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Abstract

Memorization in large language models001
(LLMs) makes them vulnerable to data extrac-002
tion attacks. While pre-training memoriza-003
tion has been extensively studied, fewer works004
have explored its impact in fine-tuning, partic-005
ularly for LoRA fine-tuning, a widely adopted006
parameter-efficient method.007

In this work, we re-examine memorization008
in fine-tuning and uncover a surprising diver-009
gence from prior findings across different fine-010
tuning strategies. Factors such as model scale011
and data duplication, which strongly influence012
memorization in pre-training and full fine-013
tuning, do not follow the same trend in LoRA014
fine-tuning. Using a more relaxed similarity-015
based memorization metric, we demonstrate016
that LoRA significantly reduces memorization017
risks compared to full fine-tuning, while still018
maintaining strong task performance.019

1 Introduction020

Memorization in large language models (LLMs)021

has raised growing concerns, as studies have shown022

that these models can retain and expose training023

data (Carlini et al., 2023, 2019; Leybzon and Ker-024

vadec, 2024; Mireshghallah et al., 2022a). This025

susceptibility to memorization has led to the emer-026

gence of data extraction attacks, where adversaries027

exploit model generations to recover sensitive se-028

quences from the training corpus (Carlini et al.,029

2021; Kassem et al., 2024; Zhang et al., 2023).030

With the rapid proliferation of open-source031

LLMs, fine-tuning has become a standard approach032

for researchers and practitioners to adapt these mod-033

els for task-specific applications. Fine-tuning is034

often performed using private or proprietary data,035

such as personal medical records, internal com-036

pany documents, or domain-specific knowledge037

bases. This raises a critical concern: while fine-038

tuning datasets are typically much smaller than039

pre-training datasets, it remains unclear whether040

LLMs fine-tuned on limited data are still vulnerable 041

to extraction attacks. 042

While memorization in pre-training has been 043

extensively studied, far fewer works have system- 044

atically examined its effects in fine-tuning. As 045

a pioneering study, Mireshghallah et al. (2022b) 046

explored how different fine-tuning strategies—full- 047

model, head-only, and bottleneck adapter-based 048

fine-tuning (Houlsby et al., 2019)—impact mem- 049

bership inference attack (MIA) recall (Mireshghal- 050

lah et al., 2022a) and the exposure (Carlini et al., 051

2019) of fine-tuning data. Their findings indi- 052

cate that head-only fine-tuning leads to the high- 053

est memorization, whereas full-model and bot- 054

tleneck adapter-based fine-tuning present lower 055

but comparable risks. However, their study is 056

constrained by the choice of evaluation metrics, 057

as MIA recall tends to under-detect memorized 058

data (Schwarzschild et al., 2024), potentially lead- 059

ing to an underestimation of actual memoriza- 060

tion levels. In contrast, Zeng et al. (2024) ana- 061

lyzed memorization at the task level using a more 062

memorization-sensitive metric based on plagiarism 063

detection (Lee et al., 2023). Their results show 064

that summarization and dialogue tasks induce sig- 065

nificantly higher memorization compared to clas- 066

sification and translation, highlighting how task 067

characteristics influence memorization severity. 068

In this work, we extend previous research by 069

re-examining memorization in full and head-only 070

fine-tuning while introducing an analysis of LoRA 071

(Low-Rank Adaptation) (Hu et al., 2022) fine- 072

tuning, a widely adopted parameter-efficient fine- 073

tuning method. While LoRA is well known for 074

its computational efficiency, its impact on memo- 075

rization and data extraction risks remains largely 076

unexplored. As an initial step, we use the same 077

plagiarism-based memorization metric as in Zeng 078

et al. (2024), uncovering a surprising divergence 079

from previous findings regarding the susceptibility 080

of different fine-tuning methods to data extraction. 081

1



Furthermore, we conduct a comprehensive eval-082

uation using similarity-based metrics to compare083

LoRA, full, and head-only fine-tuning across model084

scales, data duplication levels, and hyperparameter085

configurations.086

As the first empirical analysis of memorization087

in LoRA fine-tuning, our study extends prior work088

on full and head-only fine-tuning. Our results on089

