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Abstract
Multimodal machine learning has achieved re-
markable progress in a wide range of scenarios.
However, the reliability of multimodal learning
remains largely unexplored. In this paper, through
extensive empirical studies, we identify current
multimodal classification methods suffer from un-
reliable predictive confidence that tend to rely
on partial modalities when estimating confidence.
Specifically, we find that the confidence estimated
by current models could even increase when some
modalities are corrupted. To address the issue, we
introduce an intuitive principle for multimodal
learning, i.e., the confidence should not increase
when one modality is removed. Accordingly, we
propose a novel regularization technique, i.e., Cal-
ibrating Multimodal Learning (CML) regulariza-
tion, to calibrate the predictive confidence of pre-
vious methods. This technique could be flexi-
bly equipped by existing models and improve the
performance in terms of confidence calibration,
classification accuracy, and model robustness.

1. Introduction
Multimodal data widely exist in real-world applications
such as medical analysis (Perrin et al., 2009), social me-
dia (Wang et al., 2019), and autonomous driving (Khodayari
et al., 2010). To fully explore the potential value of each
modality, multimodal learning emerges as a promising way
to train a machine learning (ML) model by integrating all
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available multimodal cues for further data analysis tasks.
Numerous approaches have been proposed to build multi-
modal learning paradigms for various tasks (Wang et al.,
2019; Antol et al., 2015; Bagher Zadeh et al., 2018; Kishi
et al., 2019). Despite above progresses, the reliability of
current multimodal learning methods remains largely un-
explored. In the setting of classification, one key aspect
of the reliability is to build a high-quality confidence esti-
mator (Moon et al., 2020; Corbière et al., 2019; Guo et al.,
2017), which can quantitatively characterize the probability
that predictions will be correct. With such an estimator,
further processing can be taken to improve the performance
of the system (e.g., human assistance) when the predictive
uncertainty is high. This is especially useful in high-stake
scenarios (Hafner et al., 2019; Qaddoum & Hines, 2012).

In the setting of multimodal learning, in addition to exact
overall prediction confidence, the relationship between the
confidence and the number of modalities should also be
taken into concerns. Intuitively, the confidence of an ideal
multimodal classifier should not increase when one modal-
ity is removed (for brevity, we initialize the question as “one
modality", and the same phenomenon is observed when
removing more than one modality). An illustrative example
of an ideal confidence estimator is shown in Fig. 1, where
the confidence gradually decreases when the observed infor-
mation becomes less comprehensive. However, we conduct
extensive empirical studies on current methods and observe
that when one modality is removed, the overall confidence
estimated by them can even increase. This observation con-
tradicts the common assumption of multimodal learning
since modalities are assumed to be predictive of the target
for most multimodal learning tasks (Wu et al., 2022) and the
principle “the essence of information is to eliminate uncer-
tainty (Shannon)” in informatics (Soni & Goodman, 2017;
Burgin, 2002). Intuitively, this implies that the models are
more inclined to believe in a unique modality and is prone
to be affected by this modality, which has also been shown
in prior works (Wu et al., 2022; Wang et al., 2020). This
further impairs the robustness of the learned models, i.e.,
the models are easy to be influenced when some modalities
are corrupted, since the models can not make decisions ac-
cording to a trustworthy confidence (probability) estimator.

A natural idea to address the above issue is to employ re-
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Figure 1: Motivation of calibrating multimodal learning. The confidence of an ideal multimodal classifier should decrease
or at least not increase when one modality is removed (even when the removed modality is noised, or it indicates the model
takes noise as semantics and the model is not trustworthy).

cent uncertainty calibration methods such as temperature
scaling (Guo et al., 2017) or Bayesian learning (Cobb &
Jalaian, 2021; Karaletsos & Bui, 2020; Foong et al., 2020),
which can build more accurate confidence estimation than
the traditional training/inference manner. However, these
approaches do not explicitly consider the relationship be-
tween different modalities (i.e., they can only calibrate the
overall confidence but can not calibrate the confidence of
using different number of modalities) and thus still fail to
achieve satisfactory performance in the multimodal learning
setting. To address this issue, we propose a novel regular-
ization technique called Calibrating Multimodal Learning
(CML) which enforces the consistency between prediction
confidence and the number of modalities. The motivation
of CML is based on a natural intuition, i.e., the prediction
confidence should decrease (at least not increase) when
one modality is removed, which could intrinsically improve
the confidence calibration. Specifically, we propose a sim-
ple regularization term that enforces a model to learn an
intuitive ranking relationship by adding a penalty for the
samples whose predictive confidence will increase when
one modality is removed. The main contributions of this
paper are summarized as follows:

• We conduct extensive empirical studies to show that
most existing multimodal learning paradigms tend to
be over-confident on partial modalities (different sam-
ples are over-confident on different modalities rather

than all samples are over-confident on the same modali-
ties), which implies that they fail to achieve trustworthy
confidence estimation.

• We introduce a measure to evaluate the reliability of the
confidence estimation from the confidence ranking per-
spective, which can characterize whether a multimodal
learning method can treat all modalities fairly.

• We propose a regularization strategy to calibrate the
confidence of various multimodal learning methods,
and then conduct extensive experiments to show the
superiority of our method in terms of the confidence
calibration (Table 1), classification accuracy (Table 2)
and model robustness (Table 3).

2. Related Work
Uncertainty estimation provides a way for trustworthy pre-
diction (Abdar et al., 2021; Chau et al., 2021; Slack et al.,
2021; Singh et al., 2021; Ning et al., 2021; Zhang et al.,
2021). Uncertainty can be used as an indicator of whether
the predictions given by models are prone to be wrong (Rit-
ter et al., 2021; Wang & Zou, 2021; Zaidi et al., 2021;
Stadler et al., 2021; Bai et al., 2021; Rahaman & thiery,
2021; Galil & El-Yaniv, 2021; Upadhyay et al., 2021). Many
uncertainty-based models have been proposed in the past
decades, such as Bayesian neural networks (Neal, 2012;
MacKay, 1992; Denker & LeCun, 1990; Kendall & Gal,
2017), Dropout (Molchanov et al., 2017), Deep ensem-
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bles (Lakshminarayanan et al., 2017; Havasi et al., 2020),
and DUQ (van Amersfoort et al., 2020) built upon RBF
networks. Prediction confidence (Sahoo et al., 2021; Wald
et al., 2021; Pan et al., 2021; Luo et al., 2021; Xu et al.,
2021; Chung et al., 2021; Xiong et al., 2021) is always
referred to in classification models, which expects the pre-
dicted class probability to be consistent with the empirical
accuracy (Qin et al., 2021; Minderer et al., 2021; Zhao et al.,
2021; Tian et al., 2021; Karandikar et al., 2021; Jeong et al.,
2021). Many methods focus on smoothing the prediction
probabilities distribution, such as Label smoothing (Müller
et al., 2019), focal loss (Mukhoti et al., 2020), TCP (Cor-
bière et al., 2019)and Temperature scaling (TS) (Guo et al.,
2017). More related researches please refer to Appendix G.

Multimodal learning emerges as a promising way to ex-
ploit complementary information from different modalities.
How to benefit from multimodal data has been a popular re-
search direction, and researchers usually focus on improving
architectural designs of the multimodal model (Pérez-Rúa
et al., 2019; Sun et al., 2021). In the setting of multimodal
classification, MMTM (Joze et al., 2020) achieves state-
of-the-art performance by connecting corresponding con-
volutional layers from different uni-modal branches. Con-
sidering the proposed method calibrating confidence with
using different number of modalities, multimodal classi-
fiers that can deal with incomplete data are natural candi-
dates to validate our motivation. There is a wide range of
research interests in handling missing modalities for mul-
timodal learning, including imputation-independent meth-
ods (Zhang et al., 2019) and imputation-dependent meth-
ods (Mattei & Frellsen, 2019; Wu & Goodman, 2018). For
imputation-independent methods, there is no need to re-
construct the missing modalities and conduct classification
using the imputed data. Imputation-dependent methods usu-
ally conduct classification with two stages, reconstructing
the missing modalities and making classification according
to the reconstructed modalities. In this paper, we employ
CPM-Nets (Zhang et al., 2019), MIWAE (Mattei & Frellsen,
2019), and MMTM (Joze et al., 2020) to validate our motiva-
tion due to their representativeness in multimodal learning.

3. Method
In this section, we first introduce some basic notations in
Section 3.1. We show the basic assumption of our method
and its empirical motivation in Section 3.2 based on the
principle “the essence of information is to eliminate uncer-
tainty”, and then evaluate the confidence estimation perfor-
mance of current multimodal methods in Section 3.3 and
find they violate the principle. At the end, we propose a
simple yet effective regularization technique to improve the
confidence estimation of multimodal models and elaborate
the technical details in Section 3.4.

3.1. Notation

We define the training data as D =
{
{xm

i }Mm=1, yi
}N

i=1
,

where xm
i is the m-th modality of the i-th sample, and

yi ∈ {1, · · · ,K} is the corresponding class label. To distin-
guish one modality or a set of modalities, we use xm and
x(S) to represent the m-th modality and multiple modalities
respectively, where S is a set of modalities’ indexes (e.g., if
we have S = {1, 2}, then x(S) indicates a feature set consist-
ing of x1 and x2, and x(M) = {x1, · · · , xM} indicates the
complete M modalities). The goal is to learn a function pa-
rameterized by θ: f(x(M), θ)→ z, where the output z of the
network is a vector of K values called logits. Then the logits
vector is transformed by a softmax layer: p̂k = ezk/

∑
k e

zk ,
where the probability distribution of a sample x is defined
as P(y | θ, x(M)) = {p̂k}K1 . The predicted class label is
ŷ = argmaxy P(y | θ, x(M)), and the confidence is defined
as Conf(x(M)) = maxy P(y | θ, x(M)).

3.2. Basic Assumption

In real-world applications, the quality of multimodal data is
usually unstable (e.g., some modalities may be corrupted),
so the quality of the multimodal input should be reflected
in some quantitative manner (i.e., predictive confidence)
which is especially important when multimodal models are
deployed for the high-stake tasks. However, it is difficult to
exactly define the “quality” of each sample, and we can not
define the exact functional relationship between the quality
and confidence since the confidence from different models
is basically different for a same sample. This issue results
in the lack of supervision for confidence estimation. Fortu-
nately, according to the principle “the essence of information
is to eliminate uncertainty (Shannon)” in informatics (Soni
& Goodman, 2017; Burgin, 2002) (i.e., more information,
less uncertainty), we can approximate this relationship with
a ranking-based form as follow:

Proposition 3.1. Given two versions of a sample
x(M), i.e., x(T) and x(S), if we can assure T ⊂ S ⊆
M, then, for a trustworthy multimodal classifier f(·),
it should hold Conf(f(x(T))) ≤ Conf(f(x(S)).

