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Abstract

Value function based reinforcement learning (RL) algorithms, for example, Q-1

learning, learn optimal policies from datasets of actions, rewards, and state transi-2

tions. However, when the underlying state transition dynamics are stochastic and3

evolve on a high-dimensional space, generating independent and identically dis-4

tributed (IID) data samples for creating these datasets poses a significant challenge5

due to the intractability of the associated normalizing integral. In these scenarios,6

Hamiltonian Monte Carlo (HMC) sampling offers a computationally tractable way7

to generate data for training RL algorithms. In this paper, we introduce a frame-8

work, called Hamiltonian Q-Learning, that demonstrates, both theoretically and9

empirically, that Q values can be learned from a dataset generated by HMC samples10

of actions, rewards, and state transitions. Furthermore, to exploit the underlying11

low-rank structure of the Q function, Hamiltonian Q-Learning uses a matrix com-12

pletion algorithm for reconstructing the updated Q function from Q value updates13

over a much smaller subset of state-action pairs. Thus, by providing an efficient14

way to apply Q-learning in stochastic, high-dimensional settings, the proposed15

approach broadens the scope of RL algorithms for real-world applications.16

1 Introduction17

In recent years, reinforcement learning has shown remarkable success with sequential decision-18

making tasks wherein an agent, after observing the current state of the environment, chooses an19

action to receive a reward, and subsequently, the environment transitions to a new state [1, 2]. RL has20

been applied to a variety of problems, such as automatic control [3], robotics [4], resource allocation21

[5], and chemical process optimization [6]. However, existing model-free RL approaches typically22

perform well only when the environment has been explored long enough, and the algorithm has used23

a large number of samples in the process [7, 8]. Q-learning is a model-free RL approach where an24

agent chooses its actions based on a policy defined by the state-action value function, i.e., the Q25

function [9, 10]. The performance of Q-learning algorithms depends strongly on the ability to access26

data samples, which can provide accurate estimates of the expected Q values.27

As these algorithms compute the expected Q values by calculating the sample mean of Q values28

over a set of IID samples, they assume access to a simulator that can generate IID samples according29

to the state transition probability. However, when the state transition probability distribution is30

high-dimensional, generating IID samples poses a significant challenge due to - (i) lack of closed-31

form solutions, and (ii) insufficiency of deterministic approximations, of the normalizing integral,32

preventing the utilization of existing RL methods. This motivated us to ask - How can we develop33

value function based RL methods when generating IID samples is impractical?34

A crucial step in developing such methods is identifying means to draw samples from an unnormalized35

distribution. Importance sampling methods offer techniques to draw samples from a distribution36
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without computing the corresponding normalizing integral. Hamilton Monte Carlo (HMC) sampling is37

one such method; it allows one to generate samples from the unnormalized state transition distribution38

[11]. Equipped with HMC, we attempt to answer the following question: How can we combine HMC39

sampling with Q-Learning to learn optimal policies for high-dimensional problems?40

In this work, we introduce Hamiltonian Q-Learning to answer this question. We show that Hamil-41

tonian Q-Learning can infer optimal policies even when it calculates the expected Q values using42

HMC samples instead of IID samples. Now, even though HMC samples overcome the challenges43

associated with drawing IID samples in high-dimensions, a large number of samples is still needed to44

learn the Q function because high-dimensional spaces often lead to a large number of state-action45

pairs. We address this issue by leveraging matrix completion techniques. It has been observed that46

formulating planning and control tasks in a variety of problems, such as video games (e.g., Atari47

games) and classical control problems (e.g., simple pendulum, cart pole) as Q-Learning problems48

leads to low-rank structures in the Q matrix associated with the problem [12, 13, 14]. Since these49

systems naturally consist of a large number of states, exploiting the low-rank structure in the Q matrix50

in an informed way can enable further reduction in the computational complexity. Hamiltonian51

