

PRISM-PHYSICS: CAUSAL DAG-BASED PROCESS EVALUATION FOR PHYSICS REASONING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Benchmarks for competition-style reasoning have advanced evaluation in mathe-
012 matics and programming, yet physics remains comparatively underexplored.
013 Most existing physics benchmarks evaluate only final answers, which fail to cap-
014 ture reasoning processes, while recent stepwise methods rely on heuristic LLM-as-
015 judge scoring or restrictive linear assumptions, limiting reliability and diagnostic
016 validity. We introduce PRISM-PHYSICS, a process-level evaluation framework
017 and benchmark for complex physics reasoning problems. Solutions are repre-
018 sented as directed acyclic graphs (DAGs) of formulas, explicitly encoding causal
019 dependencies among intermediate steps to enable fine-grained, interpretable, and
020 theoretically grounded scoring. We prove the optimality of the DAG represen-
021 tation and the corresponding scoring policy. Combining with a fully rule-based
022 method for symbolic formula equivalence matching that we developed, we ensure
023 consistent validation across diverse formulations without heuristic judgments. Re-
024 sults show that our evaluation framework is more aligned with human experts’
025 scoring. Experiments on state-of-the-art LLMs reveal persistent reasoning fail-
026 ures in physics, while step-level scoring offers both diagnostic insight and rich
027 signals for later training. By combining structural rigor, theoretical guarantees,
028 and symbolic validation, PRISM-PHYSICS provides a principled foundation for
029 advancing process-level evaluation and guiding the development of models with
030 deeper scientific reasoning capabilities.

1 INTRODUCTION

031 Benchmarks for competition-style reasoning have advanced rapidly in mathematics (e.g.,
032 IMO) (Zheng et al., 2021; He et al., 2024; Gao et al., 2024) and programming (e.g., IOI) (Shi
033 et al., 2024; Zhu et al., 2025; El-Kishky et al., 2025), providing comprehensive testbeds for evalua-
034 ting large language models (LLMs). In contrast, physics competitions remain comparatively under-
035 served, despite requiring not only deep domain knowledge, but also advanced analytical modeling,
036 multi-step symbolic derivation, and precise numerical computation. These skills are fundamen-
037 tal indicators of scientific reasoning ability, as they integrate conceptual understanding, modeling
038 assumptions, and rigorous problem-solving under complex constraint (Jaiswal et al., 2024). Con-
039 sequently, developing fine-grained evaluation frameworks and benchmarks for competition-level
040 physics is essential for systematically assessing and advancing LLMs’ capabilities in this critical
041 domain (Chang et al., 2024; Song et al., 2025).

042 A major obstacle is that physics derivations are inherently non-linear: solutions frequently branch,
043 merge, or reuse intermediate results. Existing benchmarks fail to capture this structure due to
044 three key limitations: **1.** Most physics benchmarks rely on multiple-choice or short-answer for-
045 mats (Wang et al.; Rein et al., 2024), evaluating only the final answer and ignoring the reasoning
046 process. Such formats obscure the reasoning process and provide limited diagnostic value for
047 understanding model capabilities. **2.** Most also rely on LLM-as-judge scoring (He et al., 2024;
048 Xiang et al., 2025), which is prone to hallucinations, prompt sensitivity, and inconsistent grading.
049 **3.** While some recent work (Zhang et al., 2025) has made initial attempts at step-by-step scoring,
050 these approaches often rely on strong assumptions such as strictly linear step ordering or shallow
051 expression matching that limit the validity and generalizability of the framework. As a result, cur-
052 rent methodologies remain inadequate for revealing the systematic reasoning failures of LLMs in
053 physics problem solving.

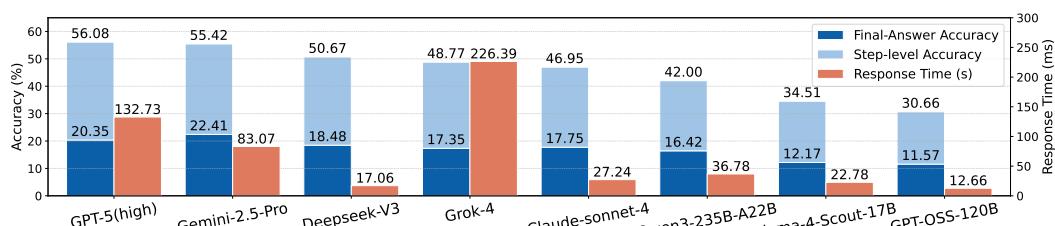


Figure 1: Selected model performance on PRISM-Physics. Complete results for all models are provided in Figure 14. We report Final-Answer Accuracy, Step-level Accuracy, and Response Time.¹

To address these limitations, we introduce **PRISM-Physics**, a process-level evaluation framework and benchmark that represents physics solutions as directed acyclic graphs (DAGs) of formulas. This graph-based structure explicitly encodes causal dependencies among intermediate steps, enabling fine-grained scoring that is theoretically grounded and interpretable. To ensure consistency, we further develop a fully rule-based symbolic equivalence checker, which provides robust validation across diverse formulations and removes dependence on heuristic judgments.

Our main contributions are summarized as follows: **1.** We construct a large-scale benchmark of competition-level physics problems with carefully curated, DAG-structured solutions. **2.** We propose a *DAG-based scoring policy* that explicitly models causal dependencies among formulas, enabling fine-grained and interpretable process-level evaluation. We further provide a theoretical proof of its optimality, showing that it minimizes evaluation ambiguity and aligns naturally with the logical structure of physics derivations. **3.** We develop a fully rule-based *symbolic formula equivalence checker* to reliably validate diverse mathematical expressions, ensuring consistent comparison across alternative formulations and eliminating reliance on heuristic LLM-as-judge scoring. **4.** We conduct extensive experiments on a broad range of LLMs, revealing persistent challenges in sustaining coherent reasoning chains and in correctly applying physical principles. Furthermore, we systematically compare our evaluation framework with existing approaches, demonstrating its *superior reliability, interpretability, and diagnostic power* for evaluating process-level reasoning capabilities.

Taken together, PRISM-Physics establishes the first principled foundation for process-level evaluation in physics, bridging structural rigor, theoretical guarantees, and symbolic validation.

2 RELATED WORK

Physics Benchmark. Physics problems, as a proxy of how LLMs understand Physics, have been used as benchmarks for LLMs in recent years. Especially, previous work has been using Physics Olympiad problems for benchmarking LLM reasoning and problem solving abilities. For instance, OlympiadBench (He et al., 2024) aggregates problems from multiple Olympiads; SeePhy (Xiang et al., 2025) incorporates visual problems to study how visual ability improves LLM performance; PhyBench (Qiu et al., 2025) focuses on rigor and originality. While such benchmarks propose metrics (e.g., EED score (Qiu et al., 2025)), they still focus primarily on final answers and fail to represent or provide more fine-grained process scores. More recently, process-based evaluation of LLM reasoning has become a focus. PhysReason (Zhang et al., 2025) evaluates intermediate steps by checking correctness of expressions and assigning linear scores, but this approach is restricted to expressions (rather than equations) and cannot represent the dependency logic among steps.

LLM-as-Judge for Problem Solving. Reliable evaluation of physics problem solving requires assessing not only final answer correctness, but also the validity of intermediate reasoning steps. Human expert annotation, while generally reliable, is costly and unscalable in large-scale (Gu et al., 2024; Liu et al., 2023; Ye et al., 2025; Petrov et al., 2025; Mao et al., 2024). Automated LLM-as-judge methods have shown potential in mathematical and physics tasks, but are still susceptible to errors from implicit assumptions, symbolic manipulation errors, and misinterpretation of domain concepts (Zheng et al., 2023; Gu et al., 2024; Ye et al., 2025; Hendrycks et al., 2021; Gulati et al., 2024; Liu et al., 2024; Lu et al., 2024). This challenge is amplified in physics, where various physical concepts, constants, and equivalent formulations create many valid variations of the same expression, making judgment more difficult (Wang et al.; Xu et al., 2025; Zhang et al., 2025).

¹Due to space constraints, larger versions of all figures are provided in Appendix H.

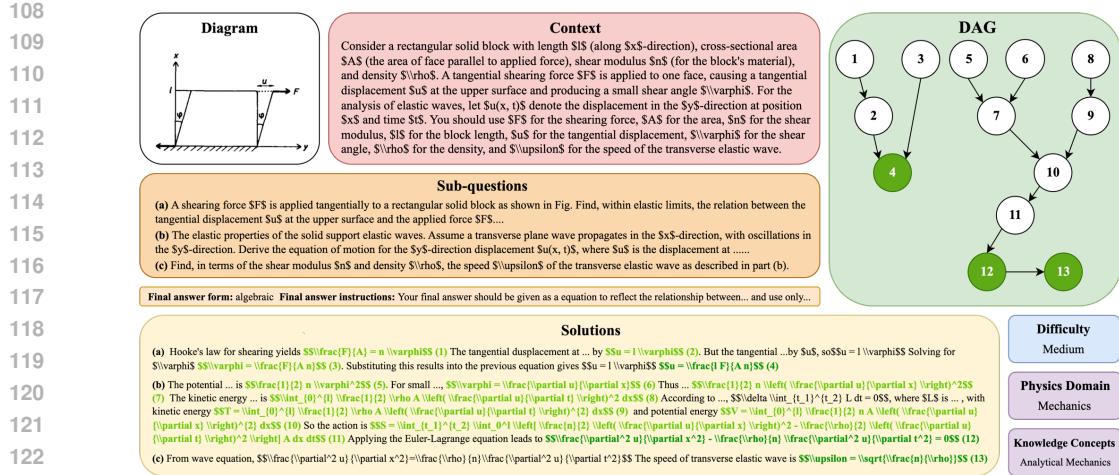


Figure 2: A data example with the proposed DAG structure.

To address these issues, we introduce a formula-based verification framework that directly compares symbolic expressions for physical and mathematical consistency, offering a faster and more reliable alternative to costly human annotation (Brence et al., 2023; Gao et al., 2023; Chen et al., 2023; Cobbe et al., 2021; Hendrycks et al., 2021; Xia et al., 2024; Gao et al., 2025; Li et al., 2024).

3 PRELIMINARY AND FORMULATION

3.1 FORMULA-MATCHING-BASED EVALUATION

A crucial component that distinguishes our evaluation framework from most LLM-as-judge counterparts is that, ours is purely based on rule-based **Formula Equivalence Matching**, also called as **Formula Matching**. More specifically, we say two formulas are **matched** if they are mathematically equivalent. In Section 4.1 we will show how we actually match two formulas, and discuss our improvement against previous works.

3.2 MOTIVATION FOR THE DAG STRUCTURE

Naive process-scoring policies present inherent limitations: *strict matching* fails to recognize correct outcomes obtained through alternative derivations, whereas *prefix credit* overestimates performance by indiscriminately assigning credit to all prior steps once a single formula is matched. To address these issues, we represent the reference solution as a directed acyclic graph (DAG) of formulas, where the edges encode explicit prerequisite relations. With this structure, credit propagates only along causal chains from matched nodes to their ancestors. This approach (i) avoids the harshness of strict matching by rewarding justified intermediate work, (ii) prevents the over-crediting of prefix policies by restricting propagation to prerequisites only, and (iii) offers a representation intuitive for human reasoning, reliable for LLM annotation, and theoretically complete under mild assumptions.

3.3 DAG REPRESENTATION OF SOLUTIONS.

Formally, a *directed acyclic graph* (DAG) is a pair $G = (V, E)$, where V is a finite set of nodes and $E \subseteq V \times V$ is a set of directed edges such that there is no directed cycle in G . That is, there is no sequence of distinct nodes v_1, v_2, \dots, v_k with $k \geq 2$ satisfying $(v_i, v_{i+1}) \in E$ for all $1 \leq i < k$ and $(v_k, v_1) \in E$. A DAG thus encodes a partial order over its nodes, which is particularly suitable for representing stepwise logical or computational dependencies.

In our setting, each solution is systematically converted into such a DAG: **1. Nodes (formulas)**. Each $v \in V$ denotes a canonicalized L^AT_EX expression representing a mathematically key step (e.g., physical law, derived intermediate equation, simplified relation). Canonicalization guarantees syn-

tactic and semantic consistency across solutions. **2. Edges (dependencies).** For $(u, v) \in E$, formula v is derived from formula u . By construction, the edges reference only prior nodes, thereby ensuring temporal causal consistency and a valid topological ordering aligned with natural reasoning. **3. Minimality.** Redundant algebraic steps are removed, retaining only essential formulas, thereby yielding a concise yet sufficient structure that captures the core reasoning trajectory. **4. Completeness.** Every node must be connected by a directed path to at least one designated *final answer node*. Thus, all preserved formulas contribute causally to the derivation of the final solution, ensuring that there are no dangling or irrelevant steps.

The resulting DAG captures the **logical skeleton of the solution**, where nodes formalize reasoning steps and edges encode causal dependencies. In this way, the derivation is made machine-interpretable, with correctness evaluable both locally (per node) and globally (via entire dependency chains). This structure provides the foundation for our scoring mechanics (see Section 3.4).

3.4 ANCESTOR CLOSURE SCORING

Definition 1 (Ancestor Closure). *Let $\mathcal{M} \subseteq \mathcal{F}$ be the set of matched reference formulas, and let $\text{Anc}(S) := \{A \in \mathcal{F} / S : \exists B \in S \text{ and a path } A \prec \dots \prec B\}$. We define the ancestor closure of \mathcal{M} as:*

$$\text{Ach}(\mathcal{M}) := \mathcal{M} \cup \text{Anc}(\mathcal{M}),$$

i.e., all matched nodes and all their DAG ancestors (reverse reachability).

By this definition, we formally propose our **Ancestor Closure Scoring Policy**:

Definition 2 (Ancestor Closure Scoring Policy). *Let \mathcal{M} be the set of formulas in the reference DAG that are directly matched by the submission (student solution), then **Ancestor Closure Scoring** gives the final score as*

$$S = \frac{|\text{Ach}(\mathcal{M})|}{|\mathcal{F}|} \quad (1)$$

where \mathcal{F} is the set of all formulas in the DAG.

Intuition. In a solution DAG, edges point from prerequisite formulas to their dependents. If a dependent formula is achieved (matched), then every formula that lies on any directed path *into* it is considered achieved as well, because those predecessors are logically required for deriving it. Thus, we count the union of each matched formula together with all of its prerequisites; the score is simply the fraction of reference formulas covered by this union.

3.5 JUSTIFICATION SYSTEM AND OPTIMALITY OF DAG

We formulate a good formula-based scoring policy under the following intuition: a scoring policy should first verify which formulas in the reference solution are *matched* by the student solution, then see if some other formulas can be *justified* by the matched reference formulas. We restrict attention to complete justifications; partial or approximate justifications are outside the scope of this formulation. Under such a formulation, we can formally discuss the optimality of our provided DAG structure as a representation of the formula relations, as well as our scoring policy.

Definition 3 (Justification System). *Let \mathcal{F} be the set of reference formulas. A justification relation is a relation $\Rightarrow \subseteq 2^{\mathcal{F}} \times \mathcal{F}$, where $X \Rightarrow B$ means: once every formula in X is matched, the formula B is automatically warranted, or in other words, adding formula B into the student solution will not make any further progress to the final answer. The set \mathcal{F} and all justification relations within it form the justification system $(\mathcal{F}, \Rightarrow)$.*

We define the minimal justification relation \vdash by

$$A \vdash B \iff A \Rightarrow B \text{ and no proper subset } Y \subset A \text{ satisfies } Y \Rightarrow B.$$

In this case, A is called a minimal justifier of B .

The minimal justification kernel of a justification system $(\mathcal{F}, \Rightarrow)$ is the set

$$\mathcal{K} = \{(A, B) \in 2^{\mathcal{F}} \times \mathcal{F} : A \vdash B\}.$$

216 Two justification systems $(\mathcal{F}, \Rightarrow_1)$ and $(\mathcal{F}, \Rightarrow_2)$ are said to be equivalent if they have the same
 217 minimal justification kernel, i.e.

$$\{(A, B) : A \vdash_1 B\} = \{(A, B) : A \vdash_2 B\}.$$

220 **Assumption 1** (Singleton Minimal Justifiers). For every $B \in \mathcal{F}$, every minimal justifier of B has
 221 size 1. Equivalently, the justification system can be represented with a binary relation $\prec \subseteq \mathcal{F} \times \mathcal{F}$
 222 such that $A \prec B$ iff $\{A\}$ is a minimal justifier of B .

223 **Remark.** Intuitively, $A \prec B$ means A is a prerequisite of B : if B is awarded, A must also be
 224 awarded. Scoring thus flows upward in the DAG: from every scored node B , all \prec -ancestors A are
 225 also scored.

226 **Assumption 2** (Causality). If $A \prec B$, then A occurs earlier than B in the reference solution's
 227 logical order.

228 **Theorem 1** (Bijection between order-keeping justifications and DAGs). Fix $\mathcal{F} = \{F_1, \dots, F_N\}$
 229 with the index order $1 < \dots < N$. Let Just be the class of justification kernels $\vdash \subseteq \mathcal{F} \times \mathcal{F}$ that
 230 satisfy Assumptions 1 and 2 (so $F_i \vdash F_j \Rightarrow i < j$). Let DAG be the class of directed acyclic graphs
 231 $G = (\mathcal{F}, E)$ whose edges point forward in the index order (i.e., $(F_i, F_j) \in E \Rightarrow i < j$).

232 Define the maps

$$\begin{aligned} \Phi : \text{Just} &\rightarrow \text{DAG}, & \Phi(\vdash) &= (\mathcal{F}, E_\vdash := \{(A, B) : A \vdash B\}), \\ \Psi : \text{DAG} &\rightarrow \text{Just}, & \Psi((\mathcal{F}, E)) &= \vdash_E \text{ where } A \vdash_E B \iff (A, B) \in E. \end{aligned}$$

236 Then:

- 238 (i) Φ is injective: if $\Phi(\vdash_1) = \Phi(\vdash_2)$, then $\vdash_1 = \vdash_2$.
- 239 (ii) Ψ is injective: if $\Psi(G_1) = \Psi(G_2)$, then $G_1 = G_2$.

241 Consequently, Φ and Ψ are mutual inverses and yield a bijection $\text{Just} \cong \text{DAG}$.

242 **Remark.** By Theorem 1, we can see that the DAG representation is precisely the minimal encoding
 243 of a justification system: it records only the minimal justification kernel and thus contains no redundant
 244 rules. At the same time, its closure recovers the full justification system, so the DAG captures
 245 exactly the necessary structure with no loss of information and no superfluous complexity. The proof
 246 of Theorem 1 is given in Appendix A.1

248 3.6 ADMISSIBILITY OF ANCESTOR CLOSURE SCORING

250 Intuitively, a good scoring policy would map each formula in the DAG to 1 (achieved) or 0 (not
 251 achieved), then provide score accordingly. More formally, we define an admissible scoring policy
 252 as follows:

253 **Definition 4** (Admissible Scoring Policy). A mapping $S : 2^{\mathcal{F}} \prec 2^{\mathcal{F}}$, where $S(\mathcal{M})$ is the set of
 254 scored formulas for matched set \mathcal{M} , is admissible if it satisfies:

255 1. **Matched Inclusion:** $\mathcal{M} \subseteq S(\mathcal{M})$.

