
Motion-Blender Gaussian Splatting for
Dynamic Scene Reconstruction

Xinyu Zhang Haonan Chang Yuhan Liu Abdeslam Boularias
{xz653, hc856, yl1834, ab1544}@rutgers.edu

Rutgers University

Abstract: Gaussian splatting has emerged as a powerful tool for high-fidelity
reconstruction of dynamic scenes. However, existing methods primarily rely on
implicit motion representations, such as encoding motions into neural networks
or per-Gaussian parameters, which makes it difficult to further manipulate the re-
constructed motions. This lack of explicit controllability limits existing methods
to replaying recorded motions only, which hinders a wider application in robotics.
To address this, we propose Motion Blender Gaussian Splatting (MBGS), a novel
framework that uses motion graphs as an explicit and sparse motion represen-
tation. The motion of a graph’s links is propagated to individual Gaussians via
dual quaternion skinning, with learnable weight painting functions that determine
the influence of each link. The motion graphs and 3D Gaussians are jointly op-
timized from input videos via differentiable rendering. Experiments show that
MBGS achieves state-of-the-art performance on the highly challenging iPhone
dataset while being competitive on HyperNeRF. We demonstrate the application
potential of our method in animating novel object poses, synthesizing real robot
demonstrations, and predicting robot actions through visual planning. The source
code and the models are included in the supplementary material. Video demon-
strations can be found at mlzxy.github.io/motion-blender-gs.

Keywords: Dynamic Scene Reconstruction, Gaussian Splatting

1 Introduction

Reconstructing and modeling dynamic 3D scenes is a fundamental challenge in robot vision. Recent
work on 3D Gaussian splatting has made significant progress in capturing dynamic scenes, enabling
efficient and high-fidelity reconstruction [1, 2, 3, 4, 5, 6, 7]. Existing Gaussian splatting methods uti-
lize 3D Gaussians to represent geometry and appearance, paired with motion modules that determine
the movements of the Gaussians. For instance, 4D-Gaussians [3] and Deformable-GS [8] encode
motion implicitly into neural networks. Shape-of-Motion [1] and STG [4] use shallower models that
require dense per-Gaussian motion parameters. While these approaches achieve high-fidelity recon-
struction, the reconstructed scenes cannot be easily altered or manipulated in simulation due to their
implicit motion representation, which limits their use for robot manipulation planning. This lack of
direct and explicit controllability restricts existing methods to simply replaying recorded motions.

Therefore, a key question to answer is: can we develop an explicit and sparse motion representation
without compromising the ability to reconstruct complex dynamic scenes? To answer this question,
we revisit in this work some classical animation techniques [9]. Explicit motion representations,
such as deformation graphs [10], harmonic coordinates [11], and cage [12], have been developed
to animate objects with diverse motions. However, these classical hand-crafted methods focus on
applying manually designed motions to mesh surfaces instead of differentiable models such as 3D
Gaussians [13]. Further, these methods are not able to reconstruct motion or geometry from images.

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://mlzxy.github.io/motion-blender-gs/

Figure 1: Capabilities of Our Framework. Our method reconstructs and renders dynamic scenes
into 3D Gaussians and motion graphs from input videos. The learned motion graphs for a hand
and cat are shown with their corresponding rendered scenes (left). Our approach enables three key
applications (right): ➊ Novel pose animation through motion graph editing, ➋ Robot demonstration
synthesis by using robot kinematic chains as motion graphs, and ➌ Predicting robot actions by
simulating graph movements to minimize the difference between rendered and goal images.

Inspired by classical mesh animation techniques, we propose using kinematic trees and deformable
graphs as motion representations for Gaussian splatting-based reconstruction. Kinematic trees are
well-suited for capturing the motions of articulated objects, such as human bodies or robots, while
deformable graphs, free from topological constraints, are ideal for modeling non-rigid object defor-
mations. We collectively refer to both kinematic trees and deformable graphs as motion graphs. Mo-
tions of graph links are propagated to individual Gaussians through dual quaternion skinning [14].
The influence of each graph link on a Gaussian is predicted by a learnable weight painting function.
The graphs are initialized from point clouds and 2D keypoints at a canonical frame. Both the Gaus-
sians and motion graphs are optimized end-to-end jointly from videos via differentiable rendering.
We term our approach Motion-Blender Gaussian Splatting (MBGS).

Our main contributions can be summarized as follows. (1) We introduce a new dynamic Gaussian
splatting framework based on explicit and sparse motion graphs, which allows for straightforward
robot manipulation planning in reconstructed scenes. Gaussian motions are predicted by blending
the link motions. (2) We propose two types of parametric motion graphs—kinematic trees and de-
formable graphs—and a learnable weight painting function based on Gaussian kernels, along with
optimization details in Sec. A.2. Our method learns both 3D Gaussians and motion graphs jointly.
(3) Compared with state-of-the-art, our method outperforms Shape-of-Motion on the challenging
iPhone dataset [15], and achieves competitive performance with 4DGaussians on HyperNerf [16].
Further, we demonstrate the applications of our approach on animating novel object motions, syn-
thesizing real robot demonstrations, and predicting robot actions through visual planning. This can
lead to significant efficiency improvement in gathering training datasets for robot learning [17].

2 Method

Preliminaries. Gaussian splatting represents a static 3D scene explicitly with a set G of 3D Gaus-
sians. Each 3D Gaussian g ∈ G is parameterized by its pose p ∈ SE(3), scale s ∈ R3, opacity
o ∈ R and color c ∈ R3. 2D images can be rendered from G by blending the colors of overlapping

2

3D Gaussians

kinematic
tree

deformable
graph

time time

Motion Blending

Rendering

Dynamic Scenes

Time

Motion Graph

Weight Painting

...

Figure 2: Motion Blender Gaussian Splatting. Our framework explicitly represents motion using
sparse dynamic graphs. Static 3D Gaussians are associated with the graphs through learnable weight
painting. Then, link-wise motions are propagated to the Gaussians through motion blending with
dual quaternion skinning. We employ two motion graph types: kinematic trees, ideal for capturing
articulated structures like human bodies, and deformable graphs, designed for modeling non-rigid
deformations in soft objects. The parameters of the motion graph, weight painting functions, and
3D Gaussians are jointly optimized, end-to-end, via differentiable rendering.

Gaussians along the ray direction of each pixel. Dynamic Gaussian splatting extends each Gaussian
by making it time-dependent, gt, where t ∈ [0, T − 1] and T represents the number of frames in the
source video. The common practice is to make the pose time-dependent, pt, and keep the rest static.
pt is often obtained from a dynamic model f as in Eq. 1, where θ denotes the model’s parameters.

pt = f(p0, t; θ),where t > 0 (1)

f is often implemented as a neural net, e.g., a deformation field network [3, 8], or as a shallow model
such as motion coefficients or polynomials [18, 4, 1] that require per-Gaussian motion parameters.

2.1 Motion Blender Gaussian Splatting

Our framework is designed based on two key ideas that set it apart from existing works. 1 Rep-
resent motions with a sparse structure: Instead of associating dense motion parameters to each
Gaussian (often numbering in the hundreds of thousands), we use a motion graph with far fewer pa-
rameters (often less than 100). The sparse link-wise motions are then propagated to each Gaussian
through motion blending. 2 Represent motions explicitly: Instead of encoding motions implicitly
into neural networks, our motion graph is an explicit kinematic model. This allows a straightforward
visualization and manipulation of motions in the 3D space, such as transferring motion patterns from
one object to a new object, or creating novel animations through motion graph editing.

