
Programming and Debugging with
Semantically Lifted States

Eduard Kamburjan, Vidar Norstein Klungre, Rudolf Schlatte,
Einar Broch Johnsen, and Martin Giese

Department of Informatics, University of Oslo, Oslo, Norway
{eduard,vidarkl,rudi,einarj,martingi}@ifi.uio.no

Abstract. We propose a novel integration of programming languages
with semantic technologies. We create a semantic reflection mechanism
by a direct mapping from program states to RDF knowledge graphs.
This mechanism enables several promising novel applications including
the use of semantic technology, including reasoning, for debugging and
validating the sanity of program states, and integration with external
knowledge graphs. Additionally, by making the knowledge graph ac-
cessible from the program, method implementations can refer to state
semantics rather than objects, establishing a deep integration between
programs and semantics. This allows the programmer to use domain
knowledge formalized as, e.g., an ontology directly in the program’s con-
trol flow. We formalize this integration by defining a core object based
programming language that incorporates these features. A prototypical
interpreter is available for download.

1 Introduction

Knowledge graphs and ontologies are eminently useful representations of formal
knowledge about individuals and universals. They are less suitable for the rep-
resentation of change, and in particular dynamic behavior. Different approaches
have been proposed that attempt to express program behavior in terms of ac-
tions on a DL interpretation [26] or a DL knowledge base [1]. A recent approach
has combined a guarded command language with DL reasoning [6] to enable
probabilistic model checking over the combination. Each of these approaches
entails its own set of technical challenges, and they are also quite different from
current state-of-the-art programming paradigms.

In this work, we present a comparatively simple connection between programs
and knowledge graphs: we give a direct mapping of program states in an object-
based language to an RDF graph, including the running program’s objects, fields,
and call stack. An immediate application of this mapping is to use semantic
technology for program debugging, visualisation, querying, validation, reasoning,
etc. In this paper, semantic debugging refers to the process of detecting and
correcting conceptual mistakes at the appropriate level of global object access
instead of interacting with only individual objects, as in conventional debuggers.

2 Kamburjan et al.

The RDF graph can be exposed within the programming language, which
adds a semantic reflection layer to the programs. This enables semantic program-
ming where the semantic view of the state can be exploited in the program. In
particular, it allows one to use the knowledge of the application domain within
the program. The programming language can further support a mechanism that
extends the RDF graph with triples based on the results of specially designated
methods. The approach is implemented and available.

In this work, the RDF graph is close to the object structure, thus representing
an internal domain of the program. Our long-term goal is to use the same prin-
ciples for external domains that correspond to a program’s application domain.
This will enable semantic integration between programs as well as linking them
to external knowledge graphs and other data sources, thus extending ontology-
based data access and integration (see e.g. [9]) to programs and behavioural
specifications [13] that allow modeling of complex concurrent systems [16].

Contributions. The contributions of this paper are (1) the concept of inter-
preting a program state as a knowledge graph to enable semantic state access,
(2) the application enabled by this concepts and (3) the SMOL language that
implements the concept and exemplifies the applications.

Paper overview. Sec. 2 gives a motivating example of mapping program states
to an ‘internal’ knowledge graph. Sec. 3 gives syntax and semantics of SMOL, the
used programming language, and defines the mapping of SMOL program states to
RDF graphs. Sec. 4 extends SMOL with a statement to access its own knowledge
graph, thereby adding reflection by semantic state access. Sec. 5 extends SMOL

with a way to add computed triples to the knowledge graph. Sec. 6 describes
the implementation, Sec. 7 discusses related work, and Sec. 8 concludes. Further
details of this work may be found in an accompanying technical report [17].

2 Motivating Example

We start by giving an example of the use of domain models in programming to
demonstrate semantic bugs and motivate semantic programming. Semantic bugs
are programming errors that arise from mismatches between the implementation
and the domain that is implemented. Such bugs are unlikely to cause immediate
runtime errors and are, thus, harder to catch. Instead, they require to examine
the program state through a conceptual lens, i.e., in terms of the implemented
domain. Semantic debugging is the process of detecting and fixing such errors.

The implemented domain can be external or internal. An external domain
relates the implementation to some concept outside the program. For example, a
class modeling a car that contains a list of its wheels. If the list contains only one
element, this is a semantic bug: the object does not represent a car. An internal
domain relates the implementation to itself.

Example 1. Consider 2-3 trees [2], a data structure to access key-value pairs.
Such trees have three kinds of nodes: leaves have one or two data values and no
children, 2-nodes that have one data value and two children and 3-nodes that

Programming and Debugging with Semantically Lifted States 3

1 class Node(dataL, dataR, childL, childM, childR, parent)

2 get(k)

3 if(this.dataL = null) then r := null; return r; end
4 if(k = this.dataL.key) then r := this.dataL.value; return r; end
5 if(k <= this.dataL.key) then r := this.childL.get(k); return r; end
6 if(this.dataR = null) then r := this.childM.get(k); return r; end
7 ...

