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Abstract

As large models are increasingly deployed across various tasks, the limited GPU
memory available for storing and executing task-specific models presents a growing
bottleneck. Model merging has emerged as a promising solution to accommodate
multiple large models within constrained memory budgets. While traditional multi-
task learning methods attempt to merge shared layers, they require labor-intensive
annotated labels and incur significant computational overhead. Recent merging
techniques aim to address this issue by combining models at inference time; how-
ever, these approaches often rely on simplistic heuristics, ignore weight distribution
characteristics, assume architectural identity, or require access to test samples to
infer merging coefficients, thereby limiting their generalization capability and scala-
bility. We present StatsMerging, a novel lightweight learning-based model merging
method guided by weight distribution statistics without requiring ground truth
labels or test samples. StatsMerging offers three key advantages: (1) It uniquely
leverages singular values from singular value decomposition (SVD) to capture
task-specific weight distributions, serving as a proxy for task importance to guide
task coefficient learning; (2) It employs a lightweight learner StatsMergeLearner
to model the weight distributions of task-specific pre-trained models, improv-
ing generalization and enhancing adaptation to unseen samples; (3) It introduces
Task-Specific Teacher Distillation for merging vision models with heterogeneous
architectures, a merging training paradigm that avoids costly ground-truth labels
by task-specific teacher distillation. Notably, we present two types of knowledge
distillation, (a) distilling knowledge from task-specific models to train StatsMerge-
Learner; and (b) for the first time, distilling knowledge from models with different
architectures prior to merging, following a distill-then-merge paradigm. Extensive
experiments across eight tasks demonstrate the effectiveness of StatsMerging. Our
results show that StatsMerging outperforms state-of-the-art techniques in terms of
overall accuracy, generalization to unseen tasks, and robustness to image quality
variations.

1 Introduction

Computer vision has witnessed transformative progress fueled by deep learning, particularly through
the development and adoption of large-scale pre-trained models. Architectures like Convolutional
Neural Networks (CNNs) (Krizhevsky et al., 2012 |He et al., 2016;|Simonyan and Zisserman, [2014)),
Vision Transformers (ViTs) (Dosovitskiy et al.,2021b; |Touvron et al.| 2021, and hybrid approaches
(Liu et al.| |[2022) pre-trained on massive datasets have become the cornerstone of modern vision
applications. Large-scale models leveraging multi-modal pre-training, such as CLIP (Radford et al.,
2021)) or generative models like GANs (Goodfellow et al.,2014) and Diffusion Models (Ho et al.,
2020; Rombach et al.|,[2022) have further pushed the boundaries of visual understanding and synthesis,
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enabling the use of pre-trained backbones to a wide range of downstream vision applications. The
dominant practice is to fine-tune these powerful base models to computer vision tasks, including
image classification (He et al.| 2016)), object detection (Ren et al.| 2015;|Carion et al.,|2020al), semantic
segmentation (Long et al.|[2015; |Xie et al., 202 1)), image restoration (Zhang et al.,[2017; |Saharia et al.;
2022), and image generation (Mirza and Osindero, |2014)). This success, however, leads to a practical
challenge: the proliferation of numerous specialized pre-trained weights and model checkpoints
(Cao et al.l 20244l 2025), most of which share the same foundational ViT or CNN backbones.
Managing this growing collection incurs significant storage overhead, complicates deployment, and
represents a missed opportunity to consolidate the related, yet specialized, knowledge contained
within these models (Wortsman et al., 2022)), particularly on compute-constrained platforms such as
edge devices (Cao et al.,[2024b; Singh et al.|[2024). While Multi-Task Learning (MTL) (Vandenhende
et al.| 2022b) aims to create versatile single models for vision tasks, it often demands complex joint
training strategies, concurrent access to diverse datasets, and careful architecture design to balance
performance across disparate tasks.

Model merging offers a compelling post-hoc alternative, seeking to combine independently trained
models without expensive retraining. However, while techniques for model merging have gained
traction, particularly in Natural Language Processing (NLP) (Yadav et al., |2023a; [Ilharco et al.|
2023), adapting these techniques in computer vision domain has far less explored. A straightforward
approach of simple weight averaging (Wortsman et al.| 2022) often fails in vision tasks due to the
complex, hierarchical visual feature representations, task-specific optimizations, and the presence of
intricate noise patterns that lead to sharp, non-convex loss minima (Izmailov et al.| 2018). Recent
methods in this direction (Matena and Raffel, |2022; Jin et al., 2023} |Yang et al.; Padmanabhan et al.,
2023) neglect the importance of weight distribution.