Formally, we define the motion graph Gt = (Jt,L) at time t as a set of joints Jt with a set of edges
L, where max(|Jt|, |L|) ≪ |G|. Each link l ∈ L is defined as l = (sl, el) and consists of the start
and end joint indexes sl, el ∈ [1, |Jt|]. The positions of all the links at time t are arranged as a matrix
XL,t ∈ R|L|×6, where each row corresponds to the 3D coordinates of the start and end joints for a
link in L. Similarly, xt ∈ R3 denotes the position of a Gaussian with pose pt at time t. We assume
both the edges L and the number of joints |Jt| stay static, and only joint positions undergo motions
over time. Let PL,t ∈ SE(3)|L| be the poses of all the links at time t. Let p0 be the parameter that
describes the initial pose of a Gaussian, then pt is given by Eq. 2.

pt = B
(
R (PL,0, PL,t) ,W (x0, XL,0)

)
· p0 (2)

W : R3 × R|L|×6 7→ ∆|L|−1 denotes the weight painting function, where ∆|L|−1 represents the
probability vector space defined as {w ∈ R|L|

+ |
∑|L|

i=1 wi = 1}. This function W estimates the
level of influence of each link l ∈ L on each Gaussian based on their relative positions at t = 0.

3

R : SE(3)|L|×SE(3)|L| 7→ SE(3)|L| returns relative rigid transforms between two sets of 3D poses.
Specifically, R (PL,0, PL,t) indicates the SE(3) movement from time 0 to time t of each link in L.

B : SE(3)|L| ×∆|L|−1 7→ SE(3) represents the motion blending function, which computes the per-
Gaussian motion by propagating the link-wise movements R (PL,0, PL,t) to each Gaussian based
on the weights assigned by W at t = 0.

We implement B using dual quaternion skinning (DQS) [14]. DQS represents transformations using
dual quaternions and computes weighted averages in a way that guarantees the resulting transfor-
mation remains valid in SE(3) space. The link-wise movements computed by R are analytically de-
termined, as the relative SE(3) transforms can be straightforwardly derived. Therefore, our motion
blender framework hinges on two key design choices: (1) Modeling graph motions by representing
their temporal evolution through link poses PL,t. (2) Defining a weight painting function W that ac-
curately captures the influence of each graph link on a Gaussian’s motion. We address the former by
presenting two types of parametric motion graphs in Sec. 2.2. The latter, the design of W , is detailed
in Sec. 2.3. The overall motion-blender Gaussian splatting framework is illustrated in Fig. 2.

2.2 Motion Graph Representation

To predict PL,t, the link poses at time t, we use a parameterized function PL(θ, ϕ) ∈ SE(3)|L|.
Here, θ is the graph parameters that determine the link poses at a given instant, and ϕ is the time-
independent graph parameters. By modeling θ as a time-varying sequence (θt)T−1

t=0 , the link poses at
time t are defined as PL,t = PL(θt, ϕ), where θt describes the kinematic state of the graph at time
t. Two types of motion graphs, kinematic trees and deformable graph, are shown in Fig. 3.

Figure 3: Motion Graphs. A kinematic tree (left) uses time-independent link lengths ℓ and dynamic
joint rotations rt ∈ SO(3). Link poses (shown as colored coordinate axes) in world coordinates are
computed through forward kinematics. A deformable graph (right) employs free-form topology
parameterized by joint positions {ni,t} and has non-rigid link deformations. Rigid per-link poses
are obtained relative to each Gaussian position x0 and look-at transformation as in Eq. 3 and Eq. 4.

Kinematic Tree. A kinematic tree is a hierarchical, acyclic graph with a root joint. This represen-
tation is ideal for capturing the kinematic chains of articulated objects such as human bodies, robot
arms, or other multi-joint systems. We parameterize the tree using θ = (r,X), ϕ = (ℓi)

L
i=1, where

ℓi ∈ R+ denotes the length of the i-th link, r ∈ SO(3)|Jt|−1 represents the joint rotations, and
X ∈ SE(3) denotes the pose of the root joint. Then PL(θt, ϕ) can be implemented via a forward
kinematics algorithm [19], which propagates transformations from the root node through the tree,
compounding rotations and translations across joints to derive every link pose. The forward kine-
matic procedure is differentiable, which enables the learning of θ and ϕ through back-propagation.

Deformable Graph. Unlike the kinematic tree, a deformable graph imposes no topological con-
straints, allowing the joints to move freely in the 3D space. This representation is ideal for mod-
eling non-rigid deformations and surface variations in soft objects. We parameterize the graph as
θ = (nj ∈ R3)

|Jt|
j=1, where nj denotes the 3D position of the j-th joint. However, the absence of

topological constraints allows links between joints to stretch or compress, making it impossible to
describe link poses using rigid transformations. To address this, we project each Gaussian x in the
first frame on each link in the graph, and track the positions of the projected points in the remaining
frames. Given each Gaussian x, the matrix of the poses of all the links, denoted as PL(θ,x), is given
by the 3D positions of the closest-point projections of x on the links in addition to the 3D directions
of the links. Specifically, for each link l with start joint nsl,0 and end joint nel,0 at t = 0, we define

4

Figure 4: Learned Motion Graphs and Weight Paintings. The first row overlays the learned
motion graphs on the images. The second row shows painted weights (red) of graph links (green).

nx0,l ∈ R3 as the point on l that has the minimal distance to x0. We refer nx0,l as the projection
point at t = 0. Next, we define the projection point nxt,l at time t in Eq. 3.

nxt,l = nsl,t +
|nx0,l − nsl,0|
|nsl,0 − nel,0|

(nsl,t − nel,t) (3)

In other words, the projection point nxt,l moves proportionally to the stretching of link l. Therefore,
the link poses can be defined using the projection point nxt,l, decoupling from non-rigid stretching
deformations. Thus, the link pose PL(θt,xt) is derived via look-at transformation in Eq. 4.

PL(θt,xt) = {A (nxt,l, ray(nsl,t,nel,t)),∀l ∈ L} (4)

where ray(a,b) = b−a
|b−a| is the unit direction vector from a to b. The look-at transformation

A : R3 × S2 7→ SE(3) maps the viewing position and direction to a SE(3) pose [20]. Note that
look-at transformation requires defining an up-direction for each link. We organize the |L| links
into |L|

2 triangles and use their face normals as up-directions. Remark that there is a key distinction
between our deformable graph and the deformation graph used in Dynamic Fusion [21]. Dynamic
Fusion attaches SE(3) poses to joints only. Our method represents each joint as an R3 position and
derives SE(3) poses at links, which simplifies motion-graph manipulation.

Graph Connectivity L Initialization. The last problem to address is determining the graph connec-
tivity L, which defines the links between joints as integer pairs l = (sl, el), where sl, el ∈ [1, |Jt|]
denote the indices of the start and end joints. The connectivity L is treated as a fixed parameter, nei-
ther receiving gradients nor changing over time. For kinematic trees, connectivity is derived from
domain-specific priors, such as lifting 2D human skeletons to 3D or extracting from robot mod-
els. For deformable graphs, we initialize L by randomly sampling and connecting points from a
point cloud, using farthest point sampling [22] to ensure uniform coverage of the object’s surface,
as illustrated in Fig. 6 and detailed in Appendix A.2.