For most multimodal learning tasks, all modalities are as-
sumed to be predictive for the target (Wu et al., 2022), and
the proposed method is also based on this assumption. For
a trustworthy classifier, the predictive confidence should not
increase when one modality is removed. We further define
the prediction Confidence Increment (CI) with informative-
ness increment for a sample as:

CI(x(T), x(S)) = Conf(f(x(S)))− Conf(f(x(T)))

s.t. T ⊂ S ⊆M,
(1)

where T and S are sets of modalities’ indexes. Specifically, a
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Figure 2: Current methods (Wu et al., 2022; Zhang et al., 2019; Mattei & Frellsen, 2019) violate the Proposition 3.1 (red
color indicates the proportion of test samples whose predictive confidence given by the model decreases while providing
more modalities, “CI" is defined in Eq. 1). We estimate the performance on two-modality datasets, and the pie charts show
that different samples over-rely on different modalities rather than all samples over-rely on the same modality (e.g., “53%
Mod1” indicates “among the samples who violate Proposition 3.1, there is 53 percent of samples whose confidence will
increase when Mod2 is removed and the other samples will increase confidence when Mod1 is removed”).

negative value indicates a poor confidence estimation perfor-
mance where the predictive confidence increases when one
modality is removed. To quantify the extent that a learned
model violates Proposition 3.1, we introduce a novel mea-
sure: Violating Ranking Rate (VRR) as the proportion of
test samples whose predictive confidence will increase when
removing one modality:

VRR = E(T, S)

[
1

(
CI(x(T), x(S)) < 0

)]
s.t. T ⊂ S ⊆M.

(2)

Inspired by prior methods (Moon et al., 2020; Toneva et al.,
2018), we initialize S as the complete modalities, and obtain
T by randomly removing a modality from S. Then T is
regarded as S for another confidence ranking pair and we
repeat this process until there is only one modality remained
in T (Please refer to Appendix A for detail). A natural
question then arises: how about the confidence estimation
performance of the current methods when one modality is
removed?

3.3. Confidence Estimation Performance of Current
Multimodal Methods

To evaluate the quality of confidence estimation of existing
multimodal classifiers, we compute the VRR score of CPM-
Nets (Zhang et al., 2019) and MIWAE (Mattei & Frellsen,
2019), which are two typical methods in handling incom-
plete multimodal data. In addition to classifiers for incom-
plete multimodal data, we also evaluate MMTM (Wu et al.,
2022), which is a state-of-the-art multimodal classification
method. As shown in Table 1, the VRR scores of previ-
ous methods are quite high which indicates the prediction
confidence on a large portion of samples will violate Propo-
sition 3.1. The visualization is shown in Fig. 2, where the
red color indicates the proportion of test samples whose pre-

dictive confidence estimated by the model decreases while
providing more modalities.

A naive strategy is to re-balance the contribution of every
modality (i.e., allocating a smaller weight to the modality
that samples are over-confident on during the fusion). As
shown in Fig. 2, however, we find that different samples are
over-confident on different modalities rather than all sam-
ples are over-confident on the same modality. This indicates
that the problem can not be solved by re-weighting the over-
all contribution of different modalities since it will make the
confidence estimation of some samples worse. Instead, our
method characterizes the relationship between the modal-
ities in sample-wise manner, which inherently calibrates
the contribution for all samples. Intuitively, it is risky for
a model which usually increases the prediction confidence
when one modality is removed, since this usually implies
that the confidence of the sample and its informativeness
are not matched. For this issue, these models can not be
deployed into risk-sensitive applications such as medical
diagnosis. As a comparison, our method can significantly
decrease VRR score (see more details in Table 1) implying
a more trustworthy confidence estimation.

3.4. Calibrating Multimodal Classification Model

As shown in Section 3.3, current multimodal methods usu-
ally increase the prediction confidence when one modality
is removed, which potentially harms both trustworthiness
and performance. To address this issue, the direct strategy
is to minimize the following confidence difference:

L(T, S) = Conf(x(T))− Conf(x(S)). (3)

However, models sometimes can still make an accurate
prediction confidently when one modality is removed in
practice. Eq. 3 forces models to produce relatively small
confidence when one modality is removed, which results
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in extremely small confidence for each modality (Please
refer to Appendix B.6 for detail). For this issue, we relax
this regularization by only penalizing the situation that the
estimated confidence increases when one modality is re-
moved. For any pair of multimodal inputs which satisfies
that T ⊂ S ⊆M, the regularization can be written as:

L(T, S) = max
(
0,Conf(x(T))− Conf(x(S))

)
. (4)

For each sample, the total regularization loss is integrated
over all pairs of inputs with different numbers of modalities,
which is formalized as:

LCML =
∑
(T, S)

L(T, S), {∀(T, S)|T ⊂ S ⊆M}. (5)

The exact computation of above loss needs to enumerate all
modality set pairs (T, S), which is typically computational
expensive sometimes. Therefore, we propose to approxi-
mate this loss by sampling and it works well in practice.
Specifically, we conduct sampling as same as that in com-
puting VRR defined in Eq. 2.

The proposed regularization is general and thus can be
equipped by current multimodal classifiers to calibrate their
confidence estimation as an additional loss item. We typi-
cally provide examples in utilizing the proposed technique
in imputation-independent method (i.e., CPM-Nets (Zhang
et al., 2019)), imputation-dependent method (i.e., MI-
WAE (Mattei & Frellsen, 2019)), and recent multimodal
classification method (i.e., MMTM (Wu et al., 2022)). The
proposed regularization can be deployed to current mul-
timodal methods flexibly, and accordingly the objective
function is induced as:

L = LCL + λLCML, (6)

where LCL is the classification loss criterion (e.g., cross-
entropy loss), and λ is hyperparameter controlling the
strength of CML regularization. The process of calibrat-
ing multimodal classification are shown in Algorithm 1.

3.5. Discussion and Analyses

◦ Why should a model meet the ranking relationship
regardless of class labels? For multimodal learning, all
modalities are assumed to be predictive of the target (Wu
et al., 2022), which can be expressed as I(y, xm) ≥ 0,
where I(·) denotes mutual information (Blum & Mitchell,
1998) and xm indicates the m-th modality.

Lemma 3.2. Suppose we have two versions of a sample
x(M), i.e., x(T) and x(S), if we can assure T ⊂ S ⊆M, then,
for any class label y, we have I(y, x(T)) ≤ I(y, x(S)).

In other words, x(S) is more predictive for the target than
x(T) regardless of the label. For a trustworthy multimodal

Algorithm 1 Calibrating Multimodal Classifier

Given dataset D =
{
{xm

i }Mm=1, yi
}N

i=1
, initialized clas-

sifier f , classification loss criterion LCL, hyperparameter
λ, and epochs for training the classifier train_epochs.
for e = 1, . . . , train_epochs do
S←M; LCL ← LCL(x(S)); LCML ← 0;
for m = 1, . . . ,M − 1 do

Randomly remove a modality of S and set it as T;
Compute the classification loss: LCL ← LCL +
LCL(x(T));
Compute the regularization loss: LCML ← LCML +
max

(
0,Conf(x(T))− Conf(x(S));

S← T;
end for
Total loss: L = 1

ML
CL+λLCML;

Update the parameters of the classifier f with L;
end for
return the classifier f

classification model, the confidence of x(T) should not be
larger than x(S).

◦Why can CML regularization calibrate a model? CML
regularization can guarantee a smaller confidence of x(T)

when the model makes a wrong prediction of x(S), which
means that CML can alleviate the over-confidence.

Lemma 3.3. Suppose the CML regularization can achieve a
lower VRR, i.e., VRRCML < VRRORIG, then for the sam-
ples that meet E

(
ConfCML(x

(S))
)
= E

(
ConfORIG(x

(S))
)
,

we have E
(
ConfCML(x

(T))
)
≤ E

(
ConfORIG(x

(T))
)
.

From the empirical results, we find ConfCML(x
(S)) and

ConfORIG(x
(S)) are very similar for most samples, where

ConfORIG(·) and ConfCML(·) indicate the confidence es-
timated by the original (ORIG) model and the model im-
proved by CML regularization respectively. The proof
of Lemma 3.3 and empirical results please refer to Ap-
pendix B.5.

◦ Why not just penalize the difference in confidence
(i.e., minimizing Conf(x(T))− Conf(x(S)))? Forcing the
confidence for x(T) to be smaller than the confidence for
x(S) regardless of whether the samples violate the Prop. 3.1
will lead to very small confidence for x(T), and adding such
a penalty to samples who meet the Prop. 3.1 will lead to
a trivial solution (i.e., extremely small confidence when
any modality is removed, and the experiments are shown in
Appendix B.6). What’s more, the model sometimes can still
make correct predictions confidently when one modality is
removed. A flexible ranking regularization (Eq. 4) makes it
more reasonable for the real situation.
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Table 1: VRR (%) of test samples (a lower value indicates a better confidence estimation. Type III is shown in Appendix).
“✗” indicates the model is not equipped with the proposed regularization (λ = 0). Performance on Type III please refer to
Appendix B.6.

Method CML TUANDROMD YaleB Handwritten CUB Animal

Type I
✗ 23.38± 1.39 39.15± 4.97 17.64± 2.31 2.83± 1.55 44.39± 7.55
✓ 12.58± 2.84 15.05± 1.12 3.18± 0.80 2.17± 1.13 29.02± 5.43

Improve △ 10.80 △ 24.10 △ 14.46 △ 0.66 △ 15.37

Type II
✗ 39.17± 2.32 20.54± 4.26 33.82± 5.16 23.17± 4.87 12.51± 1.50
✓ 8.38± 1.31 14.46± 2.17 29.99± 2.30 20.17± 3.05 8.64± 0.32

Improve △ 30.79 △ 6.08 △ 3.83 △ 3.00 △ 3.87

4. Experiments
4.1. Setup

We deploy the proposed regularization strategy into differ-
ent types of multimodal classifiers including the imputation-
independent method (Type I), the imputation-dependent
method (Type II), and the recent state-of-the-art method
(Type III). CPM-Nets (Zhang et al., 2019) is a typical
imputation-independent algorithm, which can adapt to ar-
bitrary missing patterns without reconstructing the miss-
ing modalities. MIWAE (Mattei & Frellsen, 2019) is a
imputation-dependent algorithm. The above two methods
are well-established models in incomplete multimodal learn-
ing. In addition to incomplete multimodal learning meth-
ods, we also deploy the regularization into an advanced
multimodal classification method (Wu et al., 2022), which
is termed Multimodal Transfer Module (MMTM). We ap-
proximate the modality removal by feature corruption (e.g.,
adding strong noise) because MMTM can not make a pre-
diction when one modality is explicitly removed. For a fair
comparison, the only difference between whether the model
is equipped with CML regularization or not. Please refer to
Appendix B.2 for more detailed settings.

