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Abstract

As large models are increasingly deployed across various tasks, the limited GPU1

memory available for storing and executing task-specific models presents a growing2

bottleneck. Model merging has emerged as a promising solution to accommodate3

multiple large models within constrained memory budgets. While traditional multi-4

task learning methods attempt to merge shared layers, they require labor-intensive5

annotated labels and incur significant computational overhead. Recent merging6

techniques aim to address this issue by combining models at inference time; how-7

ever, these approaches often rely on simplistic heuristics, ignore weight distribution8

characteristics, assume architectural identity, or require access to test samples to9

infer merging coefficients, thereby limiting their generalization capability and scala-10

bility. We present StatsMerging, a novel lightweight learning-based model merging11

method guided by weight distribution statistics without requiring ground truth12

labels or test samples. StatsMerging offers three key advantages: (1) It uniquely13

leverages singular values from singular value decomposition (SVD) to capture14

task-specific weight distributions, serving as a proxy for task importance to guide15

task coefficient learning; (2) It employs a lightweight learner StatsMergeLearner16

to model the weight distributions of task-specific pre-trained models, improv-17

ing generalization and enhancing adaptation to unseen samples; (3) It introduces18

Task-Specific Teacher Distillation for merging vision models with heterogeneous19

architectures, a merging training paradigm that avoids costly ground-truth labels20

by task-specific teacher distillation. Notably, we present two types of knowledge21

distillation, (a) distilling knowledge from task-specific models to train StatsMerge-22

Learner; and (b) for the first time, distilling knowledge from models with different23

architectures prior to merging, following a distill-then-merge paradigm. Extensive24

experiments across eight tasks demonstrate the effectiveness of StatsMerging. Our25

results show that StatsMerging outperforms state-of-the-art techniques in terms of26

overall accuracy, generalization to unseen tasks, and robustness to image quality27

variations.28

1 Introduction29

Computer vision has witnessed transformative progress fueled by deep learning, particularly through30

the development and adoption of large-scale pre-trained models. Architectures like Convolutional31

Neural Networks (CNNs) (Krizhevsky et al., 2012; He et al., 2016; Simonyan and Zisserman, 2014),32

Vision Transformers (ViTs) (Dosovitskiy et al., 2021b; Touvron et al., 2021), and hybrid approaches33

(Liu et al., 2022) pre-trained on massive datasets have become the cornerstone of modern vision34

applications. Large-scale models leveraging multi-modal pre-training, such as CLIP (Radford et al.,35

2021)) or generative models like GANs (Goodfellow et al., 2014) and Diffusion Models (Ho et al.,36

2020; Rombach et al., 2022) have further pushed the boundaries of visual understanding and synthesis,37
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enabling the use of pre-trained backbones to a wide range of downstream vision applications. The38

dominant practice is to fine-tune these powerful base models to computer vision tasks, including39

image classification (He et al., 2016), object detection (Ren et al., 2015; Carion et al., 2020a), semantic40

segmentation (Long et al., 2015; Xie et al., 2021), image restoration (Zhang et al., 2017; Saharia et al.,41

2022), and image generation (Mirza and Osindero, 2014). This success, however, leads to a practical42

challenge: the proliferation of numerous specialized pre-trained weights and model checkpoints43

(Cao et al., 2024a, 2025), most of which share the same foundational ViT or CNN backbones.44

Managing this growing collection incurs significant storage overhead, complicates deployment, and45

represents a missed opportunity to consolidate the related, yet specialized, knowledge contained46

within these models (Wortsman et al., 2022), particularly on compute-constrained platforms such as47

edge devices (Cao et al., 2024b; Singh et al., 2024). While Multi-Task Learning (MTL) (Vandenhende48

et al., 2022b) aims to create versatile single models for vision tasks, it often demands complex joint49

training strategies, concurrent access to diverse datasets, and careful architecture design to balance50

performance across disparate tasks.51

Model merging offers a compelling post-hoc alternative, seeking to combine independently trained52

models without expensive retraining. However, while techniques for model merging have gained53

traction, particularly in Natural Language Processing (NLP) (Yadav et al., 2023a; Ilharco et al.,54

2023), adapting these techniques in computer vision domain has far less explored. A straightforward55

approach of simple weight averaging (Wortsman et al., 2022) often fails in vision tasks due to the56

complex, hierarchical visual feature representations, task-specific optimizations, and the presence of57

intricate noise patterns that lead to sharp, non-convex loss minima (Izmailov et al., 2018). Recent58

methods in this direction (Matena and Raffel, 2022; Jin et al., 2023; Yang et al.; Padmanabhan et al.,59

2023) neglect the importance of weight distribution.60

This paper introduces a novel model merging framework specifically designed to address the afore-61

mentioned challenges within computer vision. We propose StatsMerging, a weight distribution62

statistics-guided merging approach that moves beyond simple parameter averaging or task-vector63

manipulation. StatsMerging leverages the statistical features models pre-trained on prior tasks for64

merged. In particular, we compute salient statistics extracted by leverage Singular Value Decom-65

position (SVD) to capture the dominant properties of the learned feature spaces. This statistical66

information, intrinsically capturing aspects of the pre-trained model distributions, guides the merging67

process by learning a compact Multilayer Perceptron (MLP), coined StatsMergeLearner that predicts68

adaptive merging coefficients (λ) shown in Fig. 1. This allows the merging to be guided by the69

weight landscape, rather than treating coefficients as free parameters requiring external tuning data.70
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Figure 1: Compared to prior works, StatsMerging uniquely learns the merging coefficients using
StatsMergeLearner, taking advantage of statistical features of weigts pre-trained on prior tasks.
Notably, while both AdaMerging and StatsMerging are presented in the task-wise level in c) and d)
for simplicity of illustration, the same principle can be applied at the layer-wise level for fine-grained
adaptation.