Q-Learning uses matrix completion to reconstruct the Q matrix from a small subset of expected Q52

values making it data-efficient.53

The three main contributions of this work are threefold. First, we introduce a modified Q-learning54

framework, called Hamiltonian Q-learning, which uses HMC sampling for efficient computation of55

the Q values. This innovation, by proposing to sample Q values from the region with the dominant56

contribution to the expectation of discounted reward, provides a data-efficient approach for using57

Q-learning in real-world problems with high-dimensional state space and probabilistic state transition.58

Integration of this sampling approach with matrix-completion enables us to update Q values for59

only a small subset of state-action pairs and reconstruct the complete Q matrix. Second, we provide60

theoretical guarantees that the error between the optimal Q function and the Q function computed61

by updating Q values using HMC sampling can be made arbitrarily small. This result holds even62

when only a small fraction of the Q values are updated using HMC samples and the rest are estimated63

using matrix completion. We also provide theoretical guarantee that the sampling complexity of64

our algorithm matches the mini-max sampling complexity proposed by [15]. Finally, we apply65

Hamiltonian Q-learning to a high-dimensional problem (in particular, the problem of stabilizing66

a double pendulum on a cart) as well as to benchmark control tasks (inverted pendulum, double67

integrator, cartpole, and acrobot). Our results show that the proposed approach becomes more68

effective with increase in state space dimension.69

Related Work: The last decade has witnessed a growing interest in improving sample efficiency70

in RL methods by exploiting emergent global structures from underlying system dynamics. [7,71

16, 17, 18] have proposed model-based RL methods that improve sample efficiency by explicitly72

incorporating prior knowledge about state transition dynamics of the underlying system. [19, 20, 21]73

propose Baysean methods to approximate the Q function. [12, 13] consider a model-free RL approach74

that exploit structures of state-action value function. The work by [12] decomposes the Q matrix into75

a low-rank and sparse matrix model and uses matrix completion methods [22, 23, 24] to improve76

sample efficiency. A more recent work [13] has shown that incorporating low rank matrix completion77

methods to recover Q matrix from a small subset of Q values can improve learning of optimal policies.78

At each time step the agent chooses a subset of state-action pairs and update the corresponding Q79

value using the Bellman optimally equation that considers a discounted average between reward80

and expectation of the Q values of next states. [14] extends this work by proposing a novel matrix81

estimation method and providing theoretical guarantees for the convergence to a ✏-optimal Q function.82

On the other hand, entropy regularization techniques penalize excessive randomness in the conditional83

distribution of actions for a given state and provide an alternative means to implicitly exploit the84

underlying low-dimensional structure of the value function [25, 26, 27]. [28] has proposed an85

approach that samples a whole episode and then updates values in a recursive, backward manner.86

2 Preliminary Concepts87

In this section, we provide a brief background on Q-Learning, HMC sampling and matrix completion,88

as well as introduce the mathematical notations. In this paper, |Z| denotes the cardinality of a set Z.89

Moreover, R represent the real line and AT denotes the transpose of matrix A.90
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2.1 Q-Learning91

Markov Decision Process (MDP) is a mathematical formulation that captures salient features of92

sequential decision making [29]. In particular, a finite MDP is defined by the tuple (S,A,P, r, �),93

where S is the finite set of system states, A is the finite set of actions, P : S ⇥ A ⇥ S ! [0, 1] is94

the transition probability kernel, r : S ⇥A ! R is a bounded reward function, and � 2 [0, 1) is a95

discounting factor. Without loss of generality, states s 2 S and actions a 2 A can be assumed to be96

Ds-dimensional and Da-dimensional real vectors, respectively. Moreover, by letting si denote the ith97

element of a state vector, we define the range of state space in terms of the following intervals [d�
i
, d+

i
]98

such that si 2 [d�
i
, d+

i
] 8i 2 {1, . . . ,Ds}. At each time t 2 {1, . . . , T} over the decision making99

horizon, an agent observes the state of the environment st 2 S and takes an action at according100

to some policy ⇡ which maximizes the discounted cumulative reward. Once this action has been101

executed, the agent receives a reward r(st, at) from the environment and the state of the environment102

changes to st+1 according to the transition probability kernel P (·|st, at). The Q function, which103

represents the expected discounted reward for taking a specific action at the current time and following104

the policy thereafter, is defined as a mapping from the space of state-action pairs to the real line,105

i.e. Q : S ⇥A ! R. Then, by letting Qt represent the Q matrix at time t, i.e. the tabulation of Q106

function over all possible state-action pairs associated with the finite MDP, we can express the Q107

value iteration over time steps as108

Qt+1(st, at) =
X

s2S

P (s|st, at)
⇣
r(st, at) + �max

a

Qt(s, a)
⌘
. (1)