2.3 Weight Painting Function
To estimate the influence of each graph link on a Gaussian, the weight painting function is given
as: W(x0, XL,0) = softmax({K(x0, XL,0,i) | ∀i ∈ [1, |L|]}), where x0 is the initial position of a
Gaussian, and XL,0,i ∈ R6 are the initial positions of start and end joints of the i-th link. The kernel
function K : R3 × R6 → R measures the affinity between a Gaussian and a link and is defined as:

K(x0, XL,0,i) = exp (−γ · dist(x0, XL,0,i)) (5)

where γ is a learnable parameter that controls the kernel radius, and dist(a, b) is the distance between
point a to line segment b. By learning distinct γ at each link, the motion graph’s influence regions
collectively span the object’s surface. At t = 0, 3D Gaussians reconstruct objects’ initial geometry.
The static reconstruction is bonded to the dynamic motion graph through weight painting. The
painted weights are subsequently used to propagate motions for t > 0, for dynamic reconstruction.

3 Experiment
3.1 Settings
Datasets. We evaluate our method on two real-world datasets: the highly challenging iPhone
dataset [15] from [1] and the HyperNeRF [16] vrig dataset. The iPhone dataset consists of 12 scenes,

5

Figure 5: Novel Poses from Motion Graph Manipulation. The first row shows images of scenes
reconstructed from observations. By applying new control actions on the motion graphs and propa-
gating changes to the Gaussians, novel unseen poses are imagined and rendered in the second row.

(a) Motion Graph Initialization (b) Instance-level Reconstruction

Figure 6: We initialize motion graphs at the canonical frame (t = 0) using instance segmenta-
tion masks from Grounding SAM2 [23, 24] and 2D human skeletons estimated by SAPIENS [25].
Furthermore, our framework enables per-instance reconstruction, where Gaussians are explicitly
grouped to maintain accurate instance geometry — a capability previously unexplored in existing
literature of dynamic Gaussian splatting. More optimization details are provided in Appendix A.2.

including 5 multi-camera (MV) and 7 single-camera (SV) scenes, each captured at 960× 720 reso-
lution. The MV scenes are captured using one hand-held moving camera and two fixed cameras at
novel angles, where the hand-held video is used for training and the fixed cameras for quantitative
evaluation. The SV scenes, captured solely with a hand-held camera, are used for qualitative visu-
alization. The HyperNeRF vrig dataset consists of 4 scenes, each captured at 960 × 540 resolution
using two cameras mounted on a rig kit with strong camera motions. Models are trained on a subset
of frames and evaluated on the remaining frames.

Baselines. On the iPhone dataset, we compare against Shape-of-Motion [1]. For HyperNeRF, we
compare against 4DGaussians [3]. Shape-of-Motion and 4DGaussians are the state of the art on
their respective datasets. We use the 2D track loss proposed in [1], in addition to L1 RGB loss.

Metrics. We report peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM) [26] and
learned perceptual image patch similarity (LPIPS) [27]. Since traditional metrics such as PSNR and
SSIM are sensitive to minor misalignments and often favor blurry images over sharp ones [16], we
adopt LPIPS as our primary metric.

3.2 Results
Table 1: Novel view rendering on the highly challenging iPhone
dataset [1]. LPIPS more accurately reflects perceptual quality.

Method LPIPS ↓ PSNR ↑ SSIM ↑
T-NeRF [15] 0.55 15.6 0.55
HyperNeRF [16] 0.51 15.99 0.59
DynIBaR [28] 0.55 13.41 0.48
Deformable-GS [8] 0.66 11.92 0.49
4DGaussians [3] 0.56 13.42 0.49
Shape-of-Motion [1] 0.39 16.67 0.65
Ours 0.37 16.79 0.65 Figure 7: Novel view rendering on iPhone with

best LPIPS in red. More results in Fig. A4.

6

Table 2: HyperNerf [16]. Our method performs competi-
tively, closely matching SoTA in the key LPIPS metric.

LPIPS ↓ PSNR ↑ SSIM ↑
4DGaussians [3] 0.36 25.19 0.68
Shape-of-Motion [1] 0.34 21.01 0.54
Ours 0.35 20.60 0.54

Figure 8: Visualization on HyperNerf with
best LPIPS in red. More results in Fig. A5

Tab. 1 presents our quantitative results on the iPhone benchmark, where our method outperforms
the state-of-the-art Shape-of-Motion by 0.02 LPIPS. Fig. A4 provides a qualitative comparison on
the five MV scenes with 4DGaussians [3] and Shape-of-Motion [1], demonstrating that our method
renders sharper, more complete, and perceptually higher-quality novel views. While 4DGaussians
achieves comparable PSNR and SSIM scores, its rendering quality is notably inferior. Fig. 4 visu-
alizes the learned motion graphs and weight paintings. Training on the iPhone dataset converges
within 10 to 30 hours on a 40GB A100 GPU, depending on scene complexity. For the teddy bear
scene with 2M Gaussians—using a deformable graph for the bear and a kinematic tree for the hu-
man—our method achieves a rendering speed of 18 FPS, and 25 FPS if motion graphs for each
frame are pre-computed and cached. On smaller scenes, such as the chicken toy in HyperNeRF with
300K Gaussians, the rendering speed increases to 32 FPS without caching and 46 FPS with caching.

Tab. 2 presents our quantitative results on the HyperNeRF vrig benchmark, with qualitative compar-
ison in Fig. A5. While 4DGaussians, the SoTA on HyperNeRF, achieves higher PSNR and SSIM,
our method achieves a comparable or better rendering quality and LPIPS on the chicken, 3D printer,
and broom scenes (rows 2 to 4 in Fig. A5). Notably, 4DGaussians achieves a better score on the 3D
printer scene, but our method produces clearer results, accurately rendering the text on the printer
motor, unlike the blurry output from 4DGaussians. However, on the peel-banana scene, our method
produces lower-quality results than 4DGaussian. We further discuss our limitations in Sec. 5.

3.3 Applications

Novel Pose Animation. Fig. 5 shows images of objects in novel poses that were not seen in the
training videos. After reconstructing dynamic scenes, we keep the Gaussians fixed and modify
the motion graph starting from a sampled frame. Specifically, we adjust joint rotation angles in a
kinematic tree or manipulate the positions of subsets of joints in a deformable graph. These edits
are performed interactively using a custom visual editor that we built on VISER [29]. Once the edits
are applied, we propagate the updated graph link poses to the Gaussians and render the scene from
the same camera viewpoint as the sampled frame. To create short animations, we interpolate joint
angle or position changes incrementally and render the scene frame-by-frame.

Fig. 5 shows that our method extends beyond reconstructing observed motions, enabling the creation
of novel imagined object motions while maintaining high rendering quality. Recent advances in
controllable image and video editing predominantly rely on large diffusion models [30, 31, 32]. In
contrast, our method introduces a novel approach by operating directly in the 3D space, enabling
fast and precise control over object poses without the need for neural networks.