We make four significant contributions summarized as follows:71

• We propose StatsMerging1, a novel model merging framework guided by model weight72

statistics, leveraging singular values extracted via Singular Value Decomposition (SVD) to73

predict merging coefficients λ.74

1Our code is available at https://github.com/statsmerging/statsmerging.
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• We design the lightweight StatsMergeLearner to learn model merging coefficients λ estima-75

tion based on weight statistical features, through a newly proposed Task-Specific Teacher76

Distillation training paradigm without manually-annotated labels.77

• We introduce the first heterogeneous architectural merging method, which distills knowledge78

from models with non-identical architectures into the unified target architecture.79

• Extensive experiments demonstrate the effective of our proposed StatsMerging, achieving80

84.5% average accuracy on merging models from eight tasks, outperform the state-of-the-art81

AdaMerging (81.1%) by a substantial margin of 3.4%.82

2 Related Work83

2.1 Multi-Task Learning84

Multi-Task Learning (MTL) (Zhang and Yang, 2021; Vandenhende et al., 2022a) represents a85

paradigm for training a single model to perform multiple tasks concurrently. While MTL aims to86

create unified models capable of handling diverse objectives, it typically requires careful design of87

network architectures, computationally expensive training, access to large and diverse datasets, and88

intricate task balancing strategies (Zhang and Yang, 2021). Furthermore, MTL necessitates joint89

training from the outset, which can be computationally expensive and may not be feasible when90

dealing with a collection of pre-trained, specialized models. Model merging offers a compelling91

alternative by enabling the combination of independently trained models, without the need for92

extensive retraining or simultaneous access to multi-task datasets. Our work distinguishes from MTL93

by focusing on efficiently transferring existing knowledge within specialized models through weight94

statistics-guided merging rather than joint training.95

2.2 Multi-Task Merging96

Early approaches to model merging often involved simple heuristics like Weight Averaging (Wortsman97

et al., 2022), Ties-Merging (Yadav et al., 2023a), and Arithmetic Merging (Ilharco et al., 2023).98

While straightforward to implement, these methods (Ye et al., 2023; Akiba et al., 2025; Tang et al.,99

2025) typically lack awareness of the weight distributions and learned representations within the100

models, leading to suboptimal performance in the merged model compared to individually fine-tuned101

models or unified models trained from scratch. For instance, Wortsman et al. (Wortsman et al., 2022)102

demonstrated that naive weight averaging could significantly degrade performance, highlighting the103

challenges in consolidating knowledge from independently trained networks. More recent methods,104

such as those explored in natural language processing (Yadav et al., 2023b; Ilharco et al., 2023),105

have shown promise by learning interpolation weights. However, these often treat the weights as106

free parameters, potentially requiring significant tuning data and not explicitly leveraging the weight107

distribution of the models being merged, a key distinction from our proposed approach. The gap often108

lies in effectively unifying the diverse and task-specific feature representations learned by individual109

models into a single, high-performing entity without extensive retraining.110

2.3 Merging Methods in Computer Vision111

The application of model merging techniques in computer vision is relatively less explored compared112

to natural language processing (Yadav et al., 2023b; Ilharco et al., 2023). Computer vision models,113

particularly deep convolutional neural networks (CNNs) (Krizhevsky et al., 2012; He et al., 2016;114

Simonyan and Zisserman, 2014) and Vision Transformers (ViTs) (Dosovitskiy et al., 2021a; Touvron115

et al., 2021), learn complex, hierarchical feature representations that are highly sensitive to task-116

specific optimizations (Izmailov et al., 2018). Simple averaging techniques often fail due to the117

non-convex nature of the loss landscape and the divergence of learned feature spaces across different118

visual tasks. Recent advancements (Matena and Raffel, 2022; Yang et al.) have shown potential,119

but often lack explicit mechanisms to account for the unique properties inherent in visual data and120

architectures, such as spatial relationships in CNNs or attention mechanisms in ViTs. Furthermore,121

the effectiveness of these methods across the broad spectrum of computer vision tasks, including122

low-level restoration (Zhang et al., 2017; Saharia et al., 2022), mid-level detection (Ren et al., 2015;123

Carion et al., 2020b), and high-level classification (He et al., 2016), has not been comprehensively124

validated. Our work addresses these limitations by introducing a novel merging framework that125
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leverages internal model weight statistics to guide the merging process, making it more adaptable and126

effective across diverse computer vision tasks and architectures.127

Method No No Layer TT Heterogeneous
Manual Label TT Samples Level Adaptability Architecture

Traditional MTL ✗ ✗ * ✗ ✗

Task Arithmetic ✓ ✓ ✗ ✗ ✗
Ties-Merging ✓ ✓ ✗ ✓ ✗

Fisher Merging ✓ ✓ ✗ ✗ ✗
RegMean ✓ ✓ ✗ ✗ ✗

AdaMerging ✓ ✗ ✓ ✓ ✗

StatsMerging (Ours) ✓ ✓ ✓ ✓ ✓

Table 1: Summary of system characteristics in recent works. *: Optional. TT: Test-Time.

In summary, our method StatsMerging enjoys several advantages compared to prior works: (1) no128

human annotated labels are required to construct the training set; (2) no validation samples are needed129

to compute the weight coefficients for merging; (3) it works in the Layer-Wise level; (4) it allows for130

test-time adaptability; (5) it can extend to heterogeneous architectures.131

3 Methodology132

3.1 Preliminaries133

Notations: A deep neural network is parameterized by a set of weights θ = {θ1, θ2, . . . , θL} that134

learns the mapping from an input data xi ∈ Rd to a predicted value ŷi ∈ RD: fθ(xi) → ŷi. Of these,135

θl represents the l-th l ∈ {1, 2, . . . , L} layer weights where L is the number of layers of the model136

fθ, d denotes an input data xi’s dimension. For classification problems, yi is the class label and D is137

the number of classes, while for regression problems, D is the dimension of the output vector yi.138

The weights of a pre-trained model (e.g., ViT or ResNet) are denoted as θpre = {θ1pre, θ2pre, . . . , θLpre}.139

The weights fine-tuned on a specific training data {xi, yi}
Ntr

k
i=1 for task k is recorded as θk =140

{θ1k, θ2k, . . . , θLk } where N tr
k is the number of training samples.141

Problem Formulation: The problem of model merging is formulated as given K tasks’ training data,142

find a way to combine weights {θk}Kk=1 fine-tuned for K tasks previously to obtain a new weight θm143

without undergoing the retraining process, while the new model fθm is capable of performing well144

on K tasks jointly.145

It is assumed that all K fine-tuned weights and the merged weight share the same neural network146

architecture. Therefore, the core question is how to linearly combine {θk}Kk=1 to obtain θm. In the147

task level, the model merging problem is finding a set of coefficients λk ∈ {λ1, λ2, . . . , λK} such that148

the merged model weights θm =
∑K

k=1 λkθk for model fθm perform well on all K tasks. In the layer149

level, it becomes searching for a set of coefficients λl
k ∈ {λ1

1, λ
2
1, . . . , λ

L
1 , λ

1
2, λ

2
2, . . . , λ

L
2 , . . . , λ

L
K}150

to obtain the merged model θm =
∑K

k=1

∑L
l=1 λ

l
kθ

l
k that maintain high performance on K tasks.151

3.2 Weight Statistics-Guided Model Merging152

In this section, we describe the main intuition and techniques of our proposed method: StatsMerging.153