This paper introduces a novel model merging framework specifically designed to address the afore-
mentioned challenges within computer vision. We propose StatsMerging, a weight distribution
statistics-guided merging approach that moves beyond simple parameter averaging or task-vector
manipulation. StatsMerging leverages the statistical features models pre-trained on prior tasks for
merged. In particular, we compute salient statistics extracted by leverage Singular Value Decom-
position (SVD) to capture the dominant properties of the learned feature spaces. This statistical
information, intrinsically capturing aspects of the pre-trained model distributions, guides the merging
process by learning a compact Multilayer Perceptron (MLP), coined StatsMergeLearner that predicts
adaptive merging coefficients () shown in Fig. [I| This allows the merging to be guided by the
weight landscape, rather than treating coefficients as free parameters requiring external tuning data.

a) Task Vectors b) Task Arithmetic c) AdaMerging d) StatsMerging (Ours)
5]
ML OmTL OmTL
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[ o [ [
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Tk =6k - 6pre OMTL = Bpre + MTa+Tg)  OMTL = Bpre + (AATA+ ARTR) OMTL = Opre + (AATA+ ARTp)

Figure 1: Compared to prior works, StatsMerging uniquely learns the merging coefficients using
StatsMergeLearner, taking advantage of statistical features of weigts pre-trained on prior tasks.
Notably, while both AdaMerging and StatsMerging are presented in the task-wise level in ¢) and d)
for simplicity of illustration, the same principle can be applied at the layer-wise level for fine-grained
adaptation.

We make four significant contributions summarized as follows:

* We propose StatsMergingﬂ a novel model merging framework guided by model weight
statistics, leveraging singular values extracted via Singular Value Decomposition (SVD) to
predict merging coefficients \.

'Our code is available at |ttps:/github.com/statsmerging/statsmerging.


https://github.com/statsmerging/statsmerging
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* We design the lightweight StatsMergeLearner to learn model merging coefficients \ estima-
tion based on weight statistical features, through a newly proposed Task-Specific Teacher
Distillation training paradigm without manually-annotated labels.

* We introduce the first heterogeneous architectural merging method, which distills knowledge
from models with non-identical architectures into the unified target architecture.

» Extensive experiments demonstrate the effective of our proposed StatsMerging, achieving
84.5% average accuracy on merging models from eight tasks, outperform the state-of-the-art
AdaMerging (81.1%) by a substantial margin of 3.4%.

2 Related Work

2.1 Multi-Task Learning

Multi-Task Learning (MTL) (Zhang and Yang| 2021; [Vandenhende et al.l [2022a) represents a
paradigm for training a single model to perform multiple tasks concurrently. While MTL aims to
create unified models capable of handling diverse objectives, it typically requires careful design of
network architectures, computationally expensive training, access to large and diverse datasets, and
intricate task balancing strategies (Zhang and Yang| 2021). Furthermore, MTL necessitates joint
training from the outset, which can be computationally expensive and may not be feasible when
dealing with a collection of pre-trained, specialized models. Model merging offers a compelling
alternative by enabling the combination of independently trained models, without the need for
extensive retraining or simultaneous access to multi-task datasets. Our work distinguishes from MTL
by focusing on efficiently transferring existing knowledge within specialized models through weight
statistics-guided merging rather than joint training.

2.2 Multi-Task Merging

Early approaches to model merging often involved simple heuristics like Weight Averaging (Wortsman
et al., [2022), Ties-Merging (Yadav et al., 2023a)), and Arithmetic Merging (Ilharco et al., [2023]).
While straightforward to implement, these methods (Ye et al., 2023} |Akiba et al.| 2025} Tang et al.
2025) typically lack awareness of the weight distributions and learned representations within the
models, leading to suboptimal performance in the merged model compared to individually fine-tuned
models or unified models trained from scratch. For instance, Wortsman et al. (Wortsman et al.| [2022)
demonstrated that naive weight averaging could significantly degrade performance, highlighting the
challenges in consolidating knowledge from independently trained networks. More recent methods,
such as those explored in natural language processing (Yadav et al., [2023bj} |Ilharco et al., [2023)),
have shown promise by learning interpolation weights. However, these often treat the weights as
free parameters, potentially requiring significant tuning data and not explicitly leveraging the weight
distribution of the models being merged, a key distinction from our proposed approach. The gap often
lies in effectively unifying the diverse and task-specific feature representations learned by individual
models into a single, high-performing entity without extensive retraining.