the family of GPT-2 and Llama 3 models demon-090

strate that LoRA significantly reduces memoriza-091

tion risks compared to full fine-tuning, achieving092

near-zero plagiarism-based memorization while093

maintaining strong task performance and ensuring094

similarity scores remain below extraction thresh-095

olds. These findings highlight LoRA not only as096

a computationally efficient alternative to full fine-097

tuning but also as a potential privacy-preserving098

approach.099

2 Preliminaries100

2.1 Memorization in Pre-Training vs.101

Fine-Tuning102

The concept of memorization in language models,103

as introduced by prior work (Carlini et al., 2023,104

2021), defines a sequence s as extractable if there105

exists a prefix c that, when used as a prompt, leads106

the model to generate s with high probability. To107

quantify this memorization, they employ the frame-108

work of k-eidetic memorization, where a generated109

sequence s is considered memorized if it is ex-110

tractable and appears in at most k instances within111

the training data.112

To perform this data extraction, the adversary is113

assumed to have black-box access to the language114

model, allowing them to generate text without di-115

rect visibility into the model’s internal parameters.116

The extraction process begins by initializing the117

model with a single-token prompt containing a spe-118

cial start-of-sentence token, followed by autoregres-119

sive sampling. Tokens are then iteratively selected120

using top-k sampling with k = 40, ensuring that121

only the most probable tokens are considered at122

each step.123

In this work, we investigate memorization in124

fine-tuned language models using a similar data125

extraction setup. However, a generated sequence s126

is considered memorized in the fine-tuned model127

if it is extractable and appears in the fine-tuning128

data. Importantly, variations in memorization and129

extractability evaluation methods can lead to sig-130

nificantly different interpretations of memorization131

risks. As we will demonstrate, even when adopting 132

more relaxed memorization criteria, LoRA fine- 133

tuning remains highly resistant to data extraction 134

attacks. 135

2.2 Model Fine-Tuning Methods 136

Full fine-tuning simply updates all model param- 137

eters. Head-only fine-tuning is a lightweight ap- 138

proach that freezes all model layers except the fi- 139

nal projection layer, also known as the language 140

modeling head, which maps hidden states to token 141

probabilities. LoRA strikes a balance by adding 142

small trainable low-rank matrices to attention lay- 143

ers while keeping the rest of the model frozen, 144

significantly reducing the number of trainable pa- 145

rameters. Unlike bottleneck adapter-based fine- 146

tuning (Houlsby et al., 2019), which adds extra 147

layers between the attention and feed-forward lay- 148

ers of each transformer block (Mireshghallah et al., 149

2022b), LoRA directly modifies attention layers, 150

achieving efficient fine-tuning with minimal com- 151

putational overhead. This design enables faster 152

adaptation, lower memory usage, and improved 153

scalability, making it particularly well-suited for 154

larger models and resource-constrained environ- 155

ments. 156

Mathematically, for a pre-trained weight ma- 157

trix W0 ∈ Rd×k, LoRA represents the fine-tuned 158

weights as W = W0 + ∆W = W0 + α · BA 159

where B ∈ Rd×r and A ∈ Rr×k are trainable low- 160

rank matrices with rank r � min(d, k), and α is 161

the scaling factor which controls the magnitude of 162

LoRA updates. The number of trainable parame- 163

ters is reduced from d× k to r × (d+ k), where r 164

is typically much smaller than both d and k. Dur- 165

ing training, only B and A are updated, while W0 166

remains frozen. Another key hyperparameter is the 167

dropout rate (Srivastava et al., 2014), which helps 168

prevent overfitting by randomly zeroing elements 169

during training, improving the model’s generaliza- 170

tion capabilities. Later, with provided empirical 171

evidence, we analyze how the rank, scaling factor, 172

and dropout rate in LoRA influence the mitigation 173

of memorization in fine-tuned models. 174

3 Related Work 175

While memorization in pre-training has been 176

widely studied, fewer works have explored memo- 177

rization in the context of fine-tuning. Two notable 178

studies, Mireshghallah et al. (2022b) and Zeng et al. 179

(2024), investigate this issue from different perspec- 180
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tives.181