Our core idea is that given the distribution of pre-trained weights θk, we can learn a function154

g(θk) → λm to predict the merging coefficients λm. We argue that weight distribution plays an155

important role in model merging. However, directly using the raw weights θk as input is impractical156

due to the high dimension of θk. We posit that such information can be represented by weight157

statistics. These statistical features contain key information regarding the amount of weights θk for a158

task k to be merged to the final model. We highlight the key differences with prior works in Fig. 1 d).159

Weight Statistics: For a pre-trained weight θk on task k, we compute the mean µθk and variance160

σ2 = V ar(θk) to represent its center and breadth, as well as its magnitude m = ||θk||. In addition,161
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we extract the singular values σ′
i from Singular Value Decomposition (SVD):162

Wk = UkΣkV
⊤
k (1)

where Wθk represents the matrix of the model parameter θk. By default, we use rank 3 from Σk to163

form weight statistics. We hypothesize that singular values compress the key information regarding164

weight distribution that can benefit the decision of assigning the amount of weights from θk for165

merging. Combining all together, the weight statistics feature vector Sk is formed as166

Sk = stats(θk) = [µ, σ2,m, σ′
r] (2)

where stats() extracts the statistical features from the weight θk, σr represents the singular value167

vector given rank r: σ′
r = [σ′

1, σ
′
2, . . . , σ

′
r].168

Notably, the Equation 3 above is task-wise while we also introduce layer-wise formulation for layer l:169

Sl
k = stats(θlk) = [µ, σ2,m, σ′

r]
l (3)

where the layer-wise statistics features of pre-trained model from task k layer l is computed.170

StatsMergeLearner (SML): We adopt a multilayer perceptron (MLPs) to learn to predict the171

merging coefficients λ given weight statistics feature vector Sk as input. In the task-wise mode, the172

StatsMergeLearner is denoted as SML(Sk):173

λk = SML(Sk) = g(stats(θk)) (4)

where λk is a scalar representing the merging coefficient of Task k model. In the layer-wise mode,174

the StatsMergeLearner is denoted as M(Sk):175

λl
k = SML(Sl

k) = g(stats(θlk)) (5)

where λk is a vector containing L layers’ coefficients and λl
k refers to the coefficient of layer l in the176

k pre-trained model. By default, we use a two-layer MLP to implement the StatsMergeLearner.177

Optimization Objective. To train StatsMergeLearner, in the standard supervised training paradigm,178

we freeze the weights for each task θk and apply the cross-entropy loss function LCE on the179

aggregated dataset:180

LSL
CE = −

Cm∑
c=1

yc log(ŷc)) (6)

where ŷc is the prediction from the merged model for class c, Cm is the total number of classes in the181

aggregated dataset.182

3.3 Task-Specific Teacher Distillation183

We present a novel Task-Specific Teacher Distillation training paradigm to train the StatsMerge-184

Learner (SML) for model merging as illustrated in Fig. 2 and detailed in Algorithm 1. Our key185

intuition is that each pre-trained model θk is already good at its own task dataset {xi, yi}k ∈ Dk,186

therefore we regard it (θk) as the Task-Specific Teacher Tk. Subsequently, the predictions ŷi,k from187

the model trained on task k is decent enough as pseudo labels when it comes to its pre-trained188

dataset sample {xi, yi}k. We aggregate such pairs {xi, ŷi,k}k to construct the merged dataset to189

train SML(). We highlight the key benefit of this approach that enables dataset preparation without190

relying on human-annotated labels. The predicted class label in one-hot encoded format. Therefore,191

the cross-entropy loss is applied:192

LCE = −
Cm∑
c=1

ŷc,k log(ŷc)) (7)
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Figure 2: Knowledge Distillation Diagram. StatsMergeLearner (SML) learns the merging coefficients
λ by minimizing the loss between the merged model’s predictions and pseudo labels generated by
task-specific teacher models. During inference, only the merged model in StatsMerging is used to
predict class labels.

We present a novel Task-Specific Teacher Distillation
training paradigm to train the StatsMergeLearner
(SML) for model merging as illustrated in Fig. 2 and
detailed in Algorithm 1. Our key intuition is that each
pre-trained model θk is already good at its own task
dataset {xi, yi}k ∈ Dk, therefore we regard it (θk)
as the Task-Specific Teacher Tk. Subsequently, the
predictions ŷi,k from the model trained on task k is
decent enough as pseudo labels when it comes to its
pre-trained dataset sample {xi, yi}k. We aggregate
such pairs {xi, ŷi,k}k to construct the merged dataset
to train SML(). We highlight the key benefit of this
approach that enables dataset preparation without
relying on human-annotated labels. The predicted
class label in one-hot encoded format. Therefore, the
cross-entropy loss is applied while such loss function
simplicity helps extend to other vision tasks and
architectures.