Robot Demonstration Synthesis. Imitation learning enables robots to perform complex tasks by
learning from robot demonstrations [33]. Unlike human videos, collecting robot demonstrations
requires labor-intensive teleoperation [34]. In Fig. 9, we demonstrate a prototype of our method
for synthesizing robot demonstrations from human videos. We reconstruct scenes from human and
robot videos independently. The human videos feature an operator performing pick-and-place and
cloth folding tasks. The robot videos feature a Kuka iiwa robot that moves randomly. We use the
robot’s kinematic chain as the motion graph. We then remove the human Gaussians and add the
robot Gaussians to the workspace. Keyframes are manually selected, with hand positions adjusted
and mapped to robot gripper poses using our visual editor. Gripper poses between keyframes are
interpolated, and converted into joint angles of the robot’s kinematic chain using inverse kinematics.

7

Figure 9: Robot Demonstration from Human Videos. We reconstruct Gaussians from human and
robot videos, with robot’s pre-defined kinematic chain as motion graph. We then remove human’s
Gaussians and add robot’s to workspace. Next, we animate the robot motion graph using inverse
kinematics derived from hand poses. This renders videos of a robot arm mimicking human actions.

Figure 10: Robotic Action Prediction via Visual Planning. We reconstruct object Gaussians
(cloth, microwave, rope) from human videos, simulate potential motion graph trajectories, and ren-
der the resulting object images. The optimal trajectory is selected by maximizing PSNR between
rendered images and the target goal image. Key joint trajectories (yellow) are mapped to end-effector
positions. Videos of our robot experiments can be found at anonymous368.github.io/motion-blender.

The chain is then used as the robot motion graph for view rendering. This generates a video where
the robot replaces the human, completing the task as demonstrated. While some artifacts and unreal-
istic interactions still exist, this demonstrates the potential of our method for robotic data synthesis.
The videos are obtained with minimal effort, and can be used for learning vision-based policies.

Robot Visual Planning. Predicting action outcomes is a fundamental human capability that enables
complex manipulation skills, such as manipulating objects until a certain goal is reached [35]. While
recent work has explored video generation models to incorporate this ability for robotic manipula-
tion [36, 37], these approaches often require complicated pipelines. In Fig. 10, we present a simple
visual planning prototype for goal-conditioned manipulation of deformable (cloth and rope) and
articulated (microwave door) objects. We first reconstruct object-specific Gaussians from human
videos. For each test scene, the motion graph is learned by minimizing the L1 rendering loss from
our reconstructed Gaussians, while keeping Gaussians and weights fixed. This process typically
converges within a minute. We then simulate various graph trajectories and render the resulting
object images. The optimal trajectory is selected by maximizing PSNR with the provided target
goal image. In summary, our method learns a dynamic and photorealistic model of the manipulated
object on the fly, using a very small number of frames, and performs planning in simulation with the
learned model to select optimal actions. The reward function is simply provided in the form of a goal
image. This prototype demonstrates the potential of our method for developing more data-efficient
model-based robot learning solutions. More experiment details are provided in Appendix A.3.

4 Final Remarks
We conducted ablation studies analyzing motion graph sizes and regularization strategies. Abla-
tion studies, related work discussions, more visualizations and optimization details are included in
Appendix A due to space limit. We discuss the limitations and possible future directions in Sec. 5.

8

https://anonymous368.github.io/motion-blender

5 Limitations and Future Directions

Visual Artifacts on Novel Poses. Fig. 11 (b) demonstrates failure cases in animating novel object
poses, where attempting to turn the cat’s head and rotate the windmill’s badge introduces non-
negligible visual artifacts. Visual artifacts can also be found in Fig. 9 and Fig. 10 of our robot
experiments. We believe the key reason is that, unlike meshes, Gaussians lack an explicit surface
representation. This allows each individual Gaussian to deform arbitrarily when motion graphs are
applied. This can cause some Gaussians to deviate from object surfaces, particularly for unseen
motions. Recent advances like 2D-GS [38], which directly formulates Gaussians on 3D surfaces,
offer promising solutions to this limitation.

Figure 11: Failure Cases. Visualization of imperfect learned motion graphs (a), failure cases of
novel pose editing (b), and failure cases of reconstructing reflective surfaces (c).

Ungrounded Motion Graphs. Fig. 11 (a) demonstrates imperfect learned motion graphs that are
not accurately grounded to the object geometry. Top left: the hand contains intricate kinematic
structures but only occupies a small region (less than 80× 80 pixels in a 720× 920 image), making
it difficult to capture fine details. Top right: incomplete motion graph coverage on the cat’s right
front leg and joints protruding beyond the cat body. Bottom left: the pillow is squeezed but the
motion graph fails to sufficiently deform. Bottom right: the kinematic tree does not accurately align
with the microwave door.

We believe the key reason is that Gaussian splatting reconstructs scenes purely from visual obser-
vations, without incorporating structural or physical priors. For instance, Fig. 12 illustrates a failure
case in rope manipulation. While the reconstructed motion graph appears accurate in 2D image
space, a 3D inspection reveals that the rope’s head tilts below the table—an incorrect reconstruction
undetectable from visual observation alone. Since the robot’s end-effector pose is derived from the
motion graph’s joints and links, this leads to an erroneous orientation in the planned trajectory. How-
ever, recovering sparse structures from only a few videos is a highly under-constrained optimization
problem. A promising direction is to incorporate semantic or physical priors from foundation mod-
els to improve geometric consistency.

Figure 12: A failure case of incorrect gripper orientation caused by an erroneous motion graph. The
head of the rope motion graph is misaligned, tilting downward below the table surface.

9

Fast Camera and Object Motions. Fig. 13 shows failure cases when reconstructing fast-moving
objects. The left figure compares our MB-GS with Shape-of-Motion on adjacent frames from the
HyperNerf peel-banana scene, which is captured with strong camera motions and objects (the hand
and banana) frequently entering and exiting the view. In this setting, MB-GS produces inconsistent
results across frames such as a shaking hand. The right figure compares MB-GS reconstructions of a
microwave with doors moving at different speeds. We observe that reconstruction quality degrades
significantly when the door moves rapidly. Dynamic reconstruction under large motions remains a
longstanding challenge [3]. Shape-of-Motion attempts to address this by using 2D tracks [39] as
motion guidance. However, 2D tracks are often unreliable, especially under orientation changes,
such as when the microwave doors rotate and original tracks on the door surface are lost. Another
limitation is that MB-GS learns motion graph parameters independently at each frame, making it
less effective at leveraging temporal continuity across frames. A promising direction is to still
follow the motion blender framework but introduce neural networks that predict the deformation
of motion graphs over time, preserving the manipulability of the representation while improving
learning capacity.

Figure 13: Failure Cases on Fast-Moving Objects. Visualization of shaking artifacts from strong
camera motion (left), and reconstruction quality comparison of our MB-GS for the same microwave
with doors moving at different speeds (right).

Robotic Applications. In the following, we highlight two promising directions that are specific to
the robotic applications of our method MB-GS.