256 2. **Ancestor Closure:** If $B \in S(\mathcal{M})$ and $A \prec B$, then $A \in S(\mathcal{M})$. ("B justifies A" \Rightarrow back-credit A)

257 3. **Soundness:** $S(\mathcal{M}) \subseteq \text{Ach}(\mathcal{M})$. (no over-credit beyond justified ancestors)

258 **Theorem 2** (Exact Characterization of Scored Formulas). For any matched set $\mathcal{M} \subseteq \mathcal{F}$ and any
 259 admissible scoring policy S ,

$$S(\mathcal{M}) = \text{Ach}(\mathcal{M}) = \mathcal{M} \cup \text{Anc}(\mathcal{M}).$$

261 Proof of Theorem 2 is given in Appendix A.2.

262 **Remark.** Theorem 2 shows our Ancestor Closure Scoring is equivalent to any admissible policy.

265 4 EVALUATION FRAMEWORK: PRISM-DAG

267 4.1 RULE-BASED PHYSICS FORMULA EQUIVALENCE MATCHING

268 A key component of our PRISM-DAG is to decide whether two formulas are equivalent. However,
 269 checking equivalence between physics formulas presents three key challenges: (1) **Equivalence of**

equations. Checking formula equivalence is more difficult than expression comparison; **(2) Constant substitutions.** Two equivalent variables might be written in different forms; **(3) Unit conversion.** Values can be expressed in different units. Prior works often avoid these issues by checking only final expressions, enforcing specific formats, or relying on LLM-as-Judge for comparison, but such approaches either miss process-level evaluation or suffer from hallucination.

To enable fine-grained and rigorous process-based scoring, we propose a two-stage algorithm for physics formula equivalence checking:

[Stage 1] Constant Substitution. We substitute certain variables with their expressions. Variables, constants, and units are normalized into predefined form for consistency.

[Stage 2] Solution Set Equivalence Check. For two equations with N variables, one variable is randomly chosen as the target, the remaining $N - 1$ are assigned random values, then the target is solved to compare whether the solution sets are equivalent. This process is repeated for multiple iterations. Solution set equivalence serves as a proxy for equation equivalence.

Details of the equivalence matching procedure and algorithm are given in Appendix B.1 and Algorithm 1 in Appendix B.2, which successfully resolve these difficulties.

4.2 SCORING PIPELINE

Given a student solution and a problem with annotated DAG, we can summarize our evaluation process PRISM-DAG as three steps, details shown in Algorithm 2 in Appendix B.3.

Formula Extraction and Normalization. Given a student’s solution, all mathematical expressions are first extracted and rewritten into our dataset’s standardized canonical form, discarding invalid expressions such as syntactically malformed formulas or irrelevant numerical fragments.

Formula Matching. Each standardized student formula is compared against the reference DAG of the solution according to Section 4.1, which outputs a set of matched formulas in the DAG.

Scoring. Finally, we score the student solution according to the Ancestor Closure Scoring Policy in Section 3.4 with the DAG and the set of matched formulas.

5 PRISM-PHYSICS BENCHMARK

5.1 BENCHMARK OVERVIEW

We first collect and preprocess the data to satisfy the need of our scoring pipeline, then do difficulty annotation and domain categorization to give more fine-grained results for analysis. An example of our dataset is shown in Figure 2.

5.2 DATA COLLECTION AND PREPROCESSING

Three-Step Rewriting Pipeline.

To guarantee both internal consistency and external evaliability, every sample in the dataset is processed through a structured three-stage rewriting pipeline. Each stage focuses on eliminating ambiguity and enforcing standardization, while preserving the fidelity of the original content: **(1) Formula normalization.** All mathematical expressions are standardized in L^AT_EX, with uniform rules for symbolic equivalence and numerical precision; **(2) Context clarification.** Problem statements are rewritten to define all variables and answer requirements explicitly, removing ambiguities; **(3) DAG construction.** Each solution is represented as a directed acyclic graph (DAG) of formulas, verified by rule-based and LLM-based checks.

Verification and Quality Control. At each stage, an LLM-based module verifies formatting, clarity, and dependency rules; failures trigger corrective feedback and regeneration.

Fine-Grained Enhancements. Beyond the main pipeline, we applied several refinements: enforcing significant-figure rules, explicitly defining all constants and variables, and unifying answer formatting. See Appendix C for further details and prompts.

324 5.3 ANNOTATION & ANALYSIS
325

326 **Difficulty Annotation.** Each problem is assigned a
327 composite difficulty label that integrates LLM-based
328 ratings of conceptual depth and computational bur-
329 den with an entropy-based DAG complexity mea-
330 sure. The three components are combined into a uni-
331 fied score, which is mapped to *Easy*, *Medium*, *Hard*,
332 capturing both the content difficulty and the reason-
333 ing complexity of the solution.

334 **Physics Domain Categorization.** Each problem is
335 categorized into one of seven key physics domains:
336 (1) *Mechanics*, (2) *Electromagnetism*, (3) *Optics*, (4)
337 *Atomic, Nuclear, and Particle Physics*, (5) *Thermo-
338 dynamics and Statistical Physics*, (6) *Quantum Me-
339 chanics*, and (7) *Solid State Physics and Mis-
340 celleaneous Topics*. Further details and prompts are pro-
341 vided in Appendix D.

342 6 EXPERIMENTS
343344 6.1 SETTING
345

346 We evaluate our proposed PRISM-DAG evalua-
347 tion framework on the benchmark. We consider two experimental settings: a *text-only* setting, where the
348 problem statement is presented as plain text, and a *multimodal* setting, where relevant diagrams or
349 figures are included alongside the text.

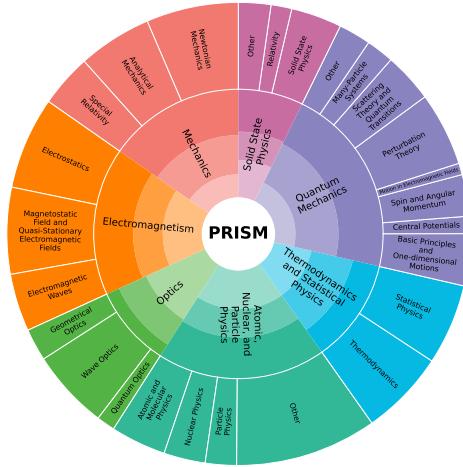
350 **Models.** We evaluate a diverse set of frontier LLMs. To guide the models in generating reasoning-
351 augmented responses, we design zero-shot COT prompts that encourage step-by-step derivations.
352 All models are run with a unified inference configuration, including fixed temperature, maximum
353 generation length, and identical prompt templates, to ensure fair comparison across settings.
354

355 **Evaluation Framework Baselines.** For comparison, we evaluate against: (1) **LLM-as-Judge**
356 **Scoring**, where an LLM evaluates both the final answer and the solution process given grading
357 prompts(following the evaluation setting of SeePhy (Xiang et al., 2025)); (2) **PSAP-S** (Zhang et al.,
358 2025), an existing process-based framework with strong step-format and ordering assumptions,
359 replicated per its original implementation for fair comparison. Details are provided in Appendix E.

360 6.2 SUMMARY OF EXPERIMENT FINDINGS
361

362 We conduct a comprehensive set of experiments, including overall performance evaluation via step-
363 level final-answer accuracy, physics-domain analysis, modality and reasoning-level comparisons,
364 error analysis, and alignment with human expert judgments. Below is a concise summary of our key
365 experimental findings:

- 366 • Overall, frontier LLMs struggle to maintain coherent multi-step physics derivations despite strong
367 performance on simpler tasks, and performance declines sharply with increasing difficulty.
- 368 • Hard problems exhibit a sharp divergence between step-level and final-answer accuracy (final-
369 answer accuracy $\lesssim 10\%$), yielding extremely sparse rewards, while step-level scoring more faith-
370 fully captures partial reasoning competence and can serve as a dense signal for RL and data curation.
- 371 • Domain analysis reveals weaknesses in Quantum Mechanics, and most errors arise from incorrect
372 physical assumptions (CAE), algebraic and computational mistakes (DCE) and Modeling & Process
373 Understanding Errors(MPUE), providing guidance for future model training and improvement.
- 374 • Multimodal input offers strong step-level gains for larger models but provides limited or even neg-
375 ative benefits for smaller models, where diagrams serve mainly a presentational role.
- 376 • Deeper reasoning modes consistently enhance accuracy but require significantly more computation,
377 highlighting a central efficiency challenge for scaling reasoning performance.



378 Figure 3: Statistics of PRISM-PHYSICS hi-
379 erarchical topics and difficulty level.

378
379
380
381 Table 1: Step-level Accuracy and Final-Answer Accuracy across difficulty levels (Easy, Medium,
382 Hard, and Avg.) for evaluated models.
383

Model	Reasoning	Easy			Medium			Hard			Avg.		
		Final	Step	Time									
<i>Open-source Chat LLMs</i>													
Deepseek-V3	F	30.70	58.91	13.55	18.11	50.21	17.63	7.97	43.78	19.64	18.48	50.67	17.06
Qwen2.5-72B-Instruct-Turbo	F	24.31	48.74	13.17	11.02	37.51	17.21	4.74	32.77	18.74	12.96	39.35	16.49
Llama-4-Scout-17B-16E	F	21.11	46.99	13.73	11.22	35.32	17.35	2.85	28.34	19.10	11.37	36.51	16.84
LLama-3.3-70B-Instruct-Turbo	F	22.81	45.42	22.16	12.20	34.65	21.89	2.66	24.66	24.18	12.17	34.51	22.78
<i>Open-source Reasoning LLMs</i>													
Deepseek-R1	T	27.51	52.16	345.28	16.73	50.62	468.81	10.82	46.30	585.86	18.02	49.59	471.30
GPT-OSS-20B	T	18.55	31.92	12.30	7.48	19.14	14.66	3.42	11.76	14.86	9.51	20.54	13.99
GPT-OSS-120B	T	21.75	42.97	9.39	11.22	30.60	13.49	2.85	19.75	14.77	11.57	30.66	12.66
Qwen3-235B-A22B-Instruct	T	30.28	55.78	29.22	14.96	39.93	38.56	5.50	31.73	41.79	16.42	42.00	36.78
<i>Proprietary Chat LLMs</i>													
Claude-sonnet-4	F	29.00	54.97	23.63	17.32	47.65	28.52	8.16	39.13	29.23	17.75	46.95	27.24
GPT-4o-mini	F	18.76	40.82	12.20	7.09	26.88	14.51	2.28	21.05	15.17	9.04	29.18	14.02
GPT-4.1	F	30.06	58.68	13.91	16.93	53.56	22.24	8.73	48.82	28.98	18.15	53.50	22.00
<i>Proprietary Reasoning LLMs</i>													
Gemini-2.5-Flash	T	29.00	51.35	33.00	15.55	43.12	46.54	7.59	35.04	53.53	16.96	42.86	44.77
Gemini-2.5-Pro	T	31.98	60.29	64.11	23.43	56.87	84.16	12.90	49.68	98.91	22.41	55.42	83.07
GPT-5	Low	31.13	57.48	27.78	20.08	54.6	36.12	11.39	49.32	43.36	20.48	53.65	36.05
GPT-5	Medium	32.20	59.04	46.35	20.87	55.19	68.13	13.85	51.74	81.75	21.94	55.18	66.11
GPT-5	High	30.92	60.21	100.13	21.26	57.00	135.50	10.06	51.52	159.06	20.35	56.08	132.73
GPT-5-mini	Low	26.01	52.12	30.08	14.96	44.13	37.76	7.02	38.45	42.38	15.62	44.63	36.98
GPT-5-mini	Medium	29.21	55.86	45.08	17.52	49.40	59.95	8.92	42.15	71.21	18.15	48.87	59.26
GPT-5-mini	High	29.85	57.25	154.26	19.09	53.22	198.31	11.20	47.89	226.00	19.68	52.61	194.27
Grok-4	T	26.44	53.02	170.60	17.52	49.45	235.19	9.11	44.34	267.56	17.35	48.77	226.39
o4-mini	T	23.88	48.56	27.84	13.58	39.21	33.76	6.07	31.83	37.50	14.16	39.54	33.22
<i>Multimodal Large Language Models</i>													
Claude-sonnet-4	F	27.29	54.21	16.46	16.53	49.06	20.90	6.31	40.5	23.19	16.33	47.68	20.31
Gemini-2.5-Flash	T	30.49	54.08	37.10	19.09	48.18	53.21	9.30	36.41	62.87	19.21	45.90	51.57
Gemini-2.5-Pro	T	34.33	60.91	67.30	21.46	59.35	88.51	14.42	54.16	102.04	23.01	58.02	86.64
GPT-4.1	F	28.57	58.64	18.60	15.55	52.67	24.99	7.40	43.92	29.12	16.75	51.47	24.44
GPT-5	Medium	31.90	60.53	60.35	22.27	56.94	80.05	12.30	50.93	93.70	21.84	55.98	78.59
GPT-5-mini	Medium	28.78	54.14	49.65	16.27	47.13	63.55	9.90	44.42	70.97	17.95	48.37	61.80
Grok-4	T	28.88	56.34	196.36	17.14	51.33	241.64	8.81	46.89	335.71	17.95	51.37	260.04

408
409
410
411
412 • Our DAG-based, rule-base evaluator aligns more closely with human experts than LLM-as-judge
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
143

in Quantum Mechanics. Step-level evaluation further exposes weaknesses in reasoning coherence, and accuracy consistently drops from Easy to Hard problems across all domains.

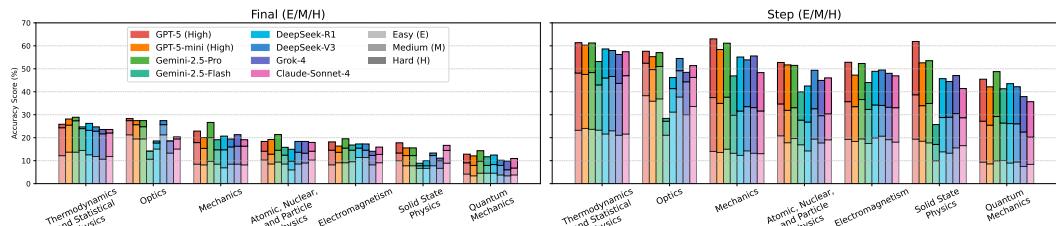


Figure 4: Step-level and final-answer accuracy across Physics Domain Categories and Difficulty Levels.

6.4 MODALITY AND REASONING-LEVEL COMPARISONS

Text Models vs. Multimodal Models. The effect of multimodal input varies across model families. In general, adding images provides stronger gains at the step level than at the final-answer level, highlighting its role in supporting intermediate reasoning. However, for smaller or weaker models, multimodal input can even be detrimental, as diagrams in physics problems often serve a presentational rather than informational role, with the critical content already conveyed in text. Figure is provided in Appendix E.2.

Across Different Reasoning Level. As shown in Figure 5, we observe that reasoning-oriented models exhibit consistently higher accuracy than chat-oriented models, but this improvement consistently comes with substantially longer response times. We further evaluate GPT-5 and GPT-5-mini under three reasoning modes (*low, medium, high*). Results indicate a consistent improvement in accuracy with increasing reasoning effort. However, for GPT-5, the average latency of the *medium* mode is 83.38% higher than the *low* mode, while the *high* mode is 268.18% higher. GPT-5-mini shows the same pattern. These results confirm that deeper reasoning consistently improves accuracy while incurring proportional increases in computational cost. Notably, while o4-mini was previously claimed to be a good reasoning model, its performance here is relatively poor; one possible explanation is that, as a distilled model, it suffers from limited generalization and thus struggles with complex reasoning tasks beyond its training distribution.

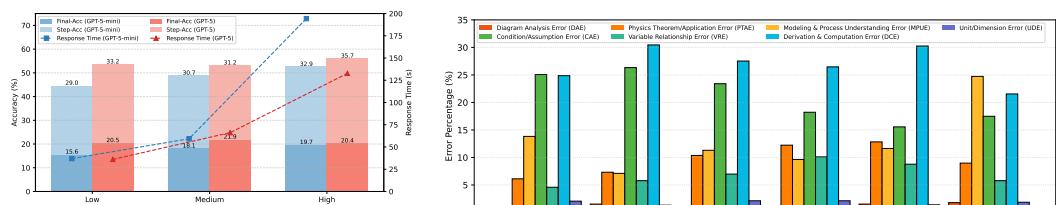


Figure 5: Comparison of accuracy and response time across reasoning levels.

Figure 6: Distribution of primary error types across models

6.4.1 ERROR ANALYSIS

We perform error analysis on the first incorrect step detected in each solution as shown in Figure 6, using a unified taxonomy that integrates process-level physics reasoning errors with formula-level derivation errors. The classification covers seven categories (detailed definitions are provided in Appendix G.2): (1) Diagram Analysis Error (DAE), (2) Physics Theorem/Application Error (PTAE), (3) Modeling and Process Understanding Error (MPUE), (4) Condition or Assumption Error (CAE), (5) Variable Relationship Error (VRE), (6) Derivation and Computation Error (DCE), and (7) Unit Dimension Error (UDE).

The dominant error types across models are Condition/Assumption Errors (CAE), which arise when models set up inconsistent or incorrect physical assumptions; Derivation & Computation Errors (DCE), which occur when models make mistakes in algebraic manipulation or calculation; and Modeling & Process Understanding Errors (MPUE), which reflect failures in mapping the problem

486 into the correct physical model or reasoning process. This indicates that LLMs often fail both in
 487 establishing consistent physical conditions and in executing algebraic reasoning.
 488

489 **6.5 EVALUATION FRAMEWORK ANALYSIS**
 490

491 We further evaluated PRISM-DAG with human annotations to assess effectiveness.

492 **Annotation Setup.** We randomly sampled 70 problems (10 from each domain) along with their
 493 corresponding DeepSeek-V3 (text-only) solutions. Each problem–solution pair was independently
 494 evaluated by two human experts to reduce variance. **We let the experts grade by their own profes-**
 495 **sional judgment without the DAG.** In cases where the two experts’ scores differed substantially, a
 496 third annotator was invited to adjudicate and determine the final score.

497 **Results.** We quantified the agreement between framework-generated scores and human annotations
 498 using Kendall’s τ_b correlation coefficient, along with statistical significance testing via both
 499 asymptotic and permutation-based p-values (see Appendix F.1 for details). Higher τ_b values indicate
 500 stronger concordance, with significance levels verifying the robustness of the observed correlations.