Algorithm 1. Unified Statistics-Guided Model Merging via
Task-Specific Teacher Model Distillation
1: Input: Set of pre-trained models {M1,M2, . . . ,Mk}

with weights {θ1, θ2, . . . , θk} for K tasks.
2: Output: Merged model Mmerged with weights θmerged

3: // Prepare K pre-trained models
4: if Same architecture A for all Mi then
5: Set Mtarget to the shared architecture
6: else
7: Select a target architecture Mtarget

8: for i = 1 to k do
9: if A(Mi) ̸= A(Mtarget) then
10: Distill Mi into Mtarget to obtain updated θi
11: end if
12: end for
13: end if
14: // Merge K models
15: for k = 1 to K do
16: // mean µ, std σ2, norm m, singular value σ′

r

17: Extract statistics Sk = [µ, σ2,m, σ′
r] from θk

18: Predict coefficients λk = SML(Sk)

19: Merge layer weights: θl
merged =

∑k
i=1 λkθk

20: end for
21: return Mmerged with weights θmerged

193

4 Experiments194

4.1 Experimental Setup195

In this section, we present the experimental setup and evaluation results used to compare our method196

against recent baselines.197

Datasets and Models : Our experiments include eight image classification tasks with datasets198

SUN397 (Xiao et al., 2016), Stanford Cars (Krause et al., 2013), RESISC45 (Cheng et al., 2017),199

EuroSAT (Helber et al., 2019), SVHN (Netzer et al., 2011), GTSRB (Stallkamp et al., 2011), MNIST200

(LeCun et al., 1998), DTD (Cimpoi et al., 2014), and CIFAR10 (Krizhevsky and Hinton, 2009) 2 We201

use ViT-B/32 CLIP (Radford et al., 2021) as the pre-trained backbone. Individual task-specific models202

are obtained by training on each dataset separately. For merging models with different architectures,203

we first distill them into a single backbone before applying our merging method.204

2In the remainder of the paper, the abbreviations shown in brackets are used to denote each task dataset:
SUN397 (SU), Cars (CA), RESISC45 (RE), EuroSAT (EU), SVHN (SV), GTSRB (GT), MNIST (MN) and
DTD (DT).
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Baselines and Metrics : We compare against standard baselines including Individual Training,205

Traditional Multi-Task Learning (MTL) (Zhang and Yang, 2021), Weight Averaging (Wortsman et al.,206

2022), Task Arithmetic (Ilharco et al., 2023), Fisher Merging (Matena and Raffel, 2022), RegMean207

(Jin et al., 2023), Ties-Merging (Yadav et al., 2023a) and AdaMerging (Yang et al.). The primary208

evaluation metric is the average accuracy (Avg Acc) on the test sets of all tasks. The evaluation is209

conducted on eight different vision classification tasks.210

StatsMergeLearner Training Detail : Our MLP-based StatsMergeLearner learns to predict layer-211

wise or task-wise merging weights coefficients (λ) based on weight statistics from individual task212

models. The StatsMergeLearner is trained for 500 epochs using Adam, with a learning rate of 1e− 3213

and a StepLR scheduler (factor 0.1 every 100 epochs), which translates to around only 3 hours to214

merge 4 ViTs, offering the practicality and advantage of applying our technique for practitioners215

without spending days or weeks for training (Zhang and Yang, 2021; Padmanabhan et al., 2023).216

We train the StatsMergeLearner primarily using knowledge distillation from the aggregated dataset217

without human annotated labels described in Sec. 3.3, optimized with either Cross-Entropy (Mao218

et al., 2023) or KL Divergence (Kullback and Leibler, 1951) loss.219

4.2 Merging Performance220

In this section, we present a comprehensive evaluation of our approach in comparison to state-of-221

the-art task vector merging methods, assessing its superiority across several fundamental aspects:222

Multi-task merging performance, generalization to unseen tasks and heterogeneous architectures.223

Substantially Higher Merging Performance. The main results of merging performance of ViT-224

B/32 models on eight tasks are presented in this section, detailed 3 in Table 2. We present two225

levels of granularity: Task-Wise (TW) and Layer-Wise (LW). Our method StatsMerging achieved226

an average accuracy (Avg Acc) of 76.5% and 84.5% in both TW and LW levels, outperforming the227

state-of-the-art (SOTA) method AdaMerging++ by a large margin of 3.3% and 3.4%. We attribute the228

improvements to the ability of StatsMergeLearner to adapt task-specific weights based on their weight229

statistics to the merged model. The use of pseudo labels from task-specific teachers {T1, T2, . . . , Tk}230

provides stronger signals for StatsMergeLearner to better assign weight coefficients λ than the231

entropy minimization approach in the AdaMerging++.232

Table 2: Multi-task merging performance (Avg Acc %) when merging ViT-B/32 models on eight
tasks. Results of our method StatsMerging are shaded in gray. Bold and underscore indicate the
highest and second-highest scores within the merging group below the double rules in each column,
respectively. TW: Task-wise. LW: Layer-wise.

Method SU CA RE EU SV GT MN DT Avg Acc

Pre-Trained 62.3 59.7 60.7 45.5 31.4 32.6 48.5 43.8 48.0
Individual 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4 90.5
Traditional MTL 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 88.9

Weight Averaging 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1 65.8
Task Arithmetic 55.2 54.9 66.7 78.9 80.2 69.7 97.3 50.4 69.1
Fisher Merging 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9 68.3
RegMean 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 71.8
Ties-Merging 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2 72.4
TW AdaMerging 58.0 53.2 68.8 85.7 81.1 84.4 92.4 44.8 71.1
TW AdaMerging++ 60.8 56.9 73.1 83.4 87.3 82.4 95.7 50.1 73.7
TW StatsMerging 61.3 70.0 74.2 85.2 87.5 82.5 96.2 54.2 76.4 (+3.3)

LW AdaMerging 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 80.1
LW AdaMerging++ 66.6 68.3 82.2 94.2 89.6 89.0 98.3 60.6 81.1
LW StatsMerging 67.4 74.1 82.9 91.1 89.8 94.7 98.3 77.5 84.5 (+3.4)

The LW StatsMerging achieved significantly higher (+8.1%) Avg Acc than TW StatsMerging with233

84.5% and 76.4%, respectively. This improvement in layer-wise merging over task-wise aligns with234

observations in AdaMerging. We hypothesize that compared to the coarser task-level granularity, the235

3Please refer to the Appendix for experimental details, including the full list of tasks, datasets, and baselines.
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finer-grained layer-level offers greater flexibility of coefficients across various semantics regarding236

task-agnostic and task-specific features, which are often learned in various levels of a neural network.237

Significantly Enhanced Generalization. A merged model is expected to generalize to unseen tasks238

by strategically transferring the knowledge from the combined set of old tasks. We benchmark such239

generalization ability of StatsMerging against four strong baselines: Task Arithmetic, Ties-Merging,240

AdaMerging, and AdaMerging++. We follow the same evaluation protocol in AdaMerging training241

on two groups of tasks, each group consisting of six seen tasks, and testing on two unseen tasks.242

Table 3: Generalization results (Avg Acc %) on two unseen tasks when merging Layer-Wise ViT-B/32
models on six tasks. StatsMerging: shaded in gray. Bold: top score. Underscore: 2nd-highest score.

