
Published as a conference paper at ICLR 2025

GRAPH ASSISTED OFFLINE-ONLINE DEEP
REINFORCEMENT LEARNING FOR DYNAMIC
WORKFLOW SCHEDULING

Yifan Yang1, Gang Chen1, Hui Ma1, Cong Zhang2,∗, Zhiguang Cao3, Mengjie Zhang1
1Victoria University of Wellington, 2Nanyang Technological University,
3Singapore Management University
{yifan.yang, gang.chen, hui.ma, mengjie.zhang}@ecs.vuw.ac.nz
cong030@e.ntu.edu.sg, zgcao@smu.edu.sg

ABSTRACT

Dynamic workflow scheduling (DWS) in cloud computing presents substantial
challenges due to heterogeneous machine configurations, unpredictable work-
flow arrivals/patterns, and constantly evolving environments. However, exist-
ing research often assumes homogeneous setups and static conditions, limiting
flexibility and adaptability in real-world scenarios. In this paper, we propose a
novel Graph assisted Offline-Online Deep Reinforcement Learning (GOODRL)
approach to building an effective and efficient scheduling agent for DWS. Our
approach features three key innovations: (1) a task-specific graph representation
and a Graph Attention Actor Network that enable the agent to dynamically assign
focused tasks to heterogeneous machines while explicitly considering the future
impact of each machine on these tasks; (2) a system-oriented graph representation
and a Graph Attention Critic Network that facilitate efficient processing of new
information and understanding its impact on the current state, crucial for manag-
ing unpredictable workflow arrivals/patterns in real-time; and (3) an offline-online
method that utilizes imitation learning for effective offline training and applies
gradient control and decoupled high-frequency critic training techniques during
online learning to sustain the agent’s robust performance in rapidly changing en-
vironments. Experimental results demonstrate that GOODRL significantly out-
performs several state-of-the-art algorithms, achieving substantially lower mean
flowtime and high adaptability in various online and offline scenarios.

1 INTRODUCTION

The advent of cloud computing has revolutionized the way computational resources are utilized and
managed, enabling organizations to execute complex workflows efficiently (Jadeja & Modi, 2012;
Marinescu, 2022). Each workflow is typically represented as a Directed Acyclic Graph (DAG) (see
Appendix A), where nodes correspond to tasks and edges represent task dependencies (Deelman
et al., 2015). The goal of Dynamic Workflow Scheduling (DWS) is to assign tasks to heterogeneous
machines to minimize the mean flowtime across a long operating duration (Huang et al., 2022).

DWS is characterized by flexible task assignment across heterogeneous machines, unpredictable
workflow arrivals and patterns, and rapidly changing environments, making it one of the most chal-
lenging scheduling problems studied in the literature (Jayanetti et al., 2024). Despite its practical
importance, DWS has received comparatively less attention previously. In fact, existing methods
often oversimplify or fail to effectively address all these dynamic aspects.

Current approaches to DWS mainly rely on static scheduling heuristics that ignore the complexity
of real-time cloud environments. Hand-crafted heuristics, such as priority dispatching rules (PDRs)
(Topcuoglu et al., 2002; Pham & Fahringer, 2020), are valued for their speed, intuitiveness, and ease
of implementation, but require extensive expertise and time-consuming adjustments. In contrast,

∗corresponding author

1

Published as a conference paper at ICLR 2025

Genetic Programming-based Hyper-Heuristic (GPHH) can automatically design PDRs through it-
erative evaluation-and-evolution, making it a state-of-the-art approach for DWS (Xu et al., 2023;
Chen et al., 2024). However, GPHH can be highly sensitive in performance to specific problem
configurations (see Appendix K) and is unsuitable for online applications due to high instability.

Recent advancements in Learning to Optimize (L2O) research (Kool et al., 2019; Wu et al., 2022)
have successfully demonstrated the potential of using reinforcement learning (RL) algorithms to
train neural network-based PDRs (a.k.a., scheduling agents) to tackle static scheduling problems
(Zhang et al., 2020; Song et al., 2022; Zhang et al., 2024). Relevant studies clearly indicate that
proper state representations are crucial for DRL (deep RL) algorithms to learn effectively (Zhang
et al., 2024). However, existing vector- or matrix-based state representations (Huang et al., 2022;
Jayanetti et al., 2024; Zhu et al., 2024) cannot accurately capture sophisticated interactions between
tasks and machines in the cloud (verified in Table 1). Although Graph Neural Networks (GNNs) can
effectively process complex graph-based states (Sun & Yang, 2023; Grinsztajn et al., 2023; Zhang
et al., 2024), their fixed graph structures, shared feature embeddings, and unmodified RL methods
limit scalability for tackling large and highly dynamic cloud workflow scheduling problems. This
calls for developing novel graph representations and neural network architectures that can properly
manage and process the ever-changing state information, along with advanced learning methods to
boost the adaptability and stability of the scheduling agents in both offline and online scenarios.

In this paper, we propose a novel Graph assisted Offline-Online Deep Reinforcement Learning
(GOODRL) approach for learning a scheduling agent to tackle DWS, featuring three innovations:
(1) We develop a task-specific graph and a Graph Attention Actor Network to facilitate flexible task
assignment across heterogeneous machines. They together explicitly capture the future impact of
each machine on the focused task at both topological and feature levels, significantly enhancing the
agent’s ability to precisely differentiate all eligible actions. (2) We design a system-oriented graph
and a Graph Attention Critic Network to seamlessly integrate newly arriving workflows with ex-
isting ones. By enabling bi-directional information flow and self-attention across all task nodes in
the graph, the scheduling agent can accurately respond to real-time changes in the system state. (3)
We propose an offline-online RL method that combines offline imitation learning with online gra-
dient control and decoupled high-frequency critic training techniques to sustain the agent’s robust
performance in rapidly changing environments. Experiments across diverse scenarios demonstrate
the effectiveness and reliability of GOODRL. Our method tackles significantly larger and more dy-
namic scheduling problems, which have been under-explored in prior works, consistently reducing
the mean flowtime compared to multiple state-of-the-art algorithms.

2 RELATED WORK

To motivate our research on learning-based approaches for DWS, we review prominent research
works on relevant scheduling problems from recent years, focusing on graph representations, neural
network architecture designs, and training methods. (See Appendix S for more details)

Graph Representations. Scheduling research typically uses disjunctive graphs (Song et al., 2022;
Su et al., 2023; Corsini et al., 2024; Zhang et al., 2024) or Directed Acyclic Graphs (DAGs) (Mao
et al., 2019; Luo et al., 2021; Sun et al., 2021; Zhu et al., 2024) to represent system states, capturing
various information related to workflows/jobs and machines. While disjunctive graphs model static
job shop scheduling (JSS) through single static graphs of all known jobs on homogeneous machines
(Zhang et al., 2020; Song et al., 2022; Su et al., 2023), they fail to handle the dynamic nature of
unpredictable workflows and heterogeneous machines in DWS. In cloud computing, each workflow
is typically represented as a separate DAG, which captures task-related information only, ignoring
machine-related information. Current research processes each static DAG individually (Mao et al.,
2019; Zhu et al., 2024), failing to model the real-time interactions across multiple dynamically
arriving workflows and preventing them from being used to solve DWS problems effectively.

To address this, we propose a novel real-time graph representation to comprehensively model the
state of multiple workflows and heterogeneous machines. Unlike prior works where actor and critic
networks rely on the same graph representation (Zhang et al., 2020; Song et al., 2022; Zhu et al.,
2024), we design two distinctive graph representations: one for the actor (for action selection),
and another for the critic (for value estimation). This allows the actor to focus on task-specific
information while ensuring the critic has access to the overall operating status of the DWS system.

2

Published as a conference paper at ICLR 2025

Architecture Design. Graph Neural Networks such as Graph Convolutional Network (GCN) (Kipf
& Welling, 2017; Mao et al., 2019; Ni et al., 2021; Zhu et al., 2024), Graph Isomorphism Network
(GIN) (Xu et al., 2018; Su et al., 2023), Heterogeneous GNN (Song et al., 2022; Wang & Gombolay,
2022), and Graph Attention Network (GAT) (Veličković et al., 2018; Song et al., 2022; Wang et al.,
2023) are commonly used to process graph-based state representations. For example, Ni et al.
(2021) used GCN for extracting node embedding followed by self-attention layers to jointly process
multiple sub-graphs associated with different process stages. Zhang et al. (2020) utilized GIN to
obtain node embeddings, which are concatenated through mean pooling and are further processed
by the actor network. While effective, this approach can make it more challenging for the actor
to distinguish between different actions, particularly in large graphs with many nodes. In view of
this, Zhang et al. (2024) introduced two separate GAT networks in the actor to extract topological
embedding and context-aware embedding individually.

To better capture workflow dynamics and accurately evaluate the current policy, we design separate
architectures for the actor and critic networks respectively, allowing each to specialize in different
aspects of the scheduling process.

Training Methods. Current learning-based methods for scheduling problems include RL (Su et al.,
2023; Lei et al., 2023; Zhang et al., 2023), as well as supervised (Pan et al., 2023; Luo et al., 2023),
unsupervised, and self-supervised learning techniques (Corsini et al., 2024; Pirnay & Grimm, 2024).
Supervised learning relies on expensive labeled solutions (Corsini et al., 2024). Self-supervised
learning is highly sensitive to sample quality (Pirnay & Grimm, 2024). RL-based methods are more
suitable for dynamic scheduling in online settings, thanks to their ability to continuously learn and
make real-time decisions in a changing environment. Existing RL methods include value-based
(e.g., DDQN (Liu et al., 2022; Lei et al., 2023)), policy-based (e.g., REINFORCE (Mao et al., 2019;
Zhang et al., 2024), ES-RL (Su et al., 2023)), and Actor-Critic-based (e.g., PPO (Lei et al., 2023;
Zhang et al., 2023)) algorithms.

Different from existing studies that focus mainly on offline learning with limited adaptability, we
propose a two-stage RL approach for effective offline learning and stable online adaptation in DWS.

3 PROBLEM FORMULATION

A DWS problem instance consists of a set W of dynamically arriving workflows and a collection
M of heterogeneous machines. A workflow Wi ∈ W is modelled as a DAG (see Appendix A),
denoted by Wi = (OWi , CWi), with a node set OWi = {Oi1, . . . , Oini} representing tasks and an
edge set CWi = {(Oij , Oik)|Oij , Oik ∈ OWi}. Each edge (Oij , Oik) indicates that task Oij must
be completed before Oik starts. Let O = OW1 ∪ OW2 ∪ · · · ∪ OW|W| be the set of all tasks to
be executed to accomplish all workflows inW . Each task Oij with a workload twij ∈ R+ can be
assigned to any machine Mq ∈ M. Its execution time et

(q)
ij =

twij

msq
depends on the speed msq

of the assigned machine Mq . Each workflow Wi arrives at a specific time ati, and is finished at
fti = maxj(ftij) when all its tasks Oij ∈ OWi

are completed. The flowtime of workflow Wi is
determined by Fi = fti − ati.

At each decision step t, a single focused task O∗
t is identified. O∗

t is an unassigned task that becomes
ready for execution at time t based on the current state of the DWS system. It will be assigned to a
specific machine according to policy π. Once assigned, O∗

t will be added to the machine’s waiting
queue. All pending tasks in the waiting queue are executed in the FIFO order (Senapati et al., 2021).
The objective of DWS is to find a policy π : Mq ∼ π(Oij ,M) to minimize the mean flowtime
F̄ = 1

|W|
∑|W|

i=1 Fi across all workflows received within an operating duration, while obeying task
precedence constraints. Appendix B explains the workflow scheduling process in details.

4 METHODOLOGY

In this section, we introduce the proposed GOODRL approach. We first formulate DWS as a RL
problem where our novel task-specific and system-oriented graph representations are introduced.
Then, we detail the architecture designs of the GAT-based actor network and the GAT-based critic
network. Finally, we outline the offline-online RL method.

3

Published as a conference paper at ICLR 2025

Initialized Actor

Imitation Learning Standard PPO

Initialized Critic Initialized Critic

Pre-trained
ActorImitated Actor

Online PPO Online
Schedules

Start

Buffer
sampled
by HEFT

End

Offline Learning Online Learning

(a) The two-stage offline-online learning process.

Information:

Repesentation:

Deep Model:

Agent
Observation

Task-specific
Graph

Actor Network

System State

System-oriented
Graph

Critic Network

(b) Information processed by the ac-
tor and critic.

Figure 1: The overall framework of GOODRL for DWS.