501 Table 2 demonstrates the clear superiority
 502 of PRISM-DAG. *LLM-as-Judge* is purely
 503 outcome-based, assigning only binary 0/1
 504 scores, while *PSAS-S*, though process-based,
 505 evaluates steps independently without model-
 506 ing causal dependencies. Both baselines are
 507 LLM-based, whereas our non-LLM PRISM-
 508 DAG explicitly accounts for causality across
 509 steps, leading to stronger alignment with human judgments. We analyzed failure cases from our
 510 evaluator and two baselines to understand strengths and limitations. Details are provided in Ap-
 511 pendix F.2.

512 Table 2: Comparison of annotation alignment.

Method	$\tau_b \uparrow$	Asymptotic p-value \downarrow	Permutation p-value \downarrow
LLM-as-Judge	0.294	6.90×10^{-3}	6.00×10^{-3}
PSAS-S	0.213	2.20×10^{-2}	2.09×10^{-2}
PRISM-DAG	0.346	1.31×10^{-4}	1.00×10^{-4}

513 **7 CONCLUSION AND FUTURE WORK**

514 We introduced PRISM-PHYSICS, a benchmark and a process-level evaluation framework that en-
 515 codes physics solutions as DAGs and employs rule-based symbolic equivalence checking for reli-
 516 able, fine-grained scoring.

517 Experiments reveal persistent reasoning failures in frontier LLMs, underscoring the challenge of
 518 sustaining coherent derivations in physics. PRISM-PHYSICS establishes a principled and inter-
 519 pretative foundation for process-level evaluation, enabling more robust benchmarks and advancing
 520 LLMs toward deeper scientific reasoning, while its step-level signals provide both training guidance
 521 and a principled basis for higher-quality data.

522 Although PRISM-PHYSICS currently focuses on physics, our evaluation framework is domain-
 523 agnostic and can be readily extended to other subjects such as mathematics, chemistry, and biology.
 524 In future work, we also plan to use the benchmark for post-training LLMs, particularly to study the
 525 benefits of incorporating process-level signals during RL-based fine-tuning.

526 Furthermore, our framework is designed to be easily adapted to existing datasets. We therefore
 527 encourage both current and future benchmark developers to adopt our framework alongside their
 528 original evaluation methods, in order to provide more comprehensive and consistent assessments.

529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 ETHICS STATEMENT.
541542 This work uses publicly available physics competition problems and solution materials. No private
543 or sensitive data are involved. All datasets were curated and processed with the goal of supporting
544 fair and reproducible evaluation of large language models.
545546 REPRODUCIBILITY STATEMENT.
547548 We are committed to ensuring full reproducibility of the results in this paper. To this end, we will
549 release the following upon acceptance:
550551 *Data*: All benchmark datasets introduced in this work will be publicly available, together with
552 documentation describing their collection and processing.
553554 *Code for Reproduction*: We will provide all scripts necessary to reproduce the experiments and
555 results reported in the paper, including data preprocessing, evaluation, and analysis.
556557 *Framework Adaptation Tools*: We will release additional code to allow other benchmark developers
558 to easily convert their datasets into our standardized format, enabling seamless evaluation within our
559 framework.
560561 Due to anonymity and submission guidelines, these resources are not included with the submission.
562 However, we will make them publicly accessible upon publication to support transparency, repro-
563 ducibility, and extensibility of our benchmark.
564565 REFERENCES
566567 Meta AI. Llama 3.1 8b. <https://huggingface.co/meta-llama/Llama-3.1-8B>,
568 2024. Accessed: 2025-05-15. 32
569570 Anthropic. Claude 3.7 Sonnet. <https://www.anthropic.com/clause/sonnet>, 2025.
571 Anthropic model card. 32
572573 Jure Brence, Saso Dzeroski, and Ljupco Todorovski. Dimensionally-consistent equation discovery
574 through probabilistic attribute grammars. *Inf. Sci.*, 2023. 3
575576 Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
577 Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. *ACM*
578 *transactions on intelligent systems and technology*, 15(3):1–45, 2024. 1
579580 Wenhui Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
581 Disentangling computation from reasoning for numerical reasoning tasks. *Trans. Mach. Learn.*
582 *Res.*, 2023. 3
583584 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
585 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
586 Schulman. Training verifiers to solve math word problems. 2021. 3
587588 DeepSeek-AI. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning,
589 2025. URL <https://arxiv.org/abs/2501.12948>. 32
590591 Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam, David Dohan,
592 Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, et al. Competitive programming
593 with large reasoning models. *arXiv preprint arXiv:2502.06807*, 2025. 1
594595 Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
596 Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark
597 for large language models. *arXiv preprint arXiv:2410.07985*, 2024. 1
598599 Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
600 Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan,
601

594 Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omni-
 595 MATH: A universal olympiad level mathematic benchmark for large language models. In *The*
 596 *Thirteenth International Conference on Learning Representations (ICLR)*, 2025. 3

597 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
 598 Graham Neubig. PAL: Program-aided language models. In *ICML*, 2023. 3

600 Google DeepMind. Gemini 2.5 Flash. <https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash>, 2025a. Vertex AI model card.
 601 32

603 Google DeepMind. Gemini 2.5 Pro. <https://deepmind.google/technologies/gemini/pro/>, 2025b. Google DeepMind model card. 32

606 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
 607 Shen, Shengjie Ma, Honghao Liu, Yuanzhuo Wang, and Jian Guo. A survey on llm-as-a-judge.
 608 2024. 2

609 Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno de Moraes Dumont, and
 610 Sanmi Koyejo. Putnam-AXIOM: A functional and static benchmark for measuring higher level
 611 mathematical reasoning. In *The 4th Workshop on Mathematical Reasoning and AI at NeurIPS'24*,
 612 2024. 2

614 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
 615 Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
 616 Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual multi-
 617 modal scientific problems, 2024. URL <https://arxiv.org/abs/2402.14008>. 1, 2

618 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 619 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
 620 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks*
 621 *Track (Round 2)*, 2021. 2, 3

622 Raj Jaiswal, Dhruv Jain, Harsh Parimal Popat, Avinash Anand, Abhishek Dharmadhikari, Atharva
 623 Marathe, and Rajiv Ratn Shah. Improving physics reasoning in large language models using
 624 mixture of refinement agents. *arXiv preprint arXiv:2412.00821*, 2024. 1

625 Xiaoyuan Li, Wenjie Wang, Moxin Li, Junrong Guo, Yang Zhang, and Fuli Feng. Evaluating mathe-
 626 matical reasoning of large language models: A focus on error identification and correction. *arXiv*
 627 *preprint arXiv:2406.00755*, 2024. 3

629 Junnan Liu, Hongwei Liu, Linchen Xiao, Ziyi Wang, Kuikun Liu, Songyang Gao, Wenwei Zhang,
 630 Songyang Zhang, and Kai Chen. Are your llms capable of stable reasoning? *arXiv preprint*
 631 *arXiv:2412.13147*, 2024. 2

632 Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: NLG
 633 evaluation using gpt-4 with better human alignment. In *EMNLP*, 2023. 2

635 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 636 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
 637 of foundation models in visual contexts. In *The Twelfth International Conference on Learning*
 638 *Representations (ICLR)*, 2024. 2

639 Yujun Mao, Yoon Kim, and Yilun Zhou. CHAMP: A competition-level dataset for fine-grained
 640 analyses of LLMs' mathematical reasoning capabilities. In *Findings of the Association for Com-
 641 putational Linguistics: ACL 2024*, pp. 13256–13274, Bangkok, Thailand, 2024. Association for
 642 Computational Linguistics. 2

643 Meta Platforms, Inc. Llama-4-Scout-17B-16E. <https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E>, 2025. Hugging Face model card; accessed 2025-05-12. 32

646 OpenAI. GPT-4o mini. <https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/>, 2024. OpenAI
 647 blog post. 32

648 OpenAI. GPT-4.1. <https://openai.com/index/gpt-4-1/>, 2025a. OpenAI model an-
649 nouncement. 32
650

651 OpenAI. GPT-5. <https://openai.com/index/introducing-gpt-5/>, 2025b. OpenAI
652 model announcement. 32

653 OpenAI. OpenAI o4-mini. [https://openai.com/index/
654 introducing-o3-and-o4-mini/](https://openai.com/index/introducing-o3-and-o4-mini/), 2025c. OpenAI official announcement. 32
655

656 OpenAI. GPT-OSS. <https://openai.com/index/introducing-gpt-oss/>, 2025d.
657 OpenAI model announcement. 32

658 Ivo Petrov, Jasper Dekoninck, Lyuben Baltadzhiev, Maria Drencheva, Kristian Minchev, Mislav
659 Balunović, Nikola Jovanović, and Martin Vechev. Proof or bluff? evaluating llms on 2025 usa
660 math olympiad. *arXiv preprint arXiv:2503.21934*, 2025. 2

661 Shi Qiu, Shaoyang Guo, Zhuo-Yang Song, Yunbo Sun, Zeyu Cai, Jiashen Wei, Tianyu Luo, Yix-
662 uan Yin, Haoxu Zhang, Yi Hu, Chenyang Wang, Chencheng Tang, Haoling Chang, Qi Liu,
663 Ziheng Zhou, Tianyu Zhang, Jingtian Zhang, Zhangyi Liu, Minghao Li, Yuku Zhang, Boxuan
664 Jing, Xianqi Yin, Yutong Ren, Zizhuo Fu, Jiaming Ji, Weike Wang, Xudong Tian, Anqi Lv,
665 Laifu Man, Jianxiang Li, Feiyu Tao, Qihua Sun, Zhou Liang, Yushu Mu, Zhongxuan Li, Jing-
666 Jun Zhang, Shutao Zhang, Xiaotian Li, Xingqi Xia, Jiawei Lin, Zheyu Shen, Jiahang Chen, Qi-
667 uhao Xiong, Binran Wang, Fengyuan Wang, Ziyang Ni, Bohan Zhang, Fan Cui, Changkun Shao,
668 Qing-Hong Cao, Ming xing Luo, Yaodong Yang, Muhan Zhang, and Hua Xing Zhu. Phybench:
669 Holistic evaluation of physical perception and reasoning in large language models, 2025. URL
670 <https://arxiv.org/abs/2504.16074>. 2, 17

671 Qwen Team. Qwen2.5-72B. <https://huggingface.co/Qwen/Qwen2.5-72B>, 2024.
672 Hugging Face model card. 32
673

674 Qwen Team. Qwen3-235B-A22B. [https://huggingface.co/Qwen/
675 Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B), 2025. Hugging Face model card. 32

676 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
677 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
678 mark. In *First Conference on Language Modeling*, 2024. 1

679 Quan Shi, Michael Tang, Karthik Narasimhan, and Shunyu Yao. Can language models solve
680 olympiad programming? *arXiv preprint arXiv:2404.10952*, 2024. 1

682 Peiyang Song, Pengrui Han, and Noah Goodman. A survey on large language model reasoning
683 failures. In *2nd AI for Math Workshop@ ICML 2025*, 2025. 1

685 Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R.
686 Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level sci-
687 entific problem-solving abilities of large language models. In *ICML*. 1, 2

688 xAI. Grok 4. <https://x.ai/news/grok-4>, 2025. xAI official announcement. 32
689

690 Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and Pengfei Liu. Evaluating mathematical
691 reasoning beyond accuracy. *CoRR*, abs/2404.05692, 2024. 3

692 Kun Xiang, Heng Li, Terry Jingchen Zhang, Yinya Huang, Zirong Liu, Peixin Qu, Jixi He, Jiaqi
693 Chen, Yu-Jie Yuan, Jianhua Han, Hang Xu, Hanhui Li, Mrinmaya Sachan, and Xiaodan Liang.
694 Seephys: Does seeing help thinking? – benchmarking vision-based physics reasoning, 2025.
695 URL <https://arxiv.org/abs/2505.19099>. 1, 2, 7

696 Xin Xu, Qiyun Xu, Tong Xiao, Tianhao Chen, Yuchen Yan, Jiaxin Zhang, Shizhe Diao, Can Yang,
697 and Yang Wang. Ugphysics: A comprehensive benchmark for undergraduate physics reasoning
698 with large language models. 2025. 2

699 Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner
700 Geyer, Chao Huang, Pin-Yu Chen, Nitesh V. Chawla, and Xiangliang Zhang. Justice or prejudice?
701 quantifying biases in llm-as-a-judge. In *ICLR*, 2025. 2

702 Xinyu Zhang, Yuxuan Dong, Yanrui Wu, Jiaxing Huang, Chengyou Jia, Basura Fernando,
703 Mike Zheng Shou, Lingling Zhang, and Jun Liu. Physreason: A comprehensive benchmark
704 towards physics-based reasoning, 2025. URL <https://arxiv.org/abs/2502.12054>.
705 1, 2, 7

706 Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
707 formal olympiad-level mathematics. *arXiv preprint arXiv:2109.00110*, 2021. 1

708 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
709 Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
710 Judging llm-as-a-judge with mt-bench and chatbot arena. In *NeurIPS*, 2023. 2

711 Yaoming Zhu, Junxin Wang, Yiyang Li, Lin Qiu, ZongYu Wang, Jun Xu, Xuezhi Cao, Yuhuai
712 Wei, Mingshi Wang, Xunliang Cai, et al. Oibench: Benchmarking strong reasoning models with
713 olympiad in informatics. *arXiv preprint arXiv:2506.10481*, 2025. 1

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Supplementary Materials for PRISM-Physics: Causal DAG-Based Process Evaluation for Physics Reasoning

A DAG Structure Details	17
A.1 Proof of Theorem 1	17
A.2 Proof of Theorem 2	17
B Evaluation Framework Details	17
B.1 Equivalence Matching Details	17
B.2 Algorithm of Equivalence Matching	19
B.3 Algorithm of Scoring Pipeline	20
B.4 Scoring Example	20
C Dataset Curation Details	21
C.1 Data Source and Collection	21
C.2 Three-Step Rewriting Pipeline Details	21
C.3 Prompts for Three-Step Rewriting Pipeline	22
C.4 Rewriting Examples	25
D Dataset Statistics	30
D.1 Difficulty Annotation Details	30
D.2 Domain Categorization Details	31
E Experimental Details for PRISM-PHYSICS	32
E.1 Experimental Setups	32
E.2 Additional results	33
F Evaluation Framework Analysis Details	33
F.1 Kendall’s Tau-b and p-test	33
F.2 Failure Analysis for Evaluation Framework	34
G Error Analysis Details	35
G.1 Prompts for Error Analysis	35
G.2 Error Taxonomy Definitions	35
G.3 Model Failure Solution Examples	36
H Clearer Images	46

810	I Statement	52
811		
812		
813		
814		
815		
816		
817		
818		
819		
820		
821		
822		
823		
824		
825		
826		
827		
828		
829		
830		
831		
832		
833		
834		
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864 **A DAG STRUCTURE DETAILS**865 **A.1 PROOF OF THEOREM 1**

866 *Proof.* (i) If $\Phi(\vdash_1) = \Phi(\vdash_2)$, then their edge sets coincide: $E_{\vdash_1} = E_{\vdash_2}$. By definition of E_{\vdash} , this
867 is equivalent to

$$868 \quad \{(A, B) : A \vdash_1 B\} = \{(A, B) : A \vdash_2 B\},$$

869 hence $\vdash_1 = \vdash_2$.

870 (ii) If $\Psi(G_1) = \Psi(G_2)$, then their kernels coincide: $\vdash_{E_1} = \vdash_{E_2}$. Unwinding the definition,

$$871 \quad (A, B) \in E_1 \iff A \vdash_{E_1} B \iff A \vdash_{E_2} B \iff (A, B) \in E_2,$$

872 so $E_1 = E_2$ and thus $G_1 = G_2$.

873 Order-keeping ensures that $\Phi(\vdash) \in \text{DAG}$ (acyclic by Assumption 2; all edges point forward), and
874 that $\Psi(G) \in \text{Just}$ (singletons and forward edges by construction). Finally,

$$875 \quad \Psi(\Phi(\vdash)) = \vdash \quad \text{and} \quad \Phi(\Psi(G)) = G$$

876 hold by definition of E_{\vdash} and \vdash_E . □

877 **A.2 PROOF OF THEOREM 2**

878 *Proof.* (\subseteq). Soundness gives

$$879 \quad S(\mathcal{M}) \subseteq \text{Ach}(\mathcal{M}).$$

880 (\supseteq). Matched Inclusion gives

$$881 \quad \mathcal{M} \subseteq S(\mathcal{M}).$$

882 By Ancestor Closure, if $B \in S(\mathcal{M})$ and $A \prec B$, then $A \in S(\mathcal{M})$. Applying this repeatedly from
883 every $B \in \mathcal{M}$ along all reverse paths implies

$$884 \quad \text{Anc}(\mathcal{M}) \subseteq S(\mathcal{M}).$$

885 Hence

$$886 \quad \text{Ach}(\mathcal{M}) \subseteq S(\mathcal{M}).$$

887 Combining both directions yields the equality:

$$888 \quad S(\mathcal{M}) = \text{Ach}(\mathcal{M}).$$

889 □

890 **B EVALUATION FRAMEWORK DETAILS**901 **B.1 EQUIVALENCE MATCHING DETAILS**

902 Given a standard solution (composed of multiple formulas in a DAG structure) and an LLM solution
903 (composed of multiple formulas), we compare every possible pair of one solution-formula and one
904 LLM-formula. In practice, this process runs on CPUs can be efficiently parallelized, hence its time
905 consumption is very small compared to other steps in our benchmarking pipeline (e.g. serialized
906 generation of tokens with LLMs). The rest of this section discusses in detail how we compare two
907 physics formulas.

908 As described, checking whether two physics formulas are equivalent faces several critical difficulties,
909 where we provide a more detailed discussion:

910 1. **Equivalence of equations.** Formula Matching (i.e. checking equivalence of two formulas)
911 is harder than Expression Matching (i.e. checking equivalence of two expressions). Previous
912 work for expression matching mainly use tree-based formula parsing (Qiu et al., 2025).
913 However, such tree-based parsing is not powerful enough to compare formulas.

914 For result-based judges or expression-based judges, one could check equivalent expressions
915 only, but checking equivalent formulas is critical for more fine-grained process-based score.

918

919 2. **Constant substitutions.** In physics two equivalent variables might be written in different
920 forms. For example, the coulomb force $F = kQq/r^2$ can be written as $F = Qq/(4\pi\epsilon_0 r^2)$:
921 these two expressions are equivalent, but they are in different forms. Sometimes universe
922 constants can be expressed in detailed numbers, for example: $E = mc^2 = m * (3.0 * 10^8 m/s)^2$

923 3. **Unit conversion.** Values can be expressed in different units. For example, $f = 50 \text{ Hz} = 50 \text{ s}^{-1}$, using different units results in equivalent but seemingly different formulas.

925

926 We show our proposed algorithm for formula equivalence matching (i.e., comparing whether two
927 equations are equivalent) in Algorithm B.2.

928 First, we conduct substitution of certain variables: this includes Math constants (e.g. $\pi, e, \text{etc.}$),
929 Physics constants (e.g. $k = \frac{1}{4\pi\epsilon_0}$, $c_0 = \frac{1}{\sqrt{\epsilon_0\mu_0}}$, etc.), constants or values provided in the problem
930 (e.g. provided length, etc.), described as ‘Stage 1’ in the algorithm.