8 end
9 end

Listing 1. Part of the implementation of 2-3 trees in SMOL.

have two data values and three children. The keys are sorted within the tree;
e.g., in a 2-node, all keys below the left child are smaller than the key stored in
the node and all below the right child are larger. Lst. 2 shows an implementation
of such a tree. In the implementation, a node is a 2-node if the fields dataR and
childR are set to null and the other fields are non-null. A node is a 3-node if all
fields are non-null. A leaf has no children and at least one data value.

The nodes of a 2-3 tree change their “class” during their lifetime from leaf
to 2-node to 3-node. It would be highly inefficient to create a new object every
time this happens, as the addition of a value to the tree may cause several such
changes. This exemplifies how the application “domain” (here: 2-3 trees) and
the needs of the implementing language (here: efficiency) can collide.

In this example, the distinction between leaf nodes, 2-nodes and 3-nodes is
semantic in the sense that these nodes share the same syntactic structure. It
is not visible in the code that certain nodes are not supposed to exist; e.g.,
nodes where only dataR is set to null are so-called faulty nodes. This means that
erroneous insertion algorithms may cause semantic bugs: they may violate the
domain model of 2-3 trees. Note that faulty nodes as discussed above cannot
be described by means of an ontology for the syntax — the domain model is a
model of runtime states (i.e., the three kinds of nodes), not one of syntax.

An interpretation of the runtime state as a knowledge graph opens for seman-
tic state access; i.e., the runtime state can be queried by means of semantic tools
via this interpretation. In our example, all three kinds of node can be described
as both SHACL shapes and SPARQL queries for debugging.

Semantic bugs may cause delayed and non-local runtime errors. Semantic
debugging requires to perform semantic queries on a program state to access
the complete program state, not only the current stack trace. The faulty node
described above causes the tree to effectively ignore the values below childR

by the get method. Thus, the error is delayed (observable only after the faulty
insertion) and non-local (not observable with a single stack trace). Similarly, the
car with a single wheel may not cause any runtime error at all.

Semantic programming is the application of this conceptual lens from within
the program: As we interpret every runtime state as a model for a domain, we

4 Kamburjan et al.

can also perform queries automatically during execution, for example, querying
for all faulty nodes and calling a repair function that fixes the tree.

Terminology. There are some conflicts of terminology between programming lan-
guages and semantic technologies, of which we emphasise the following: In pro-
gramming languages the word semantics describes the runtime behavior of a
program, and is unrelated to ontologies and formalized domains.

In programming, a class is completely described by (a) its name, (b) its
fields and methods and (c) the name of its superclass. We only consider class
hierarchies without multiple inheritance, which form a tree. Each object has an
identifier and belongs explicitly to one class (and its superclasses). The state,
i.e., the values in the fields of an object, may change, but the class does not.
In contrast, an OWL class corresponds to a unary predicate in logic and any
resource belongs to many classes. Classes are identified by their extension and
not their name, and resources have no built-in notion of class membership.

3 Core Language SMOL

As our programming model, we consider a semantic minimal object language
(SMOL). The language contains the minimal set of features to demonstrate se-
mantic state access: a class system to define objects and a simple while language
for statements. To demonstrate the use of reflection, SMOL uses dynamic typing:
each value is tagged with its type at runtime.

3.1 Programming Model

A program in SMOL consists of a set of classes and a main block. Statements
and expressions are standard, including a null reference and the self reference
this. For simplicity all fields are public, fields are always prefixed with the target
object and nested object creation and method calls inside expressions are not
supported. The syntax of SMOL is given by the following definition.

Definition 1 (Surface Syntax). Let v range over variables, f over fields, n

over N, m over method names and C over class names. The syntax of SMOL is
defined below. We assume standard literals and operators in expressions. The
notation · denotes lists and [·] optional elements.

Prog ::= Class main s end Class ::= class C (f) Met end Met ::= m(v) s end

s ::= l:=e; |
[
l:=
]
se; | if e then s

[
else s

]
end s | s s | while e do s end s | return e; | skip

se ::= new C(e) | e.m(e) e ::= null | l | n | e + e | e ≥ e | . . . l ::= this.f | e.f | v

The runtime semantics of SMOL is a transition system between runtime config-
urations. Each such configuration represents the state of the program at a given
point of execution. An expression evaluates to a domain element (DE), which
is either a literal value or an object reference. For method calls, we use runtime
statements rs which extend statements s with a special statement l ← stack

(explained below). Runtime configurations are defined as follows.

Programming and Debugging with Semantically Lifted States 5

Definition 2 (Configuration). Let X, Y range over object identifiers, σ, ς over
maps from variables to DEs, ρ over maps from fields to DEs and i over N.
Configurations Conf, objects obs and processes prcs are defined by the following:

Conf ::= CT obs
〈
[prcs]

〉
rs ::= s | l← stack; s

obs ::= (C, ρ)X | obs obs prcs ::= (m, X, rs, σ)i | prcs, prcs

where CT maps class names to a list of field names and a set of method entries.
These are accessed by the auxiliary functions fields(CT, C) and methods(CT, C),
respectively. We use vars(CT, C, m) to access the variables and body(CT, C, m) the
body of a method. Terms obs are treated as sets.

A runtime configuration Conf contains a set of objects and a stack of pro-
cesses. An object has a unique name X and contains its class name C and memory
ρ. A process has an id i and contains the name m of the method is executing, the
object identifier X to resolve this, a runtime statement rs and a local store σ.