Under this update rule, the Q function converges to its optimal value Q⇤ [30]. To compute this sum109

(1) over possible next states, existing methods rely on either exhaustive sampling or a simulator110

generating IID samples. However they fail in high-dimensional spaces due to prohibitively high111

computational cost associated with calculating the normalizing integral of state transition distribution.112

2.2 Hamiltonian Monte Carlo113

Hamiltonian Monte Carlo is an efficient sampling approach for drawing samples from probability114

distributions known up to a constant, i.e., unnormalized distributions. It offers faster convergence than115

Markov Chain Monte Carlo (MCMC) sampling [11, 31, 32, 33]. To draw samples from a smooth116

target distribution P(s), which is defined on the Euclidean space and assumed to be known up to a117

constant, HMC extends the target distribution to a joint distribution over the target variable s (viewed118

as position within the HMC context) and an auxiliary variable v (viewed as momentum within the119

HMC context). We define the Hamiltonian of the system as H(s, v) = � logP(s, v) = � logP(s)�120

logP(v|s) = U(s)+K(v, s), where U(s) , � logP(s) and K(v, s) , � logP(v|s) = 1
2v

TM�1v121

represent the potential and kinetic energy, respectively, and M is a suitable choice of the mass matrix.122

HMC sampling method consists of the following three steps � (i) a new momentum variable v123

is drawn from a fixed probability distribution, typically a multivariate Gaussian; (ii) then a new124

proposal (s0, v0) is obtained by generating a trajectory that starts from (s, v) and obeys Hamiltonian125

dynamics, i.e. ṡ = @H

@v
, v̇ = �

@H

@s
; and (iii) finally this new proposal is accepted with probability126

min {1, exp (H(s, v)�H(s0,�v0))} following the Metropolis–Hastings acceptance/rejection rule.127

Thus HMC sampling offers a way to draw samples from unnormalized transition distributions often128

encountered in high-dimensional state spaces. However, since such problems often consist of a large129

number of state-action pairs, learning the Q function still requires a large number of samples. This130

leads to poor sample efficiency.131

2.3 Low-rank Structure in Q-learning and Matrix Completion132

When a matrix is low-rank or has a sparse structure, matrix completion methods can reconstruct it133

accurately from a small subset of entries. Prior work [34, 35, 12, 14] on value function approximation134

based approaches for RL has implicitly assumed that the state-action value functions are low-135

dimensional and used various basis functions to represent them, e.g. CMAC, radial basis function,136

etc. This can be attributed to the fact that the underlying state transition and reward function are often137

endowed with some structure. More recently, [13] provide empirical guarantees that the Q-matrices138

for benchmark Atari games and classical control tasks exhibit low-rank structure.139
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Therefore, using matrix completion techniques [36, 24] to recover Q 2 R|S|⇥|A| from few observed140

Q values constitutes a viable approach towards improving sample efficiency. As low-rank matrix141

structures can be recovered by constraining the nuclear norm (i.e., the sum of its singular values), the142

Q matrix can be reconstructed from its observed values (Q̂) by solving143

Q = argmin
eQ2R|S|⇥|A|

k eQk⇤

subject to J⌦( eQ) = J⌦(Q̂)

(2)

where k · k⇤ denotes the nuclear norm, ⌦ is the observed set of elements, and J⌦ is the observation144

operator, i.e. J⌦(x) = x if x 2 ⌦ and zero otherwise.145

3 Hamiltonian Q-Learning146

A large class of real world sequential decision making problems - for example, board/video games,147

control of a robot’s movement, and portfolio optimization - involves high-dimensional state spaces148

and often has large number of distinct states along each individual dimension. As using a Q-149