• Motion Graphs and Physics Simulation. Our framework synthesizes robotic demonstra-
tions for tasks like grasping toys and folding clothes (Fig. 9), and performs planning in
graph space to reach goal configurations (Fig. 10). However, our current motion graph rep-
resentation lacks physical awareness. This is evident in Fig. 9 (second row), where the grip-
per penetrates the cloth in a physically unrealistic manner. Additionally, the graph-space
planning is limited to simple shape (2D rectangle) and basic kinematic chain (chain-like
graph), whose motion patterns can be reasonably approximated with geometric heuristics.

Our sparse motion graph design naturally extends to physics-based simulation frameworks.
For instance, MuJoCo [40] models deformable objects using flex elements (triangles in 2D,
tetrahedra in 3D), which aligns closely with our deformable graph representation. To fur-
ther bridge the gap, it is also possible to, first, incorporate not only link poses but also
triangular face poses to guide Gaussian motion, leveraging projection points analogous to
Fig. 3; second, support hybrid deformable and kinematic structures through a more sys-
tematic engineering integration. These extensions would significantly improve simulation
compatibility for both articulated and deformable objects.

In doing so, instead of learning joint positions or rotation angles as in our current approach,
it is possible to learn MuJoCo’s physical parameters through differentiable simulation: sim-
ulating the structure, rendering images, and back-propagating through the physics engine.
This would be particularly feasible in controlled environments with clear object segmenta-
tion, enabling more powerful digital twins that handle deformable and articulated objects
— a capability lacking in current rigid-body-focused digital twins [41].

10

• Modeling of Light Sources and Reflective Surfaces. Robotic workspaces typically contain
strong light sources, and robot arms often have reflective surfaces. However, as shown in
Fig. 11, our reconstructed robot surfaces appear blurry and lose their reflectivity. This oc-
curs because Gaussian splatting does not account for lighting effects during reconstruction.
While this limitation is acceptable for vanilla Gaussian splatting in static scenes (where
lighting effects remain mostly constant), it becomes problematic for dynamic scenes. In
such cases, surfaces under varying lighting conditions appear to move constantly, lead-
ing to blurry reconstructions. Furthermore, workspace lighting affects not only robot re-
construction but also object reconstruction, as objects may be reflective or cast different
shadows when illuminated from various angles. We find that increased lighting generally
results in blurrier reconstructed objects. While this is a fundamental limitation of current
Gaussian splatting methods rather than specific to our approach, it highlights the need for
reflection-aware Gaussian splatting techniques to improve robotic applications.

11

References

[1] Q. Wang, V. Ye, H. Gao, J. Austin, Z. Li, and A. Kanazawa. Shape of motion: 4d reconstruction
from a single video. arXiv preprint arXiv:2407.13764, 2024.

[2] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

[3] G. Wu, T. Yi, J. Fang, L. Xie, X. Zhang, W. Wei, W. Liu, Q. Tian, and X. Wang. 4d gaussian
splatting for real-time dynamic scene rendering. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 20310–20320, 2024.

[4] Z. Li, Z. Chen, Z. Li, and Y. Xu. Spacetime gaussian feature splatting for real-time dynamic
view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8508–8520, 2024.

[5] Z. Yang, H. Yang, Z. Pan, and L. Zhang. Real-time photorealistic dynamic scene representation
and rendering with 4d gaussian splatting. arXiv preprint arXiv:2310.10642, 2023.

[6] T. Xie, Z. Zong, Y. Qiu, X. Li, Y. Feng, Y. Yang, and C. Jiang. Physgaussian: Physics-
integrated 3d gaussians for generative dynamics. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4389–4398, 2024.

[7] Y.-H. Huang, Y.-T. Sun, Z. Yang, X. Lyu, Y.-P. Cao, and X. Qi. Sc-gs: Sparse-controlled
gaussian splatting for editable dynamic scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 4220–4230, June 2024.

[8] Z. Yang, X. Gao, W. Zhou, S. Jiao, Y. Zhang, and X. Jin. Deformable 3d gaussians for high-
fidelity monocular dynamic scene reconstruction. 2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 20331–20341, 2023. URL https://api.
semanticscholar.org/CorpusID:262466218.

[9] D. L. James and C. D. Twigg. Skinning mesh animations. ACM Transactions on Graphics
(TOG), 24(3):399–407, 2005.

[10] R. W. Sumner, J. Schmid, and M. Pauly. Embedded deformation for shape manipulation. In
ACM siggraph 2007 papers, pages 80–es. 2007.

[11] P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki. Harmonic coordinates for character
articulation. ACM transactions on graphics (TOG), 26(3):71–es, 2007.

[12] J. R. Nieto and A. Susı́n. Cage based deformations: a survey. In Deformation Models: Track-
ing, Animation and Applications, pages 75–99. Springer, 2012.

[13] B. O. Community. Blender - a 3D modelling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam, 2018. URL http://www.blender.org.

[14] L. Kavan, S. Collins, J. Žára, and C. O’Sullivan. Skinning with dual quaternions. In Proceed-
ings of the 2007 symposium on Interactive 3D graphics and games, pages 39–46, 2007.

[15] H. Gao, R. Li, S. Tulsiani, B. Russell, and A. Kanazawa. Monocular dynamic view synthesis:
A reality check. Advances in Neural Information Processing Systems, 35:33768–33780, 2022.

[16] K. Park, U. Sinha, P. Hedman, J. T. Barron, S. Bouaziz, D. B. Goldman, R. Martin-Brualla, and
S. M. Seitz. Hypernerf: A higher-dimensional representation for topologically varying neural
radiance fields. arXiv preprint arXiv:2106.13228, 2021.

12

https://api.semanticscholar.org/CorpusID:262466218
https://api.semanticscholar.org/CorpusID:262466218
http://www.blender.org

[17] H. R. Walke, K. Black, T. Z. Zhao, Q. Vuong, C. Zheng, P. Hansen-Estruch, A. W. He, V. My-
ers, M. J. Kim, M. Du, A. Lee, K. Fang, C. Finn, and S. Levine. Bridgedata v2: A dataset
for robot learning at scale. In J. Tan, M. Toussaint, and K. Darvish, editors, Proceedings of
The 7th Conference on Robot Learning, volume 229 of Proceedings of Machine Learning Re-
search, pages 1723–1736. PMLR, 06–09 Nov 2023. URL https://proceedings.mlr.
press/v229/walke23a.html.

[18] Y. Lin, Z. Dai, S. Zhu, and Y. Yao. Gaussian-flow: 4d reconstruction with dynamic 3d gaus-
sian particle. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21136–21145, 2024.

[19] S. Kucuk and Z. Bingul. Robot kinematics: Forward and inverse kinematics. INTECH Open
Access Publisher London, UK, 2006.

[20] Scratchapixel. Framing: The look-at function. https://www.scratchapixel.
com/lessons/mathematics-physics-for-computer-graphics/
lookat-function/framing-lookat-function.html, 2025. Accessed: 2025-
02-20.

[21] R. A. Newcombe, D. Fox, and S. M. Seitz. Dynamicfusion: Reconstruction and tracking of
non-rigid scenes in real-time. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 343–352, 2015.

[22] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. The farthest point strategy for progressive
image sampling. IEEE transactions on image processing, 6(9):1305–1315, 1997.