Observe that in a configuration, 〈prcs〉 realizes a stack of processes corre-
sponding to nested method calls. In a process, the statement l← stack denotes
that location l waits for a return value from the next process on the stack.

Definition 3 (Initial Configuration). Given a program Prog, the initial con-
figuration has the form CTProg (Entry, ∅)E

〈
(entry, E, s, ∅)1

〉
, where CTProg is ex-

tracted as defined in Def. 2, but with an additional class Entry that has a single
method entry with the statement of the main block as its body.

The runtime semantics of SMOL is now presented as a structured operational
semantics [24], i.e., a set of conditional rewrite rules which describe transitions
from a runtime configuration into another. An expression evaluates to a pair X, f
or a variable v if applied to a left-hand side and to a domain element if applied to
a right-hand side. We denote by JeKσ,obs

Y the evaluation function for expressions
e, where Y is the value of this, σ the local variables, and obs a set of objects
(such that their memories ρ may be accessed). For brevity’s sake, we refrain from
introducing the full runtime semantics here and refer to our technical report [17].

Definition 4 (Transition System). The most important rules of the transi-
tion system are given in Fig. 1.

The transition system is defined with two layers. A global layer that per-
forms a step of the whole system and local layer that performs a step of a single
statement. To connect the two layers, rule (lift) performs a step in the top-most

process, using a local transition relation
CT−−→X. The local transition relation con-

siders only (a) the active statement (b) the current local memory and (c) all
objects. We give three rules to illustrate this: (af) executes an assignment to
some field. The left-hand side expression evaluates to the pair of object identi-
fier and field name and the right-land side to a literal or reference to be stored
there. The rule updates the heap of the target object and reduces the statement
to skip. Rule (av) is similar if the left-hand side expression evaluates to a variable
name. Rule (new) adds a new object after evaluating all parameter expressions.

6 Kamburjan et al.

s, σ, obs
CT−−→X s’’, σ

′, obs′
(lift)

CT obs
〈
prcs, (m, X, s s’, σ)i

〉
→ CT obs′

〈
prcs, (m, X, s’’ s’, σ′)i

〉
JeKσ,obs (C,ρ)X

Y = v JlKσ,obs (C,ρ)X
Y = X, f

(af)
l := e;, σ, obs (C, ρ)X

CT−−→X skip;, σ, obs (C, ρ[f 7→ v])X

JeKσ,obs
Y = v JlKσ,obs

Y = v
(av)

l := e;, σ, obs
CT−−→X skip;, σ[v 7→ v], obs

|e| = |fields(CT, C)| Y fresh
∧

1≤i≤|fields(CT,C)| ρ(fi) = JeiKσ,obs
Y

(new)

l := new C(e);, σ, obs
CT−−→X l := Y;, σ, obs (C, ρ)Y

Fig. 1. Selected rules of the transition system for SMOL.

Premises in the rules realize dynamic checking : mismatching parameters, null
access and all other errors are caught at runtime. A runtime configuration for
which no rule is applicable is terminated. A terminated runtime configuration
with a non-empty stack is stuck. A program may get stuck if, e.g., a method is
called on an object and this method is not defined in the object’s class.

3.2 Semantic State Access

The formal definitions given in the previous section describe the global state of a
program execution. The established way to examine this state in debuggers is to
evaluate expressions in the top-most context and navigation of the process stack.
To enable semantic state-access on the overall state without manual navigation,
we map a configuration into an knowledge base using our SMOL domain model.

Definition 5 (Knowledge Base). A knowledge base K = (T,A) is a pair of
a TBox T and an ABox A. We represent the ABox as a set E × P × E, where
each element is a triple over entities E and predicates P . A triple (e1, p, e2) is
also written p(e1, e2).

Entities are, e.g., domain elements or method names. We remind the reader
that literal values are domain elements. The sets of predicates and entities may
overlap: a field is used as both an entity (to express that a class has a field), as
well as a property (to connect an object with the value stored within this field).

The TBox consists of axioms. Some axioms are generated as part of the
mapping and stem from the SMOL domain. Additionally axioms to reflect the
application domain can be provided by the user.

Definition 6 (SMOL Domain and Mapping). The generic SMOL domain model
without the subdomain for statements is the OWL model pictured in Fig. 2.

The set of axioms defining the above model is denoted ISMOL. Given a con-
figuration Conf, the mapping µ(Conf) generates a ABox as defined in Fig. 3.

Fields and locations have two roles: All fields are properties (datatype or ob-
ject properties, depending on the type), and they are elements of Field. Treating

Programming and Debugging with Semantically Lifted States 7

Statement
Line:integer

Expression
hasTag:string

hasLiteral:string

Parameter
hasParameterIndex

Object Process

Class Field

Method

Location
hasName:string

ArithExpression
hasOp

LiteralExpression
hasLiteral:string

hasTag:string

OthersVarLocation

OwnVarLocation

LocalVarLocation

owl:Thing
hasIndex:integer

hasValue

a
ct

iv
e

nextOnStack

runsOnObject

ru
n

sO
n

M
eth

o
dhasFieldhasMethod

instanceOf

b
o
d

y

hasExpr

hasParameter hasParameterValue

GuardedStatement

. . .