Mireshghallah et al. (2022b) examined how182

different fine-tuning strategies impact memoriza-183

tion, comparing full-model, head-only, and bot-184

tleneck adapter-based fine-tuning (Houlsby et al.,185

2019). Using membership inference attack (MIA)186

recall (Mireshghallah et al., 2022a) and the expo-187

sure metric (Carlini et al., 2019), they found a sur-188

prising result: fine-tuning only the model’s head189

leads to the highest memorization, far more than190

full fine-tuning, even though it updates fewer pa-191

rameters. This suggests that the common practice192

of freezing all but the final layer may introduce193

unexpected risks of data leakage. However, their194

definition of memorization and choice of evalua-195

tion metrics differ from more recent advancements196

in the literature and our focus. Specifically, they197

equate memorization with the recall of the mem-198

bership inference attack on the training set, which199

has a high false negative rate (Schwarzschild et al.,200

2024), potentially leading to an underestimation201

of memorization. To address this limitation, our202

study analyzes model memorization across differ-203

ent fine-tuning methods using more representative204

and informative evaluation metrics. Furthermore,205

we extend this investigation to state-of-the-art fine-206

tuning techniques, particularly LoRA, which has207

not been explored in prior memorization studies.208

On the other hand, Zeng et al. (2024) investi-209

gated memorization at the task level, analyzing210

how different fine-tuning tasks affect memoriza-211

tion. They found that summarization and dialogue212

induce significantly higher memorization than clas-213

sification, reading comprehension, and translation.214

Additionally, they confirmed that increasing model215

size amplifies memorization in fine-tuning—a phe-216

nomenon previously observed in pre-training (Car-217

lini et al., 2023)—particularly in tasks prone to high218

memorization. However, the language models they219

examined, such as BART and T5, are no longer220

considered modern LLMs. While they did evaluate221

GPT-Neo-125M, its relatively small size limits its222

relevance to more recent large-scale models.223

4 A First Look at Memorization of LLM224

Fine-Tuning225

4.1 A Tentative Metric for Fine-Tuning226

Memorization227

To what extent can we confirm that an LLM has228

memorized its training data? Using appropriate229

evaluation criteria is crucial, as different metrics230

can yield highly divergent results in data extraction 231

attacks. Defining memorization solely as the model 232

reproducing exact wordings from the training data, 233

as in Carlini et al. (2023), may be too strict and 234

could overlook instances of semantic memoriza- 235

tion, where the model retains knowledge without 236

verbatim reproduction. This limitation has been 237

highlighted by Zeng et al. (2024). 238

To address this, Zeng et al. (2024) adopt an auto- 239

mated plagiarism detection approach from Lee et al. 240

(2023), which evaluates memorization through a 241

two-step process. First, the system retrieves the top- 242

n most similar documents to a given query using 243

the Elasticsearch (Gormley and Tong, 2015) rank- 244

ing. Then, it applies the PAN 2014 competition- 245

winning text alignment algorithm to detect and clas- 246

sify plagiarized text pairs within the identified can- 247

didate documents. 248

The detected plagiarism is classified into three 249

types: verbatim plagiarism, which copies words 250

or phrases exactly; paraphrase plagiarism, which 251

modifies wording through synonym substitution, 252

reordering, or back translation; and idea plagia- 253

rism, which rephrases key points in a condensed or 254

expanded form. 255

While this plagiarism-based evaluation frame- 256

work has been effective in detecting memoriza- 257

tion in standard fine-tuning settings, the extent to 258

which other fine-tuning methods exhibit memo- 259

rization under this metric remains uncertain. To 260