Figure 1 illustrates the overall framework of our GOODRL approach. In Figure 1(a), the offline
stage begins by pre-training the actor network with imitation learning to follow expert-designed
PDRs (e.g., HEFT (Topcuoglu et al., 2002; Senapati et al., 2021)). This prevents the accumulation
of uncompleted tasks, which would otherwise occur if training started with a randomly initialized
actor. Such accumulation can lead to memory issues and significantly increase computation time
required for training the actor network. Standard PPO (Schulman et al., 2017) is subsequently
employed to train the actor and critic networks. In the online stage, the pre-trained actor network is
continuously fine-tuned by the newly developed online PPO algorithm. This is achieved by using
gradient control and decoupled high-frequency critic training techniques introduced in Section 4.3.2.
The information processed respectively by the actor and critic networks is shown in Figure 1(b).

4.1 REINFORCEMENT LEARNING PROBLEM FORMULATION
Scheduling Agent

Cloud Environment

Workflow
Pool

Machine
Resources

RL Algorithm

Critic Actor
Reward Action

Agent
Observation

System
State

update

Figure 2: The RL based formulation
of the DWS systems.

We model the scheduling process in the DWS system as an
RL problem, as shown in Figure 2. The Scheduling Agent
is an intelligent entity composed of an Actor, a Critic, and
an RL Algorithm. As a model of policy π, the actor selects
an action/machine at to execute the focused task O∗

t at any
decision step t. The critic evaluates the actor’s expected fu-
ture return. The RL Algorithm continuously improves the
performance of the actor under the guidance of the critic.
The Cloud Environment employs a Workflow Pool to keep
track of all workflows being executed on all available Ma-
chine Resources, providing system state sct , agent observa-
tion sat , and reward rt to the scheduling agent. The key
components (Sc,Sa,A,P,R, π, V) of this RL problem are
explained as follows.

System State. Each system state sct ∈ Sc is a snapshot of the current status of the whole DWS
system at decision step t, including (1) the focused task O∗

t ; (2) details of all workflows under
processing, including information of their constituent tasks, task dependencies modeled by DAGs,
as well as workflow arrival times; and (3) the current processing status of each machine. We design
a novel system-oriented graph Gc(sct) = (Ot, CW ∪ CM ∪ CA) to represent sct as the input of
the critic V , as shown in Figure 3(a). Only uncompleted tasks are included in Gc(sct) for efficient
memory usage.
Moreover, the edge set in Gc(sct) covers three types of information: (1) task precedence constraints
CW (e.g., edge (O12, O14) ∈ CW in Figure 3(a) indicates that task O14 cannot be executed before
completing task O12); (2) machine processing order constraints CM (e.g., edge (O13, O23) ∈ CM
in Figure 3(a) indicates that machine M1 must execute O13 first before executing O23); and (3) the
eligible actions/machines for executing O∗

t represented by CA = {(O(at)
last , O

∗
t) | at ∈ A}. Each

edge in CA connects the last task node O
(at)
last , denoting the most recent task assigned to an eligible

machine, to O∗
t (e.g., task O23 connected by edge (O23, O31) ∈ CA in Figure 3(a) is the last task

assigned to machine M1). In summary, Gc(sct) models the evolving interactions across all workflows
at each system state sct , providing the critic with a comprehensive view of the DWS system.

Agent Observation. The agent observation sat at decision step t is a partial observation of the system
state sct . To accurately capture subtle differences among all candidate actions for executing O∗

t , we
propose a novel task-specific graph Ga(sat , at) = (Ot, CW ∪ CM ∪ Cat

) to represent observation-
action pair (sat , at) as the input of the actor π, as shown in Figure 3(b). The new graph representation
explicitly captures the future impact of each specific action/machine Mat on O∗

t from two levels:

4

Published as a conference paper at ICLR 2025

(b) Task-specific Graph Representation(a) System-oriented Graph Representation

extra edges

focused task

dynam
ic arrving

newly
arrived

workflow

last task on
machine

Machine
Processing

Oder

Examples

Task
Execution

Status

focusedunasssigned asssigned completed

Figure 3: Examples of two novel graph representations. The DWS system at the current decision
step includes 3 workflows and 2 machines, requiring the assignment of the focused task O31 to either
machine M1 or M2.

(1) At the topology level, an edge Cat = {(O(at)
last , O

∗
t)} is inserted in Ga(sat , at) to capture the

interaction between O∗
t and the selected machine Mat (e.g., edge (O23, O31) in Figure 3(b), since

O23 is the last task assigned to machine M1, which is Mat in this example). (2) At the feature
level, the raw feature vector of O∗

t is updated in real-time to predict the consequence of processing
O∗

t using Mat
. The real-time updated feature vector f (q)ij ∈ R7 includes seven important features

defined in Appendix C, including task execution status esij , task workload twij , remaining workload
of associated workflow rwij , task execution time et

(q)
ij , task completion time ct

(q)
ij , machine speed

msq , and machine utilization muq .

Actions. Any action at ∈ A assigns the focused task O∗
t to the waiting queue of an eligible machine

Mq . The size of the action space is |A| = |M|.
Transition. The system transits from state st to state st+1 after taking action at, which assigns the
focused task at decision step t to a specific machine for execution. See Figure 8 in Appendix B.

Rewards. A reward rt provides a scalar feedback signal for taking action at at system state sct . In
line with the objective to minimize the mean flowtime F̄ , we define rt = −

∑
Wi∈Wc Fi, whereWc

refers to the set of workflows completed in between decision steps t and t+ 1. If no workflows are
completed during the two steps, rt = 0.

Learning Objective. The scheduling agent aims to learn an optimal policy (modeled by the actor)
to maximize the expected total rewards (estimated by the critic) from the long-term operation of the
DWS system in both offline and online scenarios.

4.2 GRAPH ATTENTION ACTOR AND CRITIC NETWORKS

In the following, we introduce the architecture designs of the Graph Attention Actor Network
πθ(s

a
t , at) and the Graph Attention Critic Network Vϕ(s

c
t), respectively.

4.2.1 ACTOR NETWORK ARCHITECTURE DESIGN
Actor SelectionTask-specific Embedding ModuleTask-specific Graph Representation

Focused Node
Embedding

Softm
ax

ProbabilityGAT
Layers

Sampled ActionAgent
Observation

Score for
 Pair

MLP
Layers

Figure 4: Schematic design of the graph attention actor network.
Figure 4 depicts the architecture design of the actor network πθ(s

a
t , at) with trainable parameter θ,

aiming to accurately differentiate all eligible machines for processing the focused task. The actor
network takes each observation-action pair represented by the task-specific graph Ga(sat , at) as its
input, and transforms Ga(sat , at) into the node embedding of the focused task O∗

t through GAT
layers. By concentrating on the focused task/node, the subsequent Multi-Layer Perceptron (MLP)
layers can easily produce discriminative scores for different (sat , at) pairs. These scores are further

5

Published as a conference paper at ICLR 2025

processed by the softmax function to generate the probability distribution over the action space for
reliable action selections by the actor.

Task-specific Embedding Module. In Figure 4, K GAT layers (Veličković et al., 2018) are utilized
to extract the node embedding of the focused task O∗

t from Ga(sat , at). Appendix D presents the
detailed mathematical modelling of the GAT layers. The node embedding ĥsat ,at

= h
(K)
O∗

t
∈ Rd

with respect to the focused task O∗
t at the K-th GAT layer is extracted from the task-specific graph

Ga(sat , at) and is further processed by an MLP for action selection.

Action Selection. To determine the probability of performing any action at ∈ A according to πθ,
our actor network uses MLP layers to process the focused node embedding ĥsat ,at extracted from
Ga(sat , at). A score z(sat , at) = MLPθ(ĥsat ,at

) is hence calculated. After obtaining the scores of all
eligible actions, the action selection probability is determined using the popular softmax function:
π(sat , at) = softmax({z(sat , at)|at ∈ A}). An action at is then chosen following these probabilities.

Remark. Our actor network design introduces two advantages for flexible task assignment across
heterogeneous machines. (1) Pairwise processing: Instead of processing all tasks and machines
in a single static graph as in previous studies (Song et al., 2022; Su et al., 2023), we calculate
each (sat , at) pair separately. This design explicitly considers the immediate and future impact of
assigning any machine to the focused task at both the topology and feature levels, allowing the
actor to accurately differentiate all eligible actions and make informed scheduling decisions. (2)
Focused embedding: Our design learns the embedding of the focused task directly, rather than using
mean pooling to combine embeddings of all nodes, as in many existing studies (Zhang et al., 2020;
Corsini et al., 2024). This design can effectively prevent the learned embedding from being diluted
by irrelevant information from non-focused tasks/nodes. Relevant ablation experiments on the actor
network architecture design are reported in Appendix F.

4.2.2 CRITIC NETWORK ARCHITECTURE DESIGN
State ValueSystem-oriented Embedding Module

Local
Topological
Embeddings

M
ean

Pooling

System-oriented Graph Representation

GAT
Layers

MLP
Layers

Self-
Attention
Layers

Global Graph
Embedding A Scaler System State

Global
Topological
Embeddings

Figure 5: Schematic design of the graph attention critic network.
Figure 5 depicts the architecture design of the critic network Vϕ(s

c
t) with trainable parameter ϕ,

aiming to capture the full information of the system state required for effective temporal-difference
learning (Sutton, 2018). The critic network takes system-oriented graph representation Gc(sct) as its
state input. GAT layers are employed first by the critic to compute all node embeddings based on
the local topological structure of Gc(sct). Subsequently, Self-Attention layers are utilized to handle
the relationship among all task nodes of Gc(sct) at the global scale. The resulting node embeddings
are then aggregated via mean pooling and processed by MLP layers to predict the expected future
return of the DWS system.

System-oriented Embedding Module. Unlike previous approaches where the actor and critic net-
works share a common feature extractor (Ni et al., 2021; Song et al., 2022; Wang et al., 2023), our
critic network uses its own GAT layers and self-attention layers (Vaswani, 2017; Ni et al., 2021)
to extract node embeddings from Gc(sct). Specifically, K GAT layers are used to obtain the em-
beddings of all nodes in Gc(sct). The corresponding mathematical modelling of these layers can be
found in Appendix E.

After obtaining all node embeddings, we employ L layers of self-attention to integrate information
from all nodes in Gc(sct). The update rule for the l-th self-attention layer is:

u(l) = softmax


(
u(l−1)W

(l)
Q

)(
u(l−1)W

(l)
K

)⊤

√
d

(
u(l−1)W

(l)
V

)
(1)

where u(0) = [e
(K)
x]x∈Ot

∈ R|Ot|×d is the collection of node embeddings produced by the GAT
layers, u(l) = [e

(K+l)
x]x∈Ot ∈ R|Ot|×d is the collection of node embeddings produced by the l-th

6

Published as a conference paper at ICLR 2025

self-attention layer, and W
(l)
Q ,W

(l)
K ,W

(l)
V ∈ Rd×d are the learnable weight matrices of the l-th

self-attention layer. Finally, all node embeddings are aggregated using the common mean pooling
technique to construct the high-level global embedding of Gc(sct) as follows:

ēsct =
1

|Ot|
∑
x∈Ot

e(K+L)
x (2)

where e
(K+L)
x ∈ Rd is the embedding of node x, corresponding to a row of u(L).

State Value. The state value is computed by passing the aggregated global embedding ēsct through
an MLP, yielding Vϕ(s

c
t) = MLPϕ(ēsct). This scalar output from the critic network estimates the

expected future return from system state sct upon following the actor.

Remark. Our critic network design brings two key benefits for handling unpredictable workflow
arrivals and patterns. (1) Comprehensive context awareness: The GAT layers process each edge of
Gc(sct) in both directions. We further add additional edges between the focused task and all eligible
machines in Gc(sct), enabling the critic to directly assess the influence of both past and future tasks on
the focused task, providing a comprehensive contextual understanding of task-machine interactions.
(2) Long-range interaction modeling: It is well-established in the scheduling literature that distant
task nodes in a complex graph such as Gc(sct) can strongly influence each other (Ni et al., 2021).
We employ a self-attention mechanism to capture long-range dependencies across all task nodes,
including those belonging to newly arrived workflows, empowering the critic with a holistic view of
the system’s dynamics. Relevant ablation experiments on the critic network architecture design are
reported in Appendix G.

4.3 OFFLINE-ONLINE REINFORCEMENT LEARNING

Two learning stages are involved in training the scheduling agent. In the offline stage, we pre-train
the agent’s actor and critic networks to establish effective initial policies for the DWS system. In the
online stage, pre-trained networks are fine-tuned in real-time to adapt to the changing environment.

