r eˆ{−b r}) = eˆ{−b r} − b r eˆ{−b r}$$”,
”dependency”: []
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},
{

”index”: 8,
”formula”: ”$$\frac{d}{dr}(A r eˆ{−b r}) = A eˆ{−b r} − A b r eˆ{−b r}$$”,
”dependency”: [

6,
7

]
},
{

”index”: 9,
”formula”: ”$$\nabla \cdot \mathbf{E} = \frac{1}{rˆ2} (A eˆ{−b r} − A b r eˆ{−b r

})$$”,
”dependency”: [

3,
8

]
},
{

”index”: 10,
”formula”: ”$$\nabla \cdot \mathbf{E} = \frac{A eˆ{−b r}}{rˆ2} − \frac{A b eˆ{−

b r}}{r}$$”,
”dependency”: [

9
]
},
{

”index”: 11,
”formula”: ”$$\nablaˆ2 \left( \frac{1}{r} \right) = −4 \pi \delta(\mathbf{r})$$”,
”dependency”: []
},
{

”index”: 12,
”formula”: ”$$\nabla \cdot \mathbf{E} = −A b \frac{eˆ{−b r}}{rˆ2} + 4 \pi A \

delta(\mathbf{r})$$”,
”dependency”: [

10, 11
]
},
{

”index”: 13,
”formula”: ”$$\rho = −\varepsilon 0 A b \frac{eˆ{−b r}}{rˆ2} + 4 \pi \varepsilon 0

A \delta(\mathbf{r})$$”,
”dependency”: [

1,
12

],
”is final answer”: true
},
{

”index”: 14,
”formula”: ”$$Q = \int {\mathbb{R}ˆ3} \rho dV$$”,
”dependency”: []
},
{

”index”: 15,
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”formula”: ”$$Q = \int {\mathbb{R}ˆ3} \Bigl[−\varepsilon 0 A b \frac{eˆ{−b r}}{
rˆ2} \Bigr] dV + \int {\mathbb{R}ˆ3} 4 \pi \varepsilon 0 A \delta(\mathbf{r}) dV$$”,

”dependency”: [
13,
14

]
},
{

”index”: 16,
”formula”: ”$$\int {\mathbb{R}ˆ3} −\varepsilon 0 A b \frac{eˆ{−b r}}{rˆ2} dV =

−\varepsilon 0 A b \int {0}ˆ{\infty} \int {0}ˆ{\pi} \int {0}ˆ{2\pi} \frac{eˆ{−b r}}{r
ˆ2} rˆ2 \sin\theta d\phi d\theta dr$$”,

”dependency”: [
15

]
},
{

”index”: 17,
”formula”: ”$$= −\varepsilon 0 A b \int {0}ˆ{\infty} eˆ{−b r} dr \int {0}ˆ{\pi} \

sin\theta d\theta \int {0}ˆ{2\pi} d\phi$$”,
”dependency”: [

16
]
},
{

”index”: 18,
”formula”: ”$$\int {0}ˆ{\infty} eˆ{−b r} dr = \frac{1}{b}$$”,
”dependency”: []
},
{

”index”: 19,
”formula”: ”$$\int {0}ˆ{\pi} \sin\theta d\theta = 2$$”,
”dependency”: []
},
{

”index”: 20,
”formula”: ”$$\int {0}ˆ{2\pi} d\phi = 2\pi$$”,
”dependency”: []
},
{

”index”: 21,
”formula”: ”$$−\varepsilon 0 A b \cdot \frac{1}{b} \cdot 2 \cdot 2\pi = −4\pi \

varepsilon 0 A$$”,
”dependency”: [

17,
18,
19,
20

]
},
{

”index”: 22,
”formula”: ”$$\int {\mathbb{R}ˆ3} 4 \pi \varepsilon 0 A \delta(\mathbf{r}) dV =

4 \pi \varepsilon 0 A$$”,
”dependency”: [

15
]
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},
{

”index”: 23,
”formula”: ”$$Q = −4\pi \varepsilon 0 A + 4\pi \varepsilon 0 A$$”,
”dependency”: [

21,
22

]
},
{

”index”: 24,
”formula”: ”$$Q = 0$$”,
”dependency”: [

23
],
”is final answer”: true
}

]
}

D DATASET STATISTICS

D.1 DIFFICULTY ANNOTATION DETAILS

We assign a composite difficulty label by combining LLM-based annotations and structural DAG
complexity:

LLM-Labelled Conceptual and Computational Scores. Each problem is evaluated along two
dimensions using an LLM: C1, which measures conceptual depth (the underlying physical principles
and modeling complexity), and C2, which captures the computational burden (the extent of algebraic
or numerical effort required). Both dimensions are rated on a three-level ordinal scale (1–3), with
higher values indicating greater complexity.