IfStatement

WhileStatementhasGuard

Fig. 2. OWL domain model for SMOL configurations. Common prefix smol: omitted.
Boxes denote classes, arrows object properties and dotted arrows subclassing. Entries
within the boxes are data properties.

them as properties, we can use them to connect an object O1 with an object O2
stored in its field f using the triple f(O1, O2). Treating them as individuals,
we can express that they belong to a class. E.g., if O1 is of class C, by using the
triple hasField(C, f). Analogously for variables and Location. The domain
model also structures the statements, e.g., IfStatement and WhileStatement

are both subclasses of GuardedStatement.1

In the mapping, every class and object property is prefixed with an IRI
unique to this version the program. We stress that each field is a subproperty of
Field and every variable is a subproperty of Location. The SMOL domain is not
merely a reformulation of the grammars in Defs. 1 and 2 — it introduces terms
like guarded statements which are not given in the grammar. Exactly one state
is mapped to a knowledge base at a time, not a whole trace.

Example 2. Fig. 4 shows a program and the main part of the mapping of its con-
figuration. It exemplifies that the knowledge graph contains information about
three layers of the program state: A syntactic layer describes the class informa-
tion (in blue), an object layer describes the object instances (in brown) and a
process layer describes the current stack (in yellow). The layers are not strict for
fields and variables: f is both at the syntactic layer (f is a field of class C) and
at the object layer (object X stores 2 in f) – the double line denotes equality.

The representation as a knowledge base allows us to access information be-
yond the basic notations of runtime semantics by inferring additional information
through inference rules. We are generic in the access and inference mechanisms
itself and assume some representation of axioms and queries.

1 For space reasons, the complete version of this part of the domain model is given in
the repository, and the following figures have been slightly simplified.

8 Kamburjan et al.

µ
(
CT obs

〈
prcs

〉)
= µ(CT) ∪ µ(obs) ∪ µ(〈prcs〉)

µ(CT) =
⋃

C∈dom(CT)

{
smol :hasField(fP(C), fP(f)), rdfs :subProperty(fP(f), smol :Field) | f ∈ CT(C)

}
∪

⋃
C∈dom(CT)

{
smol :hasMethod(fP(C), fP(m)), rdf :type(fP(m), smol :Method) | m ∈ CT(C)

}
∪
{
rdf :type(fP(C), smol :Class) | C ∈ dom(CT)

}
µ(obs1 obs2) = µ(obs1) ∪ µ(obs2) µ

(
(C, ρ)X

)
= {smol :instanceOf(fR(X), fP(C))} ∪

⋃
f∈dom(ρ)

{f(X, ρ(f)}

µ(〈〉) =∅ µ(〈pi〉) = µ(pi) µ(〈pi pj〉) = {smol :nextOnStack(fR(i), fR(j))} ∪ µ(pi) ∪ µ(pj)

µ(〈prcs pi pj〉) ={smol :nextOnStack(i, j)} ∪ µ(〈prcs pi〉) ∪ µ(pj)

µ
(
(m, X, rs, σ)i

)
=

{smol :runsMethod(fR(i), fP(m)), smol :runsOnObject(fR(i), fR(X)), rdf :type(fR(i), smol :Process)}

∪ {smol :active(fR(i), µ(rs))} ∪
⋃

v∈dom(σ)

{fP(v)(fR(i), σ(v))}

Fig. 3. Mapping configurations. Statements and expression ommited for space reasons.
fP adds a prefix that identifies the program, fR adds a prefix that identifies the run.

1 class C(f) m(v) return this.f + v; end end
2 main o = new C(2); o.m(3); end

Entry

E

p1

C

X

p2

return1

fm

2

3

Arith1

runsOnObject

instanceOf

runsOnObject

instanceOf

nextOnStack

hasMethod hasField

f

v

runsMethod
o

active

returnExpr

sum1

sum2

Fig. 4. A SMOL program and its mapping into a knowledge graph after o.m(3) is called.

Definition 7 (Queries). An answering engine is a function that maps a knowl-
edge base and a query to a set of answers:

ans
(
(T,A), q

)
=
{
x | (T,A) |= q(x)

}
The satisfiability relation |= depends on the concrete nature of the query.

Query engines can also handle boolean queries, such as description logic
assertions, by returning either an empty set for true or a non-empty set for false.

Semantic Debugging. The mapping allows the programmer to debug a program
by simple and efficient access to the runtime configuration through queries. This
does not require an axiomatisation of the application domain, but if one is avail-
able, it can be used to additionally debug in terms of the application domain.

Example 3 (Semantic Debugging). Continuing with Ex. 1, we can formalize the
notion of leaves, 2-nodes, 3-nodes and faulty nodes with the OWL class expres-

Programming and Debugging with Semantically Lifted States 9

Root ≡ parent :null

Leaf ≡ (childL :null) u (childM :null) u (childR :null) u (∃dataL.∃instanceOf.Pair)

TwoNode ≡ (childR :null) u (dataR :null) u (∃childL.∃instanceOf.Node)
u (∃childM.∃instanceOf.Node) u (∃dataL.∃instanceOf.Pair)

ThreeNode ≡ (∃dataL.∃instanceOf.Pair) u (∃dataR.∃instanceOf.Pair)
u (∃childL.∃instanceOf.Node) u (∃childM.∃instanceOf.Node) u (∃childR.∃instanceOf.Node)

Fig. 5. Domain model for 2-3 trees as OWL classes in DL syntax.

sions from Fig. 5. To access a configuration Conf for semantic debugging with a
query q, one needs to compute

ans
(
(TSMOL ∪ Tuser), µ(Conf)), q

)
where Tuser are user input axioms that define the domain of the application.