4.3.1 OFFLINE LEARNING

We employ both the imitation learning method (Barde et al., 2020) and the PPO algorithm (Schul-
man et al., 2017) to train the actor and critic networks. Initially, the actor network is trained through
imitation learning, with the widely used HEFT heuristic serving as the teacher. (Topcuoglu et al.,
2002). This approach avoids the unnecessary trial-and-error required for training a randomly ini-
tialized actor, which can cause unprocessed tasks to accumulate in the DWS system, increasing
memory demands and risking program interruption. Therefore, the actor network can be quickly
and effectively trained to achieve comparable performance as HEFT with high sample efficiency.

Afterwards, the PPO algorithm is utilized to train both the actor and critic networks. Iteratively, PPO
samples N independent trajectories to update both networks, further enhancing the effectiveness of
the actor while keeping the critic accurate. See Appendix H.1 for the pseudo-code of offline learning.

4.3.2 ONLINE LEARNING

We develop an online version of the PPO algorithm that simultaneously uses the actor to sched-
ule newly arriving workflows while continuously improving its performance during the day-to-day
operation of the DWS system.

The standard PPO algorithm, which relies on multiple short trajectories for robust policy updates,
is not suitable for online learning, where stable actor updates must be performed on a single long-
lasting trajectory. We improve PPO with two techniques for online learning, enabling the actor to be
reliably and quickly fine-tuned to meet changing scheduling demands.

First, we implement Gradient Control to stabilize actor training by regulating the gradient magni-
tude. Specifically, we adopt the following threshold to bound the L2 norm of the policy gradient
vector used for training the actor network:

∇θJ =

{
∇θJ, if ∥∇θJ∥2 ≤ µprev + σprev and ∥∇θJ∥2 ≤ τ0,

0, otherwise,

7

Published as a conference paper at ICLR 2025

where ∇θJ stands for the policy gradient. µprev and σprev are the mean L2 norm of ∇θJ and the
corresponding standard deviation from the previous training epoch. τ0 bounds the maximum allowed
L2 norm of ∇θJ . Whenever the L2 norm of ∇θJ is too large, we avoid using it to train the actor
network (i.e., ∇θJ is set to the zero vector). This prevents abrupt change of the actor network,
ensuring stable learning in dynamic environments.

Second, we train the critic network independently and at a higher frequency than the actor, fully
decoupling their training processes. This separation prevents interference between the two networks
during training, providing the actor with more stable guidance from the critic’s accurate value esti-
mates. The pseudo-code of our online PPO algorithm is presented in Appendix H.2.

5 EXPERIMENTS

This section evaluates GOODRL’s performance, starting with the experimental setup and baselines,
followed by offline and online comparisons, and ablation studies to assess some key components.

5.1 EXPERIMENTAL SETUP

Environment Settings. We follow the framework of Huang et al. (2022) to perform training and
testing on distinct offline and online scenarios listed in Table 1 and Table 2. Each scenario involves
multiple machines and a series of dynamically arriving workflows. A scenario contains either 5× 5
or 6 × 4 machines, representing the number of machine configurations and units per configuration,
respectively (see Appendix I.3 for details). Four popularly studied workflow patterns (Deelman
et al., 2015) (see Figure 9 and Table 6 in Appendix A) are used to randomly create 30 workflows for
offline training and 1k, 3k, 5k workflows for offline evaluation. In online testing, we further assess
PDRs and scheduling agents on large scenarios with 5k, 10k, and 20k workflows under demanding
real-time conditions. These workflows arrive dynamically following a Poisson distribution, with an
arrival rate of λ = {5.4, 9} workflows per hour.

Model Configurations. Detailed information regarding the network architecture, normalization
method, offline imitation learning, offline PPO, online PPO, hardware/software platform, and al-
gorithm implementation is presented in Appendix J. Our code and data are publicly available at
https://github.com/YifanYang1995/GOODRL

Baselines. We compare GOODRL against three well-known PDRs designed manually by DWS
experts: Earliest Start Time (EST), Predict Earliest Finish Time (PEFT), and Heterogeneous Earliest
Finish Time (HEFT) (Topcuoglu et al., 2002; Senapati et al., 2021). We also employ the state-of-
the-art GPHH method for DWS as a baseline to evolve high-performing PDRs through extensive
evolutionary search. For GPHH, we use standard parameter settings from previous studies (Xu
et al., 2023), perform 30 independent runs with different random seeds and report the best results
obtained (details in Appendix K). Given the limited research on GNN-based state representations for
DWS, we compare GOODRL with ERL-DWS (Shen et al., 2024), an advanced DRL method with
an advanced transformer-based neural network architecture. Their average performance is evaluated
using five random seeds.

5.2 PERFORMANCE COMPARISON IN OFFLINE SCENARIOS

Table 1 presents the mean flowtime achieved by GOODRL and competing algorithms across 12 of-
fline scenarios. Each scenario contains 30 problem instances of 1k, 3k or 5k workflows each. Since
the test performance of the best scheduling heuristic evolved by GPHH varies hugely across differ-
ent scenarios, we report the best test results achieved by the top three heuristics obtained from 30
independent runs (see Appendix K for details). Despite our best efforts, including adding imitation
learning, ERL-DWS showed no significant improvement in test performance. We hence report its
best available results in Table 1. Appendix P further reports the inference time of these methods.

GOODRL achieves consistently low mean flowtime in Table 1, with an average rank of 1.17 across
all scenarios, outperforming all baselines. Compared to expert-designed PDRs (EST, PEFT, HEFT),
GOODRL significantly reduces the mean flowtime, with Gap differences up to 289.98%. Although
GPHH slightly outperforms “Ours-Offline” (i.e., trained offline with GOODRL) on scenarios ⟨5 ×
5, 5.4, 1k⟩ and ⟨5× 5, 5.4, 3k⟩, the Gap differences are merely 1.24% and 0.15%. However, GPHH

8

Published as a conference paper at ICLR 2025

Table 1: Performance comparison in offline scenarios. “⟨6 × 4, 9, 1k⟩”: each instance in this
scenario contains 1000 workflows arriving at a rate of 9 workflows per hour, which need to be
assigned to machines with 6 different configurations, with 4 units per configuration. “Obj.”: the
mean flowtime over 30 instances. “Gap”: the gap to the best “Obj” in each row. “bold”: the best
result in each scenario. “blue bold”: the average ranking across all scenarios of the best approach.

Scenarios EST PEFT HEFT GPHH ERL-DWS Ours-Offline
Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

⟨5× 5, 5.4, 1k⟩ 1243.15 204.51% 551.30 35.04% 509.95 24.91% 408.24 0.00% 1889.47 362.83% 413.29 1.24%
⟨5× 5, 9, 1k⟩ 1152.40 177.94% 510.55 23.14% 478.44 15.39% 430.28 3.78% 2180.41 425.89% 414.61 0.00%
⟨6× 4, 5.4, 1k⟩ 1083.02 290.07% 438.40 57.90% 391.61 41.05% 322.52 16.16% 713.87 157.11% 277.65 0.00%
⟨6× 4, 9, 1k⟩ 990.20 248.92% 391.17 37.84% 357.95 26.13% 300.20 5.78% 1523.83 436.95% 283.79 0.00%
⟨5× 5, 5.4, 3k⟩ 1235.14 202.87% 551.33 35.19% 508.10 24.59% 407.81 0.00% 2670.81 554.91% 408.41 0.15%
⟨5× 5, 9, 3k⟩ 1153.02 179.00% 510.22 23.46% 477.07 15.44% 427.04 3.33% 3582.70 766.91% 413.27 0.00%
⟨6× 4, 5.4, 3k⟩ 1081.28 289.98% 438.62 58.19% 390.64 40.89% 386.77 39.49% 1108.95 299.96% 277.27 0.00%
⟨6× 4, 9, 3k⟩ 992.46 250.72% 389.94 37.80% 356.08 25.83% 358.40 26.65% 2748.28 871.19% 282.98 0.00%
⟨5× 5, 5.4, 5k⟩ 1231.70 202.34% 550.53 35.13% 507.91 24.67% 408.38 0.24% 2944.35 622.73% 407.39 0.00%
⟨5× 5, 9, 5k⟩ 1146.62 177.17% 509.61 23.19% 477.12 15.33% 427.88 3.43% 4299.75 939.38% 413.68 0.00%
⟨6× 4, 5.4, 5k⟩ 1076.75 288.11% 437.53 57.71% 389.24 40.30% 386.95 39.47% 1281.00 361.73% 277.44 0.00%
⟨6× 4, 9, 5k⟩ 992.92 250.55% 388.68 37.22% 356.47 25.85% 297.40 5.00% 3480.87 1128.92% 283.25 0.00%

5.08 4 2.92 1.92 5.92 1.17

exhibits extensive performance variability, with Gaps reaching 39.49% and 39.47% to GOODRL
in other scenarios. ERL-DWS performs significantly worse than GOODRL as high as 1128.92%.
Additionally, both expert-designed PDRs and GOODRL exhibit robust performance as the number
of workflows increase, while GPHH and ERL-DWS deteriorate significantly. Overall, our offline
results demonstrate the impressive performance of GOODRL on DWS problems.

5.3 PERFORMANCE COMPARISON IN ONLINE SCENARIOS

Table 2 presents the mean flowtime obtained by all algorithms in online scenarios. “Ours-Offline”
refers to the online performance of the scheduling agent only trained offline by GOODRL. “Ours-
Online” indicates the online performance of the scheduling agent that is trained both offline and
online by GOODRL. “Ours-Online” achieves the highest rank of 1.17 across all compared algo-
rithms. Both “Ours-Online” and “Ours-Offline” significantly outperform expert-designed PDRs
(EST, PEFT, HEFT) and ERL-DWS. While GPHH ranks third, it relies on the best result of 30
runs, requiring approximately 200 CPU hours for training. Additionally, GPHH’s performance de-
grades as the number of workflows increases. In contrast, “Ours-Online” consistently improves
upon “Ours-Offline”, with performance gains of up to 1.24% in the ⟨6 × 4, 9, 20k⟩ scenario. This
highlights GOODRL’s ability to adapt pre-trained agents to dynamic demands (see Appendix Q for
more robustness experiments), owing to its dynamic graph representation and offline-online training
scheme. Note that even small improvement in mean flowtime can yield substantial practical benefits,
including significant cost savings in large-scale dynamic environments (see Appendix R).

Figure 6 shows the mean flowtime achieved by “Ours-offline” and “Ours-online” in three online
scenarios, comparing their performance over 5000 consecutive workflows. To ensure fair and reli-
able comparison, we begin tracking mean flowtime after the first 2000 workflows, by which point
the DWS system has reached stable dynamics. “Ours-online” consistently achieves lower mean
flowtime than “Ours-offline” throughout the entire evaluation, as clearly evidenced in Figure 6.
These results highlight the effectiveness of online learning in GOODRL for continuously improving
scheduling performance.

5.4 ABLATION STUDIES

(1) Actor Network: Table 4 (Appendix F) validates the task-specific embedding module (TSEM) in
our actor network. Our-TSEM, with pairwise processing and focused task embedding, achieved the
lowest cross-entropy loss compared to TSEM w/o pair (removing pairwise processing) and TSEM
w. mean (adding mean pooling). These results confirm that separating task-machine pairs and
avoiding mean pooling greatly enhance the ability to differentiate actions by focusing on critical
task-specific information. (2) Critic Network: Table 5 (Appendix G) validates the system-oriented
embedding module (SOEM) in our critic network. Ours-SOEM, incorporating bi-directional edges,
additional connections, and a self-attention mechanism, significantly outperforms SOEM w/o. edge

9

Published as a conference paper at ICLR 2025

Table 2: Performance comparison in online scenarios. “Scenarios”: the scenarios for evaluating
the online performance of the scheduling agent previously trained offline in ⟨5 × 5, 5.4⟩. “bold”:
the best result in each scenario. “blue bold”: the average ranking across all scenarios of the best
approach.