Prompt for Difficulty Annotation

You are an experienced Physics Olympiad coach and grader.
Classify Olympiad-level physics problems using TWO dimensions (1–3 each):
C1 Conceptual depth (principles & modeling complexity)
C2 Computation burden (algebra/numeric length, error-prone)

Rules:
- Do NOT solve or judge correctness; only estimate difficulty.
- Use the provided SOLUTION only to estimate step depth/concepts.
- Do not use outside tools or knowledge beyond the given text.
- Keep outputs concise.

Output STRICT JSON:

{
"scores": {"C1": 1-3, "C2": 1-3},
"rationales": {"C1": " <= 20 words", "C2": " <= 20 words"},
"reasoning": "2-3 concise sentences",
"confidence": 0.0-1.0

}

PROBLEM: {problem}

SOLUTION (only for estimating steps/concepts; do NOT grade correctness): {solution}
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Entropy complexity of the solution DAG. We compute an entropy-based structural complexity by
treating the branching at each layer as the search space:

e =

Depth∑
ℓ=1

log(Widthℓ).

This value is discretized into C3 ∈ {1, 2, 3} using thresholds τ1, τ2.

Composite difficulty. We define a composite score S = C1 + C2 + C3, and map it into three
difficulty levels: Easy, Medium, and Hard. This composite annotation captures both physics/content
difficulty and structural reasoning complexity, providing a stratified view of model performance.

D.2 DOMAIN CATEGORIZATION DETAILS

The dataset covers a wide range of topics, organized hierarchically into 7 key physics domains and
28 subtopics:

• Mechanics: Newtonian Mechanics, Analytical Mechanics, Special Relativity
• Electromagnetism: Electrostatics, Magnetostatics and Quasi-Stationary Fields, Electro-

magnetic Waves
• Optics: Geometrical Optics, Wave Optics, Quantum Optics
• Atomic, Nuclear, and Particle Physics: Atomic and Molecular Physics, Nuclear Physics,

Particle Physics, Other
• Thermodynamics and Statistical Physics: Thermodynamics, Statistical Physics
• Quantum Mechanics: Basic Principles and One-Dimensional Motions, Central Poten-

tials, Spin and Angular Momentum, Motion in Electromagnetic Fields, Perturbation The-
ory, Scattering and Transitions, Many-Particle Systems, Other

• Solid State Physics and Miscellaneous Topics: Solid State Physics, Relativity, Other
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E EXPERIMENTAL DETAILS FOR PRISM-PHYSICS

E.1 EXPERIMENTAL SETUPS

We evaluate a diverse set of 17 leading LLMs, as listed in Table 3. Each model is accessed via its
official API using standardized decoding parameters. By default, we set the maximum token output
to 8096, temperature to 0.0, for all models where these settings are applicable. For reasoning
models, the default reasoning effort is chosen as medium. Model-specific parameters are specified
in the table.

# Model Reasoning Model Engine Name Source

Open-source Chat LLMs

1 Deepseek-V3 DeepSeek-AI (2025) F deepseek-v3 Link

2 Qwen2.5-72B-Instruct-Turbo Qwen Team (2024) F Qwen2.5-72B-Instruct-Turbo Link

3 Llama-4-Scout-17B-16E Meta Platforms, Inc. (2025) F Llama-4-Scout-17B-16E-Instruct Link

4 Llama-3.3-70B-Instruct-Turbo AI (2024) F Llama-3.3-70B-Instruct-Turbo Link

Open-source Reasoning LLMs

5 Deepseek-R1 DeepSeek-AI (2025) T DeepSeek-R1 Link

6 GPT-OSS-20B OpenAI (2025d) T GPT-OSS-20B Link

7 GPT-OSS-120B OpenAI (2025d) T GPT-OSS-120B Link

8 Qwen3-235B-A22B-Instruct Qwen Team (2025) T Qwen3-235B-A22B-Instruct Link

Proprietary Chat LLMs

9 Claude-sonnet-4 Anthropic (2025) T claude-sonnet-4-20250514 Link

10 GPT-4o-mini OpenAI (2024) F gpt-4o-mini Link

11 GPT-4.1 OpenAI (2025a) F gpt-4.1 Link

Proprietary Reasoning LLMs

12 Gemini-2.5-Flash Google DeepMind (2025a) T gemini-2.5-flash Link

13 Gemini-2.5-Pro Google DeepMind (2025b) T gemini-2.5-pro Link

14 GPT-5 OpenAI (2025b) Low/Medium/High gpt-5 Link

15 GPT-5-mini OpenAI (2025b) Low/Medium/High gpt-5-mini Link

16 Grok-4 xAI (2025) T grok-4 Link

17 o4-mini OpenAI (2025c) T o4-mini Link

Multimodal Large Language Models

18 Gemini-2.5-Pro Google DeepMind (2025b) T gemini-2.5-pro Link

19 Gemini-2.5-Flash Google DeepMind (2025a) T gemini-2.5-flash Link

20 GPT-5 OpenAI (2025b) Medium gpt-5 Link

21 GPT-5-mini OpenAI (2025b) Medium gpt-5-mini Link

Table 3: List of LLMs evaluated in our experiments.