Note that the axioms TSMOL and the mapping µ are part of the language
and need not be provided by the user. The vocabulary is partially given by the
language itself and partially by the user-defined classes. The overhead for the
programmer is, thus, only to provide additional axioms if needed.

Recall that semantic state access is performed on a single state. For exam-
ple, if the construction of the 2-3 tree in Ex. 1 temporarily contains a faulty
node, then this node will not be retrieved by a semantic state access after the
construction has completed (if the construction indeed fixes the node). If one
wishes to detect such a faulty node without explicitly introducing it into the
domain model, one can either use a query language with negation or a language
for validation such as SHACL, whose integration into SMOL we discuss in Sec. 6.

Semantic debugging differs from traditional debugging in several points: (1)
Access is performed with a query language to examine larger states, instead
of manually investigating the call and heap structure of a snapshot. (2) The
ability to query and debug using application domain knowledge. This becomes
critical when investigating complex data structures where the implementation
and the application domain conflict, as illustrated by Ex. 1 where the domain
differentiates 3 classes of nodes, but the implementation has only one.

Semantic technologies are not a standard tool for debugging, but given the
complexity of some current debugging tools, such as profilers, we expect that the
overhead for the programmer is acceptable for complex structures, especially if
they have an application domain component.

Verification. Before we investigate semantic state access further, we note that
using established programming language constructs for control flow allows us
to directly use results from programming languages. For example, we can carry
over verification techniques and verify invariants. For a more detailed treatment
of the following statement, we again refer to our technical report. We say that a
formula is state-based if it contains as predicates only (a) instanceOf and (b)
subproperties of Field and Expression. An ontology is state-based if its axioms
contain only such predicates.

10 Kamburjan et al.

Proposition. Let Prgm be a SMOL program, such that type inference succeeds.
Let O be a state-based domain ontology, C a class in Prgm and ϕ be a state-based
description logic formula. There is a sound and complete (relative to integer
arithmetic) proof system that checks whether ϕ is an invariant for C.

4 Internal Semantic State Access

So far, semantic state access is used to query the program state from the outside
to realize semantic debugging. Next, we integrate domain knowledge directly into
the runtime semantics of the program: the control flow is expressed not in terms
of data structure implementations, but in terms of the implemented domain. To
do so, we add a new statement to retrieve information about the state through
the conceptual lens of ontologies about the program state from the inside.

Definition 8 (Extended Surface Syntax). Let str range over string literals.
The syntax of SMOL+ is defined by extending statements from Def. 1 as follows:

s ::= . . . | l:=access(str , e);

The runtime semantics of the access statement map the current program
and use the inferred knowledge graph to perform some query. The query is
not static: additional parameters are evaluated and mapped to nodes inside
the knowledge graph. We use %i as placeholders in the query string to add the
additional parameters. We require the existence of a List class to represent the
results of the statement for further computations.

Definition 9. The runtime semantics SMOL+ are defined by all rules from Def. 3
and the following additional rule for the access statement. We remind that I and
R are available as user inputs.

q = str
[
%i \ JeiK

σ,obs
Y

]
i≤n l = ans

(
((R, I), µ(Conf)), q

)
(acc)

CT obs
〈
prcs, (m, Y, v := access(str,e1, . . . , en); s, σ)

〉︸ ︷︷ ︸
=Conf

→T CT obs
〈
prcs, (m, Y, s, σ[v 7→ l])

〉

We illustrate internal SSA ith two examples: domain-specific control and
reflection. We can apply the domain ontology in the queries, inspired by the
‘ontology-mediated symbols’ introduced by Dubslaff et al. [5], to directly control
the program in terms of the domain. An ontology-mediated symbol is a query
over the extended knowledge graph and can be expressed in our system.2

Example 4. Consider the upper code in Lst. 4. The scheduler uses the domain
knowledge to determine which of the platforms is overloaded and accordingly
moves servers between platforms. The critical point here is that :Overloaded is
defined by the background knowledge and can, thus, be changed according to
different scenarios outside the simulation.

2 Dubslaff et al. use description logic formulas for queries, not SPARQL, but our
approach is general w.r.t. the query language.

Programming and Debugging with Semantically Lifted States 11

1 class Platform(serverList) ... end class Server(taskList) ... end
2 class Scheduler(platformList)
3 reschedule()
4 over := access("SELECT ?x WHERE{?x a :Overloaded }");
5 tasks := this.collectExcessiveTasks(over);
6 this.reschedule(tasks);
7 end
8 end

1 m(o)
2 callable :=
3 access("SELECT ?y WHERE{%1 :instanceOf ?y. ?y :hasMethod n }",o);
4 if callable <> null then o.n(); else .../*report error*/ end
5 end

Listing 2. Upper code: Using ontology-mediated symbols in SMOL. Lower code:
Reflection with semantic state access.