Scenarios EST PEFT HEFT GPHH ERL-DWS Ours-Offline Ours-Online
Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

⟨6× 4, 5.4, 5k⟩ 1076.01 277.05% 439.28 53.93% 391.63 37.23% 303.70 6.42% 1349.12 372.74% 286.43 0.37% 285.38 0.00%
⟨6× 4, 5.4, 10k⟩ 1077.09 279.13% 439.64 54.75% 390.26 37.37% 305.31 7.47% 1778.26 525.94% 284.09 0.00% 285.12 0.36%
⟨6× 4, 5.4, 20k⟩ 1072.90 276.97% 439.88 54.55% 391.18 37.44% 309.12 8.61% 2257.78 693.29% 286.08 0.52% 284.61 0.00%
⟨6× 4, 9, 5k⟩ 994.00 233.40% 387.84 30.09% 355.51 19.24% 303.57 1.82% 1246.91 318.24% 301.00 0.96% 298.14 0.00%
⟨6× 4, 9, 10k⟩ 993.97 238.09% 387.64 31.85% 355.21 20.82% 307.27 4.52% 1838.20 525.24% 297.19 1.09% 294.00 0.00%
⟨6× 4, 9, 20k⟩ 997.53 231.28% 388.79 29.12% 356.39 18.36% 312.56 5.08% 2783.78 835.93% 301.11 1.24% 297.44 0.00%

6 5 4 3 7 1.83 1.17

2000 3000 4000 5000

300

305

(a) 6 × 4, 9, 5k

Ours-Offline Ours-Online

5000 6000 7000 8000 9000

295

300

(b) 6 × 4, 9, 10k

Ours-Offline Ours-Online

7000 8000 9000 10000 11000 12000

296

298

(c) 6 × 4, 9, 20k

Ours-Offline Ours-Online

Cumulative Workflow Number

O
bj

ec
tiv

e

Figure 6: Performance comparison between “Ours-Offline” (trained only offline with GOODRL)
and “Ours-Online” (trained both offline and online with GOODRL) in three online scenarios.

(removing bi-directional and additional edges) and SOEM w/o. self (removing the self-attention
layers) in value loss. The results highlight the importance of comprehensive context awareness
and modeling long-range interactions for effectively managing dynamic workflows. (3) Online
Learning: Table 13 (Appendix L) validates two key techniques proposed for online training. Ours-
Online achieved superior online performance improvement compared to Online w/o. grad. (remove
gradient control) and Online w/o. freq. (remove independent high-frequency critic updates). These
results demonstrate the effectiveness of both techniques in stabilizing and enhancing online learning.

5.5 SCALABILITY, TRANSFERABILITY, AND EXTENSIBILITY OF GOODRL

(1) Scalability to significant changes: Experiments in Appendix M demonstrate that our model can
effectively handle significant changes in workflow patterns, arrival rates, and machine configurations
without retraining. (2) Transferability to FJSS: We applied GOODRL to FJSS problems studied
in Song et al. (2022), a representative research work on FJSS, to validate its transferability. Results
in Appendix N demonstrate that GOODRL, designed for complex large-scale DWS problems, can
also performs competitively on other scheduling problems such as FJSS. (3) Extensibility to multi-
objective problems: In Appendix O, we demonstrate empirically that GOODRL can support other
practical objectives such as cost, beyond flowtime reduction, by modifying the reward function.
In particular, the actor trained with the modified reward can achieve a desirable trade-off between
flowtime and cost, with a slight increase in flowtime but substantial cost savings of up to 41%.

6 CONCLUSION AND FUTURE WORK

This paper proposes GOODRL, an offline-online DRL approach for DWS. GOODRL features three
key technical innovations. First, it introduces a new task-specific graph representation and a Graph
Attention Actor Network to assess the immediate and future impacts of assigning any machine to
process focused tasks, enabling the scheduling agent to dynamically and effectively manage work-
flow execution. Second, GOODRL adopts a novel system-oriented graph representation and a Graph
Attention Critic Network to model complex interactions across multiple workflows and machines,
providing accurate value estimates from a holistic system-wide perspective. Third, GOODRL lever-
ages offline imitation learning for efficient actor pre-training and an enhanced online PPO algorithm
with gradient control and decoupled high-frequency critic training techniques for robust real-time
adaptation. Experimental results confirm that GOODRL significantly outperforms state-of-the-art
baselines in minimizing mean flowtime. In future work, we could explore unlimited machine con-
figurations, constraint handling and multi-objective learning techniques to tackle constrained multi-
objective scheduling problems in cloud computing and other complex computing paradigms.

10

Published as a conference paper at ICLR 2025

7 ACKNOWLEDGMENT

The authors thank Zaixing Sun, Zhengxin Fang, and Jian Liang for valuable discussions. We wish
to acknowledge the use of New Zealand eScience Infrastructure (NeSI) high performance com-
puting (HPC) facilities (https://www.nesi.org.nz) and the Rāpoi HPC cluster (https://vuw-research-
computing.github.io/raapoi-docs/). This research is partially supported by Grant VUW-FSRG-
10114, administered by Victoria University of Wellington. This research is also supported by the
National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No.
AISG3-RP-2022-031).

REFERENCES

Batuhan Altundas, Zheyuan Wang, Joshua Bishop, and Matthew Gombolay. Learning coordination
policies over heterogeneous graphs for human-robot teams via recurrent neural schedule propa-
gation. In International Conference on Intelligent Robots and Systems, pp. 11679–11686. IEEE,
2022.

Paul Barde, Julien Roy, Wonseok Jeon, Joelle Pineau, Chris Pal, and Derek Nowrouzezahrai. Ad-
versarial soft advantage fitting: Imitation learning without policy optimization. In Advances in
Neural Information Processing Systems, volume 33, pp. 12334–12344, 2020.

Nikhil Barhate. Minimal pytorch implementation of proximal policy optimization. https://
github.com/nikhilbarhate99/PPO-PyTorch, 2021.

Jieyi Bi, Yining Ma, Jianan Zhou, Wen Song, Zhiguang Cao, Yaoxin Wu, and Jie Zhang. Learning
to handle complex constraints for vehicle routing problems. In Advances in Neural Information
Processing Systems, 2024.

Xinan Chen, Ruibin Bai, Rong Qu, Jing Dong, and Yaochu Jin. Deep reinforcement learning assisted
genetic programming ensemble hyper-heuristics for dynamic scheduling of container port trucks.
IEEE Transactions on Evolutionary Computation, 2024.

Andrea Corsini, Angelo Porrello, Simone Calderara, and Mauro Dell’Amico. Self-labeling the job
shop scheduling problem. In Advances in Neural Information Processing Systems, 2024.

Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J Maechling, Rajiv
Mayani, Weiwei Chen, Rafael Ferreira Da Silva, Miron Livny, et al. Pegasus, a workflow man-
agement system for science automation. Future Generation Computer Systems, 46:17–35, 2015.
URL https://pegasus.isi.edu/.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett. Win-
ner takes it all: Training performant rl populations for combinatorial optimization. In Advances
in Neural Information Processing Systems, volume 36, pp. 48485–48509, 2023.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In International Conference
on Learning Representations, 2023.

Jiang-Ping Huang, Liang Gao, and Xin-Yu Li. An end-to-end deep reinforcement learning method
based on graph neural network for distributed job-shop scheduling problem. Expert Systems with
Applications, 238:121756, 2024.

Victoria Huang, Chen Wang, Hui Ma, Gang Chen, and Kameron Christopher. Cost-aware dynamic
multi-workflow scheduling in cloud data center using evolutionary reinforcement learning. In
International Conference on Service-Oriented Computing, pp. 449–464. Springer, 2022.

Yashpalsinh Jadeja and Kirit Modi. Cloud computing-concepts, architecture and challenges. In
International Conference on Computing, Electronics and Electrical Technologies, pp. 877–880.
IEEE, 2012.

11

https://github.com/nikhilbarhate99/PPO-PyTorch
https://github.com/nikhilbarhate99/PPO-PyTorch
https://pegasus.isi.edu/

Published as a conference paper at ICLR 2025

Amanda Jayanetti, Saman Halgamuge, and Rajkumar Buyya. Reinforcement learning based work-
flow scheduling in cloud and edge computing environments: A taxonomy, review and future
directions. arXiv preprint arXiv:2408.02938, 2024.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

Kun Lei, Peng Guo, Yi Wang, Jian Zhang, Xiangyin Meng, and Linmao Qian. Large-scale dynamic
scheduling for flexible job-shop with random arrivals of new jobs by hierarchical reinforcement
learning. IEEE Transactions on Industrial Informatics, 20(1):1007–1018, 2023.

Renke Liu, Rajesh Piplani, and Carlos Toro. Deep reinforcement learning for dynamic scheduling
of a flexible job shop. International Journal of Production Research, 60(13):4049–4069, 2022.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. In Advances in Neural Information Processing
Systems, volume 36, pp. 8845–8864, 2023.

Jinhong Luo, Yunfan Zhou, Xijun Li, Mingxuan Yuan, Jianguo Yao, and Jia Zeng. Learning to
optimize dag scheduling in heterogeneous environment. arXiv preprint arXiv:2103.06980, 2021.

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad
Alizadeh. Learning scheduling algorithms for data processing clusters. In Proceedings of the
ACM Special Interest Group on Data Communication, pp. 270–288, 2019.

Dan C Marinescu. Cloud computing: theory and practice. Morgan Kaufmann, 2022.

Fei Ni, Jianye Hao, Jiawen Lu, Xialiang Tong, Mingxuan Yuan, Jiahui Duan, Yi Ma, and Kun He. A
multi-graph attributed reinforcement learning based optimization algorithm for large-scale hybrid
flow shop scheduling problem. In Proceedings of the ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 3441–3451, 2021.

Zixiao Pan, Ling Wang, ChenXin Dong, and Jing-Fang Chen. A knowledge-guided end-to-end
optimization framework based on reinforcement learning for flow shop scheduling. IEEE Trans-
actions on Industrial Informatics, 20(2):1853–1861, 2023.

Junyoung Park, Jaehyeong Chun, Sang Hun Kim, Youngkook Kim, and Jinkyoo Park. Learning to
schedule job-shop problems: representation and policy learning using graph neural network and
reinforcement learning. International Journal of Production Research, 59(11):3360–3377, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
volume 32, 2019.

Thanh-Phuong Pham and Thomas Fahringer. Evolutionary multi-objective workflow scheduling for
volatile resources in the cloud. IEEE Transactions on Cloud Computing, 10(3):1780–1791, 2020.

Jonathan Pirnay and Dominik G Grimm. Take a step and reconsider: Sequence decoding for self-
improved neural combinatorial optimization. arXiv preprint arXiv:2407.17206, 2024.

Shuo Qin, Dechang Pi, Zhongshi Shao, Yue Xu, and Yang Chen. Reliability-aware multi-objective
memetic algorithm for workflow scheduling problem in multi-cloud system. IEEE Transactions
on Parallel and Distributed Systems, 34(4):1343–1361, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Debabrata Senapati, Arnab Sarkar, and Chandan Karfa. Hmds: A makespan minimizing dag sched-
uler for heterogeneous distributed systems. ACM Transactions on Embedded Computing Systems,
20(5s):1–26, 2021.

12

Published as a conference paper at ICLR 2025

Ya Shen, Gang Chen, Hui Ma, and Mengjie Zhang. Cost-aware dynamic cloud workflow scheduling
using self-attention and evolutionary reinforcement learning. In International Conference on
Service-Oriented Computing, pp. 3–18, 2024.

Wen Song, Xinyang Chen, Qiqiang Li, and Zhiguang Cao. Flexible job-shop scheduling via graph
neural network and deep reinforcement learning. IEEE Transactions on Industrial Informatics,
19(2):1600–1610, 2022.

Chupeng Su, Cong Zhang, Dan Xia, Baoan Han, Chuang Wang, Gang Chen, and Longhan Xie.
Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop
scheduling problem. Applied Soft Computing, 145:110596, 2023.

Penghao Sun, Zehua Guo, Junchao Wang, Junfei Li, Julong Lan, and Yuxiang Hu. Deepweave:
Accelerating job completion time with deep reinforcement learning-based coflow scheduling. In
International Conference on International Joint Conferences on Artificial Intelligence, pp. 3314–
3320, 2021.

Zaixing Sun, Yi Mei, Fangfang Zhang, Hejiao Huang, Chonglin Gu, and Mengjie Zhang. Multi-tree
genetic programming hyper-heuristic for dynamic flexible workflow scheduling in multi-clouds.
IEEE Transactions on Services Computing, 2024.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. In Advances in Neural Information Processing Systems, volume 36, pp. 3706–3731, 2023.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems,
13(3):260–274, 2002.

A Vaswani. Attention is all you need. In Advances in Neural Information Processing Systems, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Runqing Wang, Gang Wang, Jian Sun, Fang Deng, and Jie Chen. Flexible job shop scheduling via
dual attention network-based reinforcement learning. IEEE Transactions on Neural Networks and
Learning Systems, 2023.

Shuang Wang, Xiaoping Li, and Ruben Ruiz. Performance analysis for heterogeneous cloud servers
using queueing theory. IEEE Transactions on Computers, 69(4):563–576, 2019.