Learning based approach to train RL-agents for these problems typically requires tens to hundreds of150

millions of samples [1, 37], there is a strong need for sample efficient algorithms for Q-Learning. In151

addition, state transition in such systems is often probabilistic in nature; even when the underlying152

dynamics of the system is inherently deterministic; presence of external disturbances and parameter153

variations/uncertainties lead to probabilistic state transitions.154

Learning an optimal Q⇤ function through value iteration methods requires updating Q values of155

state-action pairs using a sum of the reward and a discounted expectation of Q values associated with156

next states. In this work, we assume the reward to be a deterministic function of state-action pairs.157

However, when the reward is stochastic, these results can be extended by replacing the reward with158

its expectation. Subsequently, we can express (1) as159

Qt+1(st, at) = r(st, at) + �E
⇣
max

a

Qt(s, a)
⌘
, (3)

where E denotes the expectation over the discrete probability measure P. When the underlying state160

space is high-dimensional and has large number of states, we encounter two key challenges while161

attempting to learn the Q function: (i) difficulty in estimating the expectation in (3) due to high162

computational cost of exhaustive sampling and impracticality of generating IID samples; and (ii)163

a sample complexity that increases quadratically with the number of states and linearly with the164

number of actions.165

To the best of our knowledge, Hamiltonian Q-Learning offers the first solution to this problem by166

combining HMC sampling and matrix completion that overcome the first and the second challenge,167

respectively.168

3.1 HMC sampling for learning Q function169

A number of importance-sampling methods [38, 31] have been developed for estimating the ex-170

pectation of a function by drawing samples from the region with the dominant contribution to the171

expectation. HMC is one such importance-sampling method that draws samples from the typical set,172

i.e., the region that maximizes probability mass, which provides the dominated contribution to the173

expectation. Since the decay in Q function is significantly smaller compared to the typical exponential174

or power law decays in transition probability function, HMC provides a better approximation for the175

expectation of the Q value of the next states [13, 14]. Then by letting Ht denote the set of HMC176

samples drawn at time step t, we update the Q values as:177

Qt+1(st, at) = r(st, at) +
�

|Ht|

X

s2Ht

max
a

Qt(s, a). (4)

HMC for a smooth truncated target distribution: Recall that region of states is a subset of a178

Euclidean space given as s 2 [d�1 , d
+
1 ]⇥ . . .⇥ [d�

Ds
, d+

Ds
] ⇢ RDs . Thus the main challenge to using179

HMC sampling is to define a smooth continuous target distribution P(s|st, at) which is defined on180
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RDs with a sharp decay at the boundary of the region of states [39, 40]. In this work, we generate the181

target distribution by first defining the transition probability kernel from the conditional probability182

distribution defined on RDs and then multiplying it with a smooth cut-off function.183

We first consider a probability distribution P(·|st, at) : RDs ! R such that the following holds184

P(s|st, at) /
Z

s+"

s�"

P(s|st, at)ds (5)

for some arbitrarily small " > 0. Then the target distribution can be defined as185

P(s|st, at) = P(s|st, at)
DsY

i=1


1

1 + exp(�(d+
i
� si))

·
1

1 + exp(�(si � d�
i
))

�
. (6)

Note that there exists a large  > 0 such that if s 2 [d�1 , d
+
1 ]⇥ . . .⇥ [d�

Ds
, d+

Ds
] then P(s|st, at) /186

P(s|st, at) and P(s|st, at) ⇡ 0 otherwise. Let µ(st, at),⌃(st, at) be the mean and covariance of the187

transition probability kernel. In this paper we consider transition probability kernels of the form188

P(s|st, at) / exp

✓
�
1

2
(s� µ(st, at))

T⌃�1(st, at)(s� µ(st, at))

◆
. (7)

Then from (5) the corresponding mapping can be given as a multivariate Gaussian P(s|st, at) =189

N (µ (st, at),⌃(st, at)) . Thus from (6) it follows that the target distribution is190