investigate this, we present preliminary results as- 261

sessing plagiarism-based memorization across dif- 262

ferent fine-tuning approaches, including full fine- 263

tuning, head-only tuning, and LoRA fine-tuning. 264

Our evaluation follows the original setup and de- 265

fault hyperparameters of the plagiarism detection 266

framework1 (Lee et al., 2023). 267

4.2 Minimal Plagiarism-Based Memorization 268

in Parameter-Efficient Fine-Tuning 269

Prior work has consistently shown that increasing 270

model size and data duplication amplifies memo- 271

rization during training (Carlini et al., 2023; Kand- 272

pal et al., 2022). This raises an important question: 273

do models fine-tuned with different strategies, par- 274

ticularly head-only and LoRA fine-tuning, exhibit 275

memorization trends similar to those observed in 276

pre-training? 277

To investigate the impact of model size, we uti- 278

lize open-source pre-trained GPT-2 models (Rad- 279

1https://github.com/Brit7777/LM-plagiarism
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ford et al., 2019) of varying scales from Hugging280

Face: GPT-2 Small (124M parameters), GPT-2281

Medium (355M parameters), GPT-2 Large (774M282

parameters), and GPT-2 XL (1.5B parameters). To283

examine the effect of data duplication, we intro-284

duce a hyperparameter ρ, which determines the285

duplication factor for each training sample in the286

fine-tuning dataset. A higher ρ increases the fre-287

quency of repeated samples while maintaining the288

same total dataset size. For example, in a dataset289

of 1, 000 samples, setting ρ = 2 results in 500290

unique samples, each appearing twice. To mini-291

mize the likelihood that the fine-tuning data was292

seen during pre-training, we select a dataset re-293

leased after GPT-2’s training period. The Arxiver294

dataset (Alican Acar, 2024), which contains 63.4k295

arXiv papers published between January 2023 and296

October 2023, is a suitable choice for evaluating297

memorization in a scientific writing task.298

We fine-tune our models for 10 epochs with a299

learning rate of 2× 10−4, using the AdamW opti-300

mizer and a cosine learning rate scheduler. Train-301

ing is conducted with a batch size of 4 per device,302

and the sequence length is set to 512 tokens for303

GPT-2. Specifically, in head-only fine-tuning, we304

update only the last two transformer layers along305

with the final language modeling head, which are306

responsible for high-level representations and di-307

rectly influence the model’s token predictions. For308

LoRA fine-tuning, we apply a rank of r = 16, a309

scaling factor of α = 16, and a dropout of 0.05 as310

a standard configuration.311

We adopt the data extraction attack mentioned312

in Section 2 to generate 1, 000 samples from each313

fine-tuned model and evaluate their plagiarism-314

based memorization. For text generation, rather315

than using the initial strategy of top-k sampling316

with k = 40 from Carlini et al. (2021), we refine317

token selection by setting top-k to 50 and incorpo-318

rating top-p sampling with p = 0.9, ensuring that319

only the most probable tokens are considered while320

maintaining some flexibility. Additionally, we set321

the temperature to 0.8 to balance randomness and322

diversity in the generated text. In Fig. 1, we illus-323

trate how different fine-tuning strategies influence324

plagiarism-based memorization across varying lev-325

els of data duplication and model sizes. To assess326

the task-specific performance of fine-tuned mod-327

els, we report ROUGE-L scores as an approximate328

measure of model utility, shown in Fig. 2.329

The tendency for larger models to memorize330

more persists in full fine-tuning, which exhibits a331

Before FT
Verbatim

After full FT
Idea

After head-only FT
Paraphrase

After LoRA FT

Pl
ag

ia
ris

m
 R

at
e 

(%
)

0

20

40

60

80

100

Model Size
Small Medium Large XL

Pl
ag

ia
ris

m
 R

at
e 

(%
)

0

50

100

Small Medium Large XL

(a) Model size

Pl
ag

ia
ris

m
 R

at
e 

(%
)