Zheyuan Wang and Matthew Gombolay. Learning scheduling policies for multi-robot coordination
with graph attention networks. IEEE Robotics and Automation Letters, 5(3):4509–4516, 2020.

Zheyuan Wang and Matthew Gombolay. Stochastic resource optimization over heterogeneous graph
neural networks for failure-predictive maintenance scheduling. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling, volume 32, pp. 527–536, 2022.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning scenario representation for solving
two-stage stochastic integer programs. In International Conference on Learning Representations,
2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Meng Xu, Yi Mei, Shiqiang Zhu, Beibei Zhang, Tian Xiang, Fangfang Zhang, and Mengjie Zhang.
Genetic programming for dynamic workflow scheduling in fog computing. IEEE Transactions
on Services Computing, 16(4):2657–2671, 2023.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to dispatch
for job shop scheduling via deep reinforcement learning. In Advances in Neural Information
Processing Systems, volume 33, pp. 1621–1632, 2020.

13

Published as a conference paper at ICLR 2025

Cong Zhang, Zhiguang Cao, Wen Song, Yaoxin Wu, and Jie Zhang. Deep reinforcement learning
guided improvement heuristic for job shop scheduling. In International Conference on Learning
Representations, 2024.

Lu Zhang, Yi Feng, Qinge Xiao, Yunlang Xu, Di Li, Dongsheng Yang, and Zhile Yang. Deep
reinforcement learning for dynamic flexible job shop scheduling problem considering variable
processing times. Journal of Manufacturing Systems, 71:257–273, 2023.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mv-
moe: Multi-task vehicle routing solver with mixture-of-experts. In International Conference on
Machine Learning, 2024.

Kaige Zhu, Zhenjiang Zhang, Sherali Zeadally, and Feng Sun. Learning to optimize workflow
scheduling for an edge–cloud computing environment. IEEE Transactions on Cloud Computing,
2024.

14

Published as a conference paper at ICLR 2025

A DIRECTED ACYCLIC GRAPH

A workflow Wi can be represented as a Directed Acyclic Graph (DAG), denoted by Wi =
(OWi , CWi), as shown in Figure 7. Here, OWi = {Oi1, Oi2, · · · , Oini} is the set of nodes, where
each node Oij represents a specific task of Wi that needs to be executed. The edge set Ci represents
the directed edges between tasks, where each edge (Oij , Oik) indicates a precedence constraint such
that task Oij must be completed before task Oik can start. The execution of tasks in the workflow
follows the topological order defined by the DAG. A task can be scheduled or executed only after
all its predecessor tasks have been completed; such a task is referred as a ready task.

workflow workflow workflow

Figure 7: Three workflows in DAG form.

B DYNAMIC WORKFLOW SCHEDULING PROCESS

Workflow scheduling involves assigning interdependent tasks to heterogeneous virtual machines to
optimize specific objectives such as mean flowtime across workflows. In the scheduling process,
certain constraints or assumptions must be taken into account:

• The pattern of each workflow (i.e., DAG structure) is unknown until it reaches the system.
• Tasks within a workflow can be allocated to any machine, with processing times varying ac-

cording to machine speeds.
• Each machine can process only one task at a time.
• Only tasks with all predecessors completed are eligible for scheduling.

Figure 8 depicts the scheduling process in a DWS system. The process begins with the dynamic
arrival of workflows into the Workflow Pool. At each decision step t, the system automatically iden-
tifies a unique task that needs to be assigned at state st, called the focused task O∗

t . For example,
O43 is chosen as the focused task at the current state. The scheduling agent then assigns the focused
task to one of the available machine queues according to a policy π. For example, O43 is assigned
to the queue of machine M1 following M1 = π(O43, {M1,M2, · · · ,M|M|}). The assigned tasks
waiting in each machine queue will be executed according to the First-In-First-Out (FIFO) principle
(Deelman et al., 2015; Huang et al., 2022), and their execution time depends on the machine’s pro-
cessing speed. The task execution status in the workflow pool is updated step-by-step, transitioning
from unassigned to focused, then to assigned, and finally to completed. Meanwhile, the schedul-
ing agent iteratively updates the system, identifies new focused tasks, and manages task execution
in line with machine queues until all tasks are completed.

...
Arrival
Time:

Workfllow Pool

Any focused tasks?

Start

NoEnd

Yes

Machine Queues Machines
4

4

4

... ...

sched
The focused task

Update

Scheduler

focused
task

scheduled
task

...

Machine Resource... ...

Policy assigned
machine

unassigned task
focused task
assigned task
completed task

Figure 8: Scheduling process in the dynamic workflow scheduling system.

15

Published as a conference paper at ICLR 2025

C RAW NODE FEATURES IN GRAPH REPRESENTATION

Detailed definitions of raw node features and their respective value ranges are reported in Table 3. In
particular, for the four machine-related features (i.e., et, ct,ms,mu), if ∃(Oij , ·) ∈ CW ∪ CM ∪ Cat

or ∃(·, Oij) ∈ CW ∪ CM ∪ Cat
, the feature values f (q)ij of node O

(q)
ij are calculated using the status

of the specific machine Mq; otherwise, the feature value is estimated using the average information
across all machines, denoted by f

(q̄)
ij on Mq̄ .

Table 3: Meaning and value range of raw features within each node.
Symbol Meaning Explanation Range

workflow
related

esij Task execution status Represents four possible status of task Oij :
unassigned, focused, assigned, and completed. 0,1,2,3

twij Task workload The workload of task Oij . ≤ 39185.28 s

rwij
Remaining workloads
of associated workflow

The sum of the workloads of all unassigned tasks
in workflow Wi to which task Oij belongs. ≤ 29.41 h

machine
related

et
(q)
ij or et(q̄)ij Task Execution time The execution time of task Oij on machine Mq ,

with q̄ indicating the average across all machines. ≤4898.16s

ct
(q)
ij or ct(q̄)ij Task completion time The expected completion time of task Oij on

machine Mq or Mq̄ . ≤ 29.41 h

msq or msq̄ Machine speed
The processing speed of machine Mq , with q̄
representing the average processing speed
across all machines.

8,16,32,48,64,96

muq or muq̄ Machine utilization the ratio of its working time to the total system
time, with q̄ representing the system average. [0,1)

D TASK-SPECIFIC EMBEDDING MODULE

We use K GAT layers (Veličković et al., 2018) to extract the node embedding of the focused task
O∗

t from Ga(sat , at). Specifically, the update rule at the k-th layer is defined as follows:

h(k)
x = σ

 ∑
y∈N (x)

α(k)
xy W

(k)
θ h(k−1)

y

 (3)

where h
(0)
x = f

(q)
ij ∈ R7 is the raw feature vector of node x in Ga(sat , at) at the input layer, and

h
(k)
x ∈ Rd is the d-dimensional embeddings of node x at the k-th layer. Additionally, N (x) =
{y|∀(y, x) or ∀(x, y) ∈ CW∪CM∪Cat

} is the neighboring set containing all incoming and outgoing
neighbors of node x in Ga(sat , at). Furthermore, α(k)

xy is the attention coefficient between nodes x

and y at the k-th layer; W(k)
θ is the learnable weight matrix of the k-th layer; and σ is a non-linear

activation function (e.g., ReLU). The node embedding ĥsat ,at
= h

(K)
O∗

t
∈ Rd with respect to the

focused task O∗
t at the K-th layer is extracted from the task-specific graph Ga(sat , at) and is further

processed by an MLP for action selection.

E SYSTEM-ORIENTED EMBEDDING MODULE

Unlike previous approaches where the actor and critic networks share a common feature extractor
(Ni et al., 2021; Song et al., 2022; Wang et al., 2023), our critic network uses its own GAT layers
and self-attention layers (Vaswani, 2017; Ni et al., 2021) to extract node embeddings from Gc(sct).
Specifically, K GAT layers are used to obtain the embeddings of all nodes in Gc(sct), with the update
rule at the k-th layer defined as:

e(k)x = σ

 ∑
y∈N (x)

α(k)
xy W

(k)
ϕ e(k−1)

y

 (4)

where e
(k)
x ∈ Rd is the d-dimensional embedding of node x obtained at the k-th layer, W(k)

ϕ is the

layer’s learnable weight matrix, α(k)
xy is the attention coefficient between nodes x and y, and σ is a

non-linear activation function (e.g., ReLU). The neighborhood set N (x) = {y|∃(y, x) or (x, y) ∈
CW∪CM∪CA} contains all predecessor and successor nodes connected directly to node x in Gc(sct).

16

Published as a conference paper at ICLR 2025

Table 4: Cross-entropy loss at different iterations. “Ours-TSEM”: our task-specific embedding
module proposed in Section 4.2.1. “TSEM w/o. pair”: an architecture that does not handle (s, a)
pairs; instead, it directly calculates all action selection probabilities based on a state. “TSEM w.
mean”: an architecture that additionally concatenates the mean pooling of all nodes from the task-
specific graph as input to the MLP.

Actor Architecture 100-th 200-th 300-th 400-th 500-th 600-th 700-th 800-th 900-th

Ours-TSEM 2.7486 2.7106 2.6881 2.6647 2.6498 2.6038 2.5726 2.5297 2.5091
TSEM w/o. pair 3.1707 3.1597 3.1538 3.1468 3.1435 3.1394 3.1365 3.1333 3.1302
TSEM w. mean 2.7099 2.7209 2.7152 2.6659 2.7109 2.6172 2.5989 2.5334 2.5243

F ABLATION STUDY OF ACTOR NETWORK ARCHITECTURE DESIGN

In Table 4, we compare three alternative actor network architectures based on their cross-entropy
loss defined below averaged over five random seeds. This comparison provides insights into how
well each architecture can learn from HEFT through imitation learning. The best architecture is
expected to achieve the lowest cross-entropy loss and hence is more capable of modelling effective
scheduling policies.

LCE =
1

|D|
∑

sat ,at∈D
CrossEntropy(πθ(s

a
t , ·), at) (5)

whereD is a repository of state-transition data obtained by using HEFT to schedule workflow tasks,
πθ(s

a
t , ·) represents the probability distribution over eligible actions determined by the actor network

with parameters θ.

We compare Ours-TSEM, which incorporates the advantages of pairwise processing and focused
embedding mentioned in Section 4.2.1, against two baselines: TSEM w/o pair (removing pairwise
processing) and TSEM w. mean (adding mean pooling over all nodes).

• Our-TSEM achieves the lowest cross-entropy loss in most cases, as its architecture precisely
considers the impacts of each machine on the focused task, enabling the actor network to ef-
fectively differentiate all candidate actions.

• TSEM w/o pair demonstrates a smaller reduction in loss than Our-TSEM, indicating that
pairwise processing can accurately capture the task-machine interactions, facilitating effective
scheduling.

• TSEM w. mean leads to inferior loss, since it dilutes the information of the focused task as a
result of mixing the embeddings of all tasks, making it hard to distinguish eligible actions.

Overall, Our design of TSEM allows precise differentiation of actions, facilitating precise task as-
signment across heterogeneous machines.

G ABLATION STUDY OF CRITIC NETWORK ARCHITECTURE DESIGN

In Table 5, we analyze the effectiveness of our critic network design based on the value loss, which
measures the mean squared error between predicted state values and sampled returns:

LMSE =
1

|D|
∑
sct∈D

(Vϕ(s
c
t)−Rt)

2, (6)

where Vϕ(s
c
t) represents the predicted value for state sct with network parameters ϕ, and Rt is the

corresponding sampled return.

To validate the advantages of comprehensive context awareness and long-range interaction model-
ing in our critic network design proposed in Section 4.2.2, we compare Ours-SOEM against two
variants: SOEM w/o edge (removing bi-directional and additional edges) and SOEM w/o self (re-
moving the self-attention mechanism).

• Ours-SOEM achieves the lowest value loss in most cases, demonstrating the effectiveness of
its design in capturing the full influence of task-machine interactions, enabling the critic to
make accurate value estimations.

17

Published as a conference paper at ICLR 2025

Table 5: Mean relative error between return and state value at different iterations. “Ours-
SOEM”: our system-oriented embedding module proposed in Section 4.2.2. “SOEM w/o. edge”:
only one-directional edges and no extra edges are used in Ours-SOEM. “SOEM w/o. self”: Ours-
SOEM architecture removes the self-attention layer.