Inference Prompt. Below is the prompt we use for inference:

Inference Prompt

You are a Physics expert. You are going to solve a physics problem and be graded accordingly. Here are
some instructions you should follow to make sure your answer is graded correctly: 1. You answer should
be written in markdown format. 2. You should provide your key steps and final answer in a clear and
concise manner using double-dollar signs for formulas (e.g.,

E0 = mgH +
1

2
mv20

). However, put your definitions or uncrucial steps in single dollar signs (e.g., ’E is the energy of the
system’, or ’according to Newtonś second law, F = ma’). 3. Use less text and more formulas to
explain your reasoning. 4. Your answer should satisfy the format below: Format Instructions Here is the
problem context: the problem Please provide your solution step by step, and then give your final answer.
You should try to use the variables given in the problem and avoid using new variables unless necessary.
You should strictly follow the formatting requirements introduced in the problem for the final answer.
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E.2 ADDITIONAL RESULTS

Text Models vs. Multimodal Models We compute the performance gap between multimodal and
text-only settings as multimodal – text, and visualize the differences in Figure 9. Solid rectangles
indicate positive gaps, where multimodal inputs improve performance, while hatched rectangles
indicate negative gaps, where multimodal underperform text-only.
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Figure 9: Visualization of the performance gap defined as multimodal – text across models and diffi-
culty levels. Solid rectangles denote positive differences (multimodal ¿ text), and hatched rectangles
denote negative differences (multimodal ¡ text).

F EVALUATION FRAMEWORK ANALYSIS DETAILS

F.1 KENDALL’S TAU-B AND P-TEST

We evaluate the agreement between model-derived scores and human annotations using Kendall’s τb
correlation coefficient, a nonparametric rank-based statistic that extends Kendall’s τ by correcting
for ties. Let {(xi, yi)}ni=1 be a set of paired observations, where xi represents the score assigned by
the model and yi the corresponding human annotation. Kendall’s τb measures the degree to which
the rankings induced by x and y agree.

Definition. Consider all unordered pairs of distinct indices (i, j) with 1 ≤ i < j ≤ n. For each
pair, define:

• concordant if (xi − xj)(yi − yj) > 0,

• discordant if (xi − xj)(yi − yj) < 0,

• tied in x if xi = xj but yi ̸= yj ,

• tied in y if yi = yj but xi ̸= xj ,

• tied in both if xi = xj and yi = yj .

Let nc and nd denote the number of concordant and discordant pairs, respectively. Define

n0 = 1
2n(n− 1), n1 =

∑
k

1
2 tk(tk − 1), n2 =

∑
l

1
2ul(ul − 1),

where tk is the size of the k-th tie group in x and ul is the size of the l-th tie group in y. Then
Kendall’s τb is

τb =
nc − nd√

(n0 − n1)(n0 − n2)
. (2)

By construction, τb ∈ [−1, 1], with τb = 1 indicating perfect agreement (all pairs concordant),
τb = −1 perfect disagreement (all pairs discordant), and τb = 0 representing no association beyond
what would be expected by chance.
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Statistical significance. To assess whether the observed correlation is statistically significant, we
test the null hypothesis H0 : τb = 0 against the two-sided alternative H1 : τb ̸= 0. Two approaches
are employed:

1. Asymptotic test. Under H0, the sampling distribution of τb is approximately normal for
large n, with variance given by a closed-form expression that accounts for ties. A standard-
ized statistic Z = τb

στb
is used to compute an asymptotic p-value.

2. Permutation test. To avoid reliance on asymptotic approximations, we perform a nonpara-
metric randomization procedure: one ranking (e.g., y) is permuted uniformly at random
while x remains fixed, and τb is recomputed. Repeating this procedure yields an empirical
null distribution for τb, from which a p-value is estimated. This approach is robust to small
sample sizes and ties.

Together, τb provides a rigorous, tie-adjusted measure of ordinal association, and the combination of
asymptotic and permutation-based tests ensures robust inference on the agreement between model
predictions and human judgments.