2.3 Merging Methods in Computer Vision

The application of model merging techniques in computer vision is relatively less explored compared
to natural language processing (Yadav et al.,|2023b; [Ilharco et al.,[2023)). Computer vision models,
particularly deep convolutional neural networks (CNNs) (Krizhevsky et al.,[2012; He et al.,|2016;
Simonyan and Zisserman) 2014) and Vision Transformers (ViTs) (Dosovitskiy et al.,2021a}; [Touvron
et al.| |2021)), learn complex, hierarchical feature representations that are highly sensitive to task-
specific optimizations (Izmailov et al., 2018)). Simple averaging techniques often fail due to the
non-convex nature of the loss landscape and the divergence of learned feature spaces across different
visual tasks. Recent advancements (Matena and Raffel, |2022; [Yang et al.) have shown potential,
but often lack explicit mechanisms to account for the unique properties inherent in visual data and
architectures, such as spatial relationships in CNNs or attention mechanisms in ViTs. Furthermore,
the effectiveness of these methods across the broad spectrum of computer vision tasks, including
low-level restoration (Zhang et al.,|2017; |Saharia et al., 2022), mid-level detection (Ren et al., 2015}
Carion et al.,|2020b), and high-level classification (He et al.| 2016)), has not been comprehensively
validated. Our work addresses these limitations by introducing a novel merging framework that
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leverages internal model weight statistics to guide the merging process, making it more adaptable and
effective across diverse computer vision tasks and architectures.

Method No No Layer TT Heterogeneous
Manual Label ~ TT Samples Level  Adaptability Architecture

Traditional MTL | X X * X X
Task Arithmetic X

Ties-Merging v v X v X

Fisher Merging v v X X X

RegMean v v X X X

AdaMerging v X v v X

StatsMerging (Ours) | v v v v v

Table 1: Summary of system characteristics in recent works. *: Optional. TT: Test-Time.

In summary, our method StatsMerging enjoys several advantages compared to prior works: (1) no
human annotated labels are required to construct the training set; (2) no validation samples are needed
to compute the weight coefficients for merging; (3) it works in the Layer-Wise level; (4) it allows for
test-time adaptability; (5) it can extend to heterogeneous architectures.

3 Methodology

3.1 Preliminaries

Notations: A deep neural network is parameterized by a set of weights § = {61,065, ...,0.} that
learns the mapping from an input data x; € R? to a predicted value gj; € RP: fo(x;) — 7;. Of these,
¢ represents the I-th [ € {1,2, ..., L} layer weights where L is the number of layers of the model
fo, d denotes an input data z;’s dimension. For classification problems, y; is the class label and D is
the number of classes, while for regression problems, D is the dimension of the output vector y;.

The weights of a pre-trained model (e.g., ViT or ResNet) are denoted as 0. = {G;Te, Qgre7 ey 05,,6}.
The weights fine-tuned on a specific training data {x;, yl}ﬁ; for task k is recorded as 6, =

{61,62,...,05) where N{" is the number of training samples.

Problem Formulation: The problem of model merging is formulated as given K tasks’ training data,
find a way to combine weights {Gk}szl fine-tuned for K tasks previously to obtain a new weight 6,,,
without undergoing the retraining process, while the new model fy  is capable of performing well
on K tasks jointly.

m

It is assumed that all K fine-tuned weights and the merged weight share the same neural network
architecture. Therefore, the core question is how to linearly combine {0}, }£_, to obtain 0,,. In the

task level, the model merging problem is finding a set of coefficients A, € {A1, A2, ..., Ak} such that
the merged model weights 6,,, = Zszl A0y for model fp = perform well on all K tasks. In the layer
level, it becomes searching for a set of coefficients A}, € {A\1,A2,... AL AL A2 .. AL o Ak}

to obtain the merged model 6,, = Zle 21L=1 ALO! that maintain high performance on K tasks.