Exchanging the background knowledge can be used to change the specifi-
cation when a platform is overloaded — the language concepts of ontology-
mediated programming are thus subsumed by semantic programming.

The class table and stack structure are both available in the knowledge graph.
We can, thus, reason about these structures at runtime in terms of the formal
(runtime) semantics and domain. I.e., this does not merely expose the structure
of the implementing runtime environment but adds domain knowledge — in this
case, the domain of runtime configurations. The actual implementation in the
interpreter, or other runtime, may for efficiency be quite different.

Example 5. The method in the lower part of Lst. 4 checks that a passed param-
eter is from a class that implements n before calling the method.

The above example illustrates a common pattern in languages with dynamic
types or reflection and is based on the static information. As the knowledge
graph underlying the state also enables access to the processes, one can also use
it to make control based on the stack. E.g., one can bound recursion without an
additional counter or reflect on the calling method without passing a parameter.

5 Computational Semantic State Access

So far, we can access the data in a configuration and, beyond merely serialising
it into another format, use inference to ontologise it. However, we cannot access
data that is implicit in the configuration. Consider Let. 5: The Rectangle class
has a width w and a height h, but its area is not directly available. Even worse:
each rectangle is part of a scene that may scale all its elements (and apply further
operations, which we omit here). While the final step of the computation of an
area is a multiplication, the overall computation involves a method call.

Our solution is computational semantic state access (CSSA): certain meth-
ods, here area are directly encoded as inference rules to enrich the knowledge

12 Kamburjan et al.

1 class Scene(scaling) getScale() return this.scaling; end end
2 class Rectangle(scene, w, h)

3 rule area() s := scene.getScale(); return s*this.w*this.h; end
4 end
5 main sc := new Scene(2); ... r := new Rectangle(sc, 5, 1); end

Listing 3. A rectangle inside a scene.

graph. This makes data that is a computational result available for inference.
Furthermore, this allows one to determine based on a query where a computation
has to be performed (instead of pre-performing it on all possible targets).

The language allows the programmer to mark methods as available for infer-
ence by exposing them with the rule keyword.

Definition 10 (Extended Surface Syntax with CSSA). The syntax of
Def. 8 is extended by replacing the method definition (from Def. 1) with

Met ::= [rule] m(v) s end

For wellformedness, we demand that m is guaranteed to terminate if it is
modified by rule.3 The semantics of a rule method is not a transition rule, but
an extension of the translation.

Definition 11. The semantics of SMOL+ is defined by the original transition
system of SMOL+ and by replacing the definition of µ((C, ρ)X) in Fig. 3 by

µ
(
(C, ρ)X

)
={smol : instanceOf(frun(X), fprog(C))}∪⋃
f∈dom(ρ)

{fprog(f)(frun(X), ρ(f))} ∪
⋃

m is a
rule of C

{fprog(exec C m)(frun(X), l)}

where l is a literal computed as follows. Let K be a knowledge graph and µ−1obj (G) =
(CT obs ε) its state without the processes. Let X be the object id of the object bound
to ?o. The configuration CT obs

〈
(m, X, s, {})1

〉
finishes in a configuration of the

form CT obs′
〈
(m, X, return e, σ)1

〉
. The literal l is defined as the evaluation of

e in this configuration. If the execution does not finish in a configuration of the
required form, we set l = smol:null.

The execution is not performed on µ(Conf) itself. This means that any state
change, e.g., object creations or changes of fields, are not recorded in µ(Conf).
We stress that the access statement is still part of the language.

Example 6. Consider the final configuration of the program in Lst. 5. Let X be
the created object. The method area is syntactically guaranteed to terminate
and application to X results in the following added triple:

prog:exec Rectangle area(run : X, 10)

3 Via a timeout, a syntactic check that no (mutual) recursion and no loops occur during
its execution, or a termination proof. We do not commit to a concrete restriction.

Programming and Debugging with Semantically Lifted States 13

We remind the reader that this is not merely an arithmetic expression, but
requires a method call to include the scaling of the overall scene— rule-methods
allow one to include such computations directly into the knowledge graph.

A method exposed with rule takes no parameters to avoid spurious triples.
If a call with a particular parameter is required, one may introduce a wrapper
class that is created before µ(Conf) is computed.

Example 7. To lookup 5 in Ex. 1 in a query, one may introduce the following
class and create an instance new Wrap(tttree, 5) before a get call.

1 class Wrap(t, key) rule lookup() v := t.get(key); return v; end end

CSSA is not redundant to method calls: it extends the knowledge base at
every instance and allows to select in the graph depending on these attributes.

6 Implementation

An implementation is available at github.com/Edkamb/SemanticObjects. It
supports a superset of SMOL+ and adds inheritance and some convenience fea-
tures for the program, such as output. Several examples are provided, including
the example from Sec. 2 with complete, and a SMOL+ implementation of a subset
of the geological assistant [4], a simulator for geological processes.