Seen Tasks Unseen Tasks
Method SU CA RE DT SV GT Avg Acc MN EU Avg Acc

Task Arithmetic 63.3 62.4 75.1 57.8 84.6 80.4 70.6 77.2 46.2 61.7
Ties-Merging 67.8 66.2 77.2 56.7 77.1 70.9 69.3 75.9 43.3 59.6
AdaMerging 65.2 65.9 88.5 61.1 92.2 91.5 77.4 84.0 56.1 70.0
AdaMerging++ 68.2 67.6 86.3 63.6 92.6 89.8 78.0 83.9 53.5 68.7
StatsMerging 69.1 71.3 86.7 75.2 93.2 95.7 81.9 (+3.9) 85.1 56.4 70.8 (+0.8)

Method SU CA GT EU DT MN Avg Acc RE SV Avg Acc

Task Arithmetic 64.0 64.0 75.2 87.7 57.0 95.7 73.9 52.3 44.9 51.1
Ties-Merging 68.0 67.1 67.7 78.4 56.5 92.8 71.8 58.7 49.2 53.9
AdaMerging 67.1 67.8 94.8 94.4 59.6 98.2 80.3 50.2 60.9 55.5
AdaMerging++ 68.9 69.6 91.6 94.3 61.9 98.7 80.8 52.0 64.9 58.5
StatsMerging 69.6 73.3 96.1 95.4 74.1 97.2 84.3 (+3.5) 54.2 67.1 60.7 (+2.2)

Details are presented in Table 3, where in both groups our proposed StatsMerging achieved 70.8%s243

and 60.7%, significantly outperforming the second best method AdaMerging by +0.8% and +2.2%244

margins. Such improvements are attributed to both (1) the careful feature design of weight statistics245

that captures the dominant information regarding weight distributions from pre-trained models,246

which potentially helps reduce noise from each task dataset; and (2) the joint training from all old247

tasks on the task-specific teacher-distilled labels, enabling the implicit learning of task-agnostic and248

task-specific features that can benefit the generalization ability.249

Extension to Heterogeneous Architectures. Our StatsMerging offers the first and unique advantage250

without the assumption of architectural identity in prior works (Wortsman et al., 2022; Ilharco et al.,251

2023; Yadav et al., 2023a; Matena and Raffel, 2022; Jin et al., 2023). To verify the performance of252

varying architectures, we conduct experiments on ResNet50 (RN) and ViT-B/32 (VT) to represent253

Convolutional Neural Network (CNN) and Vision Transformer (ViT) architectures.254

In particular, we distill fine-tuned VT teachers into a RN
(Khanuja et al., 2021) student on three diverse tasks of
CIFAR-10 (CI), EuroSAT (EU) and Stanford Cars (CA)
with the distillation loss:

L = αLCE(y, ŷ) + (1− α)T 2 LKL

(
σ( z

T ), σ(
zt
T )

)
,

(8)
where LKL denotes KL-Divergence, z is logit, T = 4.0
represents temperature, α = 0.7 is the weight balance of
two sub-losses. CI is used due to the available pre-trained
RN weights. Remarkably, the distilled RN matches its VT
teacher’s accuracy, achieving 76.4% (VT: 77.7%) for CA
and 94.5% for EU (VT: 99.7%) despite the architectural
difference shown in Table 3. We then apply our
StatsMerging to combine the CI–trained RN and its
distilled variants. We merge multiple task models into a
single RN using the merging coefficients inferred by
StatsMergeLearner, yielding a 7.6% average improvement
over the vanilla Task-Arithmetic of 73.7% and achieving
81.3% average accuracy.

Table 3. Multi-task merging performance (Avg Acc %)
of models in heterogeneous architectures: ResNet50

(RN) & ViT-B/32 (VT). StatsMerging: shaded in gray.

Method CI CA EU Avg
Acc

Backbone RN VI VI -
Distilled - RN RN -

Individual 97.8 77.7 99.7 91.7
Distilled - 76.4 94.5 -

Weight Averaging 77.1 56.4 64.9 59.4

Ties-Merging 76.5 52.8 80.1 69.8
Task Arithmetic 81.4 61.6 78.2 73.7

LW StatsMerging 87.2 68.4 88.4 81.3

255
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4.3 StatsMerging Analysis256

Label & Loss Function Study.
We conduct a loss function study on ViT-B/32
(4) models merged from four tasks, as shown in
Table 4. Observe that StatsMerging trained on
pseudo labels via Task-Specific Teacher
Distillation (KD) achieves similar performance
to StatsMerging trained on ground-truth labels
(GT), with 88.5% and 81.2% average accuracy
in TW and 90.4% and 83.5% in LW levels.

Table 4. Multi-task performance (Avg Acc %) of StatsMerging when
merging ViT-B/32 (4) models across four tasks. StatsMerging shaded

in gray. GT: Ground Truth. KD: Knowledge Distillation. TW:
Task-wise. LW: Layer-wise.

Loss Level CA EU RE GT Avg Acc

GT TW 73.2 94.2 91.1 95.6 88.5
KD TW 64.2 88.6 85.2 86.7 81.2

GT LW 75.6 96.3 92.1 97.6 90.4
KD LW 68.7 91.6 87.2 93.5 83.5

257

Statistical Feature Ablation Study.
We conduct an ablation study on the statistical
features. Results in Table 5 show that
combining all statistical features improves
merging performance, validating our design
choice. Notably, the singular values σ′

improve the multi-task performance in both
same and different architecture settings by
+3.0 and +3.2 increase of average accuracy,
justifying our design choice of using SVD.

Table 5: Multi-task performance (Avg Acc %) of StatsMerging when
ablating statistical features of ViT-B/32 (4) models on four tasks: CA, EU,

RE & GT. Bold: top score. StatsMerging: shaded in gray.