Datasets:We evaluate the proposed method on diverse
datasets, including data with multimodal data, such as
YaleB (Georghiades et al., 2002), Handwritten (Perkins &
Theiler, 2003), CUB (Wah et al., 2011), Animal (Krizhevsky
et al., 2012; Simonyan & Zisserman, 2015) (which is
a dataset under class-imbalanced), TUANDROMD (Bo-
rah et al., 2020), NYUD2 (Qi et al., 2017), and SUN-
RGBD (Song et al., 2015). It should be pointed out that we
also estimate the proposed method on the class-imbalanced
dataset. We find that CML can improve the performance
when the training data is class-imbalanced since CML cal-
ibrates the model regardless of the label while the vanilla
model always tends to be under-confidence of the minority
classes compared with majority classes. For more detailed
analysis please refer to Appendix B.1.

4.2. Questions to be Verified

We conduct diverse experiments to comprehensively investi-
gate the underlying assumption and the proposed method,
including:

◦ Can CML regularization improve the confidence es-
timation of multimodal classifiers? To validate whether
the proposed method improves multimodal classifiers’ con-
fidence estimation, we evaluate the confidence estimation
of current multimodal classifiers without and with CML
regularization, respectively. We conduct experiments of
each type of method on seven datasets and evaluate their
trustworthiness in terms of VRR (defined in Eq. 2).

◦ Can CML regularization improve robustness? CML
regularization can improve multimodal classifiers’ confi-
dence estimation, so a natural question arises - does a better
confidence estimation imply better robustness? To verify
this, we evaluate the robustness on the complete multimodal
data and noisy multimodal data (adding Gaussian noise to
some modalities, i.e., zero mean with varying variance ϵ).

◦ Is CML easy to be deployed and not sensitive to hy-
perparameters? In order to investigate the key factor that
makes the improvement in the proposed method, we evalu-
ate the performance in terms of classification accuracy under
different strengths of CML regularization. We conduct ex-
periments on both the original and noised data (i.e., adding
noise to one of the modalities during the test). More details
are shown in Appendix B.2.

4.3. Results

4.3.1. CONFIDENCE ESTIMATION

We evaluate the confidence estimation of current multimodal
learning models from a ranking perspective. It is observed
that for a large portion of samples the confidence will in-
crease when one modality is removed, while the confidence
estimation of the classification models equipped with our
proposed CML regularization is significantly improved. We
intuitively demonstrate the confidence changing in Fig. 3,
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Table 2: Accuracy performance comparison for whether the model is equipped with the CML regularization term (i.e.,
whether λ is set to 0). The means and standard deviations over five runs are reported.

Method Dataset CML Accuracy
(↑)

NLL
(↓)

AURC
(↓)

E-AURC
(↓)

Type I

CUB
✗ 87.00± 4.36 20.49± 0.30 59.44± 22.10 49.52± 17.35
✓ 88.33± 4.05 20.53± 0.46 55.94± 17.07 47.92± 16.89

Improve △ 1.33 ▽ 0.04 △ 3.50 △ 1.60

Animal
✗ 81.72± 2.51 36.87± 0.41 82.14± 27.20 63.94± 22.74
✓ 82.73± 1.64 36.87± 0.36 71.54± 16.03 55.50± 13.13

Improve △ 1.01 0.00 △ 10.60 △ 8.44

TUAND-
ROMD

✗ 84.66± 0.43 6.88± 0.00 61.46± 6.09 49.00± 5.75
✓ 85.20± 0.81 6.88± 0.00 58.24± 5.05 46.64± 4.55

Improve △ 0.54 0.00 △ 3.22 △ 2.36

Type II

CUB
✗ 92.33± 1.11 2.33± 0.55 10.92± 1.94 7.82± 1.32
✓ 94.50± 1.71 2.24± 1.27 9.32± 3.91 7.60± 3.02

Improve △ 2.17 △ 0.09 △ 1.60 △ 0.22

Animal
✗ 86.75± 0.33 8.25± 3.79 27.62± 7.42 18.40± 7.27
✓ 87.61± 0.50 4.99± 0.46 21.26± 1.31 13.24± 0.92

Improve △ 0.86 △ 3.26 △ 6.36 △ 5.16

TUAND-
ROMD

✗ 86.32± 0.85 3.26± 0.09 43.40± 2.65 33.56± 2.38
✓ 88.69± 0.99 3.21± 0.15 38.62± 5.44 31.90± 4.37

Improve △ 2.37 △ 0.02 △ 4.78 △ 1.66

Type III

NYUD2
✗ 66.89± 0.85 10.03± 0.10 140.53± 5.66 78.40± 5.01
✓ 68.09± 0.68 9.83± 0.15 137.27± 6.94 79.87± 6.30

Improve △ 1.20 △ 0.20 △ 3.26 ▽ 1.47

SUN-
RGBD

✗ 62.11± 0.31 13.27± 0.53 181.00± 1.20 97.87± 1.48
✓ 62.78± 0.32 13.25± 0.46 174.90± 1.50 95.00± 1.00

Improve △ 0.67 △ 0.05 △ 6.10 △ 2.87

(a) Animal (b) Tuandromd

Figure 3: Confidence estimation when one modality is re-
moved, where “CI” is defined in Eq. 1.

and the quantitative results are shown in Tab. 1. According
to Fig. 3, we show the confidence estimation of CPM-Nets,
where “Original” and “CML” indicate the model is with-
out and with the proposed CML regularization respectively.
According to Fig. 3, it is observed that the confidence with-
out CML regularization may increase when one modality
is removed, which indicates that the model fails to take

all modalities into account fairly when making predictions.
This will lead to unpromising robustness and generalization,
which clearly verifies the main assumption in Sec. 4.3.2.

4.3.2. CML REGULARIZATION IMPROVES ROBUSTNESS

In this subsection, we evaluate the performance on the com-
plete multimodal data, where the training/test data is divided
as previous work (Zhang et al., 2019). From Tab. 2, the
classification models equipped with CML regularization
consistently outperform their counterparts (i.e., the original
classification models) validating the rationality of CML prin-
ciple. It is worth noting that Type III exhibits a significant
improvement, while the improvement in Type I and Type
II is relatively minor compared to the standard deviation.
The high variance can be attributed to the baseline models
themselves. To avoid the influence of empirical contingency,
we report the means and standard deviations over 5 or 10
runs in our paper. Furthermore, we distinguish the marks
in the table based on the significance of the improvement,
with a lighter color indicating a relatively minor improve-
ment compared to the standard deviation. Results on more
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Table 3: Accuracy performance comparison when some of the modalities is corrupted with Gaussian noise (i.e., zero mean
with varying variance ϵ).

Dataset Noise on CML ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.5

CUB

{1}
✗ 84.72± 3.32 82.22± 4.53 79.72± 4.43 71.17± 9.14
✓ 85.83± 2.72 85.00± 3.50 84.17± 4.08 81.11± 4.37

Improve △ 1.11 △ 2.78 △ 4.45 △ 9.94

{2}
✗ 84.44± 2.75 83.89± 3.22 83.61± 2.83 83.61± 3.87
✓ 85.83± 3.40 85.28± 2.75 85.28± 1.97 85.00± 1.80

Improve △ 1.39 △ 1.39 △ 1.67 △ 1.39

{1, 2}
✗ 85.00± 3.12 82.78± 3.98 80.00± 4.46 72.50± 11.14
✓ 85.83± 2.72 85.84± 3.12 85.83± 4.25 81.39± 6.43

Improve △ 0.83 △ 3.06 △ 5.83 △ 8.89

Animal

{1}
✗ 80.78± 2.79 80.96± 2.78 80.85± 2.80 80.68± 2.93
✓ 82.03± 1.91 82.37± 2.09 82.55± 2.24 82.30± 2.40

Improve △ 1.25 △ 1.41 △ 1.70 △ 1.62

{2}
✗ 80.70± 2.45 79.81± 3.14 77.34± 4.80 68.52± 9.68
✓ 82.07± 1.57 81.23± 2.32 78.93± 3.65 72.39± 8.35

Improve △ 1.37 △ 1.42 △ 1.59 △ 3.87

{1, 2}
✗ 80.87± 2.55 79.97± 3.12 77.11± 5.86 65.08± 12.75
✓ 82.14± 1.76 81.95± 2.65 79.63± 5.28 72.46± 11.39

Improve △ 1.27 △ 1.98 △ 2.52 △ 7.38

datasets are shown in Appendix B.4.

Significantly improving the accuracy on real-world data
without additional techniques or more advanced architec-
tures can be challenging as the benchmark datasets have
already achieved good performance in terms of accuracy.
However, we observed that the models equipped with CML
regularization are more robust to noise, particularly when
the noise is heavy. Specifically, we find that CML regular-
ization can improve the robustness of imperfect data, such
as noise. We evaluate the models in terms of the accuracy in
the test under Gaussian noise (i.e., zero mean and varying
variance ϵ), and “Noise On” indicates which modality is
noised (e.g., {1} indicates the first modality is noised). We
report the performance on the challenging datasets (CUB
and Animal) in the main text (Tab. 3) and more results are in
Appendix B.3. We can find that the models equipped with
CML regularization are more robust to noise, especially
when the noise is much heavier.

4.3.3. PERFORMANCE UNDER DIFFERENT STRENGTHS
OF CML REGULARIZATION

In this subsection, we report the accuracy under different
strengths of regularization (where “λ = 0” indicates the
model is not equipped with the proposed CML regulariza-
tion). We also add Gaussian noise (i.e., zero mean and
varying variance ϵ) to one of the modalities on CUB, and

it is clear that the model with CML regularization is more
robust to the potential noise.

(a) Noise on the first modality (b) Noise on the second modality

Figure 4: Accuracy estimation where one of the modalities
is corrupted with noise.