F.2 FAILURE ANALYSIS FOR EVALUATION FRAMEWORK

We analyzed failure cases from our evaluator and two baselines to understand strengths and limita-
tions. When scoring strictly by formula matching, causality-aware evaluation is essential: requir-
ing every reference formula to match is overly rigid and penalizes otherwise correct reasoning. We
observe three recurrent failure modes:

• Contextual vs. literal equivalence. Two expressions can be equivalent given the problem
context but not algebraically identical (e.g., re-parameterized integrals or vector identities).

• Textual answers. Description- or text-only responses fall outside the scope of strict sym-
bolic matching.

• Parsing gaps. Some LATEX symbols/commands are not reliably recognized as operators,
yielding spurious mismatches (e.g., integrals with differentials, vector/tensor notation).

In order to solve these issues, we propose the following roadmap:

1. Context-aware matching. We plan to develop a context-sensitive equivalence checker;
this is left for future work.

2. Text evaluation. We will integrate lightweight LLM “helpers” to assess description-based
answers, making the framework more complete while keeping the core scorer deterministic.

3. Robust parsing. Despite many fixes, long-tail LATEX idiosyncrasies remain. We will re-
lease the formula matcher first and iteratively expand operator coverage based on commu-
nity feedback.
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G ERROR ANALYSIS DETAILS

G.1 PROMPTS FOR ERROR ANALYSIS

Prompt for Error Analysis

You are a Physics Olympiad grader. Your task is to analyze a student’s solution against a standard solution,
using the provided detailed scoring breakdown, and determine the PRIMARY error cause (and optional
secondary causes) from the taxonomy below. You do NOT need to align or map steps — the scored
expressions already indicate where the solution is correct or incorrect. Focus on WHY the incorrect parts
are wrong.
Error taxonomy (choose labels exactly):
- DAE: Diagram Analysis Error — incorrect interpretation of diagrams/figures/schematics.
- PTAE: Physics Theorem/Application Error — misuse/misapplication of physical laws/principles.
- MPUE: Modeling & Process Understanding Error — incorrect/incomplete physical model or process
understanding.
- CAE: Condition/Assumption Error — invalid/unjustified/misapplied conditions, including bound-
ary/initial conditions.
- VRE: Variable Relationship Error — incorrect relationships between physical quantities (e.g., con-
straints, kinematic relations).
- DCE: Derivation & Computation Error — algebraic/symbolic manipulation mistakes, arithmetic/sign/-
substitution errors.
- UDE: Unit/Dimension Error — unit inconsistency or dimensional mismatch.

General guidance: 1) Use the scoring breakdown to identify which expressions are incorrect.
2) For the incorrect expressions, determine the earliest fundamental cause from the taxonomy.
3) If multiple causes apply, select ONE primary label and list the rest as secondary.
4) If diagrams are referenced but missing, do not assume their content; judge only from given text/expres-
sions.

Output STRICT JSON (no extra text, no markdown):

{
"primary_error": "DAE|PTAE|MPUE|CAE|VRE|DCE|UDE",
"secondary_errors": ["DAE|PTAE|MPUE|CAE|VRE|DCE|UDE"],
"incorrect_expressions":
[

"strings of the incorrect student expressions"
],
"related_correct_expressions":
[

"strings of correct related student expressions if any"
],
"rationale": "2-5 concise sentences explaining the diagnosis",
"confidence": 0.0-1.0

}

PROBLEM CONTEXT: {problem}

STUDENT ANSWER: {student answer}

AUTO-GRADER EQUATION MATCHES: {matches}

SCORE: {score:.3f} (out of 1.0)

G.2 ERROR TAXONOMY DEFINITIONS

We provide detailed definitions of the seven error categories used in our error analysis:

• Diagram Analysis Error (DAE) – incorrect interpretation of diagrams, figures, or
schematic representations.
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• Physics Theorem Application Error (PTAE) – incorrect or inappropriate use of physical
laws, theorems, or principles.

• Modeling and Process Understanding Error (MPUE) – incorrect or incomplete con-
struction of the physical model, including misunderstanding of the physical process being
analyzed.

• Condition or Assumption Error (CAE) – invalid, unjustified, or misapplied physical
conditions, including boundary or initial conditions.

• Variable Relationship Error (VRE) – incorrect establishment or use of relationships be-
tween physical quantities.

• Derivation and Computation Error (DCE) – incorrect algebraic manipulation, symbolic
transformation, arithmetic mistakes, sign errors, or incorrect numerical substitutions.

• Unit Dimension Error (UDE) – inconsistency in physical units or failure to maintain
dimensional correctness.