[23] T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen, X. Huang, Y. Chen, F. Yan, Z. Zeng,
H. Zhang, F. Li, J. Yang, H. Li, Q. Jiang, and L. Zhang. Grounded sam: Assembling open-
world models for diverse visual tasks, 2024.

[24] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rädle, C. Rolland,
L. Gustafson, E. Mintun, J. Pan, K. V. Alwala, N. Carion, C.-Y. Wu, R. Girshick, P. Dollár,
and C. Feichtenhofer. Sam 2: Segment anything in images and videos, 2024. URL https:
//arxiv.org/abs/2408.00714.

[25] R. Khirodkar, T. Bagautdinov, J. Martinez, S. Zhaoen, A. James, P. Selednik, S. Anderson, and
S. Saito. Sapiens: Foundation for human vision models. arXiv preprint arXiv:2408.12569,
2024.

[26] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

[27] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 586–595, 2018.

[28] Z. Li, Q. Wang, F. Cole, R. Tucker, and N. Snavely. Dynibar: Neural dynamic image-based ren-
dering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 4273–4284, 2023.

[29] N. S. Group. Viser: Web-based 3d visualization + python. https://github.com/
nerfstudio-project/viser, 2023.

[30] D. Ceylan, C.-H. P. Huang, and N. J. Mitra. Pix2video: Video editing using image diffusion.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 23206–
23217, 2023.

13

https://proceedings.mlr.press/v229/walke23a.html
https://proceedings.mlr.press/v229/walke23a.html
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/lookat-function/framing-lookat-function.html
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/lookat-function/framing-lookat-function.html
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/lookat-function/framing-lookat-function.html
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714
https://github.com/nerfstudio-project/viser
https://github.com/nerfstudio-project/viser

[31] Y. Shi, C. Xue, J. H. Liew, J. Pan, H. Yan, W. Zhang, V. Y. Tan, and S. Bai. Dragdiffusion:
Harnessing diffusion models for interactive point-based image editing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8839–8849, 2024.

[32] Y. Huang, J. Huang, Y. Liu, M. Yan, J. Lv, J. Liu, W. Xiong, H. Zhang, S. Chen, and L. Cao.
Diffusion model-based image editing: A survey. arXiv preprint arXiv:2402.17525, 2024.

[33] A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee, A. Pooley, A. Gupta,
A. Mandlekar, A. Jain, et al. Open x-embodiment: Robotic learning datasets and rt-x models:
Open x-embodiment collaboration 0. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 6892–6903. IEEE, 2024.

[34] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake, and S. Song. Universal
manipulation interface: In-the-wild robot teaching without in-the-wild robots. arXiv preprint
arXiv:2402.10329, 2024.

[35] D. Ha and J. Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[36] M. Yang, Y. Du, K. Ghasemipour, J. Tompson, D. Schuurmans, and P. Abbeel. Learning
interactive real-world simulators. arXiv preprint arXiv:2310.06114, 1(2):6, 2023.

[37] S. Yang, J. Walker, J. Parker-Holder, Y. Du, J. Bruce, A. Barreto, P. Abbeel, and D. Schu-
urmans. Video as the new language for real-world decision making. arXiv preprint
arXiv:2402.17139, 2024.

[38] B. Huang, Z. Yu, A. Chen, A. Geiger, and S. Gao. 2d gaussian splatting for geometrically
accurate radiance fields. In ACM SIGGRAPH 2024 conference papers, pages 1–11, 2024.

[39] C. Doersch, A. Gupta, L. Markeeva, A. Recasens, L. Smaira, Y. Aytar, J. Carreira, A. Zisser-
man, and Y. Yang. TAP-vid: A benchmark for tracking any point in a video. Advances in
Neural Information Processing Systems, 35:13610–13626, 2022.

[40] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,
2012.

[41] M. Torne, A. Simeonov, Z. Li, A. Chan, T. Chen, A. Gupta, and P. Agrawal. Reconciling reality
through simulation: A real-to-sim-to-real approach for robust manipulation. arXiv preprint
arXiv:2403.03949, 2024.

[42] T. Samavati and M. Soryani. Deep learning-based 3d reconstruction: a survey. Artificial
Intelligence Review, 56(9):9175–9219, 2023.

[43] L. Zhou, G. Wu, Y. Zuo, X. Chen, and H. Hu. A comprehensive review of vision-based 3d
reconstruction methods. Sensors, 24(7):2314, 2024.

[44] H. Chang and A. Boularias. Scene-level tracking and reconstruction without object pri-
ors. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3785–3792, 2022. URL https://api.semanticscholar.org/CorpusID:
251308689.

[45] H. Chang, D. M. Ramesh, S. Geng, Y. Gan, and A. Boularias. Mono-star: Mono-camera
scene-level tracking and reconstruction. 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 820–826, 2023. URL https://api.semanticscholar.
org/CorpusID:256416010.

[46] W. Gao and R. Tedrake. Surfelwarp: Efficient non-volumetric single view dynamic reconstruc-
tion, 2019. URL https://arxiv.org/abs/1904.13073.

14

https://api.semanticscholar.org/CorpusID:251308689
https://api.semanticscholar.org/CorpusID:251308689
https://api.semanticscholar.org/CorpusID:256416010
https://api.semanticscholar.org/CorpusID:256416010
https://arxiv.org/abs/1904.13073

[47] H. Pfister, M. Zwicker, J. Van Baar, and M. Gross. Surfels: Surface elements as rendering
primitives. In Proceedings of the 27th annual conference on Computer graphics and interactive
techniques, pages 335–342, 2000.

[48] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,
65(1):99–106, 2021.

[49] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz, and R. Martin-Brualla.
Nerfies: Deformable neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 5865–5874, October 2021.

[50] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer. D-nerf: Neural radiance fields
for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10318–10327, June 2021.

[51] A. Cao and J. Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 130–141,
2023.

[52] S. Fridovich-Keil, G. Meanti, F. R. Warburg, B. Recht, and A. Kanazawa. K-planes: Explicit
radiance fields in space, time, and appearance. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 12479–12488, June 2023.

[53] Z. Li, Y. Sun, Z. Zheng, L. Wang, S. Zhang, and Y. Liu. Animatable and relightable gaussians
for high-fidelity human avatar modeling. arXiv preprint arXiv:2311.16096, 2023.

[54] Y. Yuan, X. Li, Y. Huang, S. De Mello, K. Nagano, J. Kautz, and U. Iqbal. Gavatar: Animatable
3d gaussian avatars with implicit mesh learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 896–905, 2024.

[55] Z. Qian, S. Wang, M. Mihajlovic, A. Geiger, and S. Tang. 3dgs-avatar: Animatable avatars via
deformable 3d gaussian splatting. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 5020–5030, 2024.

[56] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. Smpl: A skinned multi-
person linear model. In Seminal Graphics Papers: Pushing the Boundaries, Volume 2, pages
851–866. 2023.

[57] T. Kuai, A. Karthikeyan, Y. Kant, A. Mirzaei, and I. Gilitschenski. Camm: Building category-
agnostic and animatable 3d models from monocular videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6587–6597, 2023.

[58] Y. Zheng, X. Chen, Y. Zheng, S. Gu, R. Yang, B. Jin, P. Li, C. Zhong, Z. Wang, L. Liu, et al.
Gaussiangrasper: 3d language gaussian splatting for open-vocabulary robotic grasping. IEEE
Robotics and Automation Letters, 2024.