P(s|st, at) = N (µ (st, at),⌃(st, at))
DsY

i=1

1

1 + exp(�(d+
i
� si))

1

1 + exp(�(si � d�
i
))
. (8)

Choice of potential energy, kinetic energy and mass matrix: For brevity of notation we drop191

the explicit dependence of P(·) on (st, at) and denote the target distribution as P(s) defined over the192

Euclidean space RDs . As explained in Section 2.2 we choose the potential energy as193

U(s) = � log(P(s)) =
1

2
(s� µ)T⌃�1(s� µ)�

1

2
log

⇣
(2⇡)Ds det(⌃)

⌘

�

DsX

i=1

h
log

⇣
1 + exp(�(d+

i
� si))

⌘
+ log

⇣
1 + exp(�(si � d�

i
))
⌘i

.

We consider an Euclidean metric M that induces the distance between s̃, s̄ as d(s̃, s̄) = (s̃�s̄)TM(s̃�194

s̄). Then we define Ms 2 RDs⇥Ds as a diagonal scaling matrix and Mr 2 RDs⇥Ds as a rotation195

matrix in dimension Ds. With this we can define M as M = MrMsMMT

s
MT

r
. Thus, any metric196

M that defines an Euclidean structure on the target variable space induces an inverse structure197

d(ṽ, v̄) = (ṽ � v̄)TM�1(ṽ � v̄) on the momentum variable space. This generates a natural family198

of multivariate Guassian distributions such that P(v|s) = N (0,M) leading to the kinetic energy199

K(v, s) = � logP(v|s) = 1
2v

TM�1v where M�1 is the covariance of the target distribution.200

3.2 Q-Learning with HMC and matrix completion201

In this work we consider problems with a high-dimensional state space and large number of distinct202

states along individual dimensions. Although these problems admit a large Q matrix, we can exploit203

low rank structure of the Q matrix to further improve the sample efficiency.204

At each time step t we randomly sample a subset ⌦t of state-action pairs (each state-action pair is205

sampled independently with some probability p) and update the Q function for state-action pairs in206

⌦t. Let bQt+1 be the updated Q matrix at time t. Then from (4) we have207

bQt+1(st, at) = r(st, at) +
�

|Ht|

X

s2Ht

max
a

Qt(s, a), (9)

for any (st, at) 2 ⌦t. Then we recover the complete matrix Qt+1 by using the method given in (2).208

Thus we have209

Qt+1 = argmin
eQt+12R|S|⇥|A|

k eQt+1
k⇤

subject to J⌦t

⇣
eQt+1

⌘
= J⌦t

⇣
bQt+1

⌘ (10)
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Algorithm 1 Hamiltonian Q-Learning
Inputs: Discount factor �; Range of state space; Time horizon T ;
Initialization: Randomly initialize Q0

for t = 1 to T do
Step 1: Randomly sample a subset of state-action pairs ⌦t

Step 2: HMC sampling phase - Sample a set of next states Ht according to the target distribu-
tion defined in (6)
Step 3: Update phase - For all (st, at) 2 ⌦t

bQt+1(st, at) = r(st, at) +
�

|Ht|

X

s2Ht

max
a

Qt(s, a)

Step 4: Matrix Completion phase
Qt+1 = argmin

eQt+12R|S|⇥|A|

k eQt+1
k⇤

subject to J⌦t

⇣
eQt+1

⌘
= J⌦t

⇣
bQt+1

⌘

end for
Similar to the approach used by [13], we approximate the rank of the Q matrix as the minimum210

number of singular values that are needed to capture 99% of its nuclear norm.211

3.3 Convergence, Boundedness and Sampling Complexity212

In this section we provide the main theoretical results of this paper. First, we formally introduce the213

following regularity assumptions:214

(A1) The state space S ✓ RDs and the action space A ✓ RDa are compact subsets.215

(A2) The reward function is bounded, i.e., r(s, a) 2 [Rmin, Rmax] for all (s, a) 2 S ⇥A.216