G.3 MODEL FAILURE SOLUTION EXAMPLES

PRISM-PHYSICS Failure Example: Condition or Assumption Error

Problem: A particle of mass m moves under the influence of an attractive central force f(r).
The potential energy associated with this force is V (r), defined so that f(r) = −dV

dr . The
angular momentum of the particle is J . The effective potential is denoted by V ∗(r). The total
mechanical energy is E. The instantaneous radial coordinate of the particle is r, and the radial
velocity is ṙ = dr

dt . The radius of the circular orbit is r0. For the stability analysis, the student
should write their answer for the maximum n as ans = ..., where n is the exponent in the force
law f(r) = −K

rn , with K a positive constant.
(c) Determine the maximum value of n for which the circular orbit is stable under the force law
f(r) = −K

rn , where K is a positive constant.

GroundTruth Solution:
For f(r) = −K

rn , we have
∂f

∂r
= n

K

rn+1

From the equilibrium condition,
∂V

∂r
=

J2

mr3

Also, ∂V
∂r = −f(r), so

−f(r) = J2

mr3

which gives
K

rn
=

J2

mr3

Thus,
J2 = mKr3−n

Insert this value for J2 into the stability condition:

3J2

mr4
− ∂f

∂r
> 0

Substitute J2 = mKr3−n and ∂f
∂r = n K

rn+1

3K

rn+1
− nK

rn+1
> 0

So
3− n > 0
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Therefore,
ans = n < 3

Student Solution Snippet:
(c): Maximum Value of n For the force law f(r) = −K

rn :

∂f

∂r
=

nK

rn+1

Substituting into the stability condition:

nK

rn+1
+

3(−K/rn)

r
< 0

nK

rn+1
− 3K

rn+1
< 0

K(n− 3)

rn+1
< 0

Since K > 0 and rn+1 > 0, we need:

n− 3 < 0

n < 3

The maximum value of n for stability is therefore n = 3.

ans = 3

Error Analysis Output:
{
"primary_error": "CAE",

"incorrect expressions": [

"The maximum value of n for stability is therefore n = 3.",

"ans= 3"

],

"related correct expressions": [

n < 3,

K(n − 3)

rn+1
< 0

],

"rationale": "All algebra and the stability condition
were derived correctly, yielding n < 3. The student
then incorrectly interpreted this strict inequality as
allowing n = 3 as the maximum stable value. This is an
assumption/boundary-condition mistake: n = 3 is the marginal
(neutral) case, not a stable one, so the conclusion ans = 3 is
unjustified."

}
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PRISM-PHYSICS Failure Example: Diagram Analysis Error

Problem: An aquarium is being filled with water of refractive index n > 1. A stationary
fish inside the aquarium looks vertically upward through the rising surface of the water at a
stationary monochromatic plane wave light source outside the aquarium. The water surface
rises upward at constant speed V relative to both the fish and the source, while the rest of the
water and the fish are stationary with respect to the aquarium. The fish observes the incoming
light through the moving water interface as the aquarium fills. Use the following variable
definitions:- n is the refractive index of water- V is the upward speed of the rising water surface
with respect to both fish and light source- c is the speed of light in vacuum- u is the frequency
of light as emitted by the source in vacuum- u′ is the frequency of light as observed by the fish
inside the water- u is the speed of light in water as measured by the fish- λw is the wavelength
of light in waterExpress your answer for u′ in terms of u, V , n, and c. Also state, using an
equation, whether u′ is less than, greater than, or equal to u.

GroundTruth Solution:
The speed of light in water as measured by the fish is

u =
c

n
− V

(
1− 1

n2

)
The wavelength of the light in water is

λw =
c

nν
The observed frequency by the fish is

ν′ =
u

λw

Substituting for u yields

ν′ =
c
n − V

(
1− 1

n2

)
λw

Substituting for λw yields

ν′ =
c
n − V

(
1− 1

n2

)
c
nν

This simplifies to

ν′ =

(
c

n
− V

(
1− 1

n2

))
nν

c

Expanding the terms gives

ν′ = ν − V

(
1− 1

n2

)
nν

c

For n > 1 and V > 0,

ν′ < ν

Therefore, the fish observes the light source to be red-shifted.

Student Solution Snippet:
We analyze the scenario using the Doppler effect for light at a moving interface. The light
source is stationary in air (refractive index ≈ 1), emitting light of frequency u and speed c. The
water surface rises at speed V upward, and the fish is stationary in water of refractive index n.
The fish observes the frequency u′ of light that has entered the water.
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The speed of light in water as measured by the fish is

u =
c

n
.

The incident light in air approaches the moving water surface. Since the interface is moving
toward the source (upward, while light comes from above), the frequency perceived just after
crossing into water is Doppler shifted.
Let the incident plane wave in air be

Ei = E0 cos(ωt− kz) , ω = 2πu, k =
ω

c
.

At the interface z = V t, the phase is

ϕi(t) = ωt− k(V t) = ωt

(
1− V

c

)
.