0

20

40

0 10 20

(b) Data duplication level ρ

Figure 1: Verbatim, idea, and paraphrase memoriza-
tion across various fine-tuning methods. (a) Varying
model sizes: GPT-2 Small, GPT-2 Medium, GPT-2
Large, GPT-2 XL, with fixed duplication level ρ =
10. (b) Varying levels of data duplication (ρ =
1, 2, 3, 5, 10, 20) using GPT-2 Small.
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Figure 2: ROUGE-L scores across various fine-tuning
methods. (a) Varying model sizes with ρ = 10. (b)
Varying duplication levels using GPT-2 Small.

clear increase in verbatim and paraphrase plagia- 332

rism as model size grows. However, head-only and 333

LoRA fine-tuning consistently maintain near-zero 334

plagiarism rates across all model sizes. A similar 335

trend emerges when examining the effect of data 336

duplication. Full fine-tuning exhibits the highest 337

plagiarism rates as ρ increases, with paraphrase 338

plagiarism surpassing 50% at ρ = 20. In contrast, 339

head-only and LoRA fine-tuning remain largely un- 340

affected, maintaining plagiarism rates close to zero 341

even at the highest levels of redundancy. 342

While full fine-tuning yields the highest 343

ROUGE-L scores across all fine-tuning strategies, 344

it also demonstrates the highest plagiarism rates, 345

particularly in larger models and high-redundancy 346

settings. Head-only and LoRA fine-tuning, on the 347

other hand, achieve competitive ROUGE-L scores 348

while significantly reducing plagiarism. LoRA fine- 349

tuning, in particular, balances efficient training and 350

reduced memorization, incurring minimal perfor- 351

mance loss compared to full fine-tuning. 352

Unlike prior work, which found that head- 353
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only fine-tuning leads to the highest memoriza-354

tion among different fine-tuning methods for the355

same level of perplexity, while full fine-tuning and356

small adapter-based fine-tuning (Houlsby et al.,357

2019) exhibit low data leakage under MIA re-358

call (Mireshghallah et al., 2022a) and exposure359

metrics (Carlini et al., 2019), our results reveal360

an entirely different trend under plagiarism-based361

memorization evaluation. This metric effectively362

captures memorization in full fine-tuning, where363

all model parameters are updated. However, head-364

only and LoRA fine-tuning consistently yield zero365

detected plagiarism, even as fine-tuning data du-366

plication and model scale increase. This suggests367

that these parameter-efficient fine-tuning strategies,368

which freeze most of the model, do not exhibit di-369

rect memorization under this evaluation criterion—370

let alone the stricter verbatim memorization criteria371

originally proposed in Carlini et al. (2021).372

5 Expanding the Lens: A More373

Permissive View of Memorization in374

Fine-Tuning375

To further investigate memorization in fine-tuning,376

we extend our evaluation beyond plagiarism-based377

detection. A more permissive metric allows us378

to examine how head-only and LoRA fine-tuning379

strategies mitigate memorization while retaining in-380

formation in a less directly extractable form. In this381

section, we introduce a looser memorization crite-382

rion and analyze how different fine-tuning strate-383

gies behave under this broader perspective.384

5.1 What A Looser Metric Reveals About385

Fine-Tuning386

To this end, we adopt sentence similarity to pro-387

vide a more nuanced perspective of how closely388

generated outputs resemble training samples at a389

semantic level. This metric allows us to assess390

whether head-only and LoRA fine-tuning retain391

training data in a way that is not directly extractable392

but still recognizable through semantic similarity.393

For each sequence generated from the fine-tuned394

model during the data extraction attack, we encode395

both the generated samples and the fine-tuning cor-396

pus into query embeddings and document embed-397

dings, respectively, using the All-MPNet-Base-V2398

model2, a widely used sentence embedding model399

that maps text into a 768-dimensional dense vector400

2https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

space. We then compute cosine similarity scores 401

between the query embeddings and document em- 402

beddings in a single matrix operation, efficiently 403

capturing semantic similarity. The highest similar- 404

ity score for each generated sequence with respect 405

to a training sample serves as a quantitative mea- 406

sure of how closely the generated sentence aligns 407

with a training instance. A cosine similarity thresh- 408

old of 0.8 is typically used to indicate strong seman- 409

tic similarity. If the top sentence similarity score of 410

a generated sequence exceeds this threshold, it is 411

considered to closely align with a training sample 412

from the fine-tuning dataset. 413
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Figure 3: The histogram distribution of the top sen-
tence similarity scores for 1, 000 generated samples
from data extraction attacks, comparing different fine-
tuning methods across various model sizes.