(A3) The optimal value function Q⇤ is C-Lipschitz, i.e.217

���Q⇤(s, a)�Q⇤(s0, a0)
���  C

⇣
||s� s0||F + ||a� a0||F

⌘

where || · ||F is the Frobenius norm (which is same as the Euclidean norm for vectors).218

We provide theoretical guarantees that Hamiltonian Q-Learning converges to an ✏-optimal Q function219

with eO
�

1
✏Ds+Da+2

�
number of samples. This matches the mini-max lower bound ⌦

�
1

✏Ds+Da+2

�
220

proposed in [15]. First we define a family of ✏-optimal Q functions as follows.221

Definition 1 (✏-optimal Q functions). Let Q⇤ be the unique fixed point of the Bellman optimality222

equation given as (T Q)(s0, a0) =
P

s2S
P(s|s0, a0) (r(s0, a0) + �maxa Q(s, a)) 8(s0, a0) 2 S⇥A223

where T denotes the Bellman operator. Then, under update rule (3), the Q function almost surely224

converges to the optimal Q⇤. We define ✏-optimal Q functions as the family of functions Q✏ such that225

kQ0
�Q⇤

k1  ✏ whenever Q0
2 Q✏.226

As kQ0
�Q⇤

k1 = max(s,a)2S⇥A kQ0(s, a)�Q⇤(s, a)k, any ✏-optimal Q function is element wise227

✏-optimal. Our next result shows that under HMC sampling rule given in Step 3 of the Hamiltonian228

Q-Learning algorithm (Algorithm 1), the Q function converges to the family of ✏-optimal Q functions.229

Theorem 1 (Convergence of Q function under HMC). Let T be an optimality operator under230

HMC given as (TQ)(s0, a0) = r(s0, a0) + �

|H|

P
s2H

maxa Q(s, a), 8(s0, a0) 2 S ⇥A, where H is231

a subset of next states sampled using HMC from the target distribution given in (6). Then, under232

update rule (4) and for any given ✏ � 0, there exists nH, t0 > 0 such that kQt
�Q⇤

k1  ✏ 8t � t0.233

Proof. (sketch) We follow a similar approach to Q-function convergence proof, i.e. convergence234

under exhaustive sampling, with a key modification that accounts for the error incurred by HMC235

sampling. We notice that Q-function error under HMC sampling can be upper bounded by the236

summation of (i) Q-function error under exhaustive sampling and (ii) the error between empirical237

average under HMC sampling and expectation under exhaustive sampling. We note that when238

Q-function is Lipschitz from central limit theorem for HMC sampling we can upper bound the239

cumulative error induced by the second term using a constant. Please refer the Supplementary240

Material for a detailed proof of this theorem.241
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The next theorem shows that the Q matrix estimated via a suitable matrix completion technique lies242

in the ✏-neighborhood of the corresponding Q function obtained via exhaustive sampling.243

Theorem 2 (Bounded Error under HMC with Matrix Completion). Let Qt+1
E

(st, at) =244

r(st, at) + �
P

s2S
P(s|st, at)maxa Qt

E
(s, a), 8(st, at) 2 S ⇥ A be the update rule under ex-245

haustive sampling, and Qt be the Q function updated according to Hamiltonian Q-Learning (9)-(10).246

Then, for any given ✏̃ � 0, there exists nH = min⌧ |H⌧ |, t0 > 0, such that kQt
�Qt

E
k1  ✏̃ 8t � t0.247

Proof. (sketch) Due to boundedness under matrix completion we notice that error between Q func-248

tions updated according to Hamiltonian Q-Learning and exhaustive sampling can be upper bounded249

using summation of (i) error between updated bQt and optimal function Q⇤ and (ii) error between250

updated function Qt

E
under exhaustive sampling and optimal function Q⇤. Proof follows from upper251

bounding first term using matrix completion boundedness results and second term using Theorem 1.252

Please refer Supplementary Material for a detailed proof of this theorem.253

Finally we provide guarantees on the sampling complexity of Hamiltonian Q-Learning algorithm.254