Interpreter. SMOL+ is implemented by an interpreter written in Kotlin that
builds on Apache Jena and HermiT [10] for the semantic state access. The in-
terpreter implements an interactive shell to realize a Read-Evaluate-Print-Loop
(REPL) that allows the user to step through the execution and semantically
access the current state. The user may query the state with SPARQL, validate it
against SHACL shapes or retrieve all members of an OWL class defined by a class
expression. As a domain ontology, a file containing OWL classes can be loaded.
It is possible to run a program without stepping through the execution; the lan-
guage is extended with a breakpoint statement that stops the execution in this
case. Additionally, the interpreter uses the prefixes prog: (for fP) and run: (for
fR) to simplify referencing elements of the current state. CSSA is implemented
by introducing a Jena-functor for each rule method and a rule with this functor
in its head. The functor copies the complete interpreter state without the stack
and executes the corresponding method.

Performance. We have evaluated the performance of internal SSA by adding n
elements to a 2-3 tree and the querying OWL class expression using HermiT.
For n=100, the system used 150s. To evaluate CSSA, we have similarly added n
elements and then used the rule wrapper from Ex. 7 to retrieve a value. Here, for
n=3000, the system used 205s. 3000 added values correspond to approximately
9000 created SMOL objects4 and 60k triples. This shows that our proof-of-concept
can handle non-trivial amounts of data, and complex data structures and queries.

4 Partly because the implementation still lacks a garbage collector for rewritten nodes.

github.com/Edkamb/SemanticObjects

14 Kamburjan et al.

We conjecture that the most significant bottleneck concerning the performance
is the non-optimised interpreter, and the explicit generation of the knowledge
base. To increase efficiency, we plan to make the knowledge base virtual and
only access object states as required to answer queries. Backward reasoning can
be included e.g. by query rewriting for OWL QL ontologies.

7 Related Work

Ontologies for Java’s core concepts by Kouneli et al. [18] and for connecting
object-oriented languages by de Aguiar et al. [3] have similarities to SMOL’s on-
tology, but aim at communication between users and not at semantic state access.

Imperative programming languages and transition systems can operate di-
rectly on knowledge graphs through atomic actions. Golog [22] uses first-order
logic guards to examine and pick elements from its own state. knowledge-based
programs [8] support an epistemic knowledge modality K. Zarrieß [26] integrates
description logic in a concurrent extension of Golog to verify CTL properties with
description logic assertions. These assertions are easily realised using assert in
SMOL+, while our object invariants are orthogonal to CTL checking of traces.
When operating on a knowledge graph, an ABox may change and violate a
TBox. Calvanese et al. [1] propose two operations ASK and TELL for transition
systems defined explicitly over knowledge bases. ASK corresponds roughly to our
access, while TELL performs an action required by the explicit representation.
In contrast, the transition system in SMOL+ is implicit such that well-established
principles from programming languages carry over to avoid reinvestigations of
modularity, runtime semantic structure and control flow for knowledge bases.
While all changes to the knowledge graph are global in Calvanese et al., global
changes in SMOL+ only happen in the part of the knowledge graph inferred from
user-provided axioms; the part inferred from the mapping only changes locally.

Our work has not investigated programming languages that operate directly
on DL interpretations or knowledge graphs, as done by [1,26], but rather how pro-
gramming languages can be enhanced by semantic technologies. Closest to our
work, ontology-mediated programming [5,6] defines an interface to integrate addi-
tional knowledge into a stochastic model checking tool, using external knowledge
graphs to influence control flow. In contrast, we use internal knowledge graphsfor
debugging. Neither the application to debugging nor an integration with rule-
based inference as in CSSA has been studied in any of these approaches. Addi-
tionally, these approaches all use unconventional operators or highly specialised
paradigms, while SMOL+ allows external semantic state access for a standard
object-oriented language; the access and rule extensions are optional and based
on a clear interface and established query language, instead of low-level logic-
based operations. For these reasons, SMOL+ appears as conceptually simpler.

Ontologies can be used to type programs. Leinberger et al. [19] study DL
concept expressions as static types in a λ-calculus, and type check using SHACL
constraints [21]. Existing programming languages can be integrated with RDF
data using the type systems of Paar and Vrandecic [23] and Leinberger et al. [20].

Programming and Debugging with Semantically Lifted States 15

The difference between ontologies and regular types is not merely one of taste:
(a) concepts allow more expressive structure than type hierarchies and (b) classes
in programming languages are designed by the user to fit the needs of its applica-
tion, while the concepts of the domain are designed to accomodate the needs of a
general domain. While this work attempts to unify two tools made for different
tasks, our approach is to give a sensible interface. SMOL is dynamically typed
and the concepts of the domain and mapping in SMOL are disjoint and need to
be connected using additional axioms. The connection to types has also been
investigated through mappings [15] and code generation [25].

Eiter et al. [7] explore answer set programming to embed rules over DL
knowledge graphs in the declarative setting of logic programs. Their rules are
more expressive than our CSSA rules and aim to be a general programming
approach. Käfer and Harth [14] perform actions on RDF files in the semantic
web using linked data, operating on a set of user-input rules for an abstract state
machine. Horne et al. define an operational semantics for SPARQL updates [12]
and a system that internalizes queries into a process algebra [11].