Same Architecture Different Architecture

µθk
σ2 m σ′ Avg Acc µθk

σ2 m σ′ Avg Acc

✓ 83.4 ✓ 76.2
✓ ✓ 84.1 (+0.7) ✓ ✓ 77.5 (+1.3)
✓ ✓ ✓ 87.2 (+3.1) ✓ ✓ ✓ 78.1 (+0.6)
✓ ✓ ✓ ✓ 90.2 (+3.0) ✓ ✓ ✓ ✓ 81.3 (+3.2)

258

Coefficient Analysis. We visualize the heatmap of ViT-B/32 (4) across eight tasks in Fig. 3. We259

make several key observations: (1) the common recurring pattern of coefficients λ across all eight260

tasks from earlier (left) to deeper (right) layers aligns with the repeated self-attention blocks in261

the ViT architecture, e.g. Multi-Head Self-Attention (MHSA), MLP (Feed-Forward Network), and262

LayerNorm, etc, demonstrating the need of various coefficients for various types of layers; (2) The263

sparse non-uniform coefficient distributions (various colors like Layer 13, 19 or 25) suggests that264

merging layers can be more efficient at some specific layers instead of using one coefficient for an265

entire pre-trained model, justifying the our granularity choice of Layer-Wise over Task-Wise level;266

(3) some task-specific coefficient distributions verify the necessity of assigning distinct merging267

coefficients across tasks in various layers, such as in Layer 5 vs. 147. Such distributions reflect the268

various visual representations for different semantics learned across both layers and tasks. More269

visualizations are provided in the Appendix for in-depth analysis.270

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144 150 156

Cars
RESISC45

SUN397
EuroSAT
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GTSRB
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DTD 0.000
0.025
0.050
0.075
0.100
0.125

Figure 3: Heatmap of StatsMerging merging coefficients λ of ViT-B/32 (4) across eight tasks. X-axis:
layer index. Y-axis: Tasks. Coefficients are normalized to sum to 1.

5 Conclusion271

Model merging offers a compelling post-hoc advantage to reduce memory storage from a corpus of272

large pre-trained models. We propose StatsMerging, a novel merging technique without relying on273

simple heuristics, test-time samples or human annotated. The key intuition lies in the guidance of274

weight statistics using a lightweight MLP learner, dubbed StatsMergeLearner, to learn merging coeffi-275

cient prediction. Exhaustive experiments demonstrate the effectiveness of our proposed StatsMerging276

in model mering from eight diverse tasks, achieving 84.5% average accuracy and surpassing the277

SOTA AdaMerging (81.1%) by a large margin of 3.4%.278
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NeurIPS Paper Checklist279

The checklist is designed to encourage best practices for responsible machine learning research,280

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove281

the checklist: The papers not including the checklist will be desk rejected. The checklist should282

follow the references and follow the (optional) supplemental material. The checklist does NOT count283

towards the page limit.284

Please read the checklist guidelines carefully for information on how to answer these questions. For285

each question in the checklist:286

• You should answer [Yes] , [No] , or [NA] .287

• [NA] means either that the question is Not Applicable for that particular paper or the288

relevant information is Not Available.289

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).290

The checklist answers are an integral part of your paper submission. They are visible to the291

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it292

(after eventual revisions) with the final version of your paper, and its final version will be published293

with the paper.294

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.295

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a296

proper justification is given (e.g., "error bars are not reported because it would be too computationally297

expensive" or "we were unable to find the license for the dataset we used"). In general, answering298

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we299

acknowledge that the true answer is often more nuanced, so please just use your best judgment and300

write a justification to elaborate. All supporting evidence can appear either in the main paper or the301

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification302

please point to the section(s) where related material for the question can be found.303

IMPORTANT, please:304

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",305

• Keep the checklist subsection headings, questions/answers and guidelines below.306

• Do not modify the questions and only use the provided macros for your answers.307

1. Claims308

Question: Do the main claims made in the abstract and introduction accurately reflect the309

paper’s contributions and scope?310

Answer: [Yes]311

Justification: Our abstract does reflect our contributions to large extent, we did thorough312

analysis and added more appropriate results in appendix as well which supports our claims.313

Guidelines:314

• The answer NA means that the abstract and introduction do not include the claims315

made in the paper.316

• The abstract and/or introduction should clearly state the claims made, including the317

contributions made in the paper and important assumptions and limitations. A No or318

NA answer to this question will not be perceived well by the reviewers.319

• The claims made should match theoretical and experimental results, and reflect how320

much the results can be expected to generalize to other settings.321

• It is fine to include aspirational goals as motivation as long as it is clear that these goals322

are not attained by the paper.323

2. Limitations324

Question: Does the paper discuss the limitations of the work performed by the authors?325

Answer: [Yes]326
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Justification: We did mention limitations in the appendix.327

Guidelines:328

• The answer NA means that the paper has no limitation while the answer No means that329

the paper has limitations, but those are not discussed in the paper.330

• The authors are encouraged to create a separate "Limitations" section in their paper.331

• The paper should point out any strong assumptions and how robust the results are to332

violations of these assumptions (e.g., independence assumptions, noiseless settings,333

model well-specification, asymptotic approximations only holding locally). The authors334

should reflect on how these assumptions might be violated in practice and what the335

implications would be.336

• The authors should reflect on the scope of the claims made, e.g., if the approach was337

only tested on a few datasets or with a few runs. In general, empirical results often338

depend on implicit assumptions, which should be articulated.339

• The authors should reflect on the factors that influence the performance of the approach.340

For example, a facial recognition algorithm may perform poorly when image resolution341

is low or images are taken in low lighting. Or a speech-to-text system might not be342

used reliably to provide closed captions for online lectures because it fails to handle343

technical jargon.344

• The authors should discuss the computational efficiency of the proposed algorithms345

and how they scale with dataset size.346

• If applicable, the authors should discuss possible limitations of their approach to347

address problems of privacy and fairness.348

• While the authors might fear that complete honesty about limitations might be used by349

reviewers as grounds for rejection, a worse outcome might be that reviewers discover350

limitations that aren’t acknowledged in the paper. The authors should use their best351

judgment and recognize that individual actions in favor of transparency play an impor-352

tant role in developing norms that preserve the integrity of the community. Reviewers353

will be specifically instructed to not penalize honesty concerning limitations.354

3. Theory assumptions and proofs355

Question: For each theoretical result, does the paper provide the full set of assumptions and356

a complete (and correct) proof?357

Answer: [Yes]358

Justification: Yes, we did provide experiments that support our proof and assumptions, more359

experiments are added in the appendix.360

Guidelines:361

• The answer NA means that the paper does not include theoretical results.362

• All the theorems, formulas, and proofs in the paper should be numbered and cross-363

referenced.364

• All assumptions should be clearly stated or referenced in the statement of any theorems.365