Theorem 3. (Sampling complexity of Hamiltonian Q-Learning) Let Ds, Da be the dimension255

of state space and action space, respectively. Consider the Hamiltonian Q-Learning algorithm256

presented in Algorithm 1. Then, under a suitable matrix completion method, the Q function converges257

to the family of ✏-optimal Q functions with eO
�
✏�(Ds+Da+2)

�
number of samples.258

Proof. (sketch) Here we briefly state the key steps of our proof. Let T✏ be the time step such that259

learned Q function under Hamiltonian Q-Learning is ✏ optimal. Then number of samples required by260

Hamiltonian Q-Learning to learn an ✏ optimal Q function can be given as
P

T✏

t=1 |⌦t||Ht|. We first261

prove results on the sample size |⌦t| required to bound the error incurred due to matrix completion.262

Then we prove results on the sample size |⌦t| required to bound the error incurred by approximating263

the expectation of next state using HMC samples. Final result follows from combining aforementioned264

results with convergence and boundedness results obtained in Theorem 1 and 2. A detailed proof of265

Theorem 3 is given in Supplementary Material.266

4 Experiments267

We illustrate convergence and sample efficiency of Hamiltonian Q-Learning using a high-dimensional268

system and four benchmark control tasks. Recall that when Q function is Lipschitz convergence in269

Frobenius norm implies convergence in infinity norm; therefore, we used the Frobenius norm of the270

difference between the learned Q function and optimal Q⇤ to illustrate that Hamiltonian Q-Learning271

converges to at ✏-optimal Q function.272

4.1 Empirical Evaluation for a High-Dimensional System273

Experimental setup for a double pendulum on a cart: By letting x, ẋ denote the position and274

velocity of the cart and ✓1, ✓2, ✓̇1, ✓̇2 denote the joint angles and angular velocities of the poles,275

we define the 6-dimensional state of the cart-pole system as: s = (x, ẋ, ✓1, ✓̇1, ✓2, ✓̇2) where x 2276

[�2.4, 2.4], ẋ 2 [�3.5, 3.5], and ✓i 2 [�⇡,⇡], ✓̇i 2 [�3.0, 3.0] for i = 1, 2. Also, we define the277

range of the scalar action as a 2 [�10, 10]. Then each state space dimension is discretized into 5278

distinct values and the action space into 10 distinct values. This leads to a Q matrix of size 15625⇥10.279

We consider that the probabilistic state transition is governed by (7) with a ⌃ which ensures that the280

range of the state space along direction i approximately equals to 6
p
⌃i. To stabilize the pendulum281

to an upright position, we define the reward function as r(s, a) = cos4(15✓1) + cos4(15✓2). After282

initializing the Q matrix using randomly chosen values from [0, 2], we sample state-action pairs with283

probability p = 0.2 at each iteration. Please refer Supplementary Material for additional details.284

Results: Figure 1(a) shows the change in the Frobenius norm of the difference between the learned285

Q function and optimal Q⇤, thereby illustrating that Hamiltonian Q-Learning converges to an ✏286

optimal Q function. Note that under exhaustive sampling we use 15625 samples for each update.287

However, Hamiltonian Q-Learning uses only 200 samples for each update. As it is difficult to visualize288

policy heat maps for a 6-dimensional state space, we show results for the first two dimensions (i.e.,289
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(a) Q Function Convergence (b) Exhaustive Sampling (c) HMC Sampling (d) Sample efficiency

Figure 1: Figure 1(a) illustrates convergence of the Q function learned via Hamiltonian Q-Learning to an
✏-optimal Q function. Figure 1(b) and 1(c) show policy heat maps for Q-Learning with exhaustive sampling
and Hamiltonian Q-Learning, respectively (x = �1.2, ẋ = 1.75, ✓2 = ⇡/4, ✓̇2 = 1.5). Figure 1(d) shows the
change in the normalized value of the Frobenius norm with the number of samples, for both exhaustive sampling
and Hamiltonian Q-Learning for vanilla Q-Learning.

Figure 2: A comparison of convergence of Q function with Hamiltonian Q-Learning and Q-Learning with IID
sampling.