As shown in Fig. 4, it is observed that CML regularization
can promote accuracy on the noisy data. The potential rea-
son is that the CML regularization enforces the reasonable
confidence estimation and thus prohibits the model from
being over-confident on the low-quality modality, where
the low-quality modality usually tends to result in a wrong
decision. Moreover, according to Fig. 4, the proposed reg-
ularization is not sensitive to the hyperparameter λ, where
promising performance could be expected with a mild regu-
larization strength. In other words, the proposed regulariza-
tion is not sensitive to hyperparameters and CML is easy to
be deployed into a wide spectrum of multimodal models.
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5. Conclusion
In this work, we reveal a novel issue widely existing in
multimodal learning through extensive empirical studies.
We observe that the confidence estimations of current multi-
modal learning algorithms are typically unreliable, and tend
to rely on some partial modalities. This further results in
the non-robustness of learned models against modality cor-
ruption. Concretely, existing multimodal classifiers tend to
be overconfident based on some modalities, and ignore the
valuable evidence from other modalities even those might
be critical to make the decision. To solve this problem, we
introduce a novel regularization technique to calibrate the
confidence estimation, which forces model to estimate a
calibrated predictive confidence. This technique can be nat-
urally deployed into existing multimodal learning methods
without modifying the main training process. We conduct
comprehensive experiments which demonstrate the superior-
ity of our method in classification in terms of both accuracy
and calibration. The proposed method is the first attempt to
calibrate the relationship between confidence and the num-
ber of modalities used in multimodal learning. This research
is an inspirational topic which could benefit the multimodal
learning community. In current implementation, we employ
sampling to construct constraint. Although it is widely used
and effective in machine learning, we will focus on more
principled approximation strategies in the future.

Acknowledgments
This work is jointly supported by the National Natural
Science Foundation of China (Grant No. 61976151), the
Agency for Science, Technology and Research (A*STAR)
under its AME Programmatic Funding Scheme (Project No.
A18A1b0045), and A*STAR Central Research Fund. We
gratefully acknowledge the support of CAAI-Huawei Mind-
Spore Open Fund1. The project was finished during the
internship in AI Lab, Tencent.

References
Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D.,

Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khos-
ravi, A., Acharya, U. R., et al. A review of uncertainty
quantification in deep learning: Techniques, applications
and challenges. Information Fusion, 76:243–297, 2021.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., and Parikh, D.
Vqa: Visual question answering. International Journal
of Computer Vision, 123(1):4–31, 2015.

Bagher Zadeh, A., Liang, P. P., Poria, S., Cambria, E., and
Morency, L.-P. Multimodal language analysis in the wild:
CMU-MOSEI dataset and interpretable dynamic fusion

1https://www.mindspore.cn/

graph. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, 2018.

Bai, Y., Mei, S., Wang, H., and Xiong, C. Understanding
the under-coverage bias in uncertainty estimation. In
Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.,
and Vaughan, J. W. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 34, pp. 18307–18319.
Curran Associates, Inc., 2021.

Blum, A. and Mitchell, T. Combining labeled and unlabeled
data with co-training. In Proceedings of the eleventh
annual conference on Computational learning theory, pp.
92–100, 1998.

Borah, P., Bhattacharyya, D., and Kalita, J. Malware dataset
generation and evaluation. In 2020 IEEE 4th Conference
on Information & Communication Technology (CICT),
pp. 1–6. IEEE, 2020.

Burgin, M. The essence of information: Paradoxes, con-
tradictions, and solutions. In Electronic Conference on
Foundations of Information Science: The nature of in-
formation: Conceptions, misconceptions, and paradoxes
(FIS 2002). Retrieved September, volume 13, pp. 2013.
Citeseer, 2002.

Chau, S. L., Ton, J.-F., González, J., Teh, Y., and Sejdinovic,
D. Bayesimp: Uncertainty quantification for causal data
fusion. In Ranzato, M., Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 3466–
3477. Curran Associates, Inc., 2021.

Chung, Y., Neiswanger, W., Char, I., and Schneider, J. Be-
yond pinball loss: Quantile methods for calibrated un-
certainty quantification. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 34, pp. 10971–10984. Curran Associates, Inc., 2021.

Cobb, A. D. and Jalaian, B. Scaling hamiltonian monte carlo
inference for bayesian neural networks with symmetric
splitting. In Uncertainty in Artificial Intelligence, pp.
675–685. PMLR, 2021.

Corbière, C., Thome, N., Bar-Hen, A., Cord, M., and Pérez,
P. Addressing failure prediction by learning model confi-
dence. In NeurIPS, 2019.

Denker, J. and LeCun, Y. Transforming neural-net output
levels to probability distributions. Advances in neural
information processing systems, 3, 1990.

Foong, A., Burt, D., Li, Y., and Turner, R. On the ex-
pressiveness of approximate inference in bayesian neural
networks. NeurIPS, 33:15897–15908, 2020.

9



Calibrating Multimodal Learning

Galil, I. and El-Yaniv, R. Disrupting deep uncertainty es-
timation without harming accuracy. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Process-
ing Systems, volume 34, pp. 21285–21296. Curran Asso-
ciates, Inc., 2021.

Georghiades, A. S., Belhumeur, P. N., and Kriegman, D. J.
From few to many: illumination cone models for face
recognition under variable lighting and pose. IEEE Trans-
actions on Pattern Analysis & Machine Intelligence, 23
(6):643–660, 2002.

Guo, C., Pleiss, G., Yu, S., and Weinberger, K. Q. On
calibration of modern neural networks. In ICML, 2017.

Hafner, D., Tran, D., Lillicrap, T. P., Irpan, A., and Davidson,
J. Noise contrastive priors for functional uncertainty. In
UAI, 2019.

Han, X., Wang, S., Su, C., Huang, Q., and Tian, Q. Greedy
gradient ensemble for robust visual question answering.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 1584–1593, 2021.

Havasi, M., Jenatton, R., Fort, S., Liu, J. Z., Snoek, J.,
Lakshminarayanan, B., Dai, A. M., and Tran, D. Training
independent subnetworks for robust prediction. arXiv
preprint arXiv:2010.06610, 2020.

Hendrycks, D. and Gimpel, K. A baseline for detecting
misclassified and out-of-distribution examples in neural
networks. In ICLR, 2017.

Jeong, J., Park, S., Kim, M., Lee, H.-C., Kim, D.-G., and
Shin, J. Smoothmix: Training confidence-calibrated
smoothed classifiers for certified robustness. In Ran-
zato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems, volume 34, pp. 30153–30168. Cur-
ran Associates, Inc., 2021.

Joze, H. R. V., Shaban, A., Iuzzolino, M. L., and Koishida,
K. Mmtm: Multimodal transfer module for cnn fusion. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13289–13299, 2020.

Karaletsos, T. and Bui, T. D. Hierarchical gaussian process
priors for bayesian neural network weights. NeurIPS, 33:
17141–17152, 2020.

Karandikar, A., Cain, N., Tran, D., Lakshminarayanan, B.,
Shlens, J., Mozer, M. C., and Roelofs, B. Soft calibration
objectives for neural networks. In Ranzato, M., Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 34, pp. 29768–29779. Curran Associates,
Inc., 2021.

Kendall, A. and Gal, Y. What uncertainties do we need in
bayesian deep learning for computer vision? Advances
in neural information processing systems, 30, 2017.

Khodayari, A., Ghaffari, A., Ameli, S., and Flahatgar, J. A
historical review on lateral and longitudinal control of
autonomous vehicle motions. In International Conference
on Mechanical & Electrical Technology, 2010.

Kishi, R. M., Trojahn, T. H., and Goularte, R. Correlation
based feature fusion for the temporal video scene seg-
mentation task. Multimedia Tools & Applications, 78(11):
15623–15646, 2019.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In NeurIPS, volume 25, 2012.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. In NeurIPS, 2017.

Le, Q. and Mikolov, T. Distributed representations of sen-
tences and documents. In ICML, pp. 1188–1196. PMLR,
2014.

Lee, C. and van der Schaar, M. A variational information
bottleneck approach to multi-omics data integration. In
International Conference on Artificial Intelligence and
Statistics, pp. 1513–1521. PMLR, 2021.

Luo, M., Chen, F., Hu, D., Zhang, Y., Liang, J., and Feng,
J. No fear of heterogeneity: Classifier calibration for
federated learning with non-iid data. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems, volume 34, pp. 5972–5984. Curran Associates,
Inc., 2021.

MacKay, D. J. Bayesian interpolation. Neural computation,
4(3):415–447, 1992.

Mattei, P.-A. and Frellsen, J. Miwae: Deep generative
modelling and imputation of incomplete data sets. In
ICML, pp. 4413–4423. PMLR, 2019.

Minderer, M., Djolonga, J., Romijnders, R., Hubis, F., Zhai,
X., Houlsby, N., Tran, D., and Lucic, M. Revisiting the
calibration of modern neural networks. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Process-
ing Systems, volume 34, pp. 15682–15694. Curran Asso-
ciates, Inc., 2021.

Molchanov, D., Ashukha, A., and Vetrov, D. P. Variational
dropout sparsifies deep neural networks. In ICML, 2017.

Moon, J., Kim, J., Shin, Y., and Hwang, S. Confidence-
aware learning for deep neural networks. In ICML, 2020.

10



Calibrating Multimodal Learning

Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P.,
and Dokania, P. Calibrating deep neural networks using
focal loss. In NeurIPS, 2020.

Müller, R., Kornblith, S., and Hinton, G. E. When does
label smoothing help? In NeurIPS, 2019.

Neal, R. M. Bayesian learning for neural networks. Springer
Science & Business Media, 2012.

Ning, Q., Dong, W., Li, X., Wu, J., and Shi, G. Uncertainty-
driven loss for single image super-resolution. In Ran-
zato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems, volume 34, pp. 16398–16409. Cur-
ran Associates, Inc., 2021.

Pan, T.-Y., Zhang, C., Li, Y., Hu, H., Xuan, D., Changpinyo,
S., Gong, B., and Chao, W.-L. On model calibration for
long-tailed object detection and instance segmentation. In
Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems, volume 34, pp. 2529–2542. Curran
Associates, Inc., 2021.

Pérez-Rúa, J.-M., Vielzeuf, V., Pateux, S., Baccouche, M.,
and Jurie, F. Mfas: Multimodal fusion architecture search.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 6966–6975,
2019.

Perkins, S. and Theiler, J. Online feature selection using
grafting. In ICML, 2003.

Perrin, R. J., Fagan, A. M., and Holtzman, D. M. Mul-
timodal techniques for diagnosis and prognosis of
alzheimer’s disease. Nature, 461(7266):916–922, 2009.

Qaddoum, K. and Hines, E. L. Reliable yield prediction
with regression neural networks. In WSEAS international
conference on systems theory and scientific computation,
2012.

Qi, X., Liao, R., Jia, J., Fidler, S., and Urtasun, R. 3d
graph neural networks for rgbd semantic segmentation.
In Proceedings of the IEEE International Conference on
Computer Vision, pp. 5199–5208, 2017.

Qin, Y., Wang, X., Beutel, A., and Chi, E. Improving calibra-
tion through the relationship with adversarial robustness.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.,
and Vaughan, J. W. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 34, pp. 14358–14369.
Curran Associates, Inc., 2021.