8 Conclusion

This paper presents a novel approach to combine semantic technologies and pro-
gramming languages. By regarding runtime configurations as knowledge graphs,
we can use semantic state access to query such configurations for semantic de-
bugging. By adding a semantic reflection layer to the programming language,
computations can be driven by the result of queries from within a program. Fi-
nally, a deep integration of inference and computation allows inference to trigger
method executions through computational semantic state access.

Future Work. As discussed, we plan to make the knowledge base virtual for per-
formance reasons. We are also considering to develop an extension with special
statements to manipulate the TBox and investigate how further programming
languages concepts, such as garbage collection and encapsulation, carry over.

Acknowledgements We thank Clemens Dubslaff and Patrick Koopmann for
inspiring discussions on ontology-mediated verification. We are grateful to the
anonymous reviewers for very constructive comments. This work was supported
by the Research Council of Norway via SIRIUS (237898) and PeTWIN (294600).

References

1. D. Calvanese, G. D. Giacomo, et al. Actions and programs over description logic
knowledge bases: A functional approach. In Knowing, Reasoning, and Acting:
Essays in Honour of Hector J. Levesque. College Press, 2011.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press, 2nd edition, 2001.

3. C. Z. de Aguiar, R. de Almeida Falbo, and V. E. S. Souza. OOC-O: A reference
ontology on object-oriented code. In ER, volume 11788 of LNCS. Springer, 2019.

16 Kamburjan et al.

4. C. C. Din, L. H. Karlsen, I. Pene, O. Stahl, I. C. Yu, and T. Østerlie. Geological
multi-scenario reasoning. In Proc. Norsk Informatikkonferanse (NIK), 2019.

5. C. Dubslaff, P. Koopmann, and A. Turhan. Ontology-mediated probabilistic model
checking. In IFM, volume 11918 of LNCS, 2019.

6. C. Dubslaff, P. Koopmann, and A. Turhan. Give inconsistency a chance: Semantics
for ontology-mediated verification. In Description Logics, volume 2663 of CEUR
Workshop Proceedings. CEUR-WS.org, 2020.

7. T. Eiter et al. Combining answer set programming with description logics for the
semantic web. Artif. Intell., 172(12-13), 2008.

8. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Knowledge-based programs.
Distributed Comput., 10(4), 1997.

9. M. Giese et al. Optique: Zooming in on big data. IEEE Computer, 48(3), 2015.
10. B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang. Hermit: An OWL 2

reasoner. J. Autom. Reason., 53(3), 2014.
11. R. Horne and V. Sassone. A verified algebra for linked data. In FOCLASA,

volume 58 of EPTCS, 2011.
12. R. Horne, V. Sassone, and N. Gibbins. Operational semantics for SPARQL update.

In JIST, volume 7185 of LNCS. Springer, 2011.
13. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core

language for abstract behavioral specification. In FMCO, volume 6957 of LNCS.
Springer, 2010.

14. T. Käfer and A. Harth. Rule-based programming of user agents for linked data.
In LDOW@WWW, volume 2073 of CEUR. CEUR-WS.org, 2018.

15. A. Kalyanpur, D. J. Pastor, S. Battle, and J. A. Padget. Automatic mapping of
OWL ontologies into Java. In SEKE, 2004.

16. E. Kamburjan, R. Hähnle, and S. Schön. Formal modeling and analysis of railway
operations with active objects. Sci. Comput. Program., 166, 2018.

17. E. Kamburjan, V. N. Klungre, R. Schlatte, E. B. Johnsen, and M. Giese. Pro-
gramming and debugging with semantically lifted states (full paper). Research
report 499, Dept. of Informatics, University of Oslo, Mar. 2021. Available at
https://ebjohnsen.org/publication/rr499.pdf.

18. A. Kouneli, G. D. Solomou, C. Pierrakeas, and A. Kameas. Modeling the knowledge
domain of the Java programming language as an ontology. In ICWL, volume 7558
of LNCS. Springer, 2012.

19. M. Leinberger, R. Lämmel, and S. Staab. The essence of functional programming
on semantic data. In ESOP, volume 10201 of LNCS. Springer, 2017.

20. M. Leinberger, S. Scheglmann, R. Lämmel, S. Staab, M. Thimm, and E. Viegas.
Semantic web application development with LITEQ. In ISWC, volume 8797 of
LNCS. Springer, 2014.

21. M. Leinberger, P. Seifer, C. Schon, R. Lämmel, and S. Staab. Type checking
program code using SHACL. In ISWC, volume 11778 of LNCS. Springer, 2019.

22. H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A
logic programming language for dynamic domains. J. Log. Program., 31(1-3), 1997.

23. A. Paar and D. Vrandecic. Zhi# - OWL aware compilation. In ESWC (2), volume
6644 of LNCS. Springer, 2011.

24. G. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Pro-
gram., 60-61, 2004.

25. G. Stevenson and S. Dobson. Sapphire: Generating Java runtime artefacts from
OWL ontologies. In CAiSE Workshops, volume 83 of LNBIP. Springer, 2011.

26. B. Zarrieß and J. Claßen. Verification of knowledge-based programs over descrip-
tion logic actions. In IJCAI. AAAI Press, 2015.

https://ebjohnsen.org/publication/rr499.pdf

	Programming and Debugging with Semantically Lifted States

