

Towards Neural Kolmogorov Equations: Parallelizable SDE Learning with Neural PDEs

Arthur Bizzzi¹ and Olga Fink¹

¹EPFL

{arthur.coutinhobizzi, olga.fink}@epfl.ch

001 Abstract

002 The presence of stochasticity makes learning dif-
003 ferential equations from data substantially harder,
004 requiring Neural SDEs to be trained with costly
005 procedures involving repeated sequential integration.
006 We introduce Neural Kolmogorov Equations, a par-
007 allelizable framework for learning continuous stochas-
008 tic processes, based on the deterministic framework
009 of the Forward-Kolmogorov Equation.

010 1 Introduction

011 Stochastic differential equations (SDEs) are a promi-
012 nent framework in industry, finance, and generative
013 modelling. We consider the time-independent Itô
014 stochastic differential equation:

$$015 dX = F(X) dt + B(X) dW_t, \quad (1)$$

016 where $X_t \in \mathbb{R}^d$, $F : \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R}^d$ is the drift,
017 $B : \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R}^{d \times m}$ is the diffusion coefficient, and
018 $W_t \in \mathbb{R}^m$ is an m -dimensional Wiener process.

019 A major challenge is learning F and B from sam-
020 ples. Current state-of-the-art Neural Stochastic Dif-
021 ferential Equations (Neural SDEs) require costly
022 autoregressive training [1, 2], which cannot be easily
023 parallelized, and suffer from low accuracy, due to
024 the limited order of stochastic integrators.

025 Famously, the probability distribution of the real-
026 izations of X obeys the *Fokker-Planck* or *Forward-*
027 *Kolmogorov* Equation (FKE):

$$028 \partial_t p(t, x) = L^* p = -\nabla_x \cdot (F(x)p) + \frac{1}{2} \sum_{i,j=1}^d \partial_{x_i} \partial_{x_j} (G_{ij}(x, t) p), \quad (2)$$

029 where $G = BB^\top$. However, learning the FKE's
030 coefficients is challenging for traditional methods,
031 especially in high dimensions.

032 We present first the steps towards Neural Kol-
033 mogorov Equations (NKEs), a framework for learn-
034 ing and simulating SDEs based on the Fokker-
035 Planck-Kolmogorov Equations. With this deter-
036 ministic approach, we expect to achieve faster learning
037 from data, via parallelizable forward-backward mix-
038 ture propagation, and faster inference, by leveraging
039 high-order deterministic numerical methods.

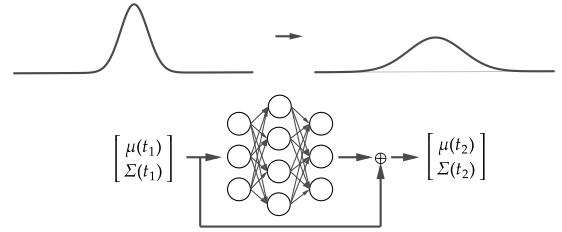


Figure 1. Propagating probabilities with NKEs.

2 Neural Kolmogorov Eqs.

2.1 Architecture

Our aim is to model the FKE as a Neural Partial Differential Equation, by learning the action of its generator L^* on a basis for the ambient Hilbert space carrying our probabilities. Inspired by classical methods in filtering [3] and Lagrangian particles [4], we choose the family of Gaussian Mixtures (GMs) as our basis:

$$p(t, x) = \sum_{k=1}^K \pi_k N(x | \mu_k(t), \Sigma_k(t)), \quad (3)$$

where the weights satisfy $\pi_k \geq 0$ and $\sum_{k=1}^K \pi_k = 1$, and each component is parametrized by a mean vector $\mu_k \in \mathbb{R}^d$ and covariance matrix $\Sigma_k \in \mathbb{R}^{d \times d}$.

The action of the generator L^* on GMs is well understood: For a short time and a concentrated Gaussian, the drift F carries its center μ ; the Jacobian DF determines its stretching and rotation; the noise G determines its spreading. Formally:

$$\dot{\mu}_k \approx F(\mu_k) \quad (4a)$$

$$\dot{\Sigma}_k \approx DF\Sigma_k + \Sigma_k DF^\top + G(\mu_k) \quad (4b)$$

We can then represent these dynamics in terms of a Neural ODE, modelling both F and G as θ -parametrized, differentiable neural networks:

$$\dot{\mu}_k \approx F_\theta(\mu_k) \quad (5a)$$

$$\dot{\Sigma}_k \approx DF_\theta\Sigma_k + \Sigma_k DF_\theta^\top + G_\theta(\mu_k) \quad (5b)$$

This is the insight behind NKEs: we may now train our networks whenever there are estimates for $\dot{\mu}$ and $\dot{\Sigma}$; moreover, we now have a neural representation for $p(t, x)$ via (3) (see Fig. 1).

071 2.2 Forward-Backward Training

072 We now extract drift and diffusion terms from
073 realizations of an SDE. Take a family of snapshots
074 of realizations; we describe each snapshot in terms
075 of a GM and evaluate the changes in mean and
076 covariance across time steps (see Fig. 2).

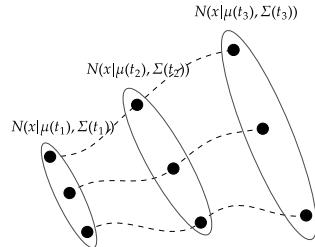


Figure 2. Fitting Mixtures to snapshots of a stochastic process. Our objective is to derive F and G from the time-derivative of μ and Σ .