Rahaman, R. and thiery, a. Uncertainty quantification
and deep ensembles. In Ranzato, M., Beygelzimer, A.,

Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.), Ad-
vances in Neural Information Processing Systems, vol-
ume 34, pp. 20063–20075. Curran Associates, Inc., 2021.

Ritter, H., Kukla, M., Zhang, C., and Li, Y. Sparse un-
certainty representation in deep learning with inducing
weights. In Ranzato, M., Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 6515–
6528. Curran Associates, Inc., 2021.

Sahoo, R., Zhao, S., Chen, A., and Ermon, S. Reliable
decisions with threshold calibration. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems, volume 34, pp. 1831–1844. Curran Associates,
Inc., 2021.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. ICLR, 2015.

Singh, A., Kempe, D., and Joachims, T. Fairness in rank-
ing under uncertainty. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.), Ad-
vances in Neural Information Processing Systems, vol-
ume 34, pp. 11896–11908. Curran Associates, Inc., 2021.

Slack, D., Hilgard, A., Singh, S., and Lakkaraju, H. Reliable
post hoc explanations: Modeling uncertainty in explain-
ability. In Ranzato, M., Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 9391–
9404. Curran Associates, Inc., 2021.

Song, S., Lichtenberg, S. P., and Xiao, J. Sun rgb-d: A rgb-d
scene understanding benchmark suite. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 567–576, 2015.

Soni, J. and Goodman, R. A mind at play: how Claude Shan-
non invented the information age. Simon and Schuster,
2017.

Stadler, M., Charpentier, B., Geisler, S., Zügner, D., and
Günnemann, S. Graph posterior network: Bayesian pre-
dictive uncertainty for node classification. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Process-
ing Systems, volume 34, pp. 18033–18048. Curran Asso-
ciates, Inc., 2021.

Sun, Y., Mai, S., and Hu, H. Learning to balance the learning
rates between various modalities via adaptive tracking
factor. IEEE Signal Processing Letters, 28:1650–1654,
2021.

11



Calibrating Multimodal Learning

Tian, J., Yung, D., Hsu, Y.-C., and Kira, Z. A geometric
perspective towards neural calibration via sensitivity de-
composition. In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W. (eds.), Advances in
Neural Information Processing Systems, volume 34, pp.
26358–26369. Curran Associates, Inc., 2021.

Toneva, M., Sordoni, A., Combes, R. T. d., Trischler, A.,
Bengio, Y., and Gordon, G. J. An empirical study of
example forgetting during deep neural network learning.
arXiv preprint arXiv:1812.05159, 2018.

Upadhyay, U., Chen, Y., and Akata, Z. Robustness via
uncertainty-aware cycle consistency. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Process-
ing Systems, volume 34, pp. 28261–28273. Curran Asso-
ciates, Inc., 2021.

van Amersfoort, J., Smith, L., Teh, Y. W., and Gal, Y. Uncer-
tainty estimation using a single deep deterministic neural
network. In ICML, 2020.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The caltech-ucsd birds-200-2011 dataset. 2011.

Wald, Y., Feder, A., Greenfeld, D., and Shalit, U. On
calibration and out-of-domain generalization. In Ranzato,
M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems, volume 34, pp. 2215–2227. Curran Associates,
Inc., 2021.

Wang, W., Tran, D., and Feiszli, M. What makes training
multi-modal classification networks hard? In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12695–12705, 2020.

Wang, Y. and Zou, S. Online robust reinforcement learning
with model uncertainty. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 34, pp. 7193–7206. Curran Associates, Inc., 2021.

Wang, Y., Shen, Y., Liu, Z., Liang, P. P., Zadeh, A., and
Morency, L.-P. Words can shift: Dynamically adjusting
word representations using nonverbal behaviors. In AAAI,
2019.

Wu, M. and Goodman, N. Multimodal generative models
for scalable weakly-supervised learning. NeurIPS, 31,
2018.
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Figure 5: Illustration of generating S and T.

To compute this score in practice, following the prior methods (Moon et al., 2020; Toneva et al., 2018) we initialize S as the
complete modalities, and obtain T by randomly removing a modality from S. Then T is regarded as S for another confidence
ranking pair and we repeat this process until there is only one modality remained in T.

B. Experiments Details
B.1. Dataset Details

We evaluate the proposed method on diverse datasets, including data with multiple modalities and multiple types of features.
◦ YaleB: Similar to previous work (Georghiades et al., 2002), we also use a subset of this face image dataset, which contains
650 facial images, 10 classes and 3 different types of features. ◦ Handwritten (Perkins & Theiler, 2003): This is a database
of handwritten digits which contains 2, 000 images, 10 classes, 6 types of features. ◦ CUB (Wah et al., 2011): Following
CPM-Nets (Zhang et al., 2019), we use a subset of this dataset, which contains first 10 classes of original dataset and 2
modalities (deep visual feature and text feature) are obtained by GoogleNet and doc2vec (Le & Mikolov, 2014). ◦ Animal:
This dataset contains 10, 158 images, 50 classes, and 2 types of features (deep visual feature from DECAF (Krizhevsky
et al., 2012) and VGG19 (Simonyan & Zisserman, 2015)). ◦ TUANDROMD (Borah et al., 2020): The dataset contains
4, 465 instances, 2 classes and 2 types of modalities.

B.2. Experiment Setting

Type-I: For CPM-Nets and the first five datasets(i.e.,YaleB, Handwritten, CUB and Animal), we follow the author’s imple-
mentation (Zhang et al., 2019): the dimensionality of latent representation is 150. Parameter lambda for cub/animal/hand-
written/yaleB/tuandromd is set as 5/45/45/10/5. The dimensionalities of input, hidden layers are 128 and 300. We use
Adam optimizer to train all CPM-Nets models with the learning rate of 10−2 and no additional regularization term. For
Tuandromd dataset, we tune the dimensionality of latent representation to 512. The dimensionalities of input and hidden
layers are both 512. We use Adam optimizer to train CPM-Net with L2-regularization term. Type-II: For MIWAE, we
train the encoder, decoder and classifier respectively. The number of hidden units of them is all 128. Parameter lambda
for cub/animal/hand-written/yaleB/tuandromd are set as 15/25/10/35/75 for best performance. The dimensionalities of the
latent space are 64. We use Adam optimizer to train the encoder and decoder with a learning rate of 10−2. Then we train the
encoder, decoder and classifier altogether for another with a learning rate of 10−3. As same as prior work (Corbière et al.,
2019), we evaluated the performance according to Accuracy (%), NLL (10−1), AURC (10−3), and E-AURC (10−3).
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Table 4: Accuracy performance comparison when some of the modalities is blurred (Type I).

Dataset Noise on CML ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5

YaleB

{1} ✗ 97.43± 1.58 96.92± 1.88 96.41± 2.20 94.10± 1.31 92.82± 1.31
✓ 98.46± 1.0998.46± 1.0998.46± 1.09 98.20± 1.3198.20± 1.3198.20± 1.31 96.15± 1.8896.15± 1.8896.15± 1.88 94.62± 1.8894.62± 1.8894.62± 1.88 93.59± 1.3093.59± 1.3093.59± 1.30

{2} ✗ 95.13± 0.72 94.10± 1.31 92.57± 0.73 92.05± 1.45 91.54± 1.66
✓ 96.92± 1.2696.92± 1.2696.92± 1.26 95.90± 2.0295.90± 2.0295.90± 2.02 94.61± 2.8894.61± 2.8894.61± 2.88 93.33± 2.5493.33± 2.5493.33± 2.54 93.08± 3.1493.08± 3.1493.08± 3.14

{3} ✗ 94.87± 0.96 94.87± 0.96 94.10± 0.96 92.82± 1.81 92.05± 1.31
✓ 96.92± 1.8896.92± 1.8896.92± 1.88 97.18± 1.9297.18± 1.9297.18± 1.92 96.15± 1.8896.15± 1.8896.15± 1.88 94.87± 2.5494.87± 2.5494.87± 2.54 94.36± 2.0294.36± 2.0294.36± 2.02

{1, 2} ✗ 96.67± 2.61 95.13± 3.46 91.28± 2.83 88.72± 3.10 86.41± 3.10
✓ 97.69± 0.6397.69± 0.6397.69± 0.63 95.39± 2.2695.39± 2.2695.39± 2.26 92.56± 2.0292.56± 2.0292.56± 2.02 89.72± 2.2189.72± 2.2189.72± 2.21 86.66± 1.8186.66± 1.8186.66± 1.81

{1, 3} ✗ 97.43± 0.96 97.69± 1.66 97.43± 1.81 97.18± 2.20 96.15± 2.26
✓ 98.46± 1.0998.46± 1.0998.46± 1.09 98.46± 1.2698.46± 1.2698.46± 1.26 98.46± 1.6698.46± 1.6698.46± 1.66 96.92± 1.8896.92± 1.8896.92± 1.88 96.67± 2.2096.67± 2.2096.67± 2.20

{2, 3} ✗ 94.62± 1.08 93.85± 1.25 90.26± 2.54 87.95± 2.83 86.67± 2.38
✓ 96.41± 1.8196.41± 1.8196.41± 1.81 95.64± 1.9295.64± 1.9295.64± 1.92 93.84± 3.3293.84± 3.3293.84± 3.32 91.28± 3.1091.28± 3.1091.28± 3.10 89.49± 3.1689.49± 3.1689.49± 3.16

{1, 2, 3} ✗ 96.15± 1.88 96.41± 3.16 93.85± 4.40 87.69± 8.21 84.10± 10.32
✓ 97.43± 1.8197.43± 1.8197.43± 1.81 97.43± 1.9297.43± 1.9297.43± 1.92 93.85± 4.4093.85± 4.4093.85± 4.40 87.69± 7.6187.69± 7.6187.69± 7.61 82.56± 9.2682.56± 9.2682.56± 9.26

Hand-
written

{1} ✗ 97.18± 1.92 95.38± 1.25 93.34± 1.31 92.57± 1.58 91.28± 1.31
✓ 98.46± 1.2698.46± 1.2698.46± 1.26 95.90± 1.9295.90± 1.9295.90± 1.92 93.85± 1.8893.85± 1.8893.85± 1.88 93.08± 1.6693.08± 1.6693.08± 1.66 92.31± 0.6392.31± 0.6392.31± 0.63

{2} ✗ 88.46± 1.66 87.18± 1.31 86.92± 1.09 86.92± 1.09 86.92± 1.09
✓ 90.77± 3.3390.77± 3.3390.77± 3.33 90.26± 3.5790.26± 3.5790.26± 3.57 89.75± 3.8589.75± 3.8589.75± 3.85 89.75± 3.8489.75± 3.8489.75± 3.84 89.75± 3.8489.75± 3.8489.75± 3.84

