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Abstract

The presence of stochasticity makes learning dif-
ferential equations from data substantially harder,
requiring Neural SDEs to be trained with costly
procedures involving repeated sequential integration.
We introduce Neural Kolmogorov Equations, a paral-
lelizable framework for learning continuous stochas-
tic processes, based on the deterministic framework
of the Forward-Kolmogorov Equation.

1 Introduction

Stochastic differential equations (SDEs) are a promi-
nent framework in industry, finance, and generative
modelling. We consider the time-independent 1to
stochastic differential equation:

dX = F(X)dt + B(X)dW,, (1)

where X; € R? F : R x R — R¢ is the drift,
B :R?% x R — R¥*™ is the diffusion coefficient, and
W € R™ is an m-dimensional Wiener process.

A major challenge is learning F' and B from sam-
ples. Current state-of-the-art Neural Stochastic Dif-
ferential Equations (Neural SDEs) require costly
autoregressive training [1, 2], which cannot be easily
parallelized, and suffer from low accuracy, due to
the limited order of stochastic integrators.

Famously, the probability distribution of the real-
izations of X obeys the Fokker-Planck or Forward-
Kolmogorov Equation (FKE):

— V- (F(z)p)
) d (2)
+ 3 02,00,(Gij(x,t) p),

i,7=1

Op(t,z) = L'p =

where G = BBT. However, learning the FKE’s
coefficients is challenging for traditional methods,
especially in high dimensions.

We present first the steps towards Neural Kol-
mogorov Equations (NKEs), a framework for learn-
ing and simulating SDEs based on the Fokker-
Planck-Kolmogorov Equations. With this determin-
istic approach, we expect to achieve faster learning
from data, via parallelizable forward-backward mix-
ture propagation, and faster inference, by leveraging
high-order deterministic numerical methods.
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Towards Neural Kolmogorov Equations:
Parallelizable SDE Learning with Neural PDEs

Figure 1. Propagating probabilities with NKEs.

2 Neural Kolmogorov Egs.

2.1 Architecture

Our aim is to model the FKE as a Neural Partial
Differential Equation, by learning the action of its
generator L* on a basis for the ambient Hilbert
space carrying our probabilities. Inspired by classical
methods in filtering [3] and Lagrangian particles [4],
we choose the family of Gaussian Mixtures (GMs)
as our basis:

K
plt.x) = Y mN(x|m(t), Zx(t),  (3)
k=1

where the weights satisfy 7, > 0 and Zle e =1,
and each component is parametrized by a mean
vector py € R? and covariance matrix ¥, € R%*,
The action of the generator L* on GMs is well
understood: For a short time and a concentrated
Gaussian, the drift F' carries its center u; the Jaco-
bian DF determines its stretching and rotation; the

noise G determines its spreading. Formally:
fue =~ F(uy) (4a)
S ~ DFS, 4+ S, DF" +G(ur)  (4b)

We can then represent these dynamics in terms
of a Neural ODE, modelling both F and G as 6-

parametrized, differentiable neural networks:
fre = Fo(pe) (5a)
Sp ~ DFgYy, 4+ S DF) + Go(ux) (D)

This is the insight behind NKEs: we may now train
our networks whenever there are estimates for /1 and
; moreover, we now have a neural representation
for p(t,x) via (3) (see Fig. 1).
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2.2 Forward-Backward Training

We now extract drift and diffusion terms from re-
alizations of an SDE. Take a family of snapshots
of realizations; we describe each snapshot in terms
of a GM and evaluate the changes in mean and
covariance across time steps (see Fig. 2).

N(xlu(ts), Z(ts))

NGla(t), 5627

Figure 2. Fitting Mixtures to snapshots of a stochastic
process. Our objective is to derive F' and G from the
time-derivative of p and .

One could then approximate F' and G from two
snapshots, using forward-difference approximations
to egs. (4a) and (4b). However, this approach is
ill-posed for stochastic systems. To see this, consider
the two snapshots in Fig. 1: Looking at the distri-
butions alone, it is unclear if the widening of the
Gaussian happened because of positive divergence
of the vector field or due to the spreading effect of
the noise term. Mathematically, this manifests as
the problem being underdetermined; in 1-D, both F’
and G must be determined from a single equation.

4/\/—\

Figure 3. Both drift and diffusion may cause spreading.
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To solve this problem, we can leverage the fun-
damental difference between drift and diffusion pro-
cesses: time-reversibility. Vector flows are invertible
and do not distinguish between past and future;
diffusion, however, is entropy-increasing and thus
fundamentally irreversible. Inspired by this, we can
use three snapshots: for each time step and each
mixture component, we train Fy and Gy so that they
minimize both the forward and backward differences
between the Gaussians:

HIOIHZZ ||/ffk(tn+1) - lffk(tn) - AtF@(Mk(tn))H%
n k

+||Mk(tn) - N’k(tn—l) - AtFG(,uk(tn))”%
(6)
A similar term may be derived for the covariances
3k; training with the Jacobian is enabled by forward-
differentiation schemes. In practice, we observe that
this simple change significantly improves accuracy.
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3 Experiment: Black-Scholes

We perform a preliminary experiment, comparing
NKEs to the (classical) SDE discovery framework
proposed in [5]. The stochastic system used as a
metric is a minimal version of the celebrated Black-
Scholes Equation, widely used in finance. For the
experiment, we sample 10 trajectories at 10 equally
spaced time points for the SDE:

dX = (fo+ fiX)dt + (bo + b1 X)dW,,  (7)

where f0 =00 =0, f; = 2.5 and b; = 0.4.

Original System Estimated System
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Figure 4. Original and estimated Black Scholes system.

For fairness, we parametrize all models as affine;
we can then evaluate the accuracy of each method
by analysing the coefficients obtained. The results
may be found in Table 1, where NKE-fwd stands
for an NKE trained using only forward differences.
Samples may be visualized in Fig. 4.

Table 1. Parameter error for each method

Method £ f1 bo by
[5] 0.00 0.08 0.00 0.04
NKE-fwd 0.01 0.33 0.01 0.23

NKE 0.02 0.06 0.03 0.04

These results are based on early heuristics for the
training and Gaussian placement; nevertheless, they
remain on par with those reported in [5]. Mean-
while, our approach may be used for nonlinear, non-
parametric terms F' and G. We expect improve-
ments to the model to further increase accuracy.

4 Conclusion and Future Work

These first results indicate our methodology has the
potential to identify SDEs from data in a paralleliz-
able manner. Moreover, these results, along with
theoretical considerations, indicate that the forward-
backward scheme may indeed improve the accuracy
of the learning process.

Future iterations of this work will evaluate the per-
formance of NKEs on a broader set of benchmarks,
including high-dimensional and nonlinear systems,
as well as systems undergoing shocks and jumps.
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