• The proofs can either appear in the main paper or the supplemental material, but if366

they appear in the supplemental material, the authors are encouraged to provide a short367

proof sketch to provide intuition.368

• Inversely, any informal proof provided in the core of the paper should be complemented369

by formal proofs provided in appendix or supplemental material.370

• Theorems and Lemmas that the proof relies upon should be properly referenced.371

4. Experimental result reproducibility372

Question: Does the paper fully disclose all the information needed to reproduce the main ex-373

perimental results of the paper to the extent that it affects the main claims and/or conclusions374

of the paper (regardless of whether the code and data are provided or not)?375

Answer: [Yes]376

Justification: Yes, we provided our code and model in github, that gives proof to reproduce377

results.378

Guidelines:379
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• The answer NA means that the paper does not include experiments.380

• If the paper includes experiments, a No answer to this question will not be perceived381

well by the reviewers: Making the paper reproducible is important, regardless of382

whether the code and data are provided or not.383

• If the contribution is a dataset and/or model, the authors should describe the steps taken384

to make their results reproducible or verifiable.385

• Depending on the contribution, reproducibility can be accomplished in various ways.386

For example, if the contribution is a novel architecture, describing the architecture fully387

might suffice, or if the contribution is a specific model and empirical evaluation, it may388

be necessary to either make it possible for others to replicate the model with the same389

dataset, or provide access to the model. In general. releasing code and data is often390

one good way to accomplish this, but reproducibility can also be provided via detailed391

instructions for how to replicate the results, access to a hosted model (e.g., in the case392

of a large language model), releasing of a model checkpoint, or other means that are393

appropriate to the research performed.394

• While NeurIPS does not require releasing code, the conference does require all submis-395

sions to provide some reasonable avenue for reproducibility, which may depend on the396

nature of the contribution. For example397

(a) If the contribution is primarily a new algorithm, the paper should make it clear how398

to reproduce that algorithm.399

(b) If the contribution is primarily a new model architecture, the paper should describe400

the architecture clearly and fully.401

(c) If the contribution is a new model (e.g., a large language model), then there should402

either be a way to access this model for reproducing the results or a way to reproduce403

the model (e.g., with an open-source dataset or instructions for how to construct404

the dataset).405

(d) We recognize that reproducibility may be tricky in some cases, in which case406

authors are welcome to describe the particular way they provide for reproducibility.407

In the case of closed-source models, it may be that access to the model is limited in408

some way (e.g., to registered users), but it should be possible for other researchers409

to have some path to reproducing or verifying the results.410

5. Open access to data and code411

Question: Does the paper provide open access to the data and code, with sufficient instruc-412

tions to faithfully reproduce the main experimental results, as described in supplemental413

material?414

Answer: [Yes]415

Justification: We provided access to code with proper readme.416

Guidelines:417

• The answer NA means that paper does not include experiments requiring code.418

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/419

public/guides/CodeSubmissionPolicy) for more details.420

• While we encourage the release of code and data, we understand that this might not be421

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not422

including code, unless this is central to the contribution (e.g., for a new open-source423

benchmark).424

• The instructions should contain the exact command and environment needed to run to425

reproduce the results. See the NeurIPS code and data submission guidelines (https:426

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.427

• The authors should provide instructions on data access and preparation, including how428

to access the raw data, preprocessed data, intermediate data, and generated data, etc.429

• The authors should provide scripts to reproduce all experimental results for the new430

proposed method and baselines. If only a subset of experiments are reproducible, they431

should state which ones are omitted from the script and why.432

• At submission time, to preserve anonymity, the authors should release anonymized433

versions (if applicable).434
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• Providing as much information as possible in supplemental material (appended to the435

paper) is recommended, but including URLs to data and code is permitted.436

6. Experimental setting/details437

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-438

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the439

results?440

Answer: [Yes]441

Justification: We provided details in appendix.442

Guidelines:443

• The answer NA means that the paper does not include experiments.444

• The experimental setting should be presented in the core of the paper to a level of detail445

that is necessary to appreciate the results and make sense of them.446

• The full details can be provided either with the code, in appendix, or as supplemental447

material.448

7. Experiment statistical significance449

Question: Does the paper report error bars suitably and correctly defined, or other appropriate450

information about the statistical significance of the experiments?451

Answer: [Yes]452

Justification: Our experiements are easy to follow, reproducable.453

Guidelines:454

• The answer NA means that the paper does not include experiments.455

• The authors should answer "Yes" if the results are accompanied by error bars, confi-456

dence intervals, or statistical significance tests, at least for the experiments that support457

the main claims of the paper.458

• The factors of variability that the error bars are capturing should be clearly stated (for459

example, train/test split, initialization, random drawing of some parameter, or overall460

run with given experimental conditions).461

• The method for calculating the error bars should be explained (closed form formula,462

call to a library function, bootstrap, etc.)463

• The assumptions made should be given (e.g., Normally distributed errors).464

• It should be clear whether the error bar is the standard deviation or the standard error465

of the mean.466

• It is OK to report 1-sigma error bars, but one should state it. The authors should467

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis468

of Normality of errors is not verified.469

• For asymmetric distributions, the authors should be careful not to show in tables or470

figures symmetric error bars that would yield results that are out of range (e.g. negative471

error rates).472

• If error bars are reported in tables or plots, The authors should explain in the text how473

they were calculated and reference the corresponding figures or tables in the text.474

8. Experiments compute resources475

Question: For each experiment, does the paper provide sufficient information on the com-476

puter resources (type of compute workers, memory, time of execution) needed to reproduce477

the experiments?478

Answer: [NA]479

Justification: Our experiments can be done on any GPU that has memory up to 40 GB. We480

used NVIDIA RTX A6000.481

Guidelines:482

• The answer NA means that the paper does not include experiments.483

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,484

or cloud provider, including relevant memory and storage.485
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• The paper should provide the amount of compute required for each of the individual486

experimental runs as well as estimate the total compute.487

• The paper should disclose whether the full research project required more compute488

than the experiments reported in the paper (e.g., preliminary or failed experiments that489

didn’t make it into the paper).490

9. Code of ethics491

Question: Does the research conducted in the paper conform, in every respect, with the492