{3} ✗ 85.90± 1.92 85.13± 1.81 84.87± 1.45 84.62± 1.66 84.62± 1.66
✓ 88.97± 2.5488.97± 2.5488.97± 2.54 88.21± 2.6188.21± 2.6188.21± 2.61 87.69± 2.7487.69± 2.7487.69± 2.74 87.69± 3.3287.69± 3.3287.69± 3.32 87.44± 3.1087.44± 3.1087.44± 3.10

{1, 2} ✗ 88.97± 3.68 83.08± 3.50 78.97± 1.92 77.69± 2.74 75.90± 3.57
✓ 88.97± 4.0488.97± 4.0488.97± 4.04 83.59± 2.9783.59± 2.9783.59± 2.97 80.51± 3.4680.51± 3.4680.51± 3.46 77.18± 4.2877.18± 4.2877.18± 4.28 74.10± 3.8474.10± 3.8474.10± 3.84

{1, 3} ✗ 91.54± 1.09 91.28± 3.16 88.97± 5.41 87.43± 5.83 85.64± 6.42
✓ 93.59± 2.3893.59± 2.3893.59± 2.38 91.79± 3.6891.79± 3.6891.79± 3.68 88.97± 4.0488.97± 4.0488.97± 4.04 86.93± 4.9986.93± 4.9986.93± 4.99 85.39± 4.9185.39± 4.9185.39± 4.91

{2, 3} ✗ 63.59± 8.00 59.74± 7.0059.74± 7.0059.74± 7.00 57.69± 5.9957.69± 5.9957.69± 5.99 56.67± 5.9456.67± 5.9456.67± 5.94 55.90± 5.4955.90± 5.4955.90± 5.49
✓ 64.36± 7.4964.36± 7.4964.36± 7.49 58.46± 6.37 56.67± 6.10 55.64± 6.04 54.87± 6.29

{1, 2, 3} ✗ 54.87± 10.68 37.95± 6.9237.95± 6.9237.95± 6.92 29.48± 4.7629.48± 4.7629.48± 4.76 24.36± 4.0424.36± 4.0424.36± 4.04 22.31± 4.1222.31± 4.1222.31± 4.12
✓ 57.18± 11.4157.18± 11.4157.18± 11.41 35.64± 4.80 26.67± 2.54 22.82± 2.54 20.77± 1.09

TUAND-
ROMD

{1} ✗ 84.77± 0.55 80.47± 0.99 76.53± 1.11 72.65± 0.76 70.17± 0.66
✓ 86.50± 0.5986.50± 0.5986.50± 0.59 82.46± 0.7782.46± 0.7782.46± 0.77 78.30± 1.1878.30± 1.1878.30± 1.18 74.92± 1.3974.92± 1.3974.92± 1.39 72.45± 1.3372.45± 1.3372.45± 1.33

{2} ✗ 86.56± 0.27 85.71± 0.48 84.14± 0.58 82.35± 0.86 80.85± 1.05
✓ 88.87± 0.2288.87± 0.2288.87± 0.22 88.74± 0.2888.74± 0.2888.74± 0.28 88.58± 0.6388.58± 0.6388.58± 0.63 88.15± 0.6588.15± 0.6588.15± 0.65 87.93± 0.6787.93± 0.6787.93± 0.67

{1, 2} ✗ 84.88± 1.19 80.72± 1.02 76.60± 0.75 73.15± 1.10 70.35± 1.25
✓ 87.41± 3.4087.41± 3.4087.41± 3.40 82.78± 1.1482.78± 1.1482.78± 1.14 79.28± 1.0079.28± 1.0079.28± 1.00 76.30± 1.1176.30± 1.1176.30± 1.11 73.82± 1.3573.82± 1.3573.82± 1.35

B.3. Robustness Evaluation

We evaluate models in terms of accuracy under Gaussian noise (i.e., zero mean and varying variance ϵ), and “Noise On”
indicates which modality is noised (e.g., {1} indicates the first modality is noised). In addition to the performance on the
challenging datasets (CUB and Animal) in the main text (Table 3), we show more other results (Table 4 5). It is clear that
the models equipped with CML are more robust to noise, especially when the noise is much heavier.
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Table 5: Accuracy performance comparison when some of the modalities is blurred (Type II).

Dataset Noise Noise on CML ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 2.0 ϵ = 2.5

YaleB

{1} ✗ 95.90± 2.54 94.87± 3.22 93.85± 2.88 93.59± 3.16 93.59± 3.16
✓ 97.43± 1.3197.43± 1.3197.43± 1.31 96.15± 2.5196.15± 2.5196.15± 2.51 95.13± 2.9795.13± 2.9795.13± 2.97 94.36± 2.9794.36± 2.9794.36± 2.97 93.85± 3.4693.85± 3.4693.85± 3.46

{2} ✗ 96.15± 2.26 93.33± 3.22 91.03± 2.62 90.26± 2.02 89.23± 2.18
✓ 97.69± 1.2697.69± 1.2697.69± 1.26 96.67± 1.5896.67± 1.5896.67± 1.58 94.10± 2.2094.10± 2.2094.10± 2.20 92.82± 2.8392.82± 2.8392.82± 2.83 92.05± 2.0292.05± 2.0292.05± 2.02

{3} ✗ 98.72± 0.36 96.92± 1.26 96.15± 0.63 96.15± 0.63 95.90± 0.96
✓ 98.72± 0.7398.72± 0.7398.72± 0.73 97.69± 1.0997.69± 1.0997.69± 1.09 97.43± 0.9697.43± 0.9697.43± 0.96 97.18± 1.3197.18± 1.3197.18± 1.31 96.67± 1.5896.67± 1.5896.67± 1.58

{1, 2} ✗ 95.64± 2.83 91.02± 3.46 88.46± 4.53 87.18± 3.46 85.90± 4.09
✓ 96.66± 1.3196.66± 1.3196.66± 1.31 93.59± 2.3893.59± 2.3893.59± 2.38 90.51± 2.9790.51± 2.9790.51± 2.97 86.67± 3.4686.67± 3.4686.67± 3.46 84.62± 3.2684.62± 3.2684.62± 3.26

{1, 3} ✗ 98.46± 0.63 98.46± 1.66 97.69± 1.66 97.43± 1.45 97.18± 1.31
✓ 98.20± 0.7398.20± 0.7398.20± 0.73 97.95± 1.9297.95± 1.9297.95± 1.92 97.69± 1.6697.69± 1.6697.69± 1.66 98.20± 1.5898.20± 1.5898.20± 1.58 97.69± 1.6697.69± 1.6697.69± 1.66

{2, 3} ✗ 97.43± 0.36 95.89± 0.36 95.38± 0.62 94.62± 0.62 92.82± 0.73
✓ 98.72± 0.3698.72± 0.3698.72± 0.36 97.69± 1.0997.69± 1.0997.69± 1.09 96.66± 0.7396.66± 0.7396.66± 0.73 95.38± 0.6295.38± 0.6295.38± 0.62 94.61± 1.6694.61± 1.6694.61± 1.66

{1, 2, 3} ✗ 97.69± 0.63 95.64± 0.36 93.08± 1.09 89.23± 1.66 82.31± 1.26
✓ 98.46± 0.6398.46± 0.6398.46± 0.63 97.18± 1.3197.18± 1.3197.18± 1.31 95.64± 0.9695.64± 0.9695.64± 0.96 92.56± 2.5492.56± 2.5492.56± 2.54 88.46± 2.2788.46± 2.2788.46± 2.27

CUB

{1} ✗ 91.11± 1.04 86.94± 2.83 83.61± 3.93 80.83± 4.14 79.17± 3.79
✓ 93.33± 1.8093.33± 1.8093.33± 1.80 90.83± 2.4590.83± 2.4590.83± 2.45 87.50± 3.6087.50± 3.6087.50± 3.60 85.56± 4.3885.56± 4.3885.56± 4.38 81.11± 4.5381.11± 4.5381.11± 4.53

{2} ✗ 91.11± 0.40 91.95± 0.39 91.11± 0.40 89.72± 0.39 88.61± 0.79
✓ 93.61± 1.0493.61± 1.0493.61± 1.04 92.78± 1.0492.78± 1.0492.78± 1.04 92.50± 1.8092.50± 1.8092.50± 1.80 91.67± 2.9691.67± 2.9691.67± 2.96 91.39± 3.2291.39± 3.2291.39± 3.22

{1, 2} ✗ 92.78± 1.97 88.61± 1.42 85.83± 1.80 79.72± 2.83 74.17± 4.46
✓ 94.72± 2.1994.72± 2.1994.72± 2.19 92.22± 3.7592.22± 3.7592.22± 3.75 90.00± 4.4690.00± 4.4690.00± 4.46 86.11± 4.1086.11± 4.1086.11± 4.10 79.17± 4.9179.17± 4.9179.17± 4.91

Animal

{1} ✗ 86.61± 0.20 85.81± 0.36 84.82± 1.02 83.77± 1.29 82.16± 2.32
✓ 87.20± 0.1887.20± 0.1887.20± 0.18 87.01± 0.1887.01± 0.1887.01± 0.18 86.60± 0.2086.60± 0.2086.60± 0.20 86.03± 0.0486.03± 0.0486.03± 0.04 85.42± 0.2985.42± 0.2985.42± 0.29

{2} ✗ 86.33± 0.54 85.62± 0.61 84.84± 0.95 83.04± 1.24 81.34± 1.73
✓ 87.04± 0.0887.04± 0.0887.04± 0.08 86.64± 0.2686.64± 0.2686.64± 0.26 85.95± 0.4285.95± 0.4285.95± 0.42 84.78± 0.1784.78± 0.1784.78± 0.17 82.71± 0.2482.71± 0.2482.71± 0.24

{1, 2} ✗ 86.01± 0.17 84.80± 0.81 83.17± 1.65 80.92± 2.77 77.42± 4.14
✓ 87.04± 0.4287.04± 0.4287.04± 0.42 86.50± 0.1586.50± 0.1586.50± 0.15 85.38± 0.3485.38± 0.3485.38± 0.34 83.84± 0.6583.84± 0.6583.84± 0.65 81.67± 0.7581.67± 0.7581.67± 0.75

TUAND-
ROMD

{1} ✗ 81.14± 0.70 78.21± 0.92 75.39± 1.09 73.21± 1.46 71.71± 1.26
✓ 81.99± 1.9981.99± 1.9981.99± 1.99 78.79± 2.4278.79± 2.4278.79± 2.42 76.37± 2.5776.37± 2.5776.37± 2.57 74.36± 2.6374.36± 2.6374.36± 2.63 73.19± 2.6073.19± 2.6073.19± 2.60

{2} ✗ 84.19± 0.82 84.43± 0.48 84.46± 0.35 84.32± 0.45 84.21± 0.44
✓ 84.88± 1.6284.88± 1.6284.88± 1.62 84.73± 1.8984.73± 1.8984.73± 1.89 84.84± 1.7684.84± 1.7684.84± 1.76 84.39± 0.8984.39± 0.8984.39± 0.89 84.97± 1.5284.97± 1.5284.97± 1.52

{1, 2} ✗ 83.56± 1.23 80.85± 1.30 77.85± 1.53 75.90± 2.07 74.08± 2.22
✓ 83.99± 1.8783.99± 1.8783.99± 1.87 81.48± 2.3081.48± 2.3081.48± 2.30 78.50± 2.3078.50± 2.3078.50± 2.30 76.73± 2.1976.73± 2.1976.73± 2.19 75.23± 2.2075.23± 2.2075.23± 2.20

B.4. Additional Results for Robustness Estimation

Limited by space, we show the performance of model equipped with CML on YaleB and Handwritten. From Table 6, the
classification models equipped with CML consistently outperforms their counterpart validating the rationality of CML
principle.