As shown in Fig. 3, full fine-tuning consistently 414

shifts similarity scores rightward across all model 415

sizes, with a pronounced concentration of samples 416

exceeding the 0.8 similarity threshold. This indi- 417

cates a substantial increase in direct memorization 418

compared to the pre-trained model. 419

Head-only fine-tuning produces outputs that re- 420

main more similar to those of the pre-trained model, 421

especially as model size increases. This is likely be- 422

cause it updates only the final layers while keeping 423

the majority of parameters frozen. As model size 424

grows, the proportion of trainable parameters rela- 425

tive to the entire model decreases, further constrain- 426

ing the extent to which fine-tuning can reshape the 427

model’s internal representations. 428

LoRA fine-tuning exhibits a distinct trend com- 429
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Figure 4: The distribution of the top sentence similarity scores for 1, 000 generated samples from data extraction
attacks, comparing different fine-tuning methods across varying levels of fine-tuning data duplication.

pared to both full and head-only fine-tuning. While430

its similarity distribution shifts slightly from the431

pre-training baseline, it remains considerably lower432

than full fine-tuning, with similarity peaks concen-433

trated below 0.6. This suggests that LoRA enables434

effective adaptation while mitigating direct memo-435

rization, likely due to its parameter-efficient design,436

which restricts excessive retention of fine-tuning437

data.438

For both head-only and LoRA fine-tuning, simi-439

larity distributions remain relatively stable across440

model sizes, with very few samples exceeding441

the 0.8 threshold. This finding aligns with the442

plagiarism-based memorization results in Fig. 1,443

suggesting that samples surpassing a similarity444

score of 0.8 are more likely to be flagged under445

plagiarism-based detection.446

Similar patterns are observed in Fig. 4, where447

increasing ρ in full fine-tuning shifts sentence simi-448

larity scores rightward, with more samples exceed-449

ing 0.8. When ρ ≥ 5, generated samples with450

near-perfect similarity (≈ 1.0) begin to appear. In451

contrast, head-only and LoRA fine-tuning maintain452

stable similarity distributions with minimal devia-453

tion as ρ increases. Even at the highest duplication454

level (ρ = 20), the vast majority of generated sam-455

ples under these methods remain below the 0.8456

similarity threshold, with distribution peaks consis- 457

tently around 0.4 to 0.5. 458
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Figure 5: Violin plots depicting the top sentence simi-
larity scores of generated samples before and after fine-
tuning GPT-2 Small on the ChatDoctor dataset. Each
row represents a different fine-tuning method, while the
columns correspond to training sizes of 1k, 5k, and 10k
samples, respectively. The width of each violin repre-
sents the density of similarity scores at different simi-
larity levels. The middle line marks the median.
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Metrics
Before Full FT Head-only FT LoRA FT
FT 1k 5k 10k 1k 5k 10k 1k 5k 10k

BLEU 0.008 0.007 0.006 0.006 0.007 0.007 0.008 0.007 0.007 0.007
R1 0.208 0.210 0.212 0.214 0.210 0.214 0.214 0.209 0.212 0.213
R2 0.017 0.017 0.018 0.019 0.017 0.017 0.019 0.017 0.018 0.018
RL 0.081 0.080 0.082 0.084 0.080 0.082 0.081 0.082 0.081 0.082
FRE ↑ 58.75 61.86 61.71 60.17 63.84 68.32 67.70 63.35 64.70 61.15
SMOG ↓ 11.32 10.82 10.94 11.01 10.51 9.80 9.87 10.62 10.39 10.91

Table 1: Performance of models before and after fine-tuning across different fine-tuning strategies in terms of task-
specific performance and linguistic complexity. R1, R2, and RL represent ROUGE-1, ROUGE-2, and ROUGE-L
scores, respectively.