NeurIPS Code of Ethics. https://neurips.cc/public/EthicsGuidelines?493

Answer: [Yes]494

Justification: Yes, It does follow Neurips Code of Ethics.495

Guidelines:496

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.497

• If the authors answer No, they should explain the special circumstances that require a498

deviation from the Code of Ethics.499

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-500

eration due to laws or regulations in their jurisdiction).501

10. Broader impacts502

Question: Does the paper discuss both potential positive societal impacts and negative503

societal impacts of the work performed?504

Answer: [NA]505

Justification: Our method solely addresses the new emerging solution for merging multi-506

models post training, so it doesn’t comes under societal impacts.507

Guidelines:508

• The answer NA means that there is no societal impact of the work performed.509

• If the authors answer NA or No, they should explain why their work has no societal510

impact or why the paper does not address societal impact.511

• Examples of negative societal impacts include potential malicious or unintended uses512

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations513

(e.g., deployment of technologies that could make decisions that unfairly impact specific514

groups), privacy considerations, and security considerations.515

• The conference expects that many papers will be foundational research and not tied516

to particular applications, let alone deployments. However, if there is a direct path to517

any negative applications, the authors should point it out. For example, it is legitimate518

to point out that an improvement in the quality of generative models could be used to519

generate deepfakes for disinformation. On the other hand, it is not needed to point out520

that a generic algorithm for optimizing neural networks could enable people to train521

models that generate Deepfakes faster.522

• The authors should consider possible harms that could arise when the technology is523

being used as intended and functioning correctly, harms that could arise when the524

technology is being used as intended but gives incorrect results, and harms following525

from (intentional or unintentional) misuse of the technology.526

• If there are negative societal impacts, the authors could also discuss possible mitigation527

strategies (e.g., gated release of models, providing defenses in addition to attacks,528

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from529

feedback over time, improving the efficiency and accessibility of ML).530

11. Safeguards531

Question: Does the paper describe safeguards that have been put in place for the responsible532

release of data or models that have a high risk for misuse (e.g., pre-trained language models,533

image generators, or scraped datasets)?534

Answer: [NA]535

Justification: This doesn’t comes under the category of safeguards or anything related to536

scraped datasets.537
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Guidelines:538

• The answer NA means that the paper poses no such risks.539

• Released models that have a high risk for misuse or dual-use should be released with540

necessary safeguards to allow for controlled use of the model, for example by requiring541

that users adhere to usage guidelines or restrictions to access the model or implementing542

safety filters.543

• Datasets that have been scraped from the Internet could pose safety risks. The authors544

should describe how they avoided releasing unsafe images.545

• We recognize that providing effective safeguards is challenging, and many papers do546

not require this, but we encourage authors to take this into account and make a best547

faith effort.548

12. Licenses for existing assets549

Question: Are the creators or original owners of assets (e.g., code, data, models), used in550

the paper, properly credited and are the license and terms of use explicitly mentioned and551

properly respected?552

Answer: [NA]553

Justification: We are the sole owner of code and models, we mentioned credit wherever we554

used opensource models, or data.555

Guidelines:556

• The answer NA means that the paper does not use existing assets.557

• The authors should cite the original paper that produced the code package or dataset.558

• The authors should state which version of the asset is used and, if possible, include a559

URL.560

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.561

• For scraped data from a particular source (e.g., website), the copyright and terms of562

service of that source should be provided.563

• If assets are released, the license, copyright information, and terms of use in the564

package should be provided. For popular datasets, paperswithcode.com/datasets565

has curated licenses for some datasets. Their licensing guide can help determine the566

license of a dataset.567

• For existing datasets that are re-packaged, both the original license and the license of568

the derived asset (if it has changed) should be provided.569

• If this information is not available online, the authors are encouraged to reach out to570

the asset’s creators.571

13. New assets572

Question: Are new assets introduced in the paper well documented and is the documentation573

provided alongside the assets?574

Answer: [Yes]575

Justification: We did have detailed documentation of the models and code we tried.576

Guidelines:577

• The answer NA means that the paper does not release new assets.578

• Researchers should communicate the details of the dataset/code/model as part of their579

submissions via structured templates. This includes details about training, license,580

limitations, etc.581

• The paper should discuss whether and how consent was obtained from people whose582

asset is used.583

• At submission time, remember to anonymize your assets (if applicable). You can either584

create an anonymized URL or include an anonymized zip file.585

14. Crowdsourcing and research with human subjects.586

Question: For crowdsourcing experiments and research with human subjects, does the paper587

include the full text of instructions given to participants and screenshots, if applicable, as588

well as details about compensation (if any)?589
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Answer: [NA]590

Justification: We didn’t require any crowdsourcing, we used opensource data and required591

very less efforts for training.592

Guidelines:593

• The answer NA means that the paper does not involve crowdsourcing nor research with594

human subjects.595

• Including this information in the supplemental material is fine, but if the main contribu-596

tion of the paper involves human subjects, then as much detail as possible should be597

included in the main paper.598

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,599

or other labor should be paid at least the minimum wage in the country of the data600

collector.601

15. Institutional review board (IRB) approvals or equivalent for research with human602

subjects603

Question: Does the paper describe potential risks incurred by study participants, whether604

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)605

approvals (or an equivalent approval/review based on the requirements of your country or606

institution) were obtained?607

Answer: [NA]608

Justification: Our work is independent work, not related to any organization.609

Guidelines:610

• The answer NA means that the paper does not involve crowdsourcing nor research with611

human subjects.612

• Depending on the country in which research is conducted, IRB approval (or equivalent)613

may be required for any human subjects research. If you obtained IRB approval, you614

should clearly state this in the paper.615

• We recognize that the procedures for this may vary significantly between institutions616

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the617

guidelines for their institution.618

• For initial submissions, do not include any information that would break anonymity (if619

applicable), such as the institution conducting the review.620

16. Declaration of LLM usage621

Question: Does the paper describe the usage of LLMs if it is an important, original, or622

non-standard component of the core methods in this research? Note that if the LLM is used623

only for writing, editing, or formatting purposes and does not impact the core methodology,624

scientific rigorousness, or originality of the research, declaration is not required.625

Answer: [Yes]626

Justification: We used it for language and clarifying the formulation.627

Guidelines:628

• The answer NA means that the core method development in this research does not629

involve LLMs as any important, original, or non-standard components.630

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)631

for what should or should not be described.632
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