B.5. Confidence Estimation for Complete Inputs

We show the confidence estimation for complete inputs, as shown in Fig. 6, we can find that the confidence estimation of
original model and CML model are very similar. To prevent the model from being over-confident when model predicts a
wrong prediction, the regularization will not be added when prediction of complete input is wrong. From the bottom figures,
we can find CML regularization alleviates the problem that model increases the confidence when one modality is removed.

Proof of Lemma 3.3: if we have VRRCML < VRRORIG, then we have E
(
ConfCML(x

(T))
)
− E

(
ConfCML(x

(S))
)
≤
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Table 6: Accuracy performance comparison for whether the model is equipped with the cma regularization term on additional
dataset (i.e., whether λ is set to 0).

Method Dataset CML
Accuracy

(↑)
NLL
(↓)

AURC
(↓)

E-AURC
(↓)

Type I

YaleB
✗ 95.84± 0.78 21.98± 0.05 3.00± 1.38 2.08± 1.37
✓ 97.69± 1.09 21.98± 0.05 1.46± 1.51 1.12± 1.32

Improve △ 1.85 0.00 △ 1.54 △ 0.96

Hand-
written

✗ 89.00± 3.64 20.30± 0.25 35.83± 20.43 28.80± 15.49
✓ 93.60± 0.60 20.06± 0.11 11.00± 6.17 8.90± 5.80

Improve △ 4.60 △ 0.14 △ 14.83 △ 19.90

Type II

YaleB
✗ 95.69± 2.10 1.80± 0.71 5.50± 2.86 4.32± 2.32
✓ 97.84± 0.58 1.11± 0.49 5.02± 6.39 4.76± 6.26

Improve △ 2.15 △ 0.69 △ 0.48 ▽ 0.44

Hand-
written

✗ 98.40± 0.64 0.49± 0.12 0.32± 0.16 0.16± 0.12
✓ 99.05± 0.19 0.50± 0.10 0.18± 0.07 0.14± 0.08

Improve △ 0.65 0.00 △ 0.14 △ 0.02
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Figure 6: Confidence estimation on complete inputs. We estimate the confidence on complete inputs (top) and the confidence
when one modality is removed (bottom). We can find CML regularization keeps the confidence estimation on complete
input but alleviate the over-confidence when one modality is removed, which indicates the proposed method calibrates the
multimodal model by rethinking the relationship between the modalities.

E
(
ConfORIG(x

(T))
)
− E

(
ConfORIG(x

(S))
)
, then we have:

E
(
ConfCML(x

(T))
)
≤ E

(
ConfORIG(x

(T))
)
,

subject to: E
(
ConfCML(x

(T))
)
= E

(
ConfORIG(x

(T))
) (7)
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During the train stage, we evaluate the confidence difference between the E
(
ConfCML(x

(T))
)

and E
(
ConfORIG(x

(T))
)
,

i.e., E
(∣∣ConfCML(x

(T))− ConfORIG(x
(T))

∣∣). We find the confidence difference between the E
(
ConfCML(x

(T))
)

and
E
(
ConfORIG(x

(T))
)

is very small (less than 0.1%), which implies that the confidence estimation on complete inputs are
very close.

B.6. Confidence Estimation when Just Penalizing the Confidence Difference
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Figure 7: Confidence estimation when penalizing the confidence difference (Eq. 3).

Forcing the confidence for x(T) to be smaller than the confidence for x(S) strictly (Eq. 3) will lead to a very small confidence
for x(T) and will make the model estimate an extremely small confidence for each modality, which contradicts the fact
that the model sometimes can still make correct predictions confidently when one modality is removed. A flexible ranking
regularization makes it more suitable for real data.

C. Analysis of the Training Time and Space Complexity
Ideally, CML should be computed over all possible pairs at each model update. However, it is computationally expensive, so
we employ an approximation scheme following (Toneva et al., 2018) for reducing the costs. For example, given samples
with 4 modalities (a, b, c, d), we need to sample 3 pairs (a/ab, ab/abc, abc/abcd) to approximate CML loss, and indexes are
shuffled for different epochs. So if the complexity of the traditional model is o(n), the complexity of our method will be
o((k-1)n), where k indicates the number of modalities. It should be pointed out that compared models in our experiments are
also equipped with sampling (to avoid the influence of sampling), and the complexity of compared methods is also o((k-1)n).
We report the training time (seconds) for the same training epochs (Platform: RTX 3090×8, CUDA Version: 11.2). It is
observed that the original model and model equipped with CML have the same level of computational complexity.

Table 7: Training time (Platform: RTX 3090 ×8).

Method CML TUANDROMD YaleB Handwritten CUB Animal

Type I ✗ 245.3 1574.6 141.5 351.6 1582.7
✓ 297.6 1210.2 191.2 348.5 1641.3

Type II ✗ 1447.7 703.3 233.2 565.2 717.8
✓ 1489.1 662.9 210.8 781.7 720.3

D. Algorithms
In addition to the general algorithm shown in the main text, we show the specific algorithms corresponding to different types
of algorithms and add more comments for better understanding.

D.1. CML for Imputation-independent Model
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Algorithm 2 CML for the imputation-independent model

Given dataset D =
{
{xm

i }Mm=1, yi
}N

i=1
, classifier f , and classification loss function LCL, Coefficient λ of CML, epochs

for training the classifier epoch
for e = 1, . . . , epoch do
S←M
Make the prediction via input S
LCL ← LCL(x(S))
LCML ← 0
for m = M − 1, . . . , 1 do

Randomly erase a modality of S and set it as T
Make the prediction via input T
LCL ← LCL + LCL(x(T))
LCML ← LCML +max

(
0,Conf(x(T))− Conf(x(S))

)
end for
L = 1

ML
CL+λLCML

Update the parameters of the classification model with L
end for
return the classifier fCL

D.2. CML for Imputation-dependent Model

For imputation-dependent method, we use MIWAE to train the reconstruction model first, then we use the reconstructed
modalities to train the classifier.

For reconstruction-based method, the missing modalities need to be reconstructed first, so the process can be divided into
two stages.

E. Discussion
E.1. Class-imbalanced

◦Why the CML can still work when the training data is class-imbalanced (e.g., long-tailed)?

CML can improve performance when the data for the training model is class-imbalanced since it increases the confidence
of the minority classes. For a trustworthy model, the model should treat the majority and minority classes equally during
the test. CML requires the model to make predictions fairly regardless of whether the majority and minority classes of
the samples belong. On the contrary, the original model tends to predict lower confidence for the minority classes than
the majority classes. And the improvements on the class-imbalanced dataset Animal (data distribution is shown in Fig. 8)
validate the effectiveness.

Animal is a class-imbalanced real-world dataset, the improvement shows CML can also deal with applications that suffer
from class-imbalanced. The original model tends to predict lower confidence for the minority classes than the majority
classes, which is unfair to minority classes. CML requires the model to make predictions fairly regardless of whether the
majority and minority classes of the samples belong.

E.2. Pair-wise Sampling

The exact computation of the proposed loss needs to enumerate all modality set pairs (i.e., T and S), which is typically
computational expensive sometimes. Therefore, we introduce a strategy (Moon et al., 2020; Toneva et al., 2018) to
approximate this loss by sampling modality set pairs and find this strategy works well in practice. If the complexity of the
traditional model is o(n), the complexity of our method will be o((k-1)n), where k indicates the number of modalities.
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Algorithm 3 CML for the imputation-dependent model

Given dataset D =
{
{xm

i }Mm=1, yi
}N

i=1
, reconstruction network fre and classifier fCL, reconstruction loss function Lre,

Coefficient λ of CML, epochs for training the reconstruction net epochre and classifier epochCL
for e1 = 1, . . . , epochre do

Reconstruct the modalities via reconstruction model
Compute the reconstruction loss by Lre

Update the parameters of the reconstruction model
end for
for e2 = 1, . . . , epochCL do
S←M
LCE ← LCE(x(S))
LCML ← 0
for m = M − 1, . . . , 1 do

Randomly erase a modality of S and set it as T
Reconstruct the erased modalities via reconstruction model and add them to x(T)

Compute the classification loss LCE(x(T)) with Cross-Entropy loss function
LCE ← LCE + LCE(x(T))
LCML ← LCML +max

(
0,Conf(x(T))− Conf(x(S))

)
end for
L = 1

ML
CE+λLCML

Update the parameters of the classification model with L
end for
return the reconstruction model fre and classifier fCL

F. CML being Deployed in Advanced Multimodal Models
MMTM is a state-of-the-art method in multimodal classification which is selected as a representative method by (Wu et al.,
2022) and originally proposed by (Joze et al., 2020). NYU Depth V2 and SUN RGB-D are two widely used multimodal
datasets for RGB-D scene recognition. ◦ NYUD2: Following previous work (Georghiades et al., 2002), we use a reorganized
version of this dataset, which contains 1449 samples, 10 scene classes. ◦ SUN RGB-D (Perkins & Theiler, 2003): This is a
standard database of RGB-D scene recognition. Similar to previous work (Georghiades et al., 2002), we also use a subset of
this dataset which contains the 19 major scene categories and 9504 samples in total. Following the author’s implementation,
We employ pre-trained ResNet-18 as the backbone network for MMTM. The input images are fed into depth and visual
block first. Then the rgb and depth features are fused by MMTM before the final prediction. We add CML regularization to
the softmax output before and after MMTM fusion process. In our experiment, the squeeze ratio of MMTM Module is set to
16. The dimensionalities of rgb and depth feature are both 512.