931 After unifying all variables across formulas, we move forward to the iterated process of choosing
932 a target variable – randomly assign values to other variables – solving for the target variable. The
933 equivalence of solution sets are used as proxy for comparing equivalence of these two equations. In
934 practice, we conduct at most $N_{max} = 40$ iterations. In each iteration, one target variable is selected
935 randomly, and other variables are assigned random values in $[2, 20]$. Each iteration would generate
936 one out of three possible outcomes: (1) not-rejecting equivalence trial; (2) rejecting equivalence
937 trial; and (3) failure trial (in cases when both equations have no solutions). For each iteration,
938 if both equations have solutions and their solution sets are equal within some tolerance threshold
939 (relevant difference $\epsilon = 10^{-6}$), it is classified as (1) not-rejecting equivalence trial; if their solution
940 number is different or their solution sets are not equal within certain threshold, this trial is classified
941 as (2) rejecting equivalence trial; while if both equations provide no solutions, such trial is classified
942 as (3) failure trial. We continue to run iterations until we have enough successful solutions (at least
943 $N_{succ} = 10$) or we reach the maximum number of iterations ($N_{max} = 40$). Then we reject the
944 equivalence if the number of successful trials is less than $N_{succ} = 10$ or there exists a trial that is a
945 rejection equivalence trial.²

946 Here we discuss some of these design choices.

947 **More-than-one Iterations.** In common cases, given sufficient tolerance, the $p-value$ of one
948 iteration is small enough to reject the equivalence of non-equivalent equations. In practice, the
949 tolerance is set to 10^{-6} considering possible computing errors. However, this would lead to false
950 non-rejecting in special cases, when using only one iteration. Consider these two formulas: $f1 : x = A_0 + A_1 t^2 \delta$ and $f2 : x = A_0 + 2A_1 t^2 \delta$ where $A_0 \sim A_1 \sim 1, t \sim 1, \delta \sim 10^{-8}$. If we select x
951 or A_0 as target variable and randomly assign values to other variables, the difference in solutions of
952 these two formulas would lie within the tolerance, and hence it cannot reject nonequivalence of these
953 two formulas. In this case, using A_1 or t as the target variable would reject the equivalence, making
954 false non-rejecting rate of one iteration be around 0.5, which is way larger than what we expect. In
955 our multi-iteration settings, the false non-rejecting rate of the 10-iteration examine process would
956 be around 10^{-3} in this case, which is satisfactory enough.

957 **Positive Sampling Intervals.** Here we randomly sample most variables in a positive interval, i.e.,
958 $[2, 20]$. This is because most variables in physics problems are provided as positive ones, and using
959 negative intervals for sampling may lead to false rejections. For example, $T = 2\pi\sqrt{a^3/GM}$ and
960 $T = 2\pi a\sqrt{a/GM}$ (Kepler’s Third Law) are considered equivalent in most physics settings: the
961 semi-major axis a of planet orbits should always be positive. Here, we simply set our sampling
962 interval to be positive to avoid false rejections caused by similar reasons.

963
964
965
966
967
968
969
970 ²Some optimizations for reducing time consumption are also used in practice (e.g. rejecting equivalence of
971 formulas once after the first rejecting equivalence trial), which are trivial and have no impact to the output of
this algorithm, hence we omit them here for clarity

1026 B.3 ALGORITHM OF SCORING PIPELINE
1027
10281029 **Algorithm 2: PRISM-DAG: Evaluation via DAG-Structured Rubric (3 Steps)**
10301031 **Input** : Reference DAG $G = (V, E)$; each node $v \in V$ has formula $\phi(v)$ and prerequisite set
1032 $\text{Pred}(v)$; student solution text S .1033 **Output:** Score $s \in [0, 1]$; matched set $M \subseteq V$; achieved set $A \subseteq V$.1034 **Step 1: Extract and Normalize Student Formulas;**1035 $\hat{F} \leftarrow \text{ExtractFormulas}(S)$; // raw math expressions
1036 $F \leftarrow \emptyset$;1037 **foreach** $f \in \hat{F}$ **do**1038 $g \leftarrow \text{Canonicalize}(f)$;1039 **if** $\text{IsValid}(g)$ **then**1040 $F \leftarrow F \cup \{g\}$ 1041 **end**1042 **end**1043 **Step 2: Match to Reference DAG (Reference Nodes Only);**1044 $M \leftarrow \emptyset$;1045 **foreach** $v \in V$ **do**1046 **if** $\exists g \in F$ s.t. $\text{Equivalent}(\phi(v), g)$ **then**1047 $M \leftarrow M \cup \{v\}$ 1048 **end**1049 **end**1050 **Step 3: Dependency Tracing and Scoring;**1051 $A \leftarrow \emptyset$;1052 **Procedure** MARKANCESTORS(u)1053 **if** $u \notin A$ **then**1054 $A \leftarrow A \cup \{u\}$;1055 **foreach** $p \in \text{Pred}(u)$ **do**1056 $\text{MARKANCESTORS}(p)$ 1057 **end**1058 **end**1059 **foreach** $v \in M$ **do**1060 $\text{MARKANCESTORS}(v)$ 1061 **end**1062 $s \leftarrow |A| / |V|$ 1063 **return** (s, M, A) ;1064
1065 B.4 SCORING EXAMPLE
10661067 Figure 7 illustrates an example of how a student’s (or LLM’s) solution is scored using formula
1068 matching and DAG-based back-propagation scoring.1069 **Step A (Formula Matching):** each formula in the student’s solution is aligned one-to-one with the
1070 reference solution, with equivalent formulas connected by green lines. For clarity, not all formula
1071 pairs are drawn. Grey arrows denote the dependency relations (DAG) between formulas in the
1072 reference solution.1073 **Step B (Back-Propagation scoring):** once a derived formula in the DAG is matched, correctness
1074 is propagated backwards along the dependency graph, allowing upstream formulas to be credited
1075 as well. Correctly credited formulas are highlighted in orange, and the back-propagation path is
1076 indicated by orange arrows.1077 **Step C (Score Calculation):** the final score is calculated by adding the points of correctly credited
1078 formulas. In this example, the student achieves a score of 90/100.

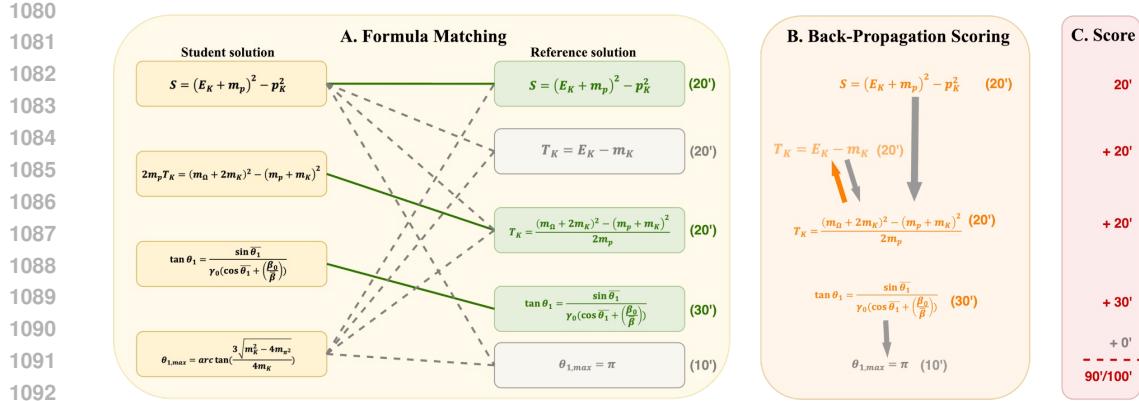


Figure 7: Scoring pipeline example. A) Formula matching aligns student and reference formulas. B) Back-propagation grading highlights correctly credited formulas along the dependency DAG. C) The final score is computed as the sum of credited points, yielding 90/100 in this case.

C DATASET CURATION DETAILS

C.1 DATA SOURCE AND COLLECTION

Our primary source of questions and detailed step-by-step solutions is the book *Major American Universities Ph.D. Qualifying Questions and Solutions*. The problems were extracted from PDF format, reorganized in Markdown for readability, and further converted into JSON for structured storage. Notably, this book has been widely adopted as a training resource for advanced physics competitions, ensuring both the difficulty and the pedagogical value of the collected problems. Problems requiring purely textual answers (e.g., “Describe ...”, “Is ... stable?”) were set aside in a separate collection and are excluded from the current framework.

C.2 THREE-STEP REWRITING PIPELINE DETAILS

To ensure consistency and evaliability, each sample is processed through a three-stage pipeline:

- 1. Formula normalization.** All mathematical expressions are rewritten into a uniform canonical format in L^AT_EX. This normalization supports precise symbolic equivalence checking, preventing mismatches due to notational variation. For numerical problems, explicit rules on the number of significant figures are enforced, ensuring consistent standards across all answers.
- 2. Context clarification.** Each problem statement is rewritten to make all variable definitions and final answer requirements explicit. Where the original text leaves meanings implicit (e.g., undefined symbols or missing constants), clarifications are added to resolve ambiguities. The result is a self-contained problem statement that can be understood without external assumptions.
- 3. DAG construction.** Each worked-out solution is converted into a *directed acyclic graph* (DAG) of formulas according to the requirement in Section 3.3. We first verify if it satisfies the requirements via rule-based methods before the LLM-based verification.

Verification and Quality Control At the end of each stage, we employ an LLM-based verification module to check compliance with formatting, clarity, and dependency rules. If the verification fails—such as when ambiguities persist in variable definitions or the DAG contains extraneous steps—the stage is repeated with targeted corrective feedback. This iterative loop of generation and verification ensures robustness, yielding uniformly high-quality results across the dataset.

Fine-Grained Enhancements Beyond the main pipeline, several additional refinements were systematically applied:

1134

- **Numerical precision.** For problems with numerical answers, explicit enforcement of
1135 significant-figure rules was introduced in the problem statement.

1136

- **Explicit constants.** All physical constants and context-dependent variables appearing in
1137 either the problem or the solution were explicitly defined in the rewritten version.

1138

- **Answer formatting.** Uniform formatting standards for final answers were applied to the
1139 problem context, including required units and symbolic representations.

1140

1141 Individually, these refinements may appear minor; collectively, they substantially improve the
1142 machine-actionability, reliability, and pedagogical clarity of the dataset.

1143

Figure 8: Overview of the Three-Step Rewriting Pipeline

C.3 PROMPTS FOR THREE-STEP REWRITING PIPELINE

Here are all the prompts we adopt for rewriting.

Format Instructions

1) One Formula Per Block

- Each formula must be wrapped in its own `$$. . . $$` block.
- Avoid chaining multiple equalities or expressions in a single block.
- Exception: Chained variable comparisons in inequalities are allowed **only if explicitly required**.

2) No Terminal Punctuation

- Do not end any formula block with punctuation marks (e.g. `,`, `,`, `;`).

3) SI Unit Format

- Always write units using `\unit{}` to ensure proper parsing (e.g., `\unit{m}`, `\unit{m/s}`). Notice that the numbers should be put outside the unit, i.e. use `$3\unit{km/h}$` instead of `$\unit{3km/s}$`.

4) Strip Extra Formatting Commands

REMOVE the following:

- Delimiters: `\left`, `\right`
- Fonts/Styles: `\mathrm`, `\mathit`, `\mathbf`, `\text`
- Spacing: `\,, \; , \! , \, \quad , \quadquad`
- Multi-line: `\begin{aligned} . . . \end{aligned}`

5) Standard Calculus Notation

Use canonical forms for all calculus expressions:

- Derivatives: `\frac{dy}{dx}`
- Partial derivatives: `\frac{\partial f}{\partial x}`
- Integrals: `\int_0^t v dt` (omit spacing commands)
- Summations: `\sum_{i=1}^n x_i`

Rewriting Prompt - First Stage

You are an expert in Physics, and you are going to rewrite a given problem and solution into a standard form. The formatting requirements are below:

Format Instructions

Moreover, you should make sure that the answers can be graded correctly, you should make sure the written form of the final answer is unified, which means: 1) You should make sure all variables needed in the solution, no matter in the final answer or in the intermediate steps, are defined or specified in the problem, either in the context or in the subproblems. e.g. 'You should use E_k for kinetic energy, E_p for potential energy, E for total energy, M for the mass of the central body, m for the mass of the satellite, R for the radius of the orbit.'

1188

2) You should make sure all variables and concepts are defined clearly in the problem.
 3) For all accurate values, don't write them in decimals but fractions instead. For example instead of $y = 2.25x$ you should write $y = \frac{9}{4}x$. However if you believe the value is approximate (for example you think 2.25 is not an accurate value) then you should leave it as decimals.
 4) You should try to avoid putting a representation in a formula block, but instead use equations or inequalities. For example instead of writing "The maximum energy is $2E_0$ ", you should write $E_{max} = 2E_0$ and put the definition of E_{max} in the problem context. Even if it is hard to represent it with a single variable, you should write $ans = \dots$, and mention that the final answer should be written in this form in the problem context.

Now according to the requirements, please rewrite the problem and solution below.

1197

1198 The sample

1199 Your output should be in the same json format, keeping all entries even if unmodified. Don't
 1200 forget any single entry or your output would be invalid. Your response should be formatted as
 1201 `'''json\n<your_rewritten_json>\n'''`, and nothing other than the rewritten json should be
 1202 in your output.

1203

1204 Rewriting Prompt - Second Stage

1205

1206 You are an expert in Physics, and you are going to rewrite a given problem to make it clearer. More
 1207 specifically, we wish to clarify the requirement for the final answer of each problem, which means:
 1208 1) You should add an entry 'final_answer_form' which has three options 'algebraic', 'numerical' and
 1209 'text-based' representing the form of the final answer. 'text-based' means the final answer is not a cal-
 1210 culation result or a derived formula, but instead a text description or statement. Notice that this only
 1211 depends on the final answer in the standard solution, therefore each subquestion can only have one fi-
 1212 nal_answer_form. If this is the same for all subproblems, you may write it as an entry of the whole
 1213 problem, else you may add an entry for each subproblem separately. In any way, this should be a separate
 1214 entry as `item['final_answer_form']` for the whole problem or `item['subquestions'][i]['final_answer_form']`
 1215 for the i-th subquestion.

1216 A hint on how to decide if an answer is algebraic or numerical: if the answer is a formula with
 1217 multiple variables and each side of the formula has variables, it is algebraic; if there is only one vari-
 1218 able or variables only exist in one side, it is numerical (e.g. $\$v_s=3\text{\times}10^7\text{\texttt{unit\{m/s\}}\$}$,
 1219 $\$rho_{min}\text{\approx}1.5\text{\times}10^3\text{\texttt{unit\{kg/m^3\}}\$}$ are both numerical answers.)
 1220 Only the final formula would decide if it is algebraic or numerical.

1221 2) You should add an entry 'final_answer_instructions' based on the final answer form. Similar to 'fi-
 1222 nal_answer_form', it should be either an entry of the whole problem (if the instruction is suitable for the
 1223 whole problem) or separate entries for each subquestion. The instruction should contain the following
 1224 information based on the final answer form:

1225 a) If the final answer is algebraic, you should specify the format of the final answer in the problem, e.g.,
 1226 'Your final answer should be given in the form of $v_{min} = \dots$ ', and your response should be written with
 1227 H, T, m, g . The variable requirement for the final answer should fully match the final answer in the
 1228 standard solution and make there's no redundant variables (for example, if $E_k = \frac{1}{2}mv^2$, then you should
 1229 at most provide two variables among E_k, m, v for the final answer)

1230 b) If the final answer is numerical, you should instead write 'Your final answer should express ... as a
 1231 numerical value', and if the final answer is an approximate value, you should also specify the number
 1232 of significant figures needed according to the standard answer. Moreover you should add an entry like
 1233 'significant_figures': 3 to the problem or subproblem.

1234 c) If the final answer is text-based, you should try to restrict the form of final statement, for example you
 1235 should write 'Your final answer should be 'The equilibrium is stable/unstable.'', so that we can seek for
 1236 the sentence to judge the correctness of the student answer. Now according to the requirements, please
 1237 rewrite the problem and solution below.

1238

1239 The sample

1240 Your output should be in the same json format, keeping all entries even if unmodified, and add your new
 1241 entries as required. Don't forget any single entry or your output would be invalid. Make sure you output
 1242 a valid json. DO NOT put any hint for the final answer in the instruction! Only give some information to
 1243 regularize the format!

1244 Your response should be formatted as `'''json\n<your_rewritten_json>\n'''`, and nothing other than the rewritten json should be in your output.

1242
1243**Rewriting Prompt - Third Stage**

1244 You are an expert in Physics, and you are setting up a grading standard for a given problem. More
 1245 specifically, your job is to find the 'core formulas' in the solution. These core formulas should reflect some
 1246 significant progress in solving the problem and thus you think they are worth some credit. Moreover, you
 1247 have to organize them in a given format to set up a grading standard.

1248 1) You should organize the core formulas in a list, each formula represented by a dict including the
 1249 following entries:

```
1250 {
1251   "index": the index of the formula, counting from 1.
1252   "formula": the content of the formula, which should be a string
1253     wrapped with double-dollar ($$) symbols.
1254   "dependency": this is the crucial part of the grading standard. The
1255     dependency should be a list of indices showing which previous
1256     formulas this one depends on, which indicates without those
1257     previous formulas this formula can't be derived. Notice that only
1258     direct causalities should be considered, for example if A leads to
1259     B and B leads to C, you don't need to put A in the dependency of
1260     C. A formula can never depend on another formula after it.
1261   "is_final_answer": (optional) this is true if this formula is the
1262     final answer of a subproblem or the whole problem. The last
1263     formula among all should always be a final answer.
1264 }
```

1265 2) Every formula in the grading standard must exist in the original solution, you should not create any new
 1266 formula in the grading standard, and you should not make any modification to the formulas: just directly
 1267 copy them from the solution.

1268 3) You should ensure that for an isolated question or subquestion, if the final answer is correct, the student
 1269 should receive full score for it. That means, any formula should be 'reachable' from the final answer (or
 1270 at least the final answer of one subproblem) in the dependency graph. If the final answer contains more
 1271 than one formulas, you may simply mark multiple formulas as final answers.

1272 Below are some examples for you to better understand the requirement.

1273 ...

1274 Now, according the requirement, please write the grading standard for the problem and solution below.

The sample**Reviewing Prompt - First Stage**

1275 You are a professor, and now you should review whether your assistant correctly rewrote the problem and
 1276 solution into a standard form. More specifically, he should make sure the written form of the final answer
 1277 is unified, so that the student answers can be graded correctly. Below was your instruction to him which
 1278 he should satisfy:

Problem Requirement as in the rewriting prompt

1279 Moreover, the formulas should also satisfy the following formatting requirements:

Format Instructions

1280 You should return something like '<judge>valid</judge><reason>...</reason>' or
 1281 '<judge>invalid</judge><reason>...</reason>'. You may think before your final out-
 1282 put. Keep the reason concise.