Critic Architecture 100-th 200-th 300-th 400-th 500-th 600-th 700-th 800-th 900-th

Ours-SOEM 16.3971 14.0938 10.4907 9.5811 7.8581 7.5675 7.1238 6.0035 6.2547
SOEM w/o. edge 17.3012 13.4737 11.6626 9.8066 8.8853 7.5266 7.5607 7.593 7.1468
SOEM w/o. self 20.6114 16.1826 14.6813 12.6997 12.0733 10.7019 10.1497 8.5121 8.5645

• SOEM w/o edge shows a higher value loss than Ours-SOEM, indicating that relying solely
on unidirectional edges limits the critic’s ability to capture the context of task-machine in-
teractions. Without additional connections, it is challenging for SOEM w/o edge to capture
comprehensive contextual relationships in the graph.

• SOEM w/o self exhibits a noticeable increase in value loss due to the lack of the self-attention
layer, which is essential for modeling long-range interactions among task nodes. This capability
is crucial for DWS, as tasks from newly arriving workflows can have a long-range impact on
existing tasks.

Overall, our design of SOEM enhances contextual understanding and effectively captures long-
range dependencies. For example, in Figure 3(a), the newly arrived workflow W3 can be effectively
incorporated into the current system state by using bi-directional and additional edges and the self-
attention mechanism. Our design of SOEM enables the critic to provide accurate value estimations
and adapt to the complexities of unpredictable workflow arrivals and patterns.

H DETAILS OF OFFLINE AND ONLINE LEARNING ALGORITHMS

H.1 DETAILS OF OFFLINE LEARNING ALGORITHM

For offline learning, we propose a two-step training process that combines Imitation Learning and
Proximal Policy Optimization (PPO) for offline training, as shown in Algorithm 1. In the first
step, the actor leverages Imitation Learning to efficiently mimic the behavior of HEFT (Topcuoglu
et al., 2002), an expert-designed heuristic policy denoted by π̂, aiming to minimize the correspond-
ing cross-entropy loss (line 7). This method allows the actor to quickly learn an effective policy,
preventing the buildup of uncompleted tasks in the graph representation, which often occurs with
randomly initialized policies.

The actor trained via imitation learning provides a stable starting point for the second step. In the
second step, N=4 independent trajectories are collected per training iteration. The scheduling agent
jointly updates both the actor and critic networks in the direction of minimizing the clipped policy
loss and the value function loss (line 24). This combination of imitation learning followed by PPO
ensures robust performance while mitigating the risk of memory overload.

H.2 DETAILS OF ONLINE LEARNING ALGORITHM

For online learning, we propose an enhanced version of the Proximal Policy Optimization (PPO)
algorithm, as outlined in Algorithm 2. It enables the actor to dynamically schedule incoming work-
flows while simultaneously refining its parameters during the operations of the Dynamic Workflow
Scheduling (DWS) system. Traditional PPO relies on multiple short trajectories for effective policy
updates, making it less suitable for online scenarios where stable updates are necessary based on a
single long-lasting trajectory.

The algorithm alternates between real-time scheduling decisions (line 3-6) and network updates (line
8-24). The transition data by the interaction between the actor and the dynamic environment during
real-time scheduling is efficiently managed and stored through a fixed-size experience buffer B (line
6). For dynamically arriving workflows, at each step, the system needs to sample an action/machine
for the focused task based on the actor’s policy. After every Tw steps (after an initial warm-up period
of Tnw), the most recent transitions in buffer B are used to update the actor and critic networks
separately. The updated actor then resumes real-time decision-making, gathering new transition
data for the next network update cycle.

18

Published as a conference paper at ICLR 2025

Algorithm 1: Offline Learning with Imitation Learning and PPO
Input: Initial actor network πθ, initial critic network Vϕ, environment env, heuristic policy π̂,

actor learning rate απ , critic learning rate αV , value loss coefficient cv , entropy loss
coefficient ce, clipping parameter ϵ, number of trajectories N , update epochs E1 and
E2, number of training steps U

Output: Pre-trained actor network πθ, pre-trained critic network Vϕ

// Step 1: Imitation Learning
1 Initialize environment env and buffer D;
2 while env is not terminated do
3 Execute action ai = π̂(st) and observe next state st+1;
4 Store transition (sat , at) in buffer D;
5 st ← st+1;
6 for update = 1 to E1 do
7 Compute cross-entropy loss: LCE = 1

|D|
∑

sai ,ai∈D CrossEntropy(πθ(s
a
i , ·), ai);

8 Perform gradient descent on LCE to update θ to mimic heuristic policy π̂;
// Step 2: PPO Training

9 for each iteration = 1 to U do
10 Initial buffer B; θold ← θ;
11 for n = 1 to N do
12 Initialize environment envn and buffer Bn;
13 while envn is not terminated do
14 Sample action at ∼ πθold(st);
15 Execute action at and observe reward rt and next state st+1;
16 Store transition (sat , at, rt, st+1) in buffer Bn;
17 st ← st+1;
18 for each transition in buffer Bn do
19 Calculate Return: Rt =

∑|Bn|−t
k=0 γkrt+k;

20 Calculate Advantage: Ât = Rt − Vϕ(s
c
t);

21 B ← B ∪ Bn;
22 for update = 1 to E2 do
23 for each minibatch B̂ from buffer B do
24 Compute aggregated loss:

LCLIP = 1
|B̂|

∑|B̂|
j=1 min

(
πθ(aj |sj)

πθold
(aj |sj) Âj , clip

(
πθ(aj |sj)

πθold
(aj |sj) , 1− ϵ, 1 + ϵ

)
Âj

)
,

LV F = 1
|B̂|

∑|B̂|
j=1 (Vϕ(sj)−Rj)

2,

L = −LCLIP + cvLV F ;
25 Perform gradient descent on L to update θ and ϕ;

One technique of our approach involves monitoring the gradient changes of the actor (line 21-23).
This is performed by controlling the mean L2 norm of the gradients ∥∇J∥2 within a dynamically ad-
justed threshold (line 21). Actor updates are permitted only when the gradient norm remains below
this threshold, facilitating stable online learning. Additionally, the upper bound on gradient changes
is adaptively adjusted to maintain controlled updates, ensuring stability in policy improvement and
mitigating abrupt changes in actor behavior. This stabilization is crucial in dynamic environments,
where sudden shifts in actor’s policy could lead to catastrophic scheduling decisions, resulting in
severe backlogging of subsequent workflow tasks.

Another technique is the independent, higher-frequency training of the critic network (line 11-14).
This decoupling from the actor’s updates allows the critic to improve its accuracy of estimating fu-
ture returns. Meanwhile, frequent critic update stabilizes online learning by providing more precise
value estimations. Subsequently, the algorithm uses the updated critic to guide the training of the
actor’s parameter. Accurate critic predictions provide more reliable feedback for the actor, leading
to more effective policy improvement.

19

Published as a conference paper at ICLR 2025

Algorithm 2: Online Learning with Enhanced PPO
Input: Pre-trained actor network πθ, pre-trained critic network Vϕ, environment env,

discounting factor γ, actor learning rate απ , critic learning rate αV , entropy loss
coefficient ce, clipping parameter ϵ, environment warm-up steps Tnw, critic warm-up
steps Tcw, time window steps Tw, actor update epochs Ea, critic update epochs Ec

Output: Scheduling decision of arrival workflows with |O| tasks
1 Initialize online environment env, and an experience buffer B with fixed size 2Tw;
2 for t = 1 to |O| do

// Online Decision Making
3 θold ← θ;
4 Sample action at ∼ πθold(st);
5 Execute action at and observe reward rt and next state st+1;
6 Store transition (sat , at, rt, st+1) in buffer B;
7 if (t− Tnw)%Tw == 0 and t ≥ Tnw then
8 for each transition in buffer B do
9 Calculate Return using Tw steps of rewards: Ri =

∑Tw

k=0 γ
kri+k;

10 for update = 1 to Ea do
// Update Critic Network

11 for update = 1 to Ec/Ea do
12 for each minibatch B̂ from buffer B do
13 Compute value loss: LV = 1

|B̂|

∑|B̂|
j=1 (Vϕ(sj)−Rj)

2;

14 Perform gradient descent on LV to update ϕ;

// Update Actor Network
15 if (t− Tnw)//Tw ≥ Tcw then
16 for each transition in buffer B do
17 Calculate Advantage: Âi = Ri − Vϕ(si);

18 for each minibatch B̂ from buffer B do
19 Compute policy loss:

Lπ = 1
|B̂|

∑|B̂|
j=1 min

(
rj(θ)Âj , clip (rj(θ), 1− ϵ, 1 + ϵ) Âj

)
where rj(θ) =

πθ(aj |sj)
πθold

(aj |sj) ;
20 Calculate the mean L2 norm of the actor’s gradients ∥∇J∥2;
21 if ∥∇J∥2 ≤ µprev + σprev and ∥∇J∥2 ≤ τ0 then
22 Perform gradient ascent on Lπ to update θ;

23 Update the parameters of the gradient control µprev, σprev;

24 st ← st+1;

I SIMULATION SETTINGS

I.1 REAL-WORLD TRACES

Regarding real-world traces, previous studies explored three different aspects, as summarized below:

• Workflow characteristics: Past studies considered different task dependency graphs, num-
ber of tasks, and task execution time. They focused mainly on scientific workflows such as
CyberShake and Montage (Deelman et al., 2015; Qin et al., 2023; Sun et al., 2024). For
a detailed introduction to these real-world scientific workflows, please refer to (Deelman
et al., 2015). These datasets are available in the workflow repository on the Pegasus web-
site (https://download.pegasus.isi.edu/misc/SyntheticWorkflows.tar.gz). In line with existing
works, our experiments were also conducted on these scientific workflows.

• Resource configurations: Past studies considered various resource configurations, including
virtual or physical machine configurations, quantities, and prices. They mainly followed re-

20

Published as a conference paper at ICLR 2025

source configurations supported by major cloud providers, such as Amazon EC21, Google
Cloud2, and Microsoft Azure3. Our experiments adopted the resource configurations supported
by Amazon EC2.

• Arrival patterns: Existing studies primarily relied on workflow arrivals simulated by a Pois-
son distribution, such as (Huang et al., 2022; Xu et al., 2023; Wang et al., 2019). Please refer to
(Wang et al., 2019) for a theoretical analysis of such arrival patterns. Wang et al. (2019) specif-
ically pointed out that “the distributions of the time interval of each request are exponential
which implies that the arrival rates are Poisson distributed.”.

I.2 WORKFLOW INFORMATION

We adopt the common experimental setup used in the cloud computing domain (Huang et al., 2022;
Xu et al., 2023), utilizing four widely-studied workflow patterns (Deelman et al., 2015), as shown in
Figure 9. Each workflow pattern contains detailed information such as task workloads twij and the
dependency relationships between tasks, as summarized in Table 6. For more information, please
refer to https://pegasus.isi.edu/documentation/user-guide/introduction.html. In the simulated exper-
iments, these workflow patterns arrive dynamically according to a Poisson distribution λ, consistent
with the default settings of existing studies (Wang et al., 2019; Xu et al., 2023; Shen et al., 2024).

InspiralMontage CyberShake SIPHT

Figure 9: Four widely studied workflow patterns in dynamic workflow scheduling.

Table 6: Information of four widely used workflow patterns. “Total workload”: the sum of all
task workload twij in a workflow.

Pattern name Number of tasks Number of edges Average task workload Total workload

Montage 25 45 145.76 s 1.01 h
CyberShake 30 52 405.62 s 3.38 h

SIPHT 29 33 3060.12 s 24.65 h
Inspiral 30 35 3529.10 s 29.41 h

Figure 10 depicts the 95%-99% quantile of workflow arrivals at different arrival rates. Specifically,
the 95% and 99% quantiles at λ = 5.4 are 9.3 (approx. 280 tasks) and 11.7 (approx. 350 tasks)
workflows per hour, and that λ = 9 are 14 (approx. 420 tasks) and 16 (approx. 480 tasks) workflows
per hour.

I.3 MACHINE CONFIGURATIONS

The cloud system in our experiments supports six types of virtual machines. Each type follows
strictly the latest machine configurations of Amazon EC2 instances, as listed in Table 7. Here,
the “vCPU” parameter indicates the processing speed ms of each machine. For example, task Oij

with task workload as twij = 402.3 will require an execution time of etqij = 402.3/8 on machine
Mq equipped with 8 vCPUs. The number of machines for each configuration is determined by the
specific scenario. For example, a scenario denoted as ⟨4×3, 9⟩ comprises of the first four VM types
in Table 7, with three machines of each type, resulting in a total of 12 machines.