[59] O. Shorinwa, J. Tucker, A. Smith, A. Swann, T. Chen, R. Firoozi, M. Kennedy III, and
M. Schwager. Splat-mover: Multi-stage, open-vocabulary robotic manipulation via editable
gaussian splatting. arXiv preprint arXiv:2405.04378, 2024.

[60] G. Lu, S. Zhang, Z. Wang, C. Liu, J. Lu, and Y. Tang. Manigaussian: Dynamic gaussian
splatting for multi-task robotic manipulation. In European Conference on Computer Vision,
pages 349–366. Springer, 2024.

[61] J. Abou-Chakra, K. Rana, F. Dayoub, and N. Suenderhauf. Physically embodied gaussian
splatting: A realtime correctable world model for robotics. In 8th Annual Conference on
Robot Learning, 2024. URL https://openreview.net/forum?id=AEq0onGrN2.

15

https://openreview.net/forum?id=AEq0onGrN2

[62] H. Jiang, H.-Y. Hsu, K. Zhang, H.-N. Yu, S. Wang, and Y. Li. Phystwin: Physics-
informed reconstruction and simulation of deformable objects from videos. arXiv preprint
arXiv:2503.17973, 2025.

[63] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al. Grounding
dino: Marrying dino with grounded pre-training for open-set object detection. arXiv preprint
arXiv:2303.05499, 2023.

[64] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything. arXiv:2304.02643, 2023.

[65] T. Ren, Q. Jiang, S. Liu, Z. Zeng, W. Liu, H. Gao, H. Huang, Z. Ma, X. Jiang, Y. Chen,
Y. Xiong, H. Zhang, F. Li, P. Tang, K. Yu, and L. Zhang. Grounding dino 1.5: Advance the
”edge” of open-set object detection, 2024.

[66] Q. Jiang, F. Li, Z. Zeng, T. Ren, S. Liu, and L. Zhang. T-rex2: Towards generic object detection
via text-visual prompt synergy, 2024.

[67] N. Renaud, S. Smeets, and L. J. Corbijn van Willenswaard. nanomesh. URL https://
github.com/hpgem/nanomesh.

[68] N. Karaev, I. Makarov, J. Wang, N. Neverova, A. Vedaldi, and C. Rupprecht. Co-
tracker3: Simpler and better point tracking by pseudo-labelling real videos. arXiv preprint
arXiv:2410.11831, 2024.

16

https://github.com/hpgem/nanomesh
https://github.com/hpgem/nanomesh

A Appendix

A.1 Related Works

Dynamic Reconstruction. Dynamic reconstruction aims at recovering the geometry, appearance
and motion of dynamic scenes from visual data [42, 43, 44, 45]. Early approaches, such as Dynam-
icFusion [21] and SurfelWarp [46], rely on 3D representations like the truncated signed distance
function (TSDF) or surfel [47], coupled with explicit deformation graphs to model motion. Recent
advances have shifted toward using NeRF [48, 16, 49, 50, 51, 52] and 3D Gaussian [2, 3, 4, 5, 6]
as 3D representations. Gaussian splatting-based methods, in particular, have gained rising attention
due to their ability of high-quality reconstruction and real-time rendering. For example, 4DGaus-
sians [3] and Deformable-GS [8] encode motion implicitly using deformation networks. Shape-of-
Motion [1], GaussianFlow [18] and STG [4] employ shallower models, such as polynomials, which
require dense per-Gaussian motion parameters. In contrast to these approaches, our method intro-
duces a sparse and explicit graph-based motion representation for Gaussian splatting, which enables
the reconstruction of realistic and complex scenes with greater interpretability and direct and explicit
control of the animation.

Explicit Motion Representations. Explicit motion representations offer intuitive visualization and
straightforward motion manipulation. Gaussian-based avatar modeling methods [53, 54, 55] rely on
parametric human templates, such as SMPL [56], but are inherently limited to human subjects and
cannot generalize to arbitrary dynamic objects. SC-GS [7] introduces sparse control points, which
can be dragged to create new motions. But SC-GS is restricted to simple, synthetic scenes like those
in D-NeRF [50]. CAMM [57] employs kinematic chains for motion representation but is limited to
meshes instead of 3D Gaussians and requires occlusion-free videos with clean backgrounds. On the
other hand, classical animation techniques [9] utilize explicit motion representations such as defor-
mation graphs [10], harmonic coordinates [11], and cage [12]. However, these methods only focus
on applying manually designed motions to mesh surfaces and are not designed for reconstructing
motion or geometry from unstructured video data. In contrast, our method introduces a graph-based
motion representation for Gaussian splatting, where motion is propagated from sparse graph links to
individual Gaussians. 3D Gaussians and motion graphs are jointly optimized from videos of realistic
and complex scenes.

Figure A1: Demonstration of our KUKA robot arm performing cloth folding (left), microwave
door adjusting (middle) and rope bending (right), based on planning with our reconstructed motion
graphs, without requiring any robot teleoperation data.

Robotics Applications of Dynamic Gaussian Splatting. Recent work has increasingly adopted
Gaussian splatting for robotic perception and manipulation. Popular approaches like Gaussian-
Grasper [58] and SplatMover [59] focus on static reconstructions of rigid objects for digital twin
applications. For dynamic scenes, ManiGaussian [60] introduces a Gaussian-based world model
for manipulation tasks, while EmbodiedGaussians [61] incorporates particle physics for interaction
modeling. PhysTwin [62] further advances deformable object reconstruction through mass-spring
physics. Despite their impressive results, our work differs in two key aspects: (1) We propose a
sparse motion graph representation, while all of these existing work still use dense per-Gaussian
motions. (2) Our framework generalizes beyond constrained robotic workspace settings to complex
arbitrary scene. We validate our approach on challenging vision benchmarks including iPhone [15]
and HyperNeRF [16], demonstrating broader applicability.

17

A.2 Optimization Details

To reconstruct dynamic scenes from videos, we follow common practices [1, 21] and select the
frame where objects occupy the largest image area or the frame with most valid 2D tracks as the
canonical frame instead of using the first frame. For simplicity, we still use t = 0 to denote canonical
frame. We extract instance segmentation masks using Grounding SAM2 [63, 64, 65, 66, 23, 24]
and 2D human skeletons using SAPIENS [25]. These annotations are used to initialize the motion
graph for each instance at the canonical frame. Specifically, the motion graph is parameterized
by (θt)

T−1
t=0 (time-varying parameters) and ϕ (time-independent parameters). We create the graph

for each instance at the canonical frame with (θ0, ϕ) and propagate the parameters across time by
setting θt = θ0,∀t ∈ [0, T − 1]. We illustrate the motion graph initialization procedure for the
canonical frame in Fig. 6 (a). The 3D Gaussians are initialized for every instance and background
using procedure from prior work [1]. At each iteration, we transform the 3D Gaussians from the
canonical frame t = 0 to a target frame t using Eq. 2, and minimize the rendering loss against the
corresponding video frame.