The transmitted wave in water is

Et = E1 cos(ω
′t− k′z) , k′ =

nω′

c
.

At z = V t, its phase is
ϕt(t) = ω′t− k′V t.

Continuity of phase requires ϕi(t) = ϕt(t), hence

ω

(
1− V

c

)
= ω′ − k′V.

Substituting k′ = nω′

c gives

ω′
(
1− nV

c

)
= ω

(
1− V

c

)
.

Thus,

ω′ = ω
1− V

c

1− nV
c

.

Equivalently, in terms of frequency:

u′ = u
1− V

c

1− nV
c

= u
c− V

c− nV
.

Now compare u′ and u:

u′ − u = u

(
c− V

c− nV
− 1

)
= u

(n− 1)V

c− nV
.

Since n > 1, V > 0, and c− nV > 0 (non-relativistic case), we have u′ − u > 0. Therefore,

u′ > u.

Final result:

u′ = u
1− V

c

1− nV
c

, u′ > u.

Error Analysis Output:
{

"primary_error": "DAE",
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"incorrect expressions": [

Ei = E0 cos(ωt − kz) , ω = 2πν, k = ω
c ,

ϕi(t) = ωt − k(V t) = ωt − ω
c V t = ωt

(
1 − V

c

)
,

ω
′ − k

′
V = ω

(
1 − V

c

)
,

ω
′
= ω

1 − V
c

1 − nV
c

,

ν
′
= ν

1 − V
c

1 − nV
c

],
"related correct expressions": [

u =
c

n
,

k
′
=

ω′

u
=

nω′

c
,

Continuity of phase at the moving interface: ϕi(z = V t) = ϕt(z = V t)

],
"rationale": "The student wrote the incident wave as ωt − kz,

which corresponds to a wave propagating upward; for light
coming from above toward the interface (downward propagation)
the sign of the spatial term is wrong. This incorrect sign
gives the wrong expression for the incident phase at z = V t and
therefore leads to the incorrect algebraic relation and final
formula for ν′. The use of phase continuity and k′ = nω′/c and
u = c/n are otherwise appropriate, so the error is an incorrect
interpretation of the wave propagation direction (diagram/sign
error)."

}

PRISM-PHYSICS Failure Example: Derivation and Computation Error

Error Analysis Output:
{

"primary_error": "DCE",

"incorrect expressions": [

∂L

∂r
= mrθ̇

2
+

k

r2
−

k′

r3
,

mr̈ = mrθ̇
2
+

k

r2
−

k′

r3

],

"related correct expressions": [

∂L

∂r
= mrθ̇

2 −
k

r2
+

k′

r3
,

mr̈ = mrθ̇
2 −

k

r2
+

k′

r3

],

"rationale": "The student made a sign/algebra error when
differentiating the potential terms in L with respect to r,
flipping the signs of the k and k’ contributions. This is a

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

pure derivation/computation mistake (not a misapplication of
physics), since the correct radial equation has the opposite
signs and follows from the correctly differentiated Lagrangian
or directly from Newton’s form. The later orbit derivation
uses the correct form of F(r), so the error is localized to the
symbolic differentiation step."

}

PRISM-PHYSICS Failure Example: Modeling and Process Understanding Error

Problem: A particle of mass m moves under a restoring force −Kx and a resistive force
−Rv, where x is the displacement from equilibrium and v is the particle’s velocity. Here,
m is the mass of the particle, K is the spring constant, R is the damping coefficient, x is
the displacement from equilibrium, and v is the velocity. For fixed K and arbitrary initial
conditions, find the value R = Rc that gives the most rapid approach to equilibrium. Also,
state whether it is possible to choose initial conditions (other than x = 0 and v = 0) such that
the approach to equilibrium is more rapid for R > Rc or R < Rc. Specifically, Rc should be
defined in terms of K and m. Express the rate of approach and clearly specify all variables
throughout. The final answer for the most rapid approach value should be given as Rc = in
terms of K and m.

GoundTruth Solution:
The equation of motion for the particle can be written as

m
d2x

dt2
+R

dx

dt
+Kx = 0

......
Thus, for certain special (non-generic) initial conditions, the approach to equilibrium may be
even faster than in the critically damped case.If R < Rc, the roots are complex:

α =
−R± i

√
R2

c −R2

2m

The general solution is

x = A exp

(
− Rt

2m

)
cos

(√
R2

c −R2

2m
t

)
+B exp

(
− Rt

2m

)
sin

(√
R2

c −R2

2m
t

)
The rate of decay towards equilibrium is determined by the exponential factor

R

2m
<

Rc

2m

Thus, the approach to equilibrium is always slower than for critical damping when R < Rc. In
summary, the value of R that gives the most rapid approach to equilibrium for arbitrary initial
conditions is

Rc = 2
√
Km

For R > Rc, in principle, one can choose initial conditions such that the approach is even
more rapid, but this occurs only for special initial conditions (such as setting A = 0 in the
overdamped general solution). In general, for arbitrary initial conditions, critical damping
(R = Rc) gives the most rapid approach. For R < Rc, the approach to equilibrium is always
slower than for critical damping.