1https://aws.amazon.com/ec2/pricing/on-demand/
2https://cloud.google.com/compute/vm-instance-pricing
3https://azure.microsoft.com/en-gb/pricing/

21

Published as a conference paper at ICLR 2025

0 200 400 600 800
Arrival Time

0.0

2.5

5.0

7.5

10.0

12.5

Nu
m

be
r o

f W
or

kf
lo

ws

Workflow Counts
95% Quantile
99% Quantile

(a) λ = 5.4

0 100 200 300 400 500
Arrival Time

5

10

15

20

Nu
m

be
r o

f W
or

kf
lo

ws

Workflow Counts
95% Quantile
99% Quantile

(b) λ = 9.0

Figure 10: New arrival counts of 95%-99% Quantiles at different arrival rates.

Table 7: Configurations of six machines based on Amazon EC2. “vCPU”: used as the processing
speed of the machine.

Instance Name vCPU Memory On-Demand hourly rate

m5.2xlarge 8 32 GiB $0.344
m5.4xlarge 16 64 GiB $0.688
m5.8xlarge 32 128 GiB $1.376
m5.12xlarge 48 192 GiB $2.064
m5a.16xlarge 64 256 GiB $2.752
m5a.24xlarge 96 384 GiB $4.128

J MODEL CONFIGURATIONS

Network Architecture. The actor network π consists of 2 Graph Attention Network (GAT) layers
with one attention head, followed by 4 MLP layers. The critic network V has 2 GAT layers with
one attention head, 1 self-attention layer with two attention heads, and 4 MLP layers. Each of these
layers has 128 hidden dimensions.

Normalization. All raw feature values are normalized by dividing by constants to maintain a con-
sistent scale across the network inputs. The reward rt is normalized by dividing it by 1000 to ensure
stability during training.

Imitation Learning. The actor network is pre-trained with 7680 state-transition samples obtained
by using the HEFT heuristic. The mini-batch size is set to 64. The actor is updated for 10 epochs
using the Adam optimizer with a constant learning rate of 1 × 10−4. The choice of 10 epochs for
pre-training the actor network was based on experimental observations. After 10 epochs, the actor
was able to match or even surpass the performance of the HEFT heuristic.

Table 8: Imitation learning hyperparameters.
Hyperparameter Value

Data size (|D|) 7680
Num. epochs 10
Minibatch size 64
Actor learning rate 1× 10−4

Offline PPO. We warm up the critic network for 200 iterations before running 1000 training itera-
tions. Each iteration collects 4 independent episodes of transition data for actor and critic training.
Following the implementation in (Barhate, 2021), we use a clipping parameter of 0.2 for PPO. The
coefficients for the clipped policy loss and the value function loss are set to 1 and 0.5, respectively.
The discount factor γ is 0.99. We use the Adam optimizer with fixed learning rates: 3 × 10−4 for
the actor and 1×10−3 for the critic. In each iteration, both the actor and critic networks are updated
for 1 epoch.

Online PPO. For online learning, we update the pre-trained actor network over a single long tra-
jectory with approximately 30× 5000, 30×10000, or 30×20000 steps. After a system warm-up
phase of 15000 or 30000 steps, we begin running the online PPO algorithm. We first train the critic
network for 50 iterations. Subsequently, both the actor and critic networks are trained for additional
250, 500, or 1000 training iterations. In each iteration, 512 steps of transition data are collected to

22

Published as a conference paper at ICLR 2025

Table 9: Offline PPO hyperparameters.
Hyperparameter Value

Critic warm-up iterations 200
Max training iterations 1000
Num. independent episodes 4
Num. epochs 1
Minibatch size 64
Clipping parameter 0.2
Policy coefficient 1
Value function coefficient 0.5
Discount factor (γ) 0.99
Actor learning rate 3× 10−4

Critic learning rate 1× 10−3

alternately train the actor and critic networks, with a mini-batch size of 64. The actor and critic are
updated for 5 and 20 epochs per iteration, respectively. We use the Adam optimizer with learning
rates of 5 × 10−5 for the actor and 1 × 10−4 for the critic. A gradient control mechanism ensures
that the gradient magnitude for each mini-batch stays within the range of the mean plus one standard
deviation, based on the previous iteration’s values, and does not exceed 0.075.

Table 10: Online PPO hyperparameters.
Hyperparameter Value

Critic warm-up iterations 50
Max training iterations 250, 500, 1000
Windows stepsize 512
Num. epochs for actor 5
Num. epochs for critic 20
Minibatch size 64
Clipping parameter 0.2
Discount factor (γ) 0.99
Actor learning rate 5× 10−5

Critic learning rate 1× 10−4

Maximum available gradient change (τ0) 0.075

Hardware platform and Algorithm Implementation. We implement the GAT networks using
PyTorch-Geometric (Fey & Lenssen, 2019), and the rest of the components are built using PyTorch
(Paszke et al., 2019). Our experiments are conducted in a cloud computing environment to parallel
the execution of numerous experiments. Due to the predominance of CPU resources in the cloud
environment, all experiments were conducted on CPU. The averaged offline training time was ap-
proximately 150 CPU hours, while the averaged online training times were 30 CPU hours, 60 CPU
hours, and 120 CPU hours, respectively. Our code and simulator will be made publicly available.

Table 11: Software and hardware version information.
Software and hardware Version

Python 3.11.5
PyTorch 2.4.1
PyTorch-Geometric 2.5.3
rl-zoo3 2.3.0
deap 1.4.1
Nodes 56
CPUs/Node 256
Available Mem/CPU 1850 MB

K OFFLINE PERFORMANCE OF GENETIC PROGRAMMING

Table 12 presents the mean and standard deviation results of the top three GPHH heuristics across
various offline scenarios. For each scenario, the corresponding result is averaged over 30 problem

23

Published as a conference paper at ICLR 2025

instances with each having 1000, 3000 or 5000 workflows. We select the best results in each sce-
nario (summarized in the right column) and present them in Table 1. As evidenced in this table, the
performance of GPHH varies significantly across different scenarios, indicating that the schedul-
ing heuristic evolved by GPHH cannot reliably handle large-scale problems. Previous research on
GPHH for DWS has typically focused on small-scale problems (Xu et al., 2023), often with around
30 workflows, where GPHH performed well. However, these small-scale problems are not popular
in many cloud computing applications (Huang et al., 2022; Zhu et al., 2024). Our results suggest that
GPHH, when applied to large and more complex scenarios, can suffer from significant instability.

Table 12: Mean and standard deviation objective of GPHH in offline scenarios. The mean
performance of the top three GPHH heuristics on the validation set, evaluated across 30 instances.

Scenarios GPHH-top 1 GPHH-top 2 GPHH-top 3 minimum

⟨5× 5, 5.4, 1k⟩ 435.56 607.30 408.24 408.24
⟨5× 5, 9, 1k⟩ 430.28 267913.55 52435.90 430.28
⟨6× 4, 5.4, 1k⟩ 726.23 380.29 322.52 322.52
⟨6× 4, 9, 1k⟩ 5314.90 300.20 352.45 300.20
⟨5× 5, 5.4, 3k⟩ 435.27 622.15 407.81 407.81
⟨5× 5, 9, 3k⟩ 427.04 1503503.96 21490.23 427.04
⟨6× 4, 5.4, 3k⟩ 759.19 386.77 484.37 386.77
⟨6× 4, 9, 3k⟩ 7277.48 7277.48 358.40 358.40
⟨5× 5, 5.4, 5k⟩ 437.32 622.01 408.38 408.38
⟨5× 5, 9, 5k⟩ 427.88 2650402.61 13750.89 427.88
⟨6× 4, 5.4, 5k⟩ 728.35 386.95 590.84 386.95
⟨6× 4, 9, 5k⟩ 7504.89 297.40 360.58 297.40

L ABLATION STUDY OF ONLINE LEARNING METHOD

In Table 13, we validate two key techniques proposed for online training: gradient control and
independent high-frequency critic updates, as described in Subsection 4.3.2. We compare Ours-
Online against two baselines: Online w/o grad. (removing gradient control) and Online w/o freq.
(removing high-frequency critic updates).

• Ours-Online achieves consistent improvements in mean flowtime, demonstrating the stability
and effectiveness of both techniques in enhancing online learning performance.

• Online w/o grad. shows slight deterioration, highlighting the importance of gradient control
for stabilizing actor updates during online training.

• Online w/o freq. performs significantly worse, with drastic negative impacts, indicating that
frequent critic updates are crucial for providing accurate value estimates and guiding effective
policy updates.

Overall, the inclusion of both techniques in Ours-Online ensures stable and improved performance
in online learning.
Table 13: Improvement in mean flowtime compared to Ours-Offline at different iterations.
“Ours-Online”: our online learning method proposed in Section 4.3.2. “Online w/o. grad.”: our
online learning method removes the gradient control technique. “ Online w/o. freq.”: actor and
critic are updated together using an aggregation loss.

Training Method 150-th 175-th 200-th 225-th 250-th

Ours-Online 1.62% 1.50% 1.57% 1.52% 1.52%
Online w/o. grad. -1.18% -1.08% -1.24% -1.36% -1.64%
Online w/o. freq. -184.80% -261.27% -283.93% -336.86% -382.54%

M SCALABILITY TO SIGNIFICANT CHANGES

We conduct additional experiments to test the generalization ability of our scheduling policy (i.e.,
actor network) without retraining, focusing on scenario changes in workflow patterns, workflow

24

Published as a conference paper at ICLR 2025

arrival rates, and cloud configurations. The results demonstrate that our model can effectively handle
variations in workflow patterns, arrival rates, and machine combinations.

As shown in Table 14, we evaluated scenarios with significant differences from the training environ-
ment. Here, the “–” symbol indicates that the setting remains the same as the original scenario, while
“
√

” denotes a change. The original training scenario involved mixed workflow patterns, λ = 9.0,
and a set of 5×5 machines. Scenarios 1 and 2 involve only compute-intensive workflow patterns (20
times larger in workload than normal ones), showing that our model maintains strong performance
under significant changes in workflow patterns. Scenarios 3 to 6 involve variations in the combina-
tion of machines (i.e., configurations × each quantity), demonstrating our model’s ability to adapt
to changes in cloud configurations.

Table 14: Varied scenarios in workflow patterns, arrival rates, and machine numbers.

Scenarios Workflow Arrival Machine EST PEFT HEFT GP ERL-DWS OursPattern Rate Number

1
√

– – 1954.59 961.26 881.55 962.35 14103.84 862.59
2

√ √
– 2114.21 1005.76 904.06 832.37 6403.65 791.86

3 –
√

3× 15 1793.76 927.33 872.71 1015.96 3208.32 761.24
4 –

√
4× 10 1512.44 684.15 643.34 517.05 2696.69 509.17

5 –
√

5× 7 1317.28 561.51 513.70 396.07 2534.30 385.44
6 –

√
6× 5 1190.84 450.93 404.47 286.00 2420.63 282.07

N TRANSFERABILITY TO OTHER SCHEDULING PROBLEMS

To demonstrate the transferability of our method, we applied our graph representation and neural
network architecture to the FJSS problems studied in Song et al. (2022), chosen for its strong rep-
resentativeness. In our experiments, all sequence-structured jobs of an FJSS problem instance are
represented jointly as a workflow, enabling our pipeline to handle the FJSS problem effectively as a
special case of our workflow scheduling problem.

As summarized in Table 15, GOODRL achieved highly competitive performance compared to DRL-
G and DRL-S proposed in Song et al. (2022) on the same FJSS test instances with different sizes.
Results confirms that GOODRL can be transferred to solve related scheduling problems, including
FJSS problems. It is important to note that GOODRL is purposefully designed to address dynamic
scheduling problems, leveraging key innovations such as task-specific and system-oriented graph
representations, which are tailored to handle unpredictable workflow arrivals and evolving system
states. Existing research such as (Zhang et al., 2020; Song et al., 2022; Zhang et al., 2024; Huang
et al., 2024) mainly considered static problems.

Table 15: Results on FJSS instance with different sizes. “DRL-G” and “DRL-G” are methods
proposed in (Song et al., 2022).

FJSS Size MOR SPT FIFO MWKR DRL-G DRL-S Ours

10×5 116.69 129.06 119.62 115.29 111.67 105.61 112.57
20×5 217.17 229.89 216.13 216.98 211.22 207.50 202.38

30×10 320.18 347.40 328.50 319.89 313.04 312.20 304.63
40×10 425.19 443.30 427.22 425.70 416.18 415.15 395.70

O EXPANDABILITY TO MULTI-OBJECTIVE PROBLEMS

We conduct experiments to demonstrate our method can support other practical objectives beyond
flowtime reduction, typically by modifying the reward function. By directly incorporating a cost
term into the reward function, we can re-train the actor to optimize for both VM cost (calculated
based on the hourly rental fees of each VM type) and flowtime. The results in the table below indi-
cate that, when explicitly considering the cost of using VMs, the mean flowtime experiences a slight
increase of up to 8%, but substantial cost savings of up to 41% are achieved in some scenarios.