G. Related Work Details
Uncertainty estimation provides a way for trustworthy prediction (Abdar et al., 2021). Uncertainty can be used as an
indicator of whether the predictions given by models are prone to be wrong. Many uncertainty-based models have been
proposed in the past decades, such as Bayesian neural networks (Neal, 2012; MacKay, 1992; Denker & LeCun, 1990;
Kendall & Gal, 2017), Dropout (Molchanov et al., 2017), and Deep ensembles (Lakshminarayanan et al., 2017; Havasi et al.,
2020). Built upon RBF networks, DUQ (van Amersfoort et al., 2020) is able to identify the out-of-distribution samples,
which uses distance to represent the prediction uncertainty. Prediction confidence is always referred to in classification
models, which expects the predicted class probability to be consistent with the empirical accuracy. Models are frequently
overconfident because softmax probabilities are computed with the fast-growing exponential function (Hendrycks & Gimpel,
2017), so many methods focus on smoothing the prediction probabilities distribution, such as Label smoothing (Müller et al.,
2019). The recent approach employs the focal loss to calibrate the deep neural networks (Mukhoti et al., 2020). A recent
work (Corbière et al., 2019) introduces True Class Probability (TCP) to ensure the low confidence for the failure predictions.
Temperature scaling (TS) (Guo et al., 2017) is a well-known post-hoc confidence calibration method, which aims to re-scale
the output probability by manipulating the softmax inputs, i.e., the logits.
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Figure 8: Illustration of data distribution of Animal dataset (the number of samples for every classes).

Recently, there have been a wide range of research interests in handling missing modalities for multimodal learning,
including imputation-independent methods (Zhang et al., 2019) and imputation-dependent methods (Mattei & Frellsen,
2019; Wu & Goodman, 2018). Imputation-independent methods have no need to reconstruct the missing modalities
and make classification via an uniform representation. For imputation-dependent methods (based on reconstruction), the
strategy model can be split into two stages, reconstructing the missing modalities and making classification according to the
reconstructed modalities. CPM-Nets (Zhang et al., 2019) is an advanced method which can guarantee the performance by
fully exploiting all samples and all modalities to produce structured representation for interpretability, and the method has
been extended and deployed into medical domain (Lee & van der Schaar, 2021). MIWAE (Mattei & Frellsen, 2019) is a
typical reconstruction model in multimodal classification, whose objective is a lower bound of the likelihood of the observed
data that can be tight in the limit of very large computational power.

H. Refinement and modification following peer review
H.1. Underlying reason of why the confidence violates the condition

(1) The most likely reason is the "greedy" nature of multimodal learning. Prior research (Han et al., 2021) has acknowledged
that multimodal learning models often exhibit over-reliance on certain modalities while under-training on others, resulting in
over-confidence on one input modality and an increase in confidence (statistically) when other modalities are removed.

(2) To verify this hypothesis, we assessed whether the degree of "greediness" (as defined in (Han et al., 2021)) and VRR
are positively correlated using the Pearson correlation coefficient. We trained models with various seeds and consistently
observed confidence violations in "greedy" models, as shown in the table below. Pearson correlation coefficient between
VRR and Greedy (Wu et al., 2022) on SOTA method.

(3) This finding supports the notion that the proposed regularization can enhance multimodal models by mitigating their
inherent greediness. Future research will explore the theoretical link between VRR and Greedy.

H.2. Differences from traditional calibration metrics

The proposed metric is distinct from external metrics that utilize class labels, as it is the first internal metric designed to
assess calibration. The differences between external metrics and internal metrics can be analogous to clustering metrics.

(1) The proposed metric is an internal metric, while ECE and Brier score are external metrics.

(2) External metrics using class labels evaluate whether the model’s confidence and accuracy are aligned from a global
classification perspective. The proposed internal metric, however, is labels-free and assesses whether a model inherently
meets certain criteria.

(3) We anticipate that additional internal metrics will be introduced in the future, analogous to the clustering field, and this
work will benefit the community.
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Table 8: Accuracy performance comparison of MMTM when some of the modalities is corrupted with color jitter (i.e.,
randomly change the brightness, contrast, saturation and hue of an image with jitter factor ϵ.).

Dataset Noise on CML ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.5

NYUD-2

{1}
✗ 65.72± 0.70 64.13± 1.78 63.79± 1.79 60.89± 1.21
✓ 66.64± 1.22 65.41± 0.65 64.31± 0.92 62.26± 1.77

Improve △ 0.92 △ 1.28 △ 0.52 △ 1.37

{2}
✗ 61.34± 0.98 57.98± 0.81 53.98± 2.28 52.26± 3.23
✓ 62.63± 0.60 57.89± 1.56 54.80± 2.90 52.57± 3.38

Improve △ 1.29 ▽ 0.09 △ 0.82 △ 0.31

{1, 2}
✗ 60.43± 0.82 55.17± 0.85 51.01± 2.64 41.52± 4.01
✓ 61.87± 0.93 56.24± 2.22 51.53± 1.91 41.99± 3.37

Improve △ 1.44 △ 1.07 △ 0.52 △ 0.47

SUN-RGBD

{1}
✗ 60.72± 0.58 58.98± 0.72 57.40± 0.75 55.68± 0.95
✓ 61.50± 0.59 59.95± 0.17 57.97± 0.30 57.21± 0.32

Improve △ 0.78 △ 0.97 △ 0.57 △ 1.53

{2}
✗ 60.11± 0.24 58.57± 0.60 57.46± 0.69 55.25± 1.05
✓ 59.90± 0.49 58.44± 0.75 57.25± 0.56 55.34± 0.87

Improve ▽ 0.21 ▽ 0.13 ▽ 0.21 −

{1, 2}
✗ 58.67± 0.42 54.77± 0.44 51.66± 0.64 45.68± 1.35
✓ 58.95± 0.20 54.73± 0.71 51.36± 0.66 45.99± 1.24

Improve △ 0.28 − ▽ 0.30 △ 0.31

H.3. Connection to unbalanced multimodal problem

(1) The proposed method can address the problem of relying on partial modalities, as demonstrated in Table 4 and Table 5 in
Appendix.

(2) The model becomes more robust when one of the modalities is corrupted, which can be considered as unbalanced
multimodal problem.

(3) We evaluate the relationship between the VRR and Greedy (defined in (Wu et al., 2022) which indicates the degree of
over-relying on a certain modality) by calculating the Pearson correlation coefficient according to different seeds. Pearson
correlation coefficients between VRR and Greedy on SOTA method (i.e., MMTM) are 0.940 and 0.915 on NYUD2 and
SUN-RGBD dataset respectively. According to empirical results, confidence violation always occurs with “greedy”.

H.4. Analysis of loss function sampling approach

(1) In practice, enumerating all pairs would involve permutation and combination, making it computationally expensive
(detailed complexity analyses can be found in Appendix E.2).

(2) Hence, we use a sampling strategy to approximate the loss function, as demonstrated in Appendix A. The sampling
approach has been widely used in various methods that encounter the same problem (Toneva et al., 2018; Moon et al., 2020),
and has shown good approximation ability and stability.

(3) In our experiments, we introduce this sampling approach since it is widely used.

H.5. Analysis of hyper parameters

(1) We choose the value of that achieves the best performance on the validation set 1, 5, 10, . . . , 100.

(2) Moreover, as demonstrated in the ablation study (Fig. 4), the proposed regularization is not sensitive to the hyperparameter.
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Table 9: Accuracy performance comparison of MMTM when some of the modalities is corrupted with gaussian noise (i.e.,
zero mean with varying variance ϵ).

Dataset Noise on CML ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.5

NYUD-2

{1}
✗ 64.77± 1.76 63.03± 1.92 61.50± 2.83 58.81± 4.05
✓ 65.26± 1.92 63.98± 1.60 62.94± 1.97 59.88± 3.03

Improve △ 1.49 △ 0.95 △ 1.44 △ 1.07

{2}
✗ 65.41± 1.27 62.17± 1.76 59.08± 1.54 55.75± 2.75
✓ 66.12± 1.10 62.75± 1.26 59.79± 2.23 55.90± 3.38

Improve △ 1.29 △ 0.58 △ 0.71 △ 0.15

{1, 2}
✗ 61.87± 0.82 55.60± 2.61 48.62± 4.32 37.68± 4.94
✓ 63.12± 1.49 57.31± 1.58 49.51± 2.75 37.98± 5.21

Improve △ 1.25 △ 1.71 △ 0.89 △ 0.30

SUN-RGBD

{1}
✗ 60.69± 0.65 58.78± 0.95 56.84± 1.13 53.14± 1.32
✓ 61.00± 0.32 59.31± 0.83 57.47± 0.62 54.77± 1.00

Improve △ 0.31 △ 0.53 △ 0.63 △ 1.63

{2}
✗ 60.93± 0.58 59.25± 0.71 57.55± 1.08 54.81± 1.66
✓ 61.25± 0.59 59.19± 0.68 57.50± 1.27 54.34± 1.93

Improve △ 0.32 − − ▽ 0.47

{1, 2}
✗ 59.16± 0.88 53.56± 1.51 47.22± 2.12 35.90± 2.38
✓ 59.59± 1.09 54.14± 0.58 47.38± 1.47 36.30± 2.39

Improve △ 0.43 △ 0.58 △ 0.16 △ 0.40

Table 10: VRR (%) of test samples (a lower value indicates a better confidence estimation). “✗” indicates the model is not
equipped with the proposed regularization (λ = 0).

Method CML NYUD-2 SUN-RGBD

Type III
✗ 58.09± 4.46 57.09± 1.50
✓ 46.99± 2.89 52.56± 3.49

Improve △ 11.10 △ 4.53

Table 11: Accuracy under different λ

Model Dataset λ = 10.0 λ = 20.0 λ = 30.0 λ = 50.0 λ = 100.0

CPM Animal 81.83± 2.58 82.56± 1.69 82.73± 1.64 82.57± 1.78 82.30± 2.08
CUB 86.67± 4.68 88.33± 4.05 86.33± 5.49 87.17± 3.05 87.17± 3.44

MIWAE Animal 86.91± 0.39 87.40± 0.20 87.41± 0.38 87.24± 0.30 87.32± 0.12
CUB 93.83± 1.63 93.50± 1.78 93.67± 2.02 97.50± 1.33 93.16± 2.07

Promising performance can be achieved with a mild regularization strength, indicating that the proposed regularization is
not sensitive to hyperparameters and can be easily deployed in a wide range of multimodal models using CML.
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