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Abstract001

The presence of stochasticity makes learning dif-002

ferential equations from data substantially harder,003

requiring Neural SDEs to be trained with costly004

procedures involving repeated sequential integration.005

We introduce Neural Kolmogorov Equations, a paral-006

lelizable framework for learning continuous stochas-007

tic processes, based on the deterministic framework008

of the Forward-Kolmogorov Equation.009

1 Introduction010

Stochastic differential equations (SDEs) are a promi-011

nent framework in industry, finance, and generative012

modelling. We consider the time-independent Itô013

stochastic differential equation:014

dX = F (X) dt+B(X) dWt, (1)015

where Xt ∈ Rd, F : Rd × R → Rd is the drift,016

B : Rd × R → Rd×m is the diffusion coefficient, and017

Wt ∈ Rm is an m-dimensional Wiener process.018

A major challenge is learning F and B from sam-019

ples. Current state-of-the-art Neural Stochastic Dif-020

ferential Equations (Neural SDEs) require costly021

autoregressive training [1, 2], which cannot be easily022

parallelized, and suffer from low accuracy, due to023

the limited order of stochastic integrators.024

Famously, the probability distribution of the real-025

izations of X obeys the Fokker-Planck or Forward-026

Kolmogorov Equation (FKE):027

∂tp(t, x) = L∗p =−∇x ·
(
F (x)p

)
+ 1

2

d∑
i,j=1

∂xi∂xj

(
Gij(x, t) p

)
,
(2)028

where G = BB⊤. However, learning the FKE’s029

coefficients is challenging for traditional methods,030

especially in high dimensions.031

We present first the steps towards Neural Kol-032

mogorov Equations (NKEs), a framework for learn-033

ing and simulating SDEs based on the Fokker-034

Planck-Kolmogorov Equations. With this determin-035

istic approach, we expect to achieve faster learning036

from data, via parallelizable forward-backward mix-037

ture propagation, and faster inference, by leveraging038

high-order deterministic numerical methods.039

Figure 1. Propagating probabilities with NKEs.

2 Neural Kolmogorov Eqs. 040

2.1 Architecture 041

Our aim is to model the FKE as a Neural Partial 042

Differential Equation, by learning the action of its 043

generator L∗ on a basis for the ambient Hilbert 044

space carrying our probabilities. Inspired by classical 045

methods in filtering [3] and Lagrangian particles [4], 046

we choose the family of Gaussian Mixtures (GMs) 047

as our basis: 048

p(t, x) =

K∑
k=1

πk N(x | µk(t),Σk(t)), (3) 049

where the weights satisfy πk ≥ 0 and
∑K

k=1 πk = 1, 050

and each component is parametrized by a mean 051

vector µk ∈ Rd and covariance matrix Σk ∈ Rd×d. 052

The action of the generator L∗ on GMs is well 053

understood: For a short time and a concentrated 054

Gaussian, the drift F carries its center µ; the Jaco- 055

bian DF determines its stretching and rotation; the 056

noise G determines its spreading. Formally: 057

µ̇k ≈ F (µk) (4a) 058

059

Σ̇k ≈ DFΣk +ΣkDF⊤ +G(µk) (4b) 060

We can then represent these dynamics in terms 061

of a Neural ODE, modelling both F and G as θ- 062

parametrized, differentiable neural networks: 063

µ̇k ≈ Fθ(µk) (5a) 064

065

Σ̇k ≈ DFθΣk +ΣkDF⊤
θ +Gθ(µk) (5b) 066

This is the insight behind NKEs: we may now train 067

our networks whenever there are estimates for µ̇ and 068

Σ̇; moreover, we now have a neural representation 069

for p(t, x) via (3) (see Fig. 1). 070
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2.2 Forward-Backward Training071

We now extract drift and diffusion terms from re-072

alizations of an SDE. Take a family of snapshots073

of realizations; we describe each snapshot in terms074

of a GM and evaluate the changes in mean and075

covariance across time steps (see Fig. 2).076

Figure 2. Fitting Mixtures to snapshots of a stochastic
process. Our objective is to derive F and G from the
time-derivative of µ and Σ.

One could then approximate F and G from two077

snapshots, using forward-difference approximations078

to eqs. (4a) and (4b). However, this approach is079

ill-posed for stochastic systems. To see this, consider080

the two snapshots in Fig. 1: Looking at the distri-081

butions alone, it is unclear if the widening of the082

Gaussian happened because of positive divergence083

of the vector field or due to the spreading effect of084

the noise term. Mathematically, this manifests as085

the problem being underdetermined; in 1-D, both F086

and G must be determined from a single equation.

Figure 3. Both drift and diffusion may cause spreading.

087
To solve this problem, we can leverage the fun-088

damental difference between drift and diffusion pro-089

cesses: time-reversibility. Vector flows are invertible090

and do not distinguish between past and future;091

diffusion, however, is entropy-increasing and thus092

fundamentally irreversible. Inspired by this, we can093

use three snapshots: for each time step and each094

mixture component, we train Fθ and Gθ so that they095

minimize both the forward and backward differences096

between the Gaussians:097

min
θ

∑
n

∑
k

||µk(tn+1)− µk(tn)−∆tFθ(µk(tn))||22

+||µk(tn)− µk(tn−1)−∆tFθ(µk(tn))||22
(6)098

A similar term may be derived for the covariances099

Σk; training with the Jacobian is enabled by forward-100

differentiation schemes. In practice, we observe that101

this simple change significantly improves accuracy.102

3 Experiment: Black-Scholes 103

We perform a preliminary experiment, comparing 104

NKEs to the (classical) SDE discovery framework 105

proposed in [5]. The stochastic system used as a 106

metric is a minimal version of the celebrated Black- 107

Scholes Equation, widely used in finance. For the 108

experiment, we sample 10 trajectories at 10 equally 109

spaced time points for the SDE: 110

dX = (f0 + f1X)dt+ (b0 + b1X)dWt, (7) 111

where f0 = b0 = 0, f1 = 2.5 and b1 = 0.4.

Figure 4. Original and estimated Black Scholes system.

112For fairness, we parametrize all models as affine; 113

we can then evaluate the accuracy of each method 114

by analysing the coefficients obtained. The results 115

may be found in Table 1, where NKE-fwd stands 116

for an NKE trained using only forward differences. 117

Samples may be visualized in Fig. 4. 118

Table 1. Parameter error for each method

Method f0 f1 b0 b1

[5] 0.00 0.08 0.00 0.04
NKE-fwd 0.01 0.33 0.01 0.23
NKE 0.02 0.06 0.03 0.04

These results are based on early heuristics for the 119

training and Gaussian placement; nevertheless, they 120

remain on par with those reported in [5]. Mean- 121

while, our approach may be used for nonlinear, non- 122

parametric terms F and G. We expect improve- 123

ments to the model to further increase accuracy. 124

4 Conclusion and Future Work 125

These first results indicate our methodology has the 126

potential to identify SDEs from data in a paralleliz- 127

able manner. Moreover, these results, along with 128

theoretical considerations, indicate that the forward- 129

backward scheme may indeed improve the accuracy 130

of the learning process. 131

Future iterations of this work will evaluate the per- 132

formance of NKEs on a broader set of benchmarks, 133

including high-dimensional and nonlinear systems, 134

as well as systems undergoing shocks and jumps. 135
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