Student Solution Snippet:
The equation of motion for a damped harmonic oscillator is:

m
d2x

dt2
= −Kx−R

dx

dt
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Rearranging to standard form:

d2x

dt2
+

R

m

dx

dt
+

K

m
x = 0

Let ω2
0 = K

m and 2γ = R
m , so the equation becomes:

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x = 0

The characteristic equation is:
r2 + 2γr + ω2

0 = 0

The roots are:
r = −γ ±

√
γ2 − ω2

0

The behavior depends on the discriminant γ2 − ω2
0 :

Case 1: Underdamped (γ < ω0 or R < 2
√
Km)

x(t) = e−γt(A cos(ωdt) +B sin(ωdt))

where ωd =
√
ω2
0 − γ2.

Case 2: Critically damped (γ = ω0 or R = 2
√
Km)

x(t) = e−γt(A+Bt)

Case 3: Overdamped (γ > ω0 or R > 2
√
Km)

x(t) = Aer1t +Ber2t

where r1 = −γ +
√
γ2 − ω2

0 and r2 = −γ −
√

γ2 − ω2
0 .For the most rapid approach to

equilibrium, we need to minimize the time for x(t)→ 0.
In the underdamped case, the envelope decays as e−γt.In the critically damped case, the de-
cay is e−γt.In the overdamped case, the slowest decay rate is determined by r1 = −γ +√
γ2 − ω2

0 .Since
√
γ2 − ω2

0 > 0 when γ > ω0, we have |r1| < γ, making overdamped systems
slower than critically damped.
For underdamped systems, the envelope decay rate is γ = R

2m .For critically damped systems,
the decay rate is also γ = R

2m .However, the critically damped case has no oscillations and
provides the fastest approach without overshoot.Therefore, the critical damping condition gives
the most rapid approach:

Rc = 2
√
Km

Regarding initial conditions: For any given R, the approach rate is determined by the system
parameters, not the initial conditions. The initial conditions only affect the amplitude coeffi-
cients A and B, but not the fundamental decay rates. Therefore, it is not possible to choose
initial conditions to make R > Rc or R < Rc approach equilibrium more rapidly than R = Rc.

Rc = 2
√
Km

Error Analysis Output:
{

"primary_error": "MPUE",

"incorrect expressions": [ "Therefore, it is not possible
to choose initial conditions to make R > Rc or R < Rc

approach equilibrium more rapidly than R = Rc.", "However,
the critically damped case has no oscillations and provides the
fastest approach without overshoot." ],
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"related correct expressions": [

m
d2x

dt2
= −Kx − R

dx

dt
,

Rc = 2
√
Km,

r = −γ ±
√

γ2 − ω2
0 ,

Underdamped: x(t) = e
−γt

(A cos(ωdt) + B sin(ωdt)),

Critically damped: x(t) = e
−γt

(A + Bt),

Overdamped: x(t) = Ae
r1t

+ Be
r2t

, r1 = −γ +
√

γ2 − ω2
0

],
"rationale": "The student correctly derived the equation

of motion , root structure, and critical damping value Rc,
but then asserted that initial conditions cannot alter which
R gives the fastest approach. That is a modelling process
misunderstanding: transient approach time can depend on
initial conditions (e.g. certain initial displacements or
velocities can make overdamped underdamped responses reach
zero sooner for some measures). The blanket statement that
critical damping is always fastest for every initial condition
is therefore incorrect."

}

PRISM-PHYSICS Failure Example: Physics Theorem Application Error

Problem: A bucket of mass M (when empty) initially at rest and containing a mass of water
is being pulled up a well by a rope exerting a steady force P The water is leaking out of the
bucket at a steady rate such that the bucket is empty after a time τ .Find the velocity of the
bucket at the instant it becomes empty.

GroundTruth Solution :

Let the total mass of the bucket and water at time t be M ′.

M ′ = M +m− mt

τ

The equation of motion for the bucket (plus remaining water) is

M ′ dv

dt
= P −M ′g

Rearranging gives

dv =

(
P

M +m− m
τ t
− g

)
dt

The velocity v of the bucket at time t = τ (when empty) starting from rest is

vempty =

∫ τ

0

Pdt

M +m− m
τ t
− gτ

Evaluating the integral yields

vempty =
Pτ

m
ln

(
M +m

M

)
− gτ

where vempty is the velocity of the bucket at the instant it becomes empty.