25

Published as a conference paper at ICLR 2025

Hence, with a modified reward function, GOODRL can achieve a desirable trade-off between flow-
time and cost, showcasing its flexibility and practical utility. These results differ from our original
focus on reducing the mean flowtime alone and demonstrate the potential of GOODRL to support a
wide range of objectives.

Table 16: Performance comparison of policies trained with single and multi-objective.
Scenarios Objectives Single-Obj. Multi-Obj. Diff.

⟨5× 5, 5.4, 30⟩ flowtime 401.77 420.29 +4.61%
cost 139.82 82.28 -41.15%

⟨5× 5, 5.9, 30⟩ flowtime 408.49 413.02 +1.11%
cost 116.32 97.51 -16.17%

⟨6× 4, 5.4, 30⟩ flowtime 277.57 286.73 +3.30%
cost 192.24 143.47 -25.37%

⟨6× 4, 9, 30⟩ flowtime 285.93 306.90 +7.33%
cost 135.58 91.18 -32.75%

Extending our approach to incorporate multi-objective optimization is both feasible and valuable.
Below, we outline how this can be achieved in general and the specific challenges that need to be
addressed:

• Reward design: A weighted reward combining flowtime and energy efficiency (or cost as a
proxy) can be used. Weights could be static or adaptively tuned.

• Graph representation: Additional features like machine prices, scheduling overhead, and
other Quality of Service (QoS) requirements can be incorporated to provide the necessary con-
text for optimizing both objectives.

• Learning challenges: Conflicting objectives require strategies like Pareto-optimal training or
multi-critic designs to balance trade-offs effectively.

P INFERENCE TIME COMPARISON

At inference time, our model (i.e., the task-specific actor network) requires a very short time to
make a decision, as reported in Table 17. Across various test scenarios, our model takes 6-7 ms to
allocate a VM to process the target task. While prior approaches such as ERL-DWS and GPHH are
faster, it is important to emphasize that our model’s inference time is sufficiently short to meet the
requirements of real-world DWS problems. In fact, the inference time is significantly less than the
typical communication latency and data transfer time in a cloud environment.

Table 17: The average inference time to make a decision.
Scenarios GPHH ERL-DWS Ours

⟨5× 5, 5.4, 1k⟩ 0.7 ms 2.6 ms 6.1 ms
⟨5× 5, 9, 1k⟩ 1.0 ms 2.7 ms 7.6 ms
⟨6× 4, 5.4, 1k⟩ 0.6 ms 2.7 ms 6.0 ms
⟨6× 4, 9, 1k⟩ 0.7 ms 2.5 ms 6.8 ms

Q ROBUSTNESS ANALYSIS IN ONLINE SCENARIOS

(1) Fluctuation of Workflow Arrivals: We conducted additional experiments where we introduced
significant changes to the arrival rate, ranging from a decrease of 50% to an increase of 100% relative
to the arrival rates used to train the actor network. As evidenced by the experiment results reported
in Table 18, GOODRL can achieve consistently the best performance, outperforming all competing
approaches by a large margin. These results demonstrate that GOODRL is robust to substantial
fluctuations in arrival patterns and can effectively adapt to dynamic changes over time.

(2) Fluctuation of Offline-trained Actor: We have conducted additional experiments to investigate
whether our online algorithm can quickly adapt to such performance deterioration. In our experi-
ments, we introduced artificial noise ϵ at various levels to the offline-trained actor to intentionally

26

Published as a conference paper at ICLR 2025

Table 18: Performance comparison under changed arrival rates.
Arrival Rates EST PEFT HEFT GP ERL-DWS Ours

-50% 1288.59 626.37 567.55 403.99 2328.24 398.01
+50% 1165.15 516.60 481.70 413.99 4076.43 409.66

+100% 1112.05 498.06 469.46 424.92 5255.60 423.02

degrade its performance. We then trained this noise-infused actor online over a series of iterations.
As shown in Table 19, the initial performance dropped by approximately 3.7–3.8% compared to the
actor without noise. However, after 150 online training iterations, this gap was significantly reduced
to around 1–2%. These results clearly demonstrate that our online learning method in GOODRL
can quickly adapt to distribution shifts and effectively recover performance, even when starting with
a suboptimal offline-trained actor.

Table 19: Performance gap with the no-nosie actor across online training iterations.
Noise 0-th 25-th 50-th 75-th 100-th 125-th 150-th

ϵ=0.05 3.71% 3.61% 3.49% 3.20% 2.21% 1.94% 1.95%
ϵ=0.1 3.87% 3.66% 2.92% 2.42% 1.46% 1.10% 1.06%

R ADVANTAGES OF ONLINE RL COMPONENT

The adoption of the Online RL component is important for ensuring long-term stability and practical
utility in large-scale DWS problems:

• Maintain high long-term utility: The online RL component enhances long-term utility of
GOODRL by constantly learning from new experiences collected from the daily operation
of the cloud system. Unlike offline learning, online RL avoids costly and unnecessary
retraining of the actor from scratch. It is highly sample efficient and responsive, offering
strong adaptability in practice.

• Practical significance: The small improvement in mean flowtime can translate to a sig-
nificant improvement in scheduling efficiency and resource utilization for large-scale prob-
lems. As shown in Table 20, even small improvements in flowtime (e.g., 0.84% reduction
in average flowtime) can result in substantial cost savings (e.g., 36.11% reduction in ma-
chine rental fees). We will include quantitative examples in the revised paper to clearly
highlight the practical significance of this improvement.

Table 20: Comparison of two scheduling plans in flowtime and cost.
Scenarios Objectives Scheduling Plan-1 Scheduling Plan-2 Diff.

⟨5× 5, 5.4, 30⟩ flowtime 421.94 420.29 0.39% ↓
cost 102.44 82.28 19.68% ↓

⟨5× 5, 9, 30⟩ flowtime 416.53 413.02 0.84% ↓
cost 152.63 97.51 36.11% ↓

⟨6× 4, 5.4, 30⟩ flowtime 292.81 286.73 2.08% ↓
cost 188.43 143.47 23.86% ↓

⟨6× 4, 9, 30⟩ flowtime 309.70 306.90 0.90%↓
cost 137.43 91.18 33.65% ↓

S RELATED WORDS ON LEARN-TO-OPTIMIZE

The Learn-to-Optimize (L2O) field extensively uses Graph Neural Networks (GNNs) and Rein-
forcement Learning (RL) to solve combinatorial optimization problems, including Vehicle Routing
Problems (VRP) (Bi et al., 2024; Hou et al., 2023; Zhou et al., 2024), Job Shop Scheduling (JSS)
(Zhang et al., 2020; 2024; Park et al., 2021; Su et al., 2023; Huang et al., 2024), and Multi-Agent
Task Allocation (MATA) (Altundas et al., 2022; Wang & Gombolay, 2020). However, the specific

27

Published as a conference paper at ICLR 2025

graph representations and network architectures used in L2O approaches must be tailored to the
unique characteristics and challenges of each problem domain.

These domain-specific adaptations often constitute the core contributions of L2O research. In this
context, our research introduces novel graph representations and network architectures specifically
designed to tackle the unique challenges of dynamic workflow scheduling (DWS) problems, clearly
differentiating it from existing L2O approaches. For example, while encoder-decoder models are
commonly used for VRPs, scheduling problems must handle complex operation-job-machine con-
straints, making such models less effective, as noted in Zhang et al. (2020).

In L2O research for scheduling:

• Studies in (Zhang et al., 2020; Park et al., 2021; Zhang et al., 2024) tackled static JSS, where
Zhang et al. (2020) used a topological graph representation directly trained with PPO, and
Zhang et al. (2024) enhanced this with an additional context-aware embedding module to im-
prove the actor’s ability to distinguish actions. Park et al. (2021) incorporated raw features for
static JSS to improve representation.

• The work you mentioned in Song et al. (2022) addressed flexible JSS (FJSS), which introduced
a heterogeneous graph representation and the corresponding network architecture design, di-
rectly trained with PPO.

• For dynamic JSS, Su et al. (2023) proposed new graph representations by considering stochastic
processing times in raw features, and machine failures in action selection, and directly used the
ESRL method. However, it still focuses on small-scale problems, with unchangeable graph,
i.e., the number of nodes on the graph is fixed over time.

• The work in Huang et al. (2024) focused on distributed JSS, which also used PPO and claimed
their contributions on graph representations for solving challenges in distributed JSS but with
small-scale.

Thus, while these methods all leverage GNNs and RL, addressing the challenges in different problem
variants still requires unique designs and careful considerations, making each approach valuable
to the research community. As Zhang et al. (2024) highlights, “Unlike routing problems that are
vastly studied, JSS has received relatively less attention, and the performance of existing learning-
based solvers is still far from optimal due to the lack of an effective learning framework and neural
representation scheme”.

Our work focuses on Dynamic Workflow Scheduling (DWS), which not only presents a more
complex setting but also better aligns with real-world applications. It has great potential to push the
boundary of using DRL to solve real-world COPs, especially scheduling problems, in several key
aspects:

• Dynamic and evolving states: Workflow arrivals and patterns are unpredictable. Conse-
quently, the number of active workflows varies significantly across time, unlike the fixed setup
in previously studied scheduling problems. This fluctuation in active workflows introduces
unpredictable state transitions, requiring new methods to effectively handle their impact on
learning stability and performance.

• Large problem size: Our approach can handle problem instances involving up to 600,000
workflow tasks, which is more than 100 times larger than previously studied JSS problems
(Zhang et al., 2020; 2024; Park et al., 2021; Su et al., 2023; Huang et al., 2024) and MATA prob-
lems (Altundas et al., 2022; Wang & Gombolay, 2020). Furthermore, Cloud service providers
require scheduling policies that can continuously adapt to new operating conditions, necessi-
tating online updates to policy network parameters.

• Workflow-specific constraints and heterogeneous machines: Unlike JSS, DWS involves in-
tricate inter-task dependencies, flexible machine choices, and highly heterogeneous processing
time. These challenges demand for a novel design of the graph representations that can properly
capture intricate relationship among tasks, workflows, and machines.

In view of the above challenges, existing graph representations and network designs for small-scale
or static JSS and MATA problems are insufficient for DWS.

28

Published as a conference paper at ICLR 2025

A recent survey (Jayanetti et al., 2024) from a world-leading cloud computing research group re-
vealed that existing RL-based methods for workflow scheduling often relied on vector or matrix
representations, lacking effective GNN-based methods for this domain. Additionally, solving large-
scale dynamic problems with PPO requires novel algorithmic designs to significantly enhance learn-
ing stability, which is often overlooked in prior studies.

Building on the above discussion, our paper makes significant contributions to the existing literature
on scheduling problems in:

• Designing problem-specific graph representations and network architectures to tackle the
unique challenges of large-scale DWS problems, which have been largely overlooked in prior
research; and

• Proposing a novel offline-online learning framework to ensure high stability and adaptability
in dynamic DWS environments.

29

	Introduction
	Related Work
	Problem Formulation
	Methodology
	Reinforcement Learning Problem Formulation
	Graph Attention Actor and Critic Networks
	Actor Network Architecture Design
	Critic Network Architecture Design

	Offline-Online Reinforcement Learning
	Offline Learning
	Online Learning

	Experiments
	Experimental Setup
	Performance Comparison in Offline Scenarios
	Performance Comparison in Online Scenarios
	Ablation Studies
	Scalability, Transferability, and Extensibility of GOODRL

	Conclusion and Future Work
	Acknowledgment
	Directed Acyclic Graph
	Dynamic Workflow Scheduling Process
	Raw Node Features in Graph Representation
	Task-specific Embedding Module
	System-oriented Embedding Module
	Ablation study of actor network architecture design
	Ablation study of critic network architecture design
	Details of Offline and Online Learning Algorithms
	Details of Offline Learning Algorithm
	Details of Online Learning Algorithm

	Simulation Settings
	Real-world traces
	Workflow Information
	Machine Configurations

	Model Configurations
	Offline Performance of Genetic Programming
	Ablation study of online learning method
	Scalability to Significant Changes
	Transferability to other scheduling problems
	Expandability to multi-objective problems
	Inference Time Comparison
	Robustness Analysis in Online Scenarios
	Advantages of online RL component
	Related Words on Learn-to-Optimize