✓1 and ✓̇1) while keeping the rest fixed (i.e., ✓2 = 0, ✓̇2 = 0, x = �1.2, and ẋ = 3.5). The heat maps290

shown in Figures 1(b) and 1(c) illustrate that the policy heat map for Hamiltonian Q-Learning is291

close to the one from Q-Learning with exhaustive sampling. We also show that the sample efficiency292

of Q-Learning can be significantly improved by incorporating Hamiltonian Q-Learning. Figure293

1(d) shows how normalized Frobenius norm of the difference, i.e., Frobenius norm of the difference294

normalized by its maximum value, between the learned Q function and the optimal Q⇤ varies with295

increase in the number of samples. The solid red line shows the accuracy for exhaustive sampling296

and the dashed black line shows the same for Hamiltonian Q-Learning. These results show that297

Hamiltonian Q-Learning converges to an ✏ optimal Q function with significantly fewer samples than298

exhaustive sampling.299

4.2 Empirical Evaluation for Low Dimensional Systems300

Experimental setup: Here we investigate the applicability of Hamiltonian Q-Learning in low301

dimensional spaces where IID samples are available, and compare its performance against state-of-302

the-art algorithms on four benchmark control tasks (inverted pendulum, double integrator, cartpole,303

and acrobot). Among these four control tasks, the dynamics of inverted pendulum and double304

integrator evolve on a 2-dimensional state space, whereas cartpole and acrobot are defined on a305

4-dimensional state space. We discretize each state space dimension of inverted pendulum and double306

integrator into 25 distinct values, and each state space dimension of cartpole and acrobot into 5307

distinct values. The action variable associated with all four control tasks is scalar, and we discretize308

each action space into 10 distinct values. This leads to a Q matrix of size 625 ⇥ 10. Please refer309

Supplementary Material for additional details about the experimental setup.310

Results: Figure 2 shows that Frobenius norm of the difference between the learned Q function and311

optimal Q⇤ can achieve a much lower value when HMC samples are used instead of IID samples.312

This illustrates that Hamiltonian Q-Learning achieves better convergence than Q-Learning with IID313

sampling. Note that, under exhaustive sampling we use 625 samples for each update, whereas learning314

with IID sampling and Hamiltonian Q-Learning require only 100 samples for each update. Figure 3315

shows policy heatmaps for Q-Learning with exhaustive sampling, Hamiltonian Q-Learning and Q-316

Learning with IID sampling. Our results show that the policy heatmaps associated from Hamitonian317

Q-Learning are closer to policy heatmaps obtained from Q-Learning with exhaustive sampling.318

Figure 4 illustrates how normalized Frobenius norm of the difference between the learned Q function319

and the optimal Q⇤ varies with increase in the number of samples. The solid red lines correspond320

to exhaustive sampling and the dashed black lines correspond to Hamiltonian Q-Learning. These321
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Figure 3: Policy heatmaps for Q-Learning with exhaustive sampling, Hamiltonian Q-Leaning and IID sampling.
The color in each cell corresponds to the value of optimal action at the corresponding state.

Figure 4: Normalized mean square error, i.e. mean square error divided by it maximum, vs number of samples
of Q function with exhaustive sampling and HMC sampling for vanilla Q-Learning, DQN and DDPG. Red solid
curve corresponds to HMC sampling and back dotted curve corresponds to HMC sampling.

results show that Hamiltonian Q-Learning can achieve the same level of accuracy with significantly322

fewer samples.323

5 Discussion and Conclusion324

In this paper we have introduced Hamiltonian Q-Learning, a new model-free RL framework that325

can be utilized to obtain optimal policies in high-dimensional spaces, where obtaining IID samples326

is impractical. We show, both theoretically and empirically, that the proposed approach can learn327

accurate estimates of the optimal Q function with much less numbr of samples compared to exhaustive328

sampling. Further, we illustrated that Hamiltonian Q-Learning can be used to improve sample329

efficiency of state-of-the-art algorithms in low dimensional spaces also. By building upon this aspect,330

future works will investigate how HMC sampling based methods can improve sample efficiency in331

multi-agent Q-learning, a system naturally very high-dimensions, with agents coupled through both332

action and reward.333
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