077 One could then approximate F and G from two
078 snapshots, using forward-difference approximations
079 to eqs. (4a) and (4b). However, this approach is
080 ill-posed for stochastic systems. To see this, consider
081 the two snapshots in Fig. 1: Looking at the distri-
082 butions alone, it is unclear if the widening of the
083 Gaussian happened because of positive divergence
084 of the vector field or due to the spreading effect of
085 the noise term. Mathematically, this manifests as
086 the problem being underdetermined; in 1-D, both F
087 and G must be determined from a single equation.

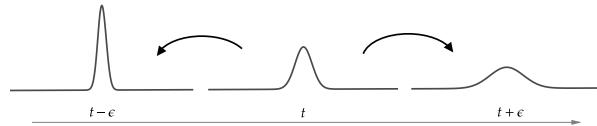


Figure 3. Both drift and diffusion may cause spreading.

087 To solve this problem, we can leverage the fun-
088 damental difference between drift and diffusion pro-
089 cesses: time-reversibility. Vector flows are invertible
090 and do not distinguish between past and future; dif-
091 fusion, however, is entropy-increasing and thus
092 fundamentally irreversible. Inspired by this, we can
093 use *three* snapshots: for each time step and each
094 mixture component, we train F_θ and G_θ so that they
095 minimize both the forward and backward differ-
096 ences between the Gaussians:

$$\min_{\theta} \sum_n \sum_k \|\mu_k(t_{n+1}) - \mu_k(t_n) - \Delta t F_\theta(\mu_k(t_n))\|_2^2 + \|\mu_k(t_n) - \mu_k(t_{n-1}) - \Delta t F_\theta(\mu_k(t_n))\|_2^2 \quad (6)$$

098 A similar term may be derived for the covariances
099 Σ_k ; training with the Jacobian is enabled by forward-
100 differentiation schemes. In practice, we observe that
101 this simple change significantly improves accuracy.

3 Experiment: Black-Scholes

103

104 We perform a preliminary experiment, comparing
105 NKEs to the (classical) SDE discovery framework
106 proposed in [5]. The stochastic system used as a
107 metric is a minimal version of the celebrated Black-
108 Scholes Equation, widely used in finance. For the
109 experiment, we sample 10 trajectories at 10 equally
110 spaced time points for the SDE:

$$dX = (f_0 + f_1 X)dt + (b_0 + b_1 X)dW_t, \quad (7) \quad 111$$

where $f_0 = b_0 = 0$, $f_1 = 2.5$ and $b_1 = 0.4$.

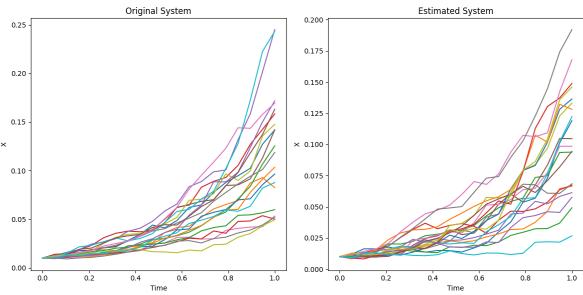


Figure 4. Original and estimated Black Scholes system.

112 For fairness, we parametrize all models as affine;
113 we can then evaluate the accuracy of each method
114 by analysing the coefficients obtained. The results
115 may be found in Table 1, where NKE-fwd stands
116 for an NKE trained using only forward differences.
117 Samples may be visualized in Fig. 4. 118

Table 1. Parameter error for each method

Method	f_0	f_1	b_0	b_1
[5]	0.00	0.08	0.00	0.04
NKE-fwd	0.01	0.33	0.01	0.23
NKE	0.02	0.06	0.03	0.04

119 These results are based on early heuristics for the
120 training and Gaussian placement; nevertheless, they
121 remain on par with those reported in [5]. Mean-
122 while, our approach may be used for nonlinear, non-
123 parametric terms F and G . We expect improve-
124 ments to the model to further increase accuracy. 125

4 Conclusion and Future Work

125

126 These first results indicate our methodology has the
127 potential to identify SDEs from data in a parallelizable
128 manner. Moreover, these results, along with
129 theoretical considerations, indicate that the forward-
130 backward scheme may indeed improve the accuracy
131 of the learning process.

132 Future iterations of this work will evaluate the per-
133 formance of NKEs on a broader set of benchmarks,
134 including high-dimensional and nonlinear systems,
135 as well as systems undergoing shocks and jumps.

136

References

137 [1] P. Kidger, J. Foster, X. Li, and T. Lyons. “Effi-
138 cient and Accurate Gradients for Neural SDEs”.
139 In: *Advances in Neural Information Processing
140 Systems (NeurIPS)*. arXiv:2101.08692. 2021.

141 [2] J. Zhang, J. Viktorov, D. Jung, and E. Pitler.
142 “Efficient Training of Neural Stochastic Differ-
143 ential Equations by Matching Finite Dimen-
144 sional Distributions”. In: *arXiv preprint* (2024).
145 arXiv:2410.03973.

146 [3] M. Brossard, A. Barrau, and S. Bonnabel. “Ex-
147 ploiting Symmetries to Design EKFs with Con-
148 sistency Properties for Navigation and SLAM”.
149 In: *arXiv preprint* (2019). arXiv:1903.05384.

150 [4] A. Crestetto, N. Crouseilles, and D. Prel. “De-
151 terministic particle method for Fokker–Planck
152 equation with strong oscillations”. In: *The
153 SMAI Journal of Computational Mathematics*
154 10 (2024), pp. 141–173. doi: [10.5802/smai-jcm.109](https://doi.org/10.5802/smai-jcm.109).

155 [5] L. Iannaccone and P. Gardoni. “Modeling dete-
156 rioration and predicting remaining useful life
157 using stochastic differential equations”. In: *Reli-
158 ability Engineering & System Safety* 251 (2024),
159 p. 110251.

160