3.2 Weight Statistics-Guided Model Merging

In this section, we describe the main intuition and techniques of our proposed method: StatsMerging.
Our core idea is that given the distribution of pre-trained weights 6, we can learn a function
g(0r) — A to predict the merging coefficients \,,. We argue that weight distribution plays an
important role in model merging. However, directly using the raw weights 6}, as input is impractical
due to the high dimension of 6. We posit that such information can be represented by weight
statistics. These statistical features contain key information regarding the amount of weights 6y, for a
task k to be merged to the final model. We highlight the key differences with prior works in Fig. [1|d).

Weight Statistics: For a pre-trained weight 6, on task k, we compute the mean pp, and variance
0? = Var(6},) to represent its center and breadth, as well as its magnitude m = ||||. In addition,



162

163
164
165
166

167
168

170

171
172
173

174
175

176
177

178
179
180

181
182

183

184
185
186
187
188
189
190
191
192

we extract the singular values o from Singular Value Decomposition (SVD):
Wi = UxSi Vi, M

where Wy, represents the matrix of the model parameter ;. By default, we use rank 3 from X, to
form weight statistics. We hypothesize that singular values compress the key information regarding
weight distribution that can benefit the decision of assigning the amount of weights from 6}, for
merging. Combining all together, the weight statistics feature vector Sy, is formed as

Sy = stats(0y,) = [u,02,m, 0] &

where stats() extracts the statistical features from the weight 0, o, represents the singular value

vector given rank 7: o). = [0}, 0%, ..., 0]

Notably, the Equation [3[above is task-wise while we also introduce layer-wise formulation for layer {:
Sk = stats(6}) = [p, 0%, m,07]' 3)

where the layer-wise statistics features of pre-trained model from task & layer [ is computed.

StatsMergeLearner (SML): We adopt a multilayer perceptron (MLPs) to learn to predict the
merging coefficients A given weight statistics feature vector Sy, as input. In the task-wise mode, the
StatsMergeLearner is denoted as SM L(Sk):

A = SML(Sk) = g(stats(6)) 4)

where ) is a scalar representing the merging coefficient of Task £ model. In the layer-wise mode,
the StatsMergeLearner is denoted as M (Sy):

A= SML(SL) = g(stats(6)) Q)

where Ay, is a vector containing L layers’ coefficients and )\fC refers to the coefficient of layer [ in the
k pre-trained model. By default, we use a two-layer MLP to implement the StatsMergeLearner.

Optimization Objective. To train StatsMergeLearner, in the standard supervised training paradigm,
we freeze the weights for each task 6y and apply the cross-entropy loss function Loy on the
aggregated dataset:

Cm
LIk == yelog(i)) (6)
c=1

where . is the prediction from the merged model for class ¢, C,, is the total number of classes in the
aggregated dataset.

3.3 Task-Specific Teacher Distillation

We present a novel Task-Specific Teacher Distillation training paradigm to train the StatsMerge-
Learner (SML) for model merging as illustrated in Fig. [2]and detailed in Algorithm 1. Our key
intuition is that each pre-trained model 6y, is already good at its own task dataset {x;, y;}x € Dk,
therefore we regard it () as the Task-Specific Teacher T},. Subsequently, the predictions g; ;, from
the model trained on task k is decent enough as pseudo labels when it comes to its pre-trained
dataset sample {xz;,y;}r. We aggregate such pairs {x;, §; x }; to construct the merged dataset to
train SM L(). We highlight the key benefit of this approach that enables dataset preparation without
relying on human-annotated labels. The predicted class label in one-hot encoded format. Therefore,
the cross-entropy loss is applied:

Crm
Low ==Y Jenlog(de)) (7)

c=1
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Figure 2: Knowledge Distillation Diagram. StatsMergeLearner (SML) learns the merging coefficients
A by minimizing the loss between the merged model’s predictions and pseudo labels generated by
task-specific teacher models. During inference, only the merged model in StatsMerging is used to
predict class labels.

We present a novel Task-Specific Teacher Distillation
training paradigm to train the StatsMergeLearner
(SML) for model merging as illustrated in Fig. [2]and

Algorithm 1. Unified Statistics-Guided Model Merging via

Task-Specific Teacher Model Distillation

1: Input: Set of pre-trained models { My, Mo, . ..
with weights {01, 02, . .., 0} for K tasks.