1283 Below are some examples for you to understand it better:

1284 ...

1285 Now, according to the instructions, you should decide if your assistant has rewritten the problem and
 1286 solution correctly. Below is the problem and solution rewritten by your assistant:

The Sample

1287 The reviewing prompt for the second and third stage are basically the same with the first stage, only
 1288 changing the requirement according to that in the rewriting prompt.

1289
1290
1291
1292
1293
1294
1295

1296
1297

C.4 REWRITING EXAMPLES

1298
1299**PRISM-PHYSICS Rewriting Example - Stage 1**1300
1301
1302
1303
1304

Problem: A bucket of mass M (when empty) initially at rest and containing a mass of water is being pulled up a well by a rope exerting a steady force P . The water is leaking out of the bucket at a steady rate such that the bucket is empty after a time τ . Find the velocity of the bucket at the instant it becomes empty.

1305

Original OCR Solution:

1306

Let the total mass of the bucket and water be M' . Then

1307

1308

1309

$$M' = M + m - \frac{mt}{T},$$

1310
1311

where m is the initial mass of the water. As the leaking water has zero velocity relative to the bucket, the equation of motion is

1312

1313

1314

$$M' \frac{dv}{dt} = P - M'g,$$

or

1315

1316

1317

$$dv = \frac{P - M'g}{M'} dt = \left(\frac{P}{M + m - \frac{m}{T}t} - g \right) dt.$$

The velocity of the bucket at the instant it becomes empty is

1318

1319

1320

1321

1322

1323

$$v = \int_0^{\tau} \frac{Pdt}{M + m - \frac{m}{T}t} - gT = \frac{PT}{m} \ln \left(\frac{M + m}{M} \right) + gT.$$

1324

Error:

1325

1. The problem statement uses τ , but the recognized solution incorrectly shows T .
2. In the final equation, the minus sign – was misrecognized as a multiplication symbol \cdot .

1326

Rewritten Solution :

1327

Let the total mass of the bucket and water at time t be M' .

1328

1329

1330

1331

$$M' = M + m - \frac{mt}{\tau}$$

The equation of motion for the bucket (plus remaining water) is

1332

1333

1334

1335

Rearranging gives

1336

1337

1338

$$dv = \left(\frac{P}{M + m - \frac{m}{\tau}t} - g \right) dt$$

1339

The velocity v of the bucket at time $t = \tau$ (when empty) starting from rest is

1340

1341

1342

$$v_{empty} = \int_0^{\tau} \frac{Pdt}{M + m - \frac{m}{\tau}t} - g\tau$$

1343

Evaluating the integral yields

1344

1345

1346

$$v_{empty} = \frac{P\tau}{m} \ln \left(\frac{M + m}{M} \right) - g\tau$$

1347

where v_{empty} is the velocity of the bucket at the instant it becomes empty.

1348

1349

1350

PRISM-PHYSICS Full Sample Example

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

{

 "id": 1001,

 "context": "A static charge distribution produces a radial electric field given by\n\$A\$ is a constant with units \$V/m\$, \$b\$ is a constant with units \$m^{-1}\$, and \$r\$ is the radial distance from the origin in \$m\$. You should use \$\rho\$ for the charge density in \$C/m^3\$, \$\varepsilon_0\$ for the vacuum permittivity in \$C^2/(N\cdot m^2)\$, \$\delta(\mathbf{r})\$ for the Dirac delta function, and \$Q\$ for the total charge in \$C\$. When asked for the total charge, provide your answer as \$Q=...\$ where \$Q\$ denotes the total charge.",

"source": "",
 "images": [

{

 "caption": "Fig. 1.1",

 "location": "..."
 }

],
 "subquestions": [

{

 "letter": "a",

"subproblem": "Find the charge density \$\rho\$ (in \$C/m^3\$) that produces the given electric field, including both the regular part as a function of \$r\$ and any singular (delta function) contributions at the origin. State your result for \$\rho\$ explicitly. You may sketch its form with reference to Fig. 1.1."

"solution": "The charge density \$\rho\$ is given by Gauss's law in differential form: \$\nabla \cdot \mathbf{E} = \rho\$. The electric field is \$\mathbf{E} = A \frac{e^{-br}}{r^2} \hat{r}\$. The divergence in spherical coordinates for a radial function \$f(r)\$ is \$\nabla \cdot \mathbf{E} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 E_r)\$. For \$f(r) = A \frac{e^{-br}}{r}\$, we compute \$\nabla \cdot \mathbf{E} = A \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 e^{-br}) = A \frac{1}{r^2} (2r e^{-br} - b r^2 e^{-br}) = A e^{-br} - A b r e^{-br}\$. The Laplacian of \$\frac{1}{r}\$ in three dimensions also gives a delta function: \$\nabla^2 \frac{1}{r} = -4\pi \delta(\mathbf{r})\$. So the divergence, including the singularity at the origin, is \$\nabla \cdot \mathbf{E} = -A b \frac{1}{r} + 4\pi A \delta(\mathbf{r})\$. Therefore, the charge density is \$\rho = -\varepsilon_0 A b + 4\pi \varepsilon_0 A \delta(\mathbf{r})\$. The final answer should be written as \$\rho = -\varepsilon_0 A b + 4\pi \varepsilon_0 A \delta(\mathbf{r})\$."

"final_answer_form": "algebraic",

"final_answer_instructions": "Your final answer should be given in the form \$\rho = ...\$, and your response should be written only with \$A\$, \$b\$, \$r\$, \$\varepsilon_0\$, \$\delta(\mathbf{r})\$."

},
 {

"letter": "b",

"subproblem": "What is the total charge \$Q\$ (in \$C\$) present for the above charge density? Express \$Q\$ using the variables defined. Write the final answer using the form \$Q=...\$",

"solution": "The total charge \$Q\$ is given by \$Q = \int_{-\infty}^{\infty} \rho(r) 4\pi r^2 dr\$. With \$\rho = -\varepsilon_0 A b + 4\pi \varepsilon_0 A \delta(\mathbf{r})\$, we have \$Q = \int_{-\infty}^{\infty} (-\varepsilon_0 A b + 4\pi \varepsilon_0 A \delta(\mathbf{r})) 4\pi r^2 dr = 4\pi \varepsilon_0 A b\$"


```

1458 },
1459 },
1460 {
1461 "index": 8,
1462 "formula": "$$\\frac{d}{dr}(A r e^{-br}) = A e^{-br} - A b r e^{-br}$$",
1463 "dependency": [
1464   6,
1465   7
1466 ],
1467 {
1468   "index": 9,
1469   "formula": "$$\\nabla \\cdot \\mathbf{E} = \\frac{1}{r^2} (A e^{-br} - A b r e^{-br})$$",
1470 },
1471   "dependency": [
1472     3,
1473     8
1474   ],
1475 {
1476   "index": 10,
1477   "formula": "$$\\nabla \\cdot \\mathbf{E} = \\frac{A e^{-br}}{r^2} - \\frac{A b e^{-br}}{r}$$",
1478 },
1479   "dependency": [
1480     9
1481   ],
1482 },
1483 {
1484   "index": 11,
1485   "formula": "$$\\nabla^2 \\left( \\frac{1}{r} \\right) = -4 \\pi \\delta(\\mathbf{r})$$",
1486 },
1487   "dependency": []
1488 },
1489 {
1490   "index": 12,
1491   "formula": "$$\\nabla \\cdot \\mathbf{E} = -A b \\frac{e^{-br}}{r^2} + 4 \\pi A \\delta(\\mathbf{r})$$",
1492 },
1493   "dependency": [
1494     10, 11
1495   ],
1496 {
1497   "index": 13,
1498   "formula": "$$\\rho = -\\varepsilon_0 A b \\frac{e^{-br}}{r^2} + 4 \\pi \\varepsilon_0 A \\delta(\\mathbf{r})$$",
1499 },
1500   "dependency": [
1501     1,
1502     12
1503   ],
1504   "is_final_answer": true
1505 },
1506 {
1507   "index": 14,
1508   "formula": "$$Q = \\int_{-\\mathbb{R}^3} \\rho dV$$",
1509 },
1510   "dependency": []
1511 },
1512 {
1513   "index": 15,

```

```

1512
1513 "formula": "$$Q = \int_{\mathbb{R}^3} \Big[ -\nabla\epsilon_0 A \cdot \frac{e^{-br}}{r^2} \Big] dV + \int_{\mathbb{R}^3} 4\pi \nabla\epsilon_0 A \cdot \delta(\mathbf{r}) dV$$",
1514 "dependency": [
1515     13,
1516     14
1517 ],
1518 },
1519 {
1520     "index": 16,
1521     "formula": "$$ \int_{\mathbb{R}^3} -\nabla\epsilon_0 A \cdot \frac{e^{-br}}{r^2} dV = -\nabla\epsilon_0 A \cdot \int_0^\infty \int_0^\pi \int_0^{2\pi} \frac{e^{-br}}{r^2} \sin\theta d\phi d\theta dr$$",
1522     "dependency": [
1523         15
1524     ]
1525 },
1526 },
1527 {
1528     "index": 17,
1529     "formula": "$$= -\nabla\epsilon_0 A \cdot \int_0^\infty e^{-br} dr \int_0^\pi \int_0^{2\pi} \sin\theta d\phi d\theta$$",
1530     "dependency": [
1531         16
1532     ]
1533 },
1534 },
1535 {
1536     "index": 18,
1537     "formula": "$$ \int_0^\infty e^{-br} dr = \frac{1}{b}$$",
1538     "dependency": []
1539 },
1540 {
1541     "index": 19,
1542     "formula": "$$ \int_0^\pi \sin\theta d\theta = 2$$",
1543     "dependency": []
1544 },
1545 {
1546     "index": 20,
1547     "formula": "$$ \int_0^{2\pi} d\phi = 2\pi$$",
1548     "dependency": []
1549 },
1550 {
1551     "index": 21,
1552     "formula": "$$ -\nabla\epsilon_0 A \cdot \frac{1}{b} \cdot 2 \cdot 2\pi = -4\pi \nabla\epsilon_0 A$$",
1553     "dependency": [
1554         17,
1555         18,
1556         19,
1557         20
1558     ],
1559 },
1560 {
1561     "index": 22,
1562     "formula": "$$ \int_{\mathbb{R}^3} 4\pi \nabla\epsilon_0 A \cdot \delta(\mathbf{r}) dV = 4\pi \nabla\epsilon_0 A$$",
1563     "dependency": [
1564         15
1565     ]

```

```

1566
1567     },
1568     {
1569         "index": 23,
1570         "formula": "$$Q = -4\pi \varepsilon_0 A + 4\pi \varepsilon_0 A$$",
1571         "dependency": [
1572             21,
1573             22
1574         ],
1575         {
1576             "index": 24,
1577             "formula": "$$Q = 0$$",
1578             "dependency": [
1579                 23
1580             ],
1581             "is_final_answer": true
1582         }
1583     ]
1584
1585
1586
1587

```

D DATASET STATISTICS

D.1 DIFFICULTY ANNOTATION DETAILS

We assign a composite difficulty label by combining LLM-based annotations and structural DAG complexity:

LLM-Labelled Conceptual and Computational Scores. Each problem is evaluated along two dimensions using an LLM: C_1 , which measures *conceptual depth* (the underlying physical principles and modeling complexity), and C_2 , which captures the *computational burden* (the extent of algebraic or numerical effort required). Both dimensions are rated on a three-level ordinal scale (1–3), with higher values indicating greater complexity.

Prompt for Difficulty Annotation

You are an experienced Physics Olympiad coach and grader.
 Classify Olympiad-level physics problems using TWO dimensions (1–3 each):
 C1 Conceptual depth (principles & modeling complexity)
 C2 Computation burden (algebra/numeric length, error-prone)

Rules:

- Do NOT solve or judge correctness; only estimate difficulty.
- Use the provided SOLUTION only to estimate step depth/concepts.
- Do not use outside tools or knowledge beyond the given text.
- Keep outputs concise.

Output STRICT JSON:

```

1610
1611     {
1612         "scores": {"C1": 1-3, "C2": 1-3},
1613         "rationales": {"C1": " <= 20 words", "C2": " <= 20 words"},
1614         "reasoning": "2-3 concise sentences",
1615         "confidence": 0.0-1.0
1616     }

```

PROBLEM: {problem}

SOLUTION (only for estimating steps/concepts; do NOT grade correctness): {solution}

1620
 1621 **Entropy complexity of the solution DAG.** We compute an entropy-based structural complexity by
 1622 treating the branching at each layer as the search space:
 1623

$$1624 e = \sum_{\ell=1}^{\text{Depth}} \log(\text{Width}_\ell). \\ 1625$$

1626 This value is discretized into $C_3 \in \{1, 2, 3\}$ using thresholds τ_1, τ_2 .
 1627

1628 **Composite difficulty.** We define a composite score $S = C_1 + C_2 + C_3$, and map it into three
 1629 difficulty levels: *Easy*, *Medium*, and *Hard*. This composite annotation captures both physics/content
 1630 difficulty and structural reasoning complexity, providing a stratified view of model performance.
 1631

1632 D.2 DOMAIN CATEGORIZATION DETAILS

1633 The dataset covers a wide range of topics, organized hierarchically into 7 key physics domains and
 1634 28 subtopics:
 1635

- **Mechanics:** Newtonian Mechanics, Analytical Mechanics, Special Relativity
- **Electromagnetism:** Electrostatics, Magnetostatics and Quasi-Stationary Fields, Electro-magnetic Waves
- **Optics:** Geometrical Optics, Wave Optics, Quantum Optics
- **Atomic, Nuclear, and Particle Physics:** Atomic and Molecular Physics, Nuclear Physics, Particle Physics, Other
- **Thermodynamics and Statistical Physics:** Thermodynamics, Statistical Physics
- **Quantum Mechanics:** Basic Principles and One-Dimensional Motions, Central Potentials, Spin and Angular Momentum, Motion in Electromagnetic Fields, Perturbation Theory, Scattering and Transitions, Many-Particle Systems, Other
- **Solid State Physics and Miscellaneous Topics:** Solid State Physics, Relativity, Other

1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

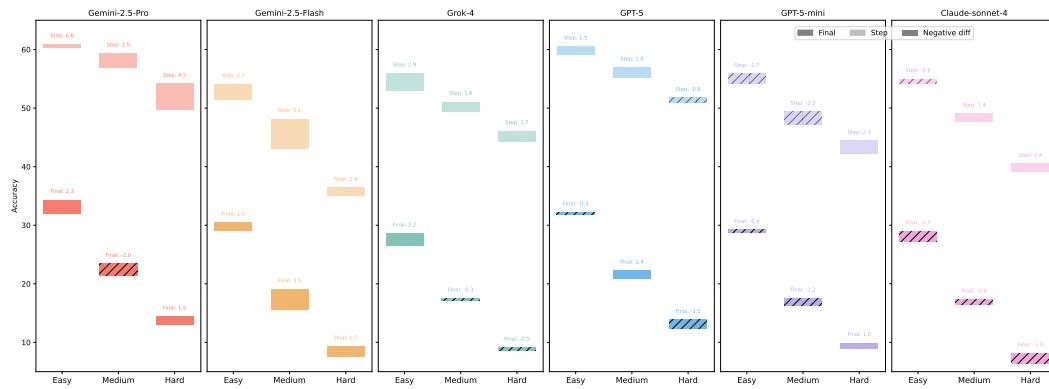
1674 **E EXPERIMENTAL DETAILS FOR PRISM-PHYSICS**
16751676 **E.1 EXPERIMENTAL SETUPS**
16771678 We evaluate a diverse set of 17 leading LLMs, as listed in Table 3. Each model is accessed via its
1679 official API using standardized decoding parameters. By default, we set the maximum token output
1680 to 8096, temperature to 0.0, for all models where these settings are applicable. For reasoning
1681 models, the default reasoning effort is chosen as medium. Model-specific parameters are specified
1682 in the table.

#	Model	Reasoning	Model Engine Name	Source
<i>Open-source Chat LLMs</i>				
1	Deepseek-V3 DeepSeek-AI (2025)	F	deepseek-v3	Link
2	Qwen2.5-72B-Instruct-Turbo Qwen Team (2024)	F	Qwen2.5-72B-Instruct-Turbo	Link
3	Llama-4-Scout-17B-16E Meta Platforms, Inc. (2025)	F	Llama-4-Scout-17B-16E-Instruct	Link
4	Llama-3.3-70B-Instruct-Turbo AI (2024)	F	Llama-3.3-70B-Instruct-Turbo	Link
<i>Open-source Reasoning LLMs</i>				
5	Deepseek-R1 DeepSeek-AI (2025)	T	DeepSeek-R1	Link
6	GPT-OSS-20B OpenAI (2025d)	T	GPT-OSS-20B	Link
7	GPT-OSS-120B OpenAI (2025d)	T	GPT-OSS-120B	Link
8	Qwen3-235B-A22B-Instruct Qwen Team (2025)	T	Qwen3-235B-A22B-Instruct	Link
<i>Proprietary Chat LLMs</i>				
9	Claude-sonnet-4 Anthropic (2025)	T	claude-sonnet-4-20250514	Link
10	GPT-4o-mini OpenAI (2024)	F	gpt-4o-mini	Link
11	GPT-4.1 OpenAI (2025a)	F	gpt-4.1	Link
<i>Proprietary Reasoning LLMs</i>				
12	Gemini-2.5-Flash Google DeepMind (2025a)	T	gemini-2.5-flash	Link
13	Gemini-2.5-Pro Google DeepMind (2025b)	T	gemini-2.5-pro	Link
14	GPT-5 OpenAI (2025b)	Low/Medium/High	gpt-5	Link
15	GPT-5-mini OpenAI (2025b)	Low/Medium/High	gpt-5-mini	Link
16	Grok-4 xAI (2025)	T	grok-4	Link
17	o4-mini OpenAI (2025c)	T	o4-mini	Link
<i>Multimodal Large Language Models</i>				
18	Gemini-2.5-Pro Google DeepMind (2025b)	T	gemini-2.5-pro	Link
19	Gemini-2.5-Flash Google DeepMind (2025a)	T	gemini-2.5-flash	Link
20	GPT-5 OpenAI (2025b)	Medium	gpt-5	Link
21	GPT-5-mini OpenAI (2025b)	Medium	gpt-5-mini	Link

1709 **Table 3: List of LLMs evaluated in our experiments.**
17101711 **Inference Prompt.** Below is the prompt we use for inference:
17121713 **Inference Prompt**1714 You are a Physics expert. You are going to solve a physics problem and be graded accordingly. Here are
1715 some instructions you should follow to make sure your answer is graded correctly: 1. Your answer should
1716 be written in markdown format. 2. You should provide your key steps and final answer in a clear and
1717 concise manner using double-dollar signs for formulas (e.g.,
1718

1719
$$E_0 = mgH + \frac{1}{2}mv_0^2$$

1720). However, put your definitions or uncrucial steps in single dollar signs (e.g., 'E is the energy of the
1721 system', or 'according to Newton's second law, $F = ma$ '). 3. Use less text and more formulas to
1722 explain your reasoning. 4. Your answer should satisfy the format below: **Format Instructions** Here is the
1723 problem context: **the problem** Please provide your solution step by step, and then give your final answer.
1724 You should try to use the variables given in the problem and avoid using new variables unless necessary.
1725 You should strictly follow the formatting requirements introduced in the problem for the final answer.
1726

1728 E.2 ADDITIONAL RESULTS
17291730 **Text Models vs. Multimodal Models** We compute the performance gap between multimodal and
1731 text-only settings as multimodal – text, and visualize the differences in Figure 9. Solid rectangles
1732 indicate positive gaps, where multimodal inputs improve performance, while hatched rectangles
1733 indicate negative gaps, where multimodal underperform text-only.1740 Figure 9: Visualization of the performance gap defined as multimodal – text across models and diffi-
1741 culty levels. Solid rectangles denote positive differences (multimodal \downarrow text), and hatched rectangles
1742 denote negative differences (multimodal \uparrow text).
17431744 F EVALUATION FRAMEWORK ANALYSIS DETAILS
17451746 F.1 KENDALL’S TAU-B AND P-TEST
17471748 We evaluate the agreement between model-derived scores and human annotations using *Kendall’s τ_b*
1749 *correlation coefficient*, a nonparametric rank-based statistic that extends Kendall’s τ by correcting
1750 for ties. Let $\{(x_i, y_i)\}_{i=1}^n$ be a set of paired observations, where x_i represents the score assigned by
1751 the model and y_i the corresponding human annotation. Kendall’s τ_b measures the degree to which
1752 the rankings induced by x and y agree.1753 **Definition.** Consider all unordered pairs of distinct indices (i, j) with $1 \leq i < j \leq n$. For each
1754 pair, define:1755

- 1756 • concordant if $(x_i - x_j)(y_i - y_j) > 0$,
- 1757 • discordant if $(x_i - x_j)(y_i - y_j) < 0$,
- 1758 • tied in x if $x_i = x_j$ but $y_i \neq y_j$,
- 1759 • tied in y if $y_i = y_j$ but $x_i \neq x_j$,
- 1760 • tied in both if $x_i = x_j$ and $y_i = y_j$.