5.2 LoRA Mitigates Memorization Even in459

High-Memorization Tasks460

Besides the scientific writing task using the461

Arxiver dataset, we are also interested in462

the high-memorization tasks explored in Zeng463

et al. (2024). Following the same setup, we464

fine-tune GPT-2 on a dialogue task using the465

ChatDoctor-HealthCareMagic dataset (Li et al.,466

2023), which contains 112k user queries and doctor467

responses.468

Fig. 5 illustrates that after full fine-tuning, sen-469

tence similarity scores increase, with the 10k train-470

ing samples exhibiting the most concentrated dis-471

tribution and the highest median value around 0.7.472

In contrast, head-only fine-tuning results in a mod-473

erate increase in similarity but with greater vari-474

ance, indicating a less consistent adaptation. LoRA475

fine-tuning follows a similar trend, maintaining a476

broader distribution while keeping the highest sim-477

ilarity score below 0.8. This suggests that LoRA478

achieves a balance between adaptation and gener-479

alization, effectively preventing extractable memo-480

rization.481

In addition to BLEU (Papineni et al., 2002) and482

ROUGE (Lin, 2004) that quantify the similarity483

between the generated text and reference labels, we484

also measure the linguistic quality of the generated485

text by employing traditional readability metrics.486

These include Flesch Reading Ease (FRE) (Flesch,487

1948), where higher values indicate greater read-488

ability and simpler sentence structures, and SMOG489

Index (Mc Laughlin, 1969), which measures syn-490

tactic complexity, with higher values signifying491

increased difficulty.492

Correspondingly, we observe in Table 1 that full493

fine-tuning with larger training sizes achieves the494

highest content relevance for the fine-tuning task,495

as reflected in the highest ROUGE scores. In terms496

of linguistic complexity, readability improves af- 497

ter fine-tuning, with the FRE score increasing, es- 498

pecially for head-only fine-tuning. Meanwhile, 499

the SMOG score decreases, indicating a shift to- 500

ward simpler language. Overall, full fine-tuning 501

maximizes task-specific performance but also sig- 502

nificantly increases memorization, similar to pre- 503

training, whereas head-only and LoRA fine-tuning 504

maintain competitive model utility with minimal 505

data extractability. 506

5.3 Impact of LoRA Fine-Tuning 507

Hyperparameters on Memorization 508

Having established that LoRA reduces memoriza- 509

tion, we next explore how its hyperparameters in- 510

fluence both utility and extraction susceptibility. 511

In this experiment, we tune the hyperparameters 512

involved in LoRA fine-tuning, including the rank 513

r, the scaling factor α, and the dropout rate, to 514

evaluate their impact on the fine-tuned model’s util- 515

ity and its resilience to data extraction attacks in 516

terms of sentence similarity. We first choose to 517

fine-tune Llama 3.2 1B model on the ChatDoctor 518

dataset which has been split into 80% for training 519

and 20% for testing. The data duplication level is 520

set to ρ = 0 here. Figs. 6a and 6b show the model 521

utility on the test dataset and Fig. 6c shows the 522

corresponding sentence similarity distribution of 523

fine-tuned models under different LoRA hyperpa- 524

rameter settings. 525

All LoRA fine-tuning models show a clear im- 526

provement on model utility over the pre-trained 527

model, and surprisingly, have lower median sen- 528

tence similarity values compared to the pre-trained 529

model without fine-tuning. Increasing the rank r 530

and the scaling factor α generally leads to higher 531

scores. However, increasing the scaling factor α 532

alone degrades the model utility and at the same 533

time leads to a more concentrated sentence similar- 534
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Figure 6: BLEU, ROUGE-L, and sentence similarity
distribution of fine-tuned Llama 3.2 1B Instruct mod-
els under different LoRA hyperparameter settings on
the ChatDoctor dataset. The label “16-16-0.05”, for ex-
ample, represents the rank r = 16, the scaling factor
α = 16, and the dropout rate 0.05, respectively.