Student Solution Snippet:

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

I need to find the velocity of the bucket when it becomes empty at time t = τ . Setting up the
problem The mass of water decreases linearly from m to 0 over time τ :

mwater(t) = m(1− t

τ
)

The total mass of the system at time t is:

Mtotal(t) = M +m(1− t

τ
)

The rate of mass loss is:
dmwater

dt
= −m

τ
Applying Newton’s Second Law
Since the leaked water has zero velocity relative to the bucket, when it leaves the bucket, it has
the same velocity v as the bucket. The forces acting on the system are:
- Upward force: P - Weight: (M +mwater(t))g
Using Newton’s second law for variable mass systems:

P − (M +m(1− t

τ
))g = (M +m(1− t

τ
))
dv

dt
+ v

dmwater

dt
......
Error Analysis Output:
\begin{verbatim}
{
"primary_error": "PTAE",

"incorrect expressions": [

P − (M + m(1 − t
τ ))g = (M + m(1 − t

τ )) dv
dt + v

dmwater
dt

],

"related correct expressions": [

dmwater/dt = −m/τ (student’s expression, correct),

(M + m(1 − t/τ)) dv
dt = P − (M + m(1 − t/τ))g,

(since escaping water has zero velocity relative to the bucket,the thrust term vanishes)

vempty = Pτ
m ln

(
M+m

M

)
− gτ

],
"rationale": "The student misapplied the variable-mass form of
Newton’s second law: the net external force equal to d/dt(Mv)
and thus kept a v dM/dt term on the RHS (or equivalently
omitted the momentum-flux term on the RHS), which is incorrect
bookkeeping for mass leaving with zero velocity relative to
the bucket. For escaping water with velocity equal to the
bucket, the relative-velocity term vanishes and the correct
ODE is M(t) dv/dt = P - M(t) g, leading to a different integral
(logarithmic) result. All subsequent algebra and the final
numeric expression therefore follow from this incorrect
application."

}
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PRISM-PHYSICS Failure Example: Unit Dimension Error

Error Analysis Output:
{

"primary_error": "UDE",

"incorrect expressions": [

A = 1

λ2σ2
t T

,

N = 1

λ3σ2
t T

,

x = 12

10−12NA
·

T3
1/2

(ln 2)3σ2
t T

· eλt
,

x =
12·(5730)3

10−12·6.023×1023·(ln 2)3·2500
· e(ln 2)·5000/5730

,

λ
2
σ
2
tTA

2 − A − AB = 0,

A =
1+

√
1+4λ2σ2

t TAB

2λ2σ2
t T

,

N =
1+

√
1+4λ2σ2

t TAB

2λ3σ2
t T

,

x = 12

10−12NA
·

1+
√

1+4λ2σ2
t TAB

2λ3σ2
t T

· eλt

],

"related correct expressions": [

A = λN,

dA
dt = −λA,

λ = ln 2
T1/2

,

N = N0e
−λt

,

N0 = 10
−12 xNA

12

],

"rationale": "The student mixed time units: λ and σt are in
years while the counting time T was used in hours, so formulas
combining λ and T (e.g. A = 1/(λ2σ2

t T) and subsequent N and x
expressions) are dimensionally inconsistent. The algebraic
manipulations themselves are otherwise coherent, but the unit
mismatch renders the numerical/physical results incorrect. The
same unit inconsistency propagates into the background-case
quadratic and its solutions.",

}

PRISM-PHYSICS Failure Example: Variable Relationship Error

Error Analysis Output:
{

"primary_error": "VRE",

"incorrect expressions": [

d = θ(R + h),

d = 1.22 λ
D (R + h),

d = 1.22 × 1
1000 × 4.217 × 10

7
,

d ≈ 5.145 × 10
4
m,

d = 51450m
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],

"related correct expressions": [

θ ≈ 1.22 λ
D ,

R + h =
(

GM
ω2

)1/3
,

h = 3.580 × 10
7
m

],

"rationale": "The student used R + h (distance from Earth’s
center to the satellite) as the propagation distance for the
beam instead of the correct path length from satellite to
ground (the height h). That is an incorrect relationship
between physical quantities (distance to apply diffraction).
The diffraction formula and numerical algebra are otherwise
applied correctly, so the error is conceptual about which
length variable to use.",

}

H CLEARER IMAGES

Since the space in the main body of this paper is limited, and it’s a massive amount of LLMs that
we experimented on, the numbers in the figures could be hard to read clearly. Therefore, we put a
clear version of each figure here for reference.
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I STATEMENT

The Use of Large Language Models. We did not use LLMs in this work apart from what has
been introduced in the paper.
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