, My}

detailed in Algorithm 1. Our key intuition is that each ~ 2: Output: Merged model Mipergeq With Weights Omergea
pre-trained model 0, is already good at its own task 22 // Prepare K pre-trair;‘ed models
. : . if Same architecture A for all M; then

dataset {l‘,, yz}k' € Dk’ therefore we regard 1t (ek) 5: Set Miarger to the shared architecture
as the Task-Specific Teacher T}. Subsequently, the 6: else
predictions ¢; ,, from the model trained on task & is 7. Select a target architecture Miager
decent enough as pseudo labels when it comes to its 8:  fori=1tkdo

re-trained dataset sample {z;,y; }.. We aggregate v i A(M;) # A(Musge) then
p ; N PI€ L3, Yisk- gereg 10: Distill M; into Mg o obtain updated 0;
such pairs {x;, §; x } 1 to construct the merged dataset  171: end if
to train SM L(). We highlight the key benefit of this 1% end for

: : . end if

approach that enables dataset preparation without 14: 1 Merge K models

relying on human-annotated labels. The predicted
class label in one-hot encoded format. Therefore, the
cross-entropy loss is applied while such loss function
simplicity helps extend to other vision tasks and
architectures.

4 Experiments
4.1 Experimental Setup

15: for k = 1 to K do

16: // mean p, std o2, norm m, singular value o,
17: Extract statistics S, = [u, 02, m, o] from 6},
18: Predict coefficients A\, = SML(S})

. : 1 k
19:  Merge layer weights: Omereed = 2oim1 MOk
20: end for

21: return Miyergeq With weights Oerged

In this section, we present the experimental setup and evaluation results used to compare our method

against recent baselines.

Datasets and Models : Our experiments include eight image classification tasks with datasets
SUN397 (Xiao et all 2016), Stanford Cars (Krause et al., 2013), RESISC45 (Cheng et al., 2017),
EuroSAT (Helber et al.,[2019), SVHN (Netzer et al., 2011), GTSRB (Stallkamp et al., [2011), MNIST
(LeCun et al.;[1998), DTD (Cimpoi et al.,[2014), and CIFAR10 (Krizhevsky and Hinton|,2009) | We
use ViT-B/32 CLIP (Radford et al.,2021)) as the pre-trained backbone. Individual task-specific models
are obtained by training on each dataset separately. For merging models with different architectures,
we first distill them into a single backbone before applying our merging method.

*In the remainder of the paper, the abbreviations shown in brackets are used to denote each task dataset:
SUN397 (SU), Cars (CA), RESISC45 (RE), EuroSAT (EU), SVHN (SV), GTSRB (GT), MNIST (MN) and
DTD (DT).
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Baselines and Metrics : We compare against standard baselines including Individual Training,
Traditional Multi-Task Learning (MTL) (Zhang and Yang| |2021)), Weight Averaging (Wortsman et al.|
2022)), Task Arithmetic (Ilharco et al., [2023)), Fisher Merging (Matena and Raffel, [2022), RegMean
(Jin et al., 2023)), Ties-Merging (Yadav et al., [2023a) and AdaMerging (Yang et al.). The primary
evaluation metric is the average accuracy (Avg Acc) on the test sets of all tasks. The evaluation is
conducted on eight different vision classification tasks.

StatsMergeLearner Training Detail : Our MLP-based StatsMergeLearner learns to predict layer-
wise or task-wise merging weights coefficients (\) based on weight statistics from individual task
models. The StatsMergeLearner is trained for 500 epochs using Adam, with a learning rate of 1le — 3
and a StepLR scheduler (factor 0.1 every 100 epochs), which translates to around only 3 hours to
merge 4 ViTs, offering the practicality and advantage of applying our technique for practitioners
without spending days or weeks for training (Zhang and Yang| 2021} [Padmanabhan et al.| [2023]).
We train the StatsMergeLearner primarily using knowledge distillation from the aggregated dataset
without human annotated labels described in Sec. [3.3] optimized with either Cross-Entropy (Mao
et al.| 2023) or KL Divergence (Kullback and Leibler, |1951) loss.

4.2 Merging Performance

In this section, we present a comprehensive evaluation of our approach in comparison to state-of-
the-art task vector merging methods, assessing its superiority across several fundamental aspects:
Multi-task merging performance, generalization to unseen tasks and heterogeneous architectures.