1761 Let n_c and n_d denote the number of concordant and discordant pairs, respectively. Define
1762

1763
$$n_0 = \frac{1}{2}n(n-1), \quad n_1 = \sum_k \frac{1}{2}t_k(t_k-1), \quad n_2 = \sum_l \frac{1}{2}u_l(u_l-1),$$

1764 where t_k is the size of the k -th tie group in x and u_l is the size of the l -th tie group in y . Then
1765 Kendall’s τ_b is
1766

1767
$$\tau_b = \frac{n_c - n_d}{\sqrt{(n_0 - n_1)(n_0 - n_2)}}. \quad (2)$$

1768 By construction, $\tau_b \in [-1, 1]$, with $\tau_b = 1$ indicating perfect agreement (all pairs concordant),
1769 $\tau_b = -1$ perfect disagreement (all pairs discordant), and $\tau_b = 0$ representing no association beyond
1770 what would be expected by chance.

1782
 1783 **Statistical significance.** To assess whether the observed correlation is statistically significant, we
 1784 test the null hypothesis $H_0 : \tau_b = 0$ against the two-sided alternative $H_1 : \tau_b \neq 0$. Two approaches
 1785 are employed:

1786 1. *Asymptotic test.* Under H_0 , the sampling distribution of τ_b is approximately normal for
 1787 large n , with variance given by a closed-form expression that accounts for ties. A standard-
 1788 ized statistic $Z = \frac{\tau_b}{\sigma_{\tau_b}}$ is used to compute an asymptotic p-value.

1789 2. *Permutation test.* To avoid reliance on asymptotic approximations, we perform a nonpara-
 1790 metric randomization procedure: one ranking (e.g., y) is permuted uniformly at random
 1791 while x remains fixed, and τ_b is recomputed. Repeating this procedure yields an empirical
 1792 null distribution for τ_b , from which a p-value is estimated. This approach is robust to small
 1793 sample sizes and ties.

1794 Together, τ_b provides a rigorous, tie-adjusted measure of ordinal association, and the combination of
 1795 asymptotic and permutation-based tests ensures robust inference on the agreement between model
 1796 predictions and human judgments.

1798 F.2 FAILURE ANALYSIS FOR EVALUATION FRAMEWORK

1800 We analyzed failure cases from our evaluator and two baselines to understand strengths and limita-
 1801 tions. When scoring strictly by formula matching, **causality-aware evaluation is essential**: requir-
 1802 ing every reference formula to match is overly rigid and penalizes otherwise correct reasoning. We
 1803 observe three recurrent failure modes:

- 1804 • **Contextual vs. literal equivalence.** Two expressions can be equivalent *given the problem*
 1805 *context* but not algebraically identical (e.g., re-parameterized integrals or vector identities).
- 1806 • **Textual answers.** Description- or text-only responses fall outside the scope of strict sym-
 1807 bolic matching.
- 1808 • **Parsing gaps.** Some L^AT_EX symbols/commands are not reliably recognized as operators,
 1809 yielding spurious mismatches (e.g., integrals with differentials, vector/tensor notation).

1811 In order to solve these issues, we propose the following roadmap:

- 1813 1. **Context-aware matching.** We plan to develop a context-sensitive equivalence checker;
 1814 this is left for future work.
- 1816 2. **Text evaluation.** We will integrate lightweight LLM “helpers” to assess description-based
 1817 answers, making the framework more complete while keeping the core scorer deterministic.
- 1818 3. **Robust parsing.** Despite many fixes, long-tail L^AT_EX idiosyncrasies remain. We will re-
 1819 lease the formula matcher first and iteratively expand operator coverage based on commu-
 1820 nity feedback.

1836 **G ERROR ANALYSIS DETAILS**
18371838 **G.1 PROMPTS FOR ERROR ANALYSIS**
18391840 **Prompt for Error Analysis**
1841

1842 You are a Physics Olympiad grader. Your task is to analyze a student’s solution against a standard solution,
1843 using the provided detailed scoring breakdown, and determine the PRIMARY error cause (and optional
1844 secondary causes) from the taxonomy below. You do NOT need to align or map steps — the scored
1845 expressions already indicate where the solution is correct or incorrect. Focus on WHY the incorrect parts
1846 are wrong.

1847 **Error taxonomy (choose labels exactly):**

- 1848 - DAE: Diagram Analysis Error — incorrect interpretation of diagrams/figures/schematics.
- 1849 - PTAE: Physics Theorem/Application Error — misuse/misapplication of physical laws/principles.
- 1850 - MPUE: Modeling & Process Understanding Error — incorrect/incomplete physical model or process
understanding.
- 1851 - CAE: Condition/Assumption Error — invalid/unjustified/misapplied conditions, including bound-
ary/initial conditions.
- 1852 - VRE: Variable Relationship Error — incorrect relationships between physical quantities (e.g., con-
straints, kinematic relations).
- 1853 - DCE: Derivation & Computation Error — algebraic/symbolic manipulation mistakes, arithmetic/sign/-
substitution errors.
- 1854 - UDE: Unit/Dimension Error — unit inconsistency or dimensional mismatch.

1855 **General guidance:** 1) Use the scoring breakdown to identify which expressions are incorrect.
1856 2) For the incorrect expressions, determine the earliest fundamental cause from the taxonomy.
1857 3) If multiple causes apply, select ONE primary label and list the rest as secondary.
1858 4) If diagrams are referenced but missing, do not assume their content; judge only from given text/expres-
1859 sions.

1860 **Output STRICT JSON (no extra text, no markdown):**
1861

```
1862 {  
1863     "primary_error": "DAE|PTAE|MPUE|CAE|VRE|DCE|UDE",  
1864     "secondary_errors": ["DAE|PTAE|MPUE|CAE|VRE|DCE|UDE"],  
1865     "incorrect_expressions":  
1866     [  
1867         "strings of the incorrect student expressions"  
1868     ],  
1869     "related_correct_expressions":  
1870     [  
1871         "strings of correct related student expressions if any"  
1872     ],  
1873     "rationale": "2-5 concise sentences explaining the diagnosis",  
1874     "confidence": 0.0-1.0  
1875 }
```

1876 **PROBLEM CONTEXT:** {problem}
1877

1878 **STUDENT ANSWER:** {student_answer}
1879

1880 **AUTO-GRADER EQUATION MATCHES:** {matches}
1881

1882 **SCORE:** {score:.3f} (out of 1.0)
1883

1884 **G.2 ERROR TAXONOMY DEFINITIONS**
1885

1886 We provide detailed definitions of the seven error categories used in our error analysis:
1887

- 1888 • **Diagram Analysis Error (DAE)** – incorrect interpretation of diagrams, figures, or
1889 schematic representations.

- **Physics Theorem Application Error (PTAE)** – incorrect or inappropriate use of physical laws, theorems, or principles.
- **Modeling and Process Understanding Error (MPUE)** – incorrect or incomplete construction of the physical model, including misunderstanding of the physical process being analyzed.
- **Condition or Assumption Error (CAE)** – invalid, unjustified, or misapplied physical conditions, including boundary or initial conditions.
- **Variable Relationship Error (VRE)** – incorrect establishment or use of relationships between physical quantities.
- **Derivation and Computation Error (DCE)** – incorrect algebraic manipulation, symbolic transformation, arithmetic mistakes, sign errors, or incorrect numerical substitutions.
- **Unit Dimension Error (UDE)** – inconsistency in physical units or failure to maintain dimensional correctness.

G.3 MODEL FAILURE SOLUTION EXAMPLES

PRISM-PHYSICS Failure Example: Condition or Assumption Error

Problem: A particle of mass m moves under the influence of an attractive central force $f(r)$. The potential energy associated with this force is $V(r)$, defined so that $f(r) = -\frac{dV}{dr}$. The angular momentum of the particle is J . The effective potential is denoted by $V^*(r)$. The total mechanical energy is E . The instantaneous radial coordinate of the particle is r , and the radial velocity is $\dot{r} = \frac{dr}{dt}$. The radius of the circular orbit is r_0 . For the stability analysis, the student should write their answer for the maximum n as $\text{ans} = \dots$, where n is the exponent in the force law $f(r) = -\frac{K}{r^n}$, with K a positive constant.

(c) Determine the maximum value of n for which the circular orbit is stable under the force law $f(r) = -\frac{K}{r^n}$, where K is a positive constant.

GroundTruth Solution:

For $f(r) = -\frac{K}{r^n}$, we have

$$\frac{\partial f}{\partial r} = n \frac{K}{r^{n+1}}$$

From the equilibrium condition,

$$\frac{\partial V}{\partial r} = \frac{J^2}{mr^3}$$

Also, $\frac{\partial V}{\partial r} = -f(r)$, so

$$-f(r) = \frac{J^2}{mr^3}$$

which gives

$$\frac{K}{r^n} = \frac{J^2}{mr^3}$$

Thus,

$$J^2 = mKr^{3-n}$$

Insert this value for J^2 into the stability condition:

$$\frac{3J^2}{mr^4} - \frac{\partial f}{\partial r} > 0$$

Substitute $J^2 = mKr^{3-n}$ and $\frac{\partial f}{\partial r} = n \frac{K}{r^{n+1}}$

$$\frac{3K}{r^{n+1}} - \frac{nK}{r^{n+1}} > 0$$

So

$$3 - n > 0$$

1944

1945

1946

1947

1948

1949

Therefore,

$$\text{ans} = n < 3$$

1950

Student Solution Snippet:

1951

(c): Maximum Value of n For the force law $f(r) = -\frac{K}{r^n}$:

1952

1953

$$\frac{\partial f}{\partial r} = \frac{nK}{r^{n+1}}$$

1954

Substituting into the stability condition:

1955

1956

1957

$$\frac{nK}{r^{n+1}} + \frac{3(-K/r^n)}{r} < 0$$

1958

1959

$$\frac{nK}{r^{n+1}} - \frac{3K}{r^{n+1}} < 0$$

1960

1961

$$\frac{K(n-3)}{r^{n+1}} < 0$$

1962

Since $K > 0$ and $r^{n+1} > 0$, we need:

1963

$$n - 3 < 0$$

1964

$$n < 3$$

1965

The maximum value of n for stability is therefore $n = 3$.

1966

1967

$$\text{ans} = 3$$

1968

1969

1970

Error Analysis Output:

1971

```
{
  "primary_error": "CAE",
  "incorrect_expressions": [
    "The maximum value of n for stability is therefore n = 3.",
    "ans= 3"
  ],
  "related_correct_expressions": [
    "n < 3",
    " $\frac{K(n-3)}{r^{n+1}} < 0$ "
  ],
  "rationale": "All algebra and the stability condition were derived correctly, yielding n < 3. The student then incorrectly interpreted this strict inequality as allowing n = 3 as the maximum stable value. This is an assumption/boundary-condition mistake: n = 3 is the marginal (neutral) case, not a stable one, so the conclusion ans = 3 is unjustified."
}
```

1992

1993

1994

1995

1996

1997

1998
1999**PRISM-PHYSICS Failure Example: Diagram Analysis Error**2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

Problem: An aquarium is being filled with water of refractive index $n > 1$. A stationary fish inside the aquarium looks vertically upward through the rising surface of the water at a stationary monochromatic plane wave light source outside the aquarium. The water surface rises upward at constant speed V relative to both the fish and the source, while the rest of the water and the fish are stationary with respect to the aquarium. The fish observes the incoming light through the moving water interface as the aquarium fills. Use the following variable definitions: - n is the refractive index of water- V is the upward speed of the rising water surface with respect to both fish and light source- c is the speed of light in vacuum- u is the frequency of light as emitted by the source in vacuum- u' is the frequency of light as observed by the fish inside the water- u is the speed of light in water as measured by the fish- λ_w is the wavelength of light in waterExpress your answer for u' in terms of u , V , n , and c . Also state, using an equation, whether u' is less than, greater than, or equal to u .

2012

GroundTruth Solution:2013
2014

The speed of light in water as measured by the fish is

2015
2016
2017
2018

$$u = \frac{c}{n} - V \left(1 - \frac{1}{n^2} \right)$$

The wavelength of the light in water is

2019
2020

$$\lambda_w = \frac{c}{n\nu}$$

2021

The observed frequency by the fish is

2022
2023
2024
2025

$$\nu' = \frac{u}{\lambda_w}$$

Substituting for u yields

2026
2027
2028
2029

$$\nu' = \frac{\frac{c}{n} - V \left(1 - \frac{1}{n^2} \right)}{\lambda_w}$$

Substituting for λ_w yields

2030
2031
2032

$$\nu' = \frac{\frac{c}{n} - V \left(1 - \frac{1}{n^2} \right)}{\frac{c}{n\nu}}$$

This simplifies to

2033
2034
2035
2036

$$\nu' = \left(\frac{c}{n} - V \left(1 - \frac{1}{n^2} \right) \right) \frac{n\nu}{c}$$

Expanding the terms gives

2037
2038
2039
2040

$$\nu' = \nu - V \left(1 - \frac{1}{n^2} \right) \frac{n\nu}{c}$$

For $n > 1$ and $V > 0$,

2041
2042
2043

$$\nu' < \nu$$

Therefore, the fish observes the light source to be red-shifted.

2044

Student Solution Snippet:

2045

We analyze the scenario using the Doppler effect for light at a moving interface. The light source is stationary in air (refractive index ≈ 1), emitting light of frequency u and speed c . The water surface rises at speed V upward, and the fish is stationary in water of refractive index n . The fish observes the frequency u' of light that has entered the water.

2050

2051

2052

2053 The speed of light in water as measured by the fish is

2054

2055
$$u = \frac{c}{n}.$$

2056

2057 The incident light in air approaches the moving water surface. Since the interface is moving
2058 toward the source (upward, while light comes from above), the frequency perceived just after
2059 crossing into water is Doppler shifted.

2060 Let the incident plane wave in air be

2061

2062
$$E_i = E_0 \cos(\omega t - kz), \quad \omega = 2\pi u, \quad k = \frac{\omega}{c}.$$

2063

At the interface $z = Vt$, the phase is

2064

2065
$$\phi_i(t) = \omega t - k(Vt) = \omega t \left(1 - \frac{V}{c}\right).$$

2066

The transmitted wave in water is

2067

2068
$$E_t = E_1 \cos(\omega' t - k' z), \quad k' = \frac{n\omega'}{c}.$$

2069

At $z = Vt$, its phase is

2070

2071
$$\phi_t(t) = \omega' t - k' Vt.$$

2072

Continuity of phase requires $\phi_i(t) = \phi_t(t)$, hence

2073

2074

2075
$$\omega \left(1 - \frac{V}{c}\right) = \omega' - k' V.$$

2076

Substituting $k' = \frac{n\omega'}{c}$ gives

2077

2078

2079
$$\omega' \left(1 - \frac{nV}{c}\right) = \omega \left(1 - \frac{V}{c}\right).$$

2080

Thus,

2081

2082

2083
$$\omega' = \omega \frac{1 - \frac{V}{c}}{1 - \frac{nV}{c}}.$$

2084

Equivalently, in terms of frequency:

2085

2086

2087

2088
$$u' = u \frac{1 - \frac{V}{c}}{1 - \frac{nV}{c}} = u \frac{c - V}{c - nV}.$$

2089

Now compare u' and u :

2090

2091

2092

2093
$$u' - u = u \left(\frac{c - V}{c - nV} - 1 \right) = u \frac{(n - 1)V}{c - nV}.$$

2094

Since $n > 1$, $V > 0$, and $c - nV > 0$ (non-relativistic case), we have $u' - u > 0$. Therefore,

2095

2096
$$u' > u.$$

Final result:

2097

2098

2099

2100
$$u' = u \frac{1 - \frac{V}{c}}{1 - \frac{nV}{c}}, \quad u' > u.$$

Error Analysis Output:

```

{
  "primary_error": "DAE",
}

```

2101

2102

2103

2104

2105

```

2106
2107 "incorrect_expressions": [
2108    $E_i = E_0 \cos(\omega t - kz)$ ,  $\omega = 2\pi\nu$ ,  $k = \frac{\omega}{c}$ ,
2109    $\phi_i(t) = \omega t - k(Vt) = \omega t - \frac{\omega}{c}Vt = \omega t(1 - \frac{V}{c})$ ,
2110    $\omega' - k'V = \omega(1 - \frac{V}{c})$ ,
2111    $\omega' = \omega \frac{1 - \frac{V}{c}}{1 - \frac{nV}{c}}$ ,
2112    $\nu' = \nu \frac{1 - \frac{V}{c}}{1 - \frac{nV}{c}}$ 
2113
2114
2115 ],
2116 "related_correct_expressions": [
2117    $u = \frac{c}{n}$ ,
2118    $k' = \frac{\omega'}{u} = \frac{n\omega'}{c}$ ,
2119
2120   Continuity of phase at the moving interface:  $\phi_i(z = Vt) = \phi_t(z = Vt)$ 
2121
2122 ],
2123 "rationale": "The student wrote the incident wave as  $\omega t - kz$ ,
2124 which corresponds to a wave propagating upward; for light
2125 coming from above toward the interface (downward propagation)
2126 the sign of the spatial term is wrong. This incorrect sign
2127 gives the wrong expression for the incident phase at  $z = Vt$  and
2128 therefore leads to the incorrect algebraic relation and final
2129 formula for  $\nu'$ . The use of phase continuity and  $k' = n\omega'/c$  and
2130  $u = c/n$  are otherwise appropriate, so the error is an incorrect
2131 interpretation of the wave propagation direction (diagram/sign
2132 error)."
2133
2134