Motion Graph Initialization. At t = 0, we lift 2D skeletons and instance masks to 3D point clouds
using depth images. For kinematic structures such as the human body, we leverage prior knowledge
of joint connections to initialize a kinematic tree with standard joint rotations and link lengths. This
tree is then fitted to the point cloud skeleton by minimizing the average point-to-link distance via
gradient descent. For deformable graphs, we sample points from the instance point cloud using
farthest point sampling [22] and connect adjacent points to form the graph.

Instance Level Reconstruction. To reconstruct each instance, we construct a binary matrix M ∈
R|G|×I , where |G| denotes the number of Gaussians and I denotes the number of instances. M is
defined in Eq. 6.

Mij =

{
1 i-th Gaussian belongs to instance j

0 otherwise
(6)

The i-th row of M represents the one-hot encoding of the instance index for each Gaussian. We then
splat M into a 2D instance mask of dimension RH×W×I and minimize the L1 distance between this
rendered mask and the instance mask predicted by Grounding SAM2. In doing so, 3D positions
of dynamic Gaussians are grouped to always faithfully represent the geometry of each instance, as
illustrated in Fig. 6 (b). To the best of our knowledge, our work is the first to study simultaneous
per-instance reconstruction in dynamic Gaussian splatting.

Canonical Frame Regularization. To ensure the learned motion graph remains closely aligned
with the object geometry, we minimizes

∑J
i=1 ∥ni,0 − n̂i,0∥ during training, where ni,0 denotes the

position of the current i-th joint at the canonical frame, and n̂i,0 represents the position of the same
joint but before training. This regularization ensures that the motion graph, which is initialized close
to the object geometry prior training, does not drift away from the object during optimization.

2D Keypoints Regularization. We project the 3D joints of the human kinematic tree onto the image
plane and minimize the L1 distance between the projected joint positions and the 2D human key-
points predicted by SAPIENS. For our robotic experiments with kinematic trees on non-humanoid
objects, see implementation details in Appendix A.3.

A.3 More Details of Real Robot Experiments

We evaluate our method with three real robot manipulation tasks, cloth folding, microwave door
adjusting, and rope bending as shown in Fig. 10. We reconstruct the green cloth using a deformable
graph, while applying kinematic trees for the microwave and rope. The canonical frame is set to
the first frame for all tasks. We use SAM2 for object mask extraction, where we initialize the mask
by clicking the object’s central region in the first frame, then propagate it across the entire video.
We capture the green cloth scene using three D415 RGB-D cameras, while the microwave and rope

18

Figure A2: Relationship between novel view rendering quality and motion graph size.

scenes are each recorded with a single D415 RGB-D camera. All the three dynamic objects are
reconstructed from human demonstration videos.

For the green cloth, we initialize the motion graph at t = 0 using a rectangular mesh generated
via NanoMesh [67] (Fig. 10, first column). For the microwave and rope—which lack standardized
keypoint structures—we manually define their kinematic trees. The microwave is represented as
a 2-link graph, with 3D keypoints annotated in the first (t = 0) and final (t = T − 1) frames.
For the rope, we annotate ten 2D keypoints at the first frame, and track them across frames using
CoTracker [68]. The rope’s kinematic tree is initialized by projecting the ten manually annotated 2D
keypoints at the first frame into 3D space using depth information, with the central keypoint serving
as the root. During optimization, we apply 2D keypoint regularization to the rope but omit it for the
cloth and microwave.

Given a test scene, we reconstruct its motion graph by optimizing the motion graph parameters of
our learned dynamic Gaussian model. The optimization minimizes the L1 distance between the
rendered image and the test scene image, while keeping the Gaussian parameters fixed. This process
typically converges within a minute, and is akin to pose estimation for rigid objects but uses motion
graphs which generalized to more flexible structures.

Given the reconstructed motion graph of a test scene, we simulate object and the corresponding
end-effector movements using object-specific geometric heuristics. For cloth, we simulate diagonal
folding by sampling random bending axes and angles; for the microwave, we adjust the relative
rotation angle between its two rigid links; and for the rope, we bend its single-chain structure at a
randomly selected joint with a sampled angle. Despite these simple heuristics, it is possible to inte-
grate the motion graph simulation with a more powerful physics engine, as a future direction that we
discussed in Sec. 5. At each timestep, we evaluate candidate motions by comparing their rendered
images against the goal image, then select the motion that maximizes the PSNR. For each task, we
evaluate performance across ten different goal images, each selected to be achievable through fold-
ing or door-adjustment actions. Our method reliably solve the cloth folding and microwave door
manipulation tasks (10/10), while rope bending attains a 70% success rate (7/10). We illustrate and
discuss a typical failure case in Fig. 12. Fig. A1 demonstrates our Kuka robot performing all three
tasks: cloth folding, microwave door adjustment, and rope bending.

A.4 Ablation Studies

Motion Graph Size. Fig. A2 illustrates the relationship between novel view rendering quality and
the number of joints in a motion graph. We observe that the best rendering quality for the teddy
scene is achieved with a motion graph of 200 joints. However, increasing the number of joints
to 1000 leads to a noticeable drop in quality, suggesting the existence of an optimal graph size.
This finding highlights the potential of learning adaptive graph structures that dynamically adjust to
different objects.

2D Keypoints Regularization. Fig. A3 compares rendered images and motion graphs with and
without 2D human keypoint regularization. We observe that enforcing consistency between the

19

Figure A3: Visualization of rendered images and motion graphs with and without 2D human key-
point regularization (left) and canonical frame regularization (right).

projected 3D kinematic tree and 2D human keypoints (detected by SAPIENS [25]) improves perfor-
mance, reducing LPIPS by 0.01 to 0.02. More importantly, this regularization produces cleaner and
more meaningful motion graphs that align well with the human 3D structure. Without 2D keypoint
regularization, the motion graph tends to drift or produce suboptimal structures. For example, if
two fingers move together, the kinematic tree may incorrectly control both with a single finger link,
leaving other finger links static. This highlights the importance of 2D keypoint regularization in
learning accurate and interpretable 3D motion graphs.

Canonical Frame Regularization. The right side of Fig. A3 compares rendered images and motion
graphs with and without canonical frame regularization, which minimizes the distance between the
learned motion graph’s joint positions and their initial positions at the canonical frame. The joints
and links of the motion graph are color-coded based on their distance to the Gaussians on the object
surface. With canonical frame regularization, the motion graph remains closely aligned with the
object surface. Without it, however, the graph joints become spiky (indicated by red-colored joints)
and drift outward, detaching from the object.

20

Figure A4: Visualization of novel view rendering on iPhone dataset compared with other methods.
Regions in green are excluded from evaluation, as these pixels are never seen in training videos.
LPIPS on bottom left with best colored red. Our method renders sharper, more complete, and
perceptually higher-quality novel views.

21

Figure A5: Visualization of results in HyperNerf dataset compared with other methods. LPIPS on
bottom left with best colored red. Our method achieves comparable rendering quality and LPIPS
with state-of-the-art on the chicken, 3D printer, and broom scenes (rows 2 to 4). On the peel-banana
scene, our method produces lower-quality results.

22

	Introduction
	Method
	Motion Blender Gaussian Splatting
	Motion Graph Representation
	Weight Painting Function

	Experiment
	Settings
	Results
	Applications

	Final Remarks
	Limitations and Future Directions
	Appendix
	Related Works
	Optimization Details
	More Details of Real Robot Experiments
	Ablation Studies