Substantially Higher Merging Performance. The main results of merging performance of ViT-
B/32 models on eight tasks are presented in this section, detailed E] in Table 2| We present two
levels of granularity: Task-Wise (TW) and Layer-Wise (LW). Our method StatsMerging achieved
an average accuracy (Avg Acc) of 76.5% and 84.5% in both TW and LW levels, outperforming the
state-of-the-art (SOTA) method AdaMerging++ by a large margin of 3.3% and 3.4%. We attribute the
improvements to the ability of StatsMergeLearner to adapt task-specific weights based on their weight
statistics to the merged model. The use of pseudo labels from task-specific teachers {17, 75, ..., T}
provides stronger signals for StatsMergeLearner to better assign weight coefficients A than the
entropy minimization approach in the AdaMerging++.

Table 2: Multi-task merging performance (Avg Acc %) when merging ViT-B/32 models on eight
tasks. Results of our method StatsMerging are shaded in gray. Bold and underscore indicate the
highest and second-highest scores within the merging group below the double rules in each column,
respectively. TW: Task-wise. LW: Layer-wise.

Method | SU CA RE EU SV GT MN DT | AvgAce
Pre-Trained 623 597 60.7 455 314 326 485 438 | 48.0
Individual 753 777 961 997 975 987 99.7 794 | 90.5

Traditional MTL 739 744 939 982 958 989 995 779 | 889

Weight Averaging 653 634 714 717 642 528 875 50.1 | 658

Task Arithmetic 552 549 667 789 802 697 973 504 | 69.1
Fisher Merging 68.6 692 707 664 729 51.1 879 599 | 683
RegMean 653 635 756 786 781 674 937 520 | 718
Ties-Merging 59.8 58.6 70.7 79.7 862 721 983 542 | 724

TW AdaMerging 580 532 688 857 8l1.1 844 924 448 | 71.1
TW AdaMerging++ | 60.8 569 73.1 834 873 824 957 50.1 | 73.7
TW StatsMerging 613 700 742 852 875 825 962 542 | 76.4(+3.3)

LW AdaMerging 645 681 792 93.8 870 919 975 59.1 | 80.1
LW AdaMerging++ | 66.6 683 822 942 89.6 89.0 983 60.6 | 81.1
LW StatsMerging | 674 74.1 829 91.1 898 947 983 775 | 84.5(+3.4)

The LW StatsMerging achieved significantly higher (4+8.1%) Avg Acc than TW StatsMerging with
84.5% and 76.4%, respectively. This improvement in layer-wise merging over task-wise aligns with
observations in AdaMerging. We hypothesize that compared to the coarser task-level granularity, the

3Please refer to the Appendix for experimental details, including the full list of tasks, datasets, and baselines.
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finer-grained layer-level offers greater flexibility of coefficients across various semantics regarding
task-agnostic and task-specific features, which are often learned in various levels of a neural network.

Significantly Enhanced Generalization. A merged model is expected to generalize to unseen tasks
by strategically transferring the knowledge from the combined set of old tasks. We benchmark such
generalization ability of StatsMerging against four strong baselines: Task Arithmetic, Ties-Merging,
AdaMerging, and AdaMerging++. We follow the same evaluation protocol in AdaMerging training
on two groups of tasks, each group consisting of six seen tasks, and testing on two unseen tasks.

Table 3: Generalization results (Avg Acc %) on two unseen tasks when merging Layer-Wise ViT-B/32
models on six tasks. StatsMerging: shaded in gray. Bold: top score. Underscore: 2nd-highest score.

\ Seen Tasks I Unseen Tasks
Method | SU CA RE DT SV GT | AvgAce || MN EU | AvgAcc
Task Arithmetic | 63.3 624 75.1 578 84.6 804 | 70.6 772 46.2 | 61.7
Ties-Merging 678 662 772 567 77.1 709 | 69.3 759 433 | 59.6
AdaMerging 652 659 885 61.1 922 915 | 774 84.0 56.1 | 70.0
AdaMerging++ | 682 67.6 863 63.6 92.6 89.8 | 78.0 839 535 | 68.7
StatsMerging 69.1 713 86.7 752 932 95.7 | 81.9(+3.9) 851 56.4 | 70.8 (+0.8)
Method | SU CA GT EU DT MN | AvgAce || RE SV | AvgAcc
Task Arithmetic | 64.0 640 752 877 57.0 957 | 739 523 449 | 51.1
Ties-Merging 68.0 67.1 677 784 56,5 928 | 718 58.7 49.2 | 539
AdaMerging 67.1 678 948 944 596 98.2 | 80.3 502 609 | 55.5
AdaMerging++ | 68.9 69.6 91.6 943 619 98.7 | 80.8 520 649 | 58.5
StatsMerging 69.6 733 96.1 954 74.1 97.2 | 84.3(+3.5) 542 67.1 | 60.7 (+2.2)