```

PRISM-PHYSICS Failure Example: Derivation and Computation Error

```

2135
2136
2137 Error Analysis Output:
2138 {
2139   "primary_error": "DCE",
2140   "incorrect_expressions": [
2141
2142      $\frac{\partial L}{\partial r} = mr\dot{\theta}^2 + \frac{k}{r^2} - \frac{k'}{r^3}$ ,
2143
2144      $m\ddot{r} = mr\dot{\theta}^2 + \frac{k}{r^2} - \frac{k'}{r^3}$ 
2145
2146   ],
2147
2148   "related_correct_expressions": [
2149
2150      $\frac{\partial L}{\partial r} = mr\dot{\theta}^2 - \frac{k}{r^2} + \frac{k'}{r^3}$ ,
2151
2152      $m\ddot{r} = mr\dot{\theta}^2 - \frac{k}{r^2} + \frac{k'}{r^3}$ 
2153
2154   ],
2155
2156
2157 "rationale": "The student made a sign/algebra error when
2158 differentiating the potential terms in L with respect to r,
2159 flipping the signs of the k and k' contributions. This is a

```

2160
 2161 pure derivation/computation mistake (not a misapplication of
 2162 physics), since the correct radial equation has the opposite
 2163 signs and follows from the correctly differentiated Lagrangian
 2164 or directly from Newton's form. The later orbit derivation
 2165 uses the correct form of $F(r)$, so the error is localized to the
 2166 symbolic differentiation step."
 2167
 2168 }

PRISM-PHYSICS Failure Example: Modeling and Process Understanding Error

2171 **Problem:** A particle of mass m moves under a restoring force $-Kx$ and a resistive force
 2172 $-Rv$, where x is the displacement from equilibrium and v is the particle's velocity. Here,
 2173 m is the mass of the particle, K is the spring constant, R is the damping coefficient, x is
 2174 the displacement from equilibrium, and v is the velocity. For fixed K and arbitrary initial
 2175 conditions, find the value $R = R_c$ that gives the most rapid approach to equilibrium. Also,
 2176 state whether it is possible to choose initial conditions (other than $x = 0$ and $v = 0$) such that
 2177 the approach to equilibrium is more rapid for $R > R_c$ or $R < R_c$. Specifically, R_c should be
 2178 defined in terms of K and m . Express the rate of approach and clearly specify all variables
 2179 throughout. The final answer for the most rapid approach value should be given as $R_c =$ in
 2180 terms of K and m .

GroundTruth Solution:

2181 The equation of motion for the particle can be written as
 2182

$$2184 m \frac{d^2x}{dt^2} + R \frac{dx}{dt} + Kx = 0$$

2186

2187 Thus, for certain special (non-generic) initial conditions, the approach to equilibrium may be
 2188 even faster than in the critically damped case. If $R < R_c$, the roots are complex:

$$2189 2190 \alpha = \frac{-R \pm i\sqrt{R_c^2 - R^2}}{2m}$$

2191 The general solution is
 2192

$$2193 2194 x = A \exp\left(-\frac{Rt}{2m}\right) \cos\left(\frac{\sqrt{R_c^2 - R^2}}{2m}t\right) + B \exp\left(-\frac{Rt}{2m}\right) \sin\left(\frac{\sqrt{R_c^2 - R^2}}{2m}t\right)$$

2196 The rate of decay towards equilibrium is determined by the exponential factor
 2197

$$2198 2199 \frac{R}{2m} < \frac{R_c}{2m}$$

2200 Thus, the approach to equilibrium is always slower than for critical damping when $R < R_c$. In
 2201 summary, the value of R that gives the most rapid approach to equilibrium for arbitrary initial
 2202 conditions is

$$2203 2204 R_c = 2\sqrt{Km}$$

2205 For $R > R_c$, in principle, one can choose initial conditions such that the approach is even
 2206 more rapid, but this occurs only for special initial conditions (such as setting $A = 0$ in the
 2207 overdamped general solution). In general, for arbitrary initial conditions, critical damping
 2208 ($R = R_c$) gives the most rapid approach. For $R < R_c$, the approach to equilibrium is always
 2209 slower than for critical damping.

Student Solution Snippet:

2210 The equation of motion for a damped harmonic oscillator is:
 2211

$$2212 2213 m \frac{d^2x}{dt^2} = -Kx - R \frac{dx}{dt}$$

2214

2215

2216

2217

2218

2219

Rearranging to standard form:

$$\frac{d^2x}{dt^2} + \frac{R}{m} \frac{dx}{dt} + \frac{K}{m} x = 0$$

Let $\omega_0^2 = \frac{K}{m}$ and $2\gamma = \frac{R}{m}$, so the equation becomes:

$$\frac{d^2x}{dt^2} + 2\gamma \frac{dx}{dt} + \omega_0^2 x = 0$$

The characteristic equation is:

$$r^2 + 2\gamma r + \omega_0^2 = 0$$

The roots are:

$$r = -\gamma \pm \sqrt{\gamma^2 - \omega_0^2}$$

The behavior depends on the discriminant $\gamma^2 - \omega_0^2$:*Case 1: Underdamped ($\gamma < \omega_0$ or $R < 2\sqrt{Km}$)*

$$x(t) = e^{-\gamma t} (A \cos(\omega_d t) + B \sin(\omega_d t))$$

where $\omega_d = \sqrt{\omega_0^2 - \gamma^2}$.*Case 2: Critically damped ($\gamma = \omega_0$ or $R = 2\sqrt{Km}$)*

$$x(t) = e^{-\gamma t} (A + Bt)$$

Case 3: Overdamped ($\gamma > \omega_0$ or $R > 2\sqrt{Km}$)

$$x(t) = Ae^{r_1 t} + Be^{r_2 t}$$

where $r_1 = -\gamma + \sqrt{\gamma^2 - \omega_0^2}$ and $r_2 = -\gamma - \sqrt{\gamma^2 - \omega_0^2}$. For the most rapid approach to equilibrium, we need to minimize the time for $x(t) \rightarrow 0$.In the underdamped case, the envelope decays as $e^{-\gamma t}$. In the critically damped case, the decay is $e^{-\gamma t}$. In the overdamped case, the slowest decay rate is determined by $r_1 = -\gamma + \sqrt{\gamma^2 - \omega_0^2}$. Since $\sqrt{\gamma^2 - \omega_0^2} > 0$ when $\gamma > \omega_0$, we have $|r_1| < \gamma$, making overdamped systems slower than critically damped.For underdamped systems, the envelope decay rate is $\gamma = \frac{R}{2m}$. For critically damped systems, the decay rate is also $\gamma = \frac{R}{2m}$. However, the critically damped case has no oscillations and provides the fastest approach without overshoot. Therefore, the critical damping condition gives the most rapid approach:

$$R_c = 2\sqrt{Km}$$

Regarding initial conditions: For any given R , the approach rate is determined by the system parameters, not the initial conditions. The initial conditions only affect the amplitude coefficients A and B , but not the fundamental decay rates. Therefore, it is **not possible** to choose initial conditions to make $R > R_c$ or $R < R_c$ approach equilibrium more rapidly than $R = R_c$.

$$R_c = 2\sqrt{Km}$$

Error Analysis Output:

{

"primary_error": "MPUE",

 "incorrect_expressions": ["Therefore, it is not possible to choose initial conditions to make $R > R_c$ or $R < R_c$ approach equilibrium more rapidly than $R = R_c$.", "However, the critically damped case has no oscillations and provides the fastest approach without overshoot."],

```

2268
2269 "related_correct_expressions": [
2270    $m \frac{d^2x}{dt^2} = -Kx - R \frac{dx}{dt},$ 
2271    $R_c = 2\sqrt{Km},$ 
2272    $r = -\gamma \pm \sqrt{\gamma^2 - \omega_0^2},$ 
2273   Underdamped:  $x(t) = e^{-\gamma t} (A \cos(\omega_d t) + B \sin(\omega_d t)),$ 
2274   Critically damped:  $x(t) = e^{-\gamma t} (A + Bt),$ 
2275   Overdamped:  $x(t) = Ae^{r_1 t} + Be^{r_2 t}, \quad r_1 = -\gamma + \sqrt{\gamma^2 - \omega_0^2}$ 
2276
2277   ],
2278   "rationale": "The student correctly derived the equation
2279   of motion, root structure, and critical damping value  $R_c$ ,
2280   but then asserted that initial conditions cannot alter which
2281   R gives the fastest approach. That is a modelling process
2282   misunderstanding: transient approach time can depend on
2283   initial conditions (e.g. certain initial displacements or
2284   velocities can make overdamped underdamped responses reach
2285   zero sooner for some measures). The blanket statement that
2286   critical damping is always fastest for every initial condition
2287   is therefore incorrect."
2288
2289 }
2290
2291
2292 PRISM-PHYSICS Failure Example: Physics Theorem Application Error
2293
2294 Problem: A bucket of mass  $M$  (when empty) initially at rest and containing a mass of water
2295 is being pulled up a well by a rope exerting a steady force  $P$ . The water is leaking out of the
2296 bucket at a steady rate such that the bucket is empty after a time  $\tau$ . Find the velocity of the
2297 bucket at the instant it becomes empty.
2298
2299 GroundTruth Solution :
2300 Let the total mass of the bucket and water at time  $t$  be  $M'$ .
2301
2302 
$$M' = M + m - \frac{mt}{\tau}$$

2303
2304 The equation of motion for the bucket (plus remaining water) is
2305
2306 
$$M' \frac{dv}{dt} = P - M'g$$

2307 Rearranging gives
2308 
$$dv = \left( \frac{P}{M + m - \frac{m}{\tau}t} - g \right) dt$$

2309
2310 The velocity  $v$  of the bucket at time  $t = \tau$  (when empty) starting from rest is
2311
2312 
$$v_{empty} = \int_0^\tau \frac{Pdt}{M + m - \frac{m}{\tau}t} - g\tau$$

2313
2314 Evaluating the integral yields
2315
2316 
$$v_{empty} = \frac{P\tau}{m} \ln \left( \frac{M + m}{M} \right) - g\tau$$

2317
2318 where  $v_{empty}$  is the velocity of the bucket at the instant it becomes empty.
2319
2320 Student Solution Snippet:
2321

```

PRISM-PHYSICS Failure Example: Physics Theorem Application Error

Problem: A bucket of mass M (when empty) initially at rest and containing a mass of water is being pulled up a well by a rope exerting a steady force P . The water is leaking out of the bucket at a steady rate such that the bucket is empty after a time τ . Find the velocity of the bucket at the instant it becomes empty.

GroundTruth Solution :

Let the total mass of the bucket and water at time t be M' .

$$M' = M + m - \frac{mt}{\tau}$$

The equation of motion for the bucket (plus remaining water) is

$$M' \frac{dv}{dt} = P - M'g$$

Rearranging gives

$$dv = \left(\frac{P}{M + m - \frac{m}{\tau}t} - g \right) dt$$

The velocity v of the bucket at time $t = \tau$ (when empty) starting from rest is

$$v_{empty} = \int_0^\tau \frac{Pdt}{M + m - \frac{m}{\tau}t} - g\tau$$

Evaluating the integral yields

$$v_{empty} = \frac{P\tau}{m} \ln \left(\frac{M + m}{M} \right) - g\tau$$

where v_{empty} is the velocity of the bucket at the instant it becomes empty.

Student Solution Snippet:

2322
 2323 I need to find the velocity of the bucket when it becomes empty at time $t = \tau$. Setting up the
 2324 problem The mass of water decreases linearly from m to 0 over time τ :

2325
 2326
$$m_{water}(t) = m(1 - \frac{t}{\tau})$$

2327 The total mass of the system at time t is:

2328
 2329
$$M_{total}(t) = M + m(1 - \frac{t}{\tau})$$

2331 The rate of mass loss is:

2332
 2333
$$\frac{dm_{water}}{dt} = -\frac{m}{\tau}$$

2334 *Applying Newton's Second Law*

2335 Since the leaked water has zero velocity relative to the bucket, when it leaves the bucket, it has
 2336 the same velocity v as the bucket. The forces acting on the system are:

2337 - Upward force: P - Weight: $(M + m_{water}(t))g$

2338 Using Newton's second law for variable mass systems:

2339
 2340
$$P - (M + m(1 - \frac{t}{\tau}))g = (M + m(1 - \frac{t}{\tau}))\frac{dv}{dt} + v\frac{dm_{water}}{dt}$$

2341

2342 **Error Analysis Output:**

```
2343 \begin{verbatim}
2344 {
2345   "primary_error": "PTAE",
2346   "incorrect_expressions": [
2347
2348     
$$P - (M + m(1 - \frac{t}{\tau}))g = (M + m(1 - \frac{t}{\tau}))\frac{dv}{dt} + v\frac{dm_{water}}{dt}$$

2349
2350   ],
2351
2352   "related_correct_expressions": [
2353
2354     
$$\frac{dm_{water}}{dt} = -m/\tau \text{ (student's expression, correct)},$$

2355     
$$(M + m(1 - t/\tau))\frac{dv}{dt} = P - (M + m(1 - t/\tau))g,$$

2356     
$$\text{(since escaping water has zero velocity relative to the bucket, the thrust term vanishes)}$$

2357     
$$v_{empty} = \frac{P\tau}{m} \ln\left(\frac{M+m}{M}\right) - g\tau$$

2358   ],
2359
2360   "rationale": "The student misapplied the variable-mass form of
2361   Newton's second law: the net external force equal to  $d/dt(Mv)$ 
2362   and thus kept a  $v dM/dt$  term on the RHS (or equivalently
2363   omitted the momentum-flux term on the RHS), which is incorrect
2364   bookkeeping for mass leaving with zero velocity relative to
2365   the bucket. For escaping water with velocity equal to the
2366   bucket, the relative-velocity term vanishes and the correct
2367   ODE is  $M(t) dv/dt = P - M(t) g$ , leading to a different integral
2368   (logarithmic) result. All subsequent algebra and the final
2369   numeric expression therefore follow from this incorrect
2370   application."
2371
2372 }
```

2373
 2374
 2375

2376
2377**PRISM-PHYSICS Failure Example: Unit Dimension Error**

2378

Error Analysis Output:

2379

```
{
  "primary_error": "UDE",
  "incorrect_expressions": [
    
$$A = \frac{1}{\lambda^2 \sigma_t^2 T},$$

    
$$N = \frac{1}{\lambda^3 \sigma_t^2 T},$$

    
$$x = \frac{12}{10^{-12} N_A} \cdot \frac{T_{1/2}^3}{(\ln 2)^3 \sigma_t^2 T} \cdot e^{\lambda t},$$

    
$$x = \frac{12 \cdot (5730)^3}{10^{-12} \cdot 6.023 \times 10^{23} \cdot (\ln 2)^3 \cdot 2500} \cdot e^{(\ln 2) \cdot 5000 / 5730},$$

    
$$\lambda^2 \sigma_t^2 T A^2 - A - A_B = 0,$$

    
$$A = \frac{1 + \sqrt{1 + 4\lambda^2 \sigma_t^2 T A_B}}{2\lambda^2 \sigma_t^2 T},$$

    
$$N = \frac{1 + \sqrt{1 + 4\lambda^2 \sigma_t^2 T A_B}}{2\lambda^3 \sigma_t^2 T},$$

    
$$x = \frac{12}{10^{-12} N_A} \cdot \frac{1 + \sqrt{1 + 4\lambda^2 \sigma_t^2 T A_B}}{2\lambda^3 \sigma_t^2 T} \cdot e^{\lambda t}$$

  ],
  "related_correct_expressions": [
    
$$A = \lambda N,$$

    
$$\frac{dA}{dt} = -\lambda A,$$

    
$$\lambda = \frac{\ln 2}{T_{1/2}},$$

    
$$N = N_0 e^{-\lambda t},$$

    
$$N_0 = 10^{-12} \frac{x N_A}{12}$$

  ],
  "rationale": "The student mixed time units:  $\lambda$  and  $\sigma_t$  are in years while the counting time  $T$  was used in hours, so formulas combining  $\lambda$  and  $T$  (e.g.  $A = 1/(\lambda^2 \sigma_t^2 T)$  and subsequent  $N$  and  $x$  expressions) are dimensionally inconsistent. The algebraic manipulations themselves are otherwise coherent, but the unit mismatch renders the numerical/physical results incorrect. The same unit inconsistency propagates into the background-case quadratic and its solutions."
}
```

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

$A = \lambda N,$
 $\frac{dA}{dt} = -\lambda A,$
 $\lambda = \frac{\ln 2}{T_{1/2}},$
 $N = N_0 e^{-\lambda t},$
 $N_0 = 10^{-12} \frac{x N_A}{12}$

$d = \theta(R + h),$
 $d = 1.22 \frac{\lambda}{D} (R + h),$
 $d = 1.22 \times \frac{1}{1000} \times 4.217 \times 10^7,$
 $d \approx 5.145 \times 10^4 \text{ m},$
 $d = 51450 \text{ m}$

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

PRISM-PHYSICS Failure Example: Variable Relationship Error

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

```

2430
2431   ],
2432
2433   "related_correct_expressions": [
2434      $\theta \approx 1.22 \frac{\lambda}{D}$ ,
2435      $R + h = \left( \frac{GM}{\omega^2} \right)^{1/3}$ ,
2436      $h = 3.580 \times 10^7$  m
2437
2438   ],
2439
2440   "rationale": "The student used R + h (distance from Earth's
2441 center to the satellite) as the propagation distance for the
2442 beam instead of the correct path length from satellite to
2443 ground (the height h). That is an incorrect relationship
2444 between physical quantities (distance to apply diffraction).
2445 The diffraction formula and numerical algebra are otherwise
2446 applied correctly, so the error is conceptual about which
2447 length variable to use.",
2448
2449
2450
2451

```

H CLEARER IMAGES

Since the space in the main body of this paper is limited, and it's a massive amount of LLMs that we experimented on, the numbers in the figures could be hard to read clearly. Therefore, we put a clear version of each figure here for reference.

```

2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

```

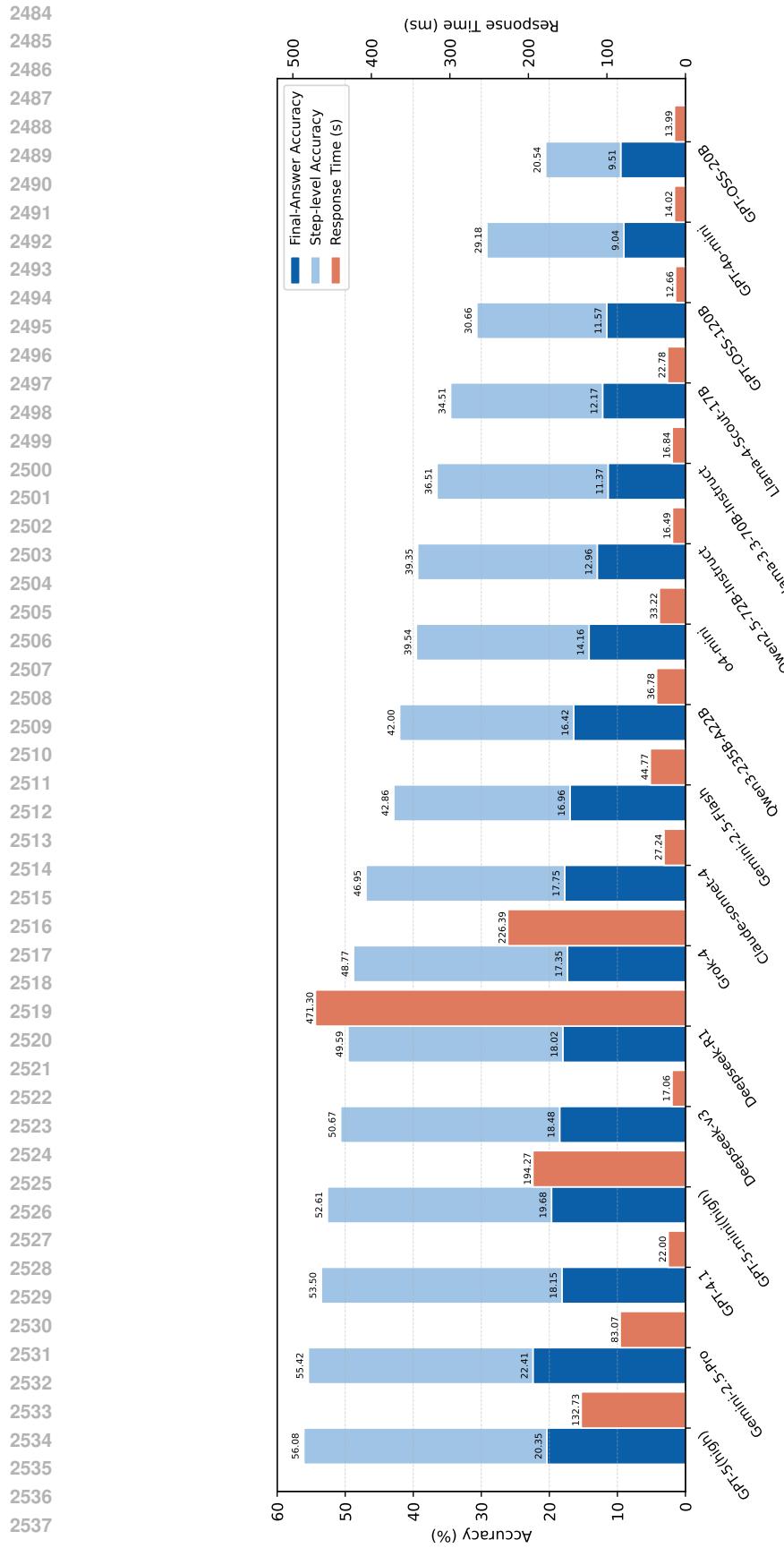


Figure 10: A clearer version of Figure 1

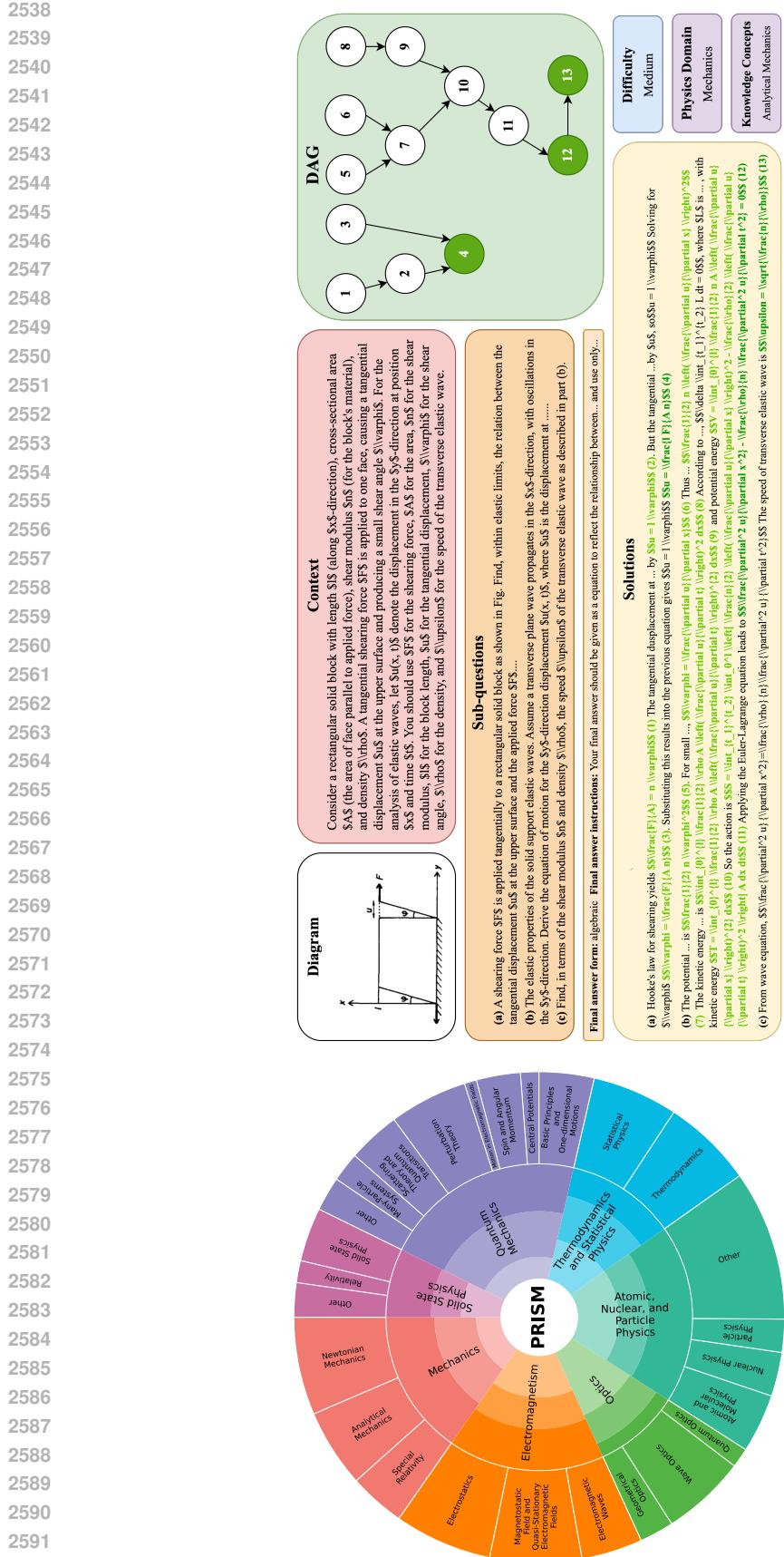


Figure 11: A clearer version of Figure 2

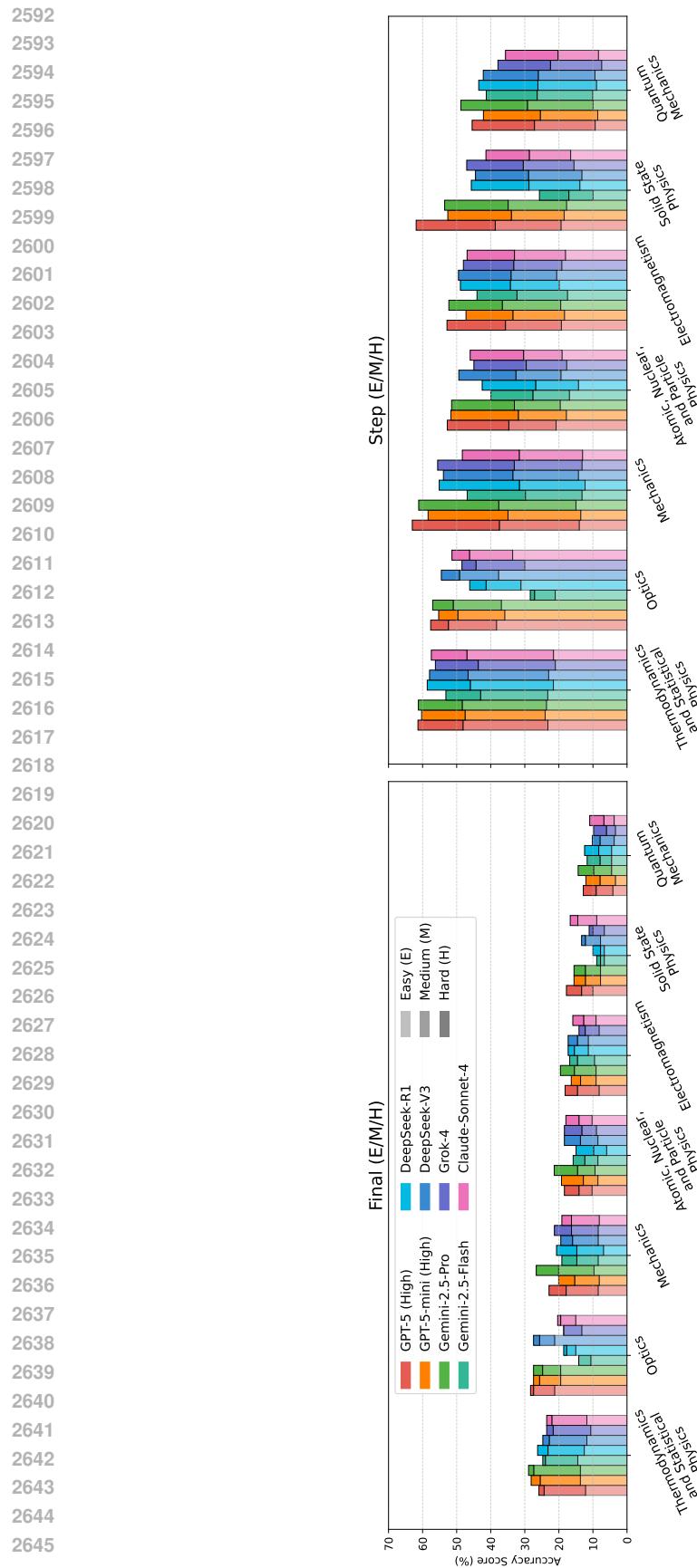


Figure 12: A clearer version of Figure 4

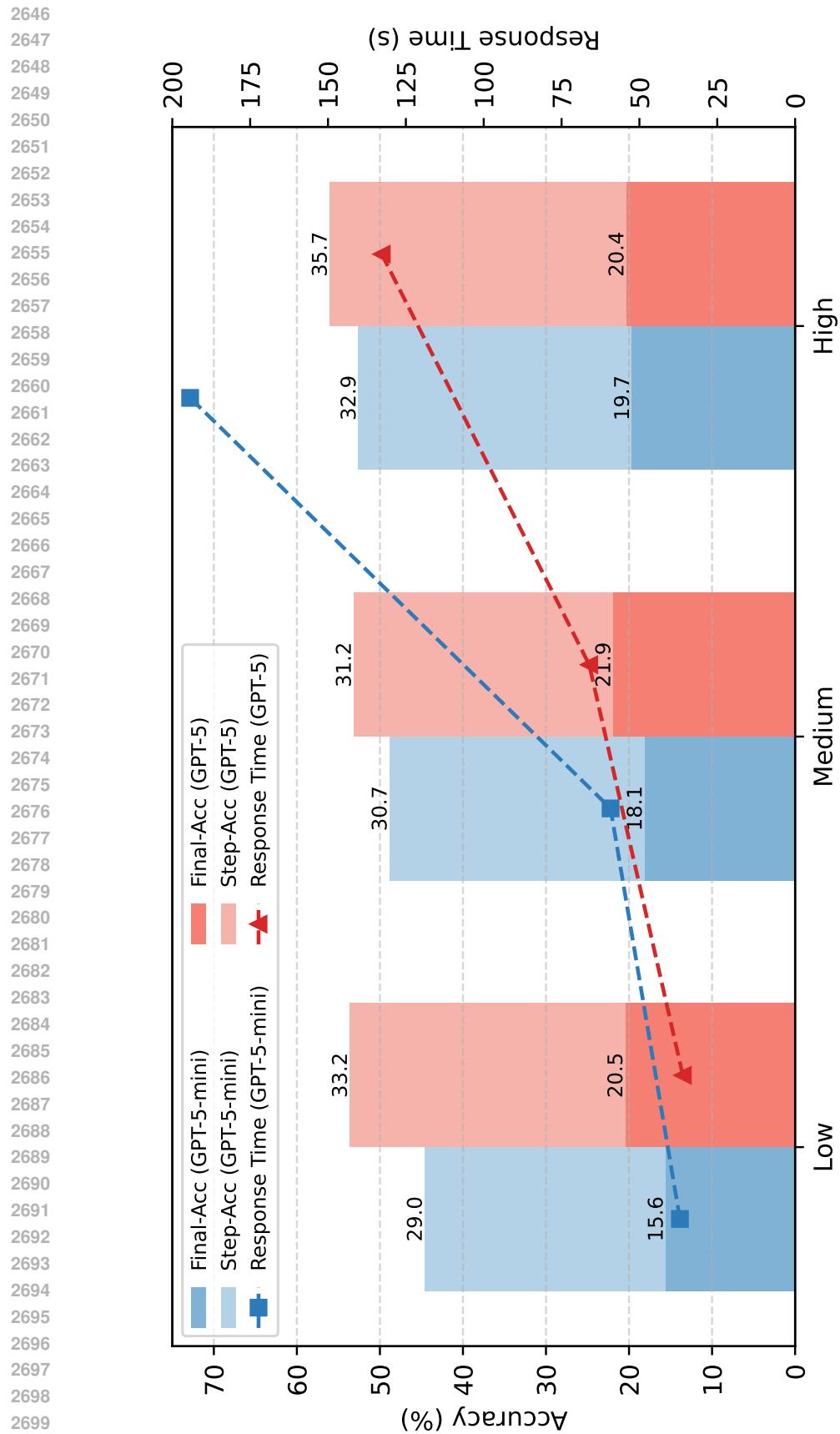


Figure 13: A clearer version of Figure 5

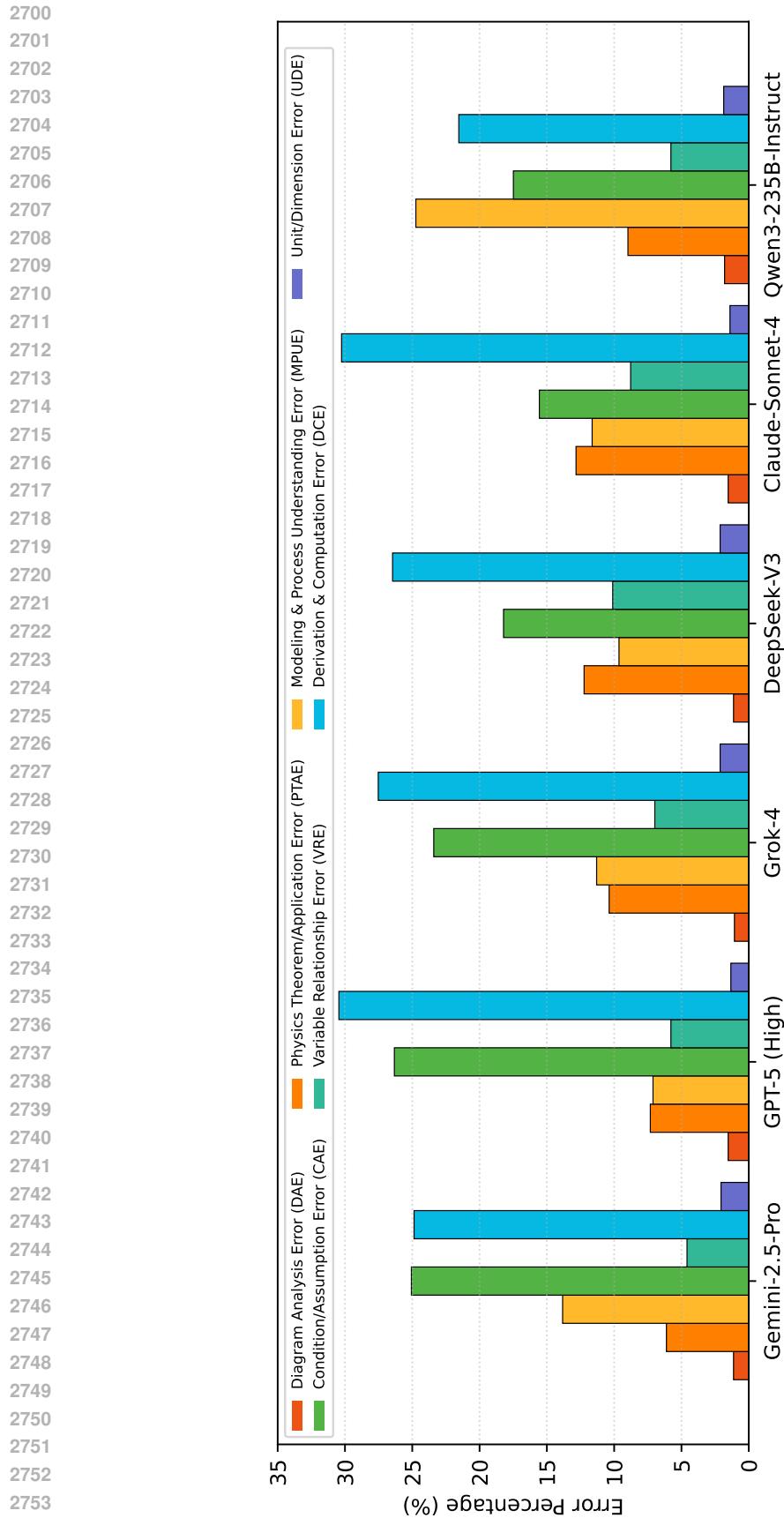


Figure 14: A clearer and full set version of Figure 6

2754 I STATEMENT
27552756 **The Use of Large Language Models.** We did not use LLMs in this work apart from what has
2757 been introduced in the paper.
27582759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807