Details are presented in Table where in both groups our proposed StatsMerging achieved 70.8%s
and 60.7%, significantly outperforming the second best method AdaMerging by +0.8% and +2.2%
margins. Such improvements are attributed to both (1) the careful feature design of weight statistics
that captures the dominant information regarding weight distributions from pre-trained models,
which potentially helps reduce noise from each task dataset; and (2) the joint training from all old
tasks on the task-specific teacher-distilled labels, enabling the implicit learning of task-agnostic and
task-specific features that can benefit the generalization ability.

Extension to Heterogeneous Architectures. Our StatsMerging offers the first and unique advantage
without the assumption of architectural identity in prior works (Wortsman et al., 2022; [Ilharco et al.,
2023;|Yadav et al.,2023aj[Matena and Raffel, 2022; Jin et al.l2023). To verify the performance of
varying architectures, we conduct experiments on ResNet50 (RN) and ViT-B/32 (VT) to represent
Convolutional Neural Network (CNN) and Vision Transformer (ViT) architectures.

In particular, we distill fine-tuned VT teachers into a RN
(Khanuja et al.| 2021) student on three diverse tasks of Table 3. Multi-task merging performance (Avg Acc %)

B of models in heterogeneous architectures: ResNet50
CIEIA&? 1dQ (t(':l{)’t .Eurl()SAT (EU) and Stanford Cars (CA) (RN) & VIT-B/32 (VT). StatsMerging: shaded in gray.
with the distillation loss:

Method ‘ ClI CA EU ‘ Avg
N A
L = aECE(zjay) + (1 _a)Tz‘CKL(U(%)v 0(%))7 «
(8 Backbone ‘ RN VI VI ‘ -
. . . Distilled - RN RN
where Lk, denotes KL-Divergence, z is logit, T = 4.0 lb'u'e
represents temperature, o = 0.7 is the weight balance of Individual ‘ 018 717 99'7‘ L7
. . . Distilled - 764 945
two sub-losses. CI is used due to the available pre-trained
RN weights. Remarkably, the distilled RN matches its VT Weight Averaging | 77.1 564 64.9| 594
teacher’s accuracy, achieving 76.4% (VT: 77.7%) for CA Ties-Merging ‘ 765 528 80.1 ‘ 69.8
and 94.5% for EU (VT: 99.7%) despite the architectural Task Arithmetic 814 616 782] 737
difference shown in Table 3. We then apply our LW StatsMerging | 87.2 684 88.4| 813

StatsMerging to combine the Cl-trained RN and its
distilled variants. We merge multiple task models into a
single RN using the merging coefficients inferred by
StatsMergeLearner, yielding a 7.6% average improvement
over the vanilla Task-Arithmetic of 73.7% and achieving
81.3% average accuracy.
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4.3 StatsMerging Analysis

Label & Loss Function Study. Table 4. Multi-task performance (Avg Acc %) of StatsMerging when
1 Ha ol merging ViT-B/32 (4) models across four tasks. StatsMerging shade
We conduct a loss function study on ViT-B/32 ing ViT-B/32 (4) model four task haded
del d f Kk h . in gray. GT: Ground Truth. KD: Knowledge Distillation. TW:
(4) models merged from four tasks, as shown in Task-wise. LW: Layer-wise.
Table 4. Observe that StatsMerging trained on Loss Level | CA EU RE  GT | AvgAe
pseudo labels via Task-Specific Teacher

AR . I GT TW | 732 942 911 956 88.5
Distillation (KD) achieves similar performance KD TW ‘ 642 886 852 867 ‘ 812
to StatsMergmg trained on ground-truth labels or 1w 56 963 91 976 904
(GT), with 88.5% and 81.2% average accuracy KD LW | 687 916 872 935 835
in TW and 90.4% and 83.5% in LW levels.

Statistical Feature Ablation Study. Table 5: Multi-task performance (Avg Acc %) of StatsMerging when

We conduct an ablation study on the statistical ablating statistical features of ViT-B/32 (4) models on four tasks: CA, EU,
. RE & GT. Bold: top score. StatsMerging: shaded in gray.
features. Results in Table 5 show that
combining all statistical features improves
. . . . 2 2
merging performance, validating our design poy 0® m o' | AvgAee || poy o m o' | AvgAcc

Same Architecture I Different Architecture

choice. Notably, the singular values ¢’ v 83.4 v 76.2

improve the multi-task performance in both v Y 84107 || v v 715 (+1.3)
d different architect ttines b v 8723 || v v v 78.1 (+0.6)

same and ditferent architecture setings by VOV Y V92630 || v v v v | 813(32)

+3.0 and +-3.2 increase of average accuracy,
justifying our design choice of using SVD.

Coefficient Analysis. We visualize the heatmap of ViT-B/32 (4) across eight tasks in Fig. [3] We
make several key observations: (1) the common recurring pattern of coefficients A across all eight
tasks from earlier (left) to deeper (right) layers aligns with the repeated self-attention blocks in
the ViT architecture, e.g. Multi-Head Self-Attention (MHSA), MLP (Feed-Forward Network), and
LayerNorm, etc, demonstrating the need of various coefficients for various types of layers; (2) The
sparse non-uniform coefficient distributions (various colors like Layer 13, 19 or 25) suggests that
merging layers can be more efficient at some specific layers instead of using one coefficient for an
entire pre-trained model, justifying the our granularity choice of Layer-Wise over Task-Wise level;
(3) some task-specific coefficient distributions verify the necessity of assigning distinct merging
coefficients across tasks in various layers, such as in Layer 5 vs. 147. Such distributions reflect the
various visual representations for different semantics learned across both layers and tasks. More
visualizations are provided in the Appendix for in-depth analysis.

Cars | T I 0.125
RESISC45 1 | | 0.100
SUN397 1 I

EuroSAT 1 1 Y 1 1 1 11 1 I 1 I LA
SVHN 0.050
GTSRB | I 1 I . 1 1 0'025

"ol LI | | | '
DTD [ | [ | | 0.000

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144 150 156 "

Figure 3: Heatmap of StatsMerging merging coefficients A of ViT-B/32 (4) across eight tasks. X-axis:
layer index. Y-axis: Tasks. Coefficients are normalized to sum to 1.

5 Conclusion

Model merging offers a compelling post-hoc advantage to reduce memory storage from a corpus of
large pre-trained models. We propose StatsMerging, a novel merging technique without relying on
simple heuristics, test-time samples or human annotated. The key intuition lies in the guidance of
weight statistics using a lightweight MLP learner, dubbed StatsMergeLearner, to learn merging coeffi-
cient prediction. Exhaustive experiments demonstrate the effectiveness of our proposed StatsMerging
in model mering from eight diverse tasks, achieving 84.5% average accuracy and surpassing the
SOTA AdaMerging (81.1%) by a large margin of 3.4%.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract does reflect our contributions to large extent, we did thorough
analysis and added more appropriate results in appendix as well which supports our claims.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We did mention limitations in the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, we did provide experiments that support our proof and assumptions, more
experiments are added in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we provided our code and model in github, that gives proof to reproduce
results.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided access to code with proper readme.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provided details in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined, or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Our experiements are easy to follow, reproducable.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Our experiments can be done on any GPU that has memory up to 40 GB. We
used NVIDIA RTX A6000.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics. https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Yes, It does follow Neurips Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our method solely addresses the new emerging solution for merging multi-
models post training, so it doesn’t comes under societal impacts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This doesn’t comes under the category of safeguards or anything related to
scraped datasets.
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We are the sole owner of code and models, we mentioned credit wherever we
used opensource models, or data.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We did have detailed documentation of the models and code we tried.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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16.

Answer: [NA]

Justification: We didn’t require any crowdsourcing, we used opensource data and required
very less efforts for training.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work is independent work, not related to any organization.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We used it for language and clarifying the formulation.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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