ity distribution, with a few samples exceeding the535

0.8 threshold, as tagged with “LoRA FT 16-32-0”536

and “LoRA FT 32-64-0”. This might be due to the537

fact that a larger α strengthens adaptation but may538

reduce generalization over the test data, and the539

less generalization leads to more verbatim memo-540

rization of the training data. Notably, dropout is541

an effective tool to further mitigate memorization542

without sacrificing much utility (sometimes even543

improving it), resulting in lower median sentence544

similarity values compared to configurations with-545

out dropout, consistent with its established role in546

improving regularization (Srivastava et al., 2014).547

In overall, keeping a moderate α and introducing a548

moderate dropout rate is a good choice for LoRA549

fine-tuning to achieve both ideal model utility and550

memorization mitigation. Similar findings can also551

be found in GPT-2 models (see Appendix A).552

We also conduct experiments with various LoRA553

hyperparameter settings on a larger Llama model,554

Llama 3.1 8B Instruct, and show the model utility555

in Fig. 7 and the sentence similarity distribution in556

Fig. 8. The larger Llama 3.1 8B Instruct model con-557

sistently achieves higher scores than the 1B model558

BLEU
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ROUGE-2
ROUGE-L
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Llama 3.1 8B Instruct

0

0.05
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Figure 7: A comparison of BLEU, ROUGE-1,
ROUGE-2, and ROUGE-L scores of Llama 3.2 1B In-
struct models and Llama 3.1 8B Instruct models before
and after LoRA fine-tuning.
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Figure 8: Sentence similarity distribution of fine-tuned
Llama 3.1 8B Instruct models under different LoRA hy-
perparameter settings on the ChatDoctor dataset.

after fine-tuning. We can also see that even with 559

the increased model scale, the memorization mit- 560

igation effect of LoRA is still pronounced, where 561

fewer than 5 generated samples from the fine-tuned 562

models exceed the 0.8 threshold. 563

6 Concluding Remarks 564

In this paper, we revisit the impact of different 565

fine-tuning strategies on LLM memorization. Our 566

findings show that LoRA fine-tuning, designed 567

for computationally efficient and effective train- 568

ing, achieves performance comparable to full fine- 569

tuning while significantly reducing memorization 570

risks. Notably, it leads to near-zero plagiarism- 571

based memorization and effectively prevents strict 572

verbatim memorization. Across various model 573

sizes, data duplication levels, and hyperparame- 574

ter configurations, LoRA fine-tuning consistently 575

results in lower maximum similarity scores, demon- 576

strating its ability to mitigate memorization risks. 577

These findings contrast with prior work, highlight- 578

ing a different perspective on fine-tuning’s role in 579

model memorization. 580
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7 Limitations581

While our study provides empirical insights into582

the impact of LoRA fine-tuning on model memo-583

rization, especially its key hyperparameters such as584

the rank, the scaling factor, and the dropout rate, a585

more rigorous theoretical analysis is needed to ex-586

plain why LoRA fine-tuning consistently maintains587

memorization below the threshold of extractable588

memorization.589

While our findings suggest that LoRA fine-590

tuning mitigates memorization risks, it remains591

unclear whether more advanced data extraction592

attacks, such as those proposed in Zhang et al.593

(2023); Kassem et al. (2024), could enhance the594

extractability of fine-tuning data. Future research595

should investigate the interaction between LoRA596

fine-tuning and advanced extraction methods to de-597

termine whether further safeguards are needed to598

prevent memorization risks.599
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A Additional Experiments721

The following is the additional experiment results722

on the impact of LoRA hyperparameters on mem-723

orization, conducted with GPT-2 model on the724

Arxiver dataset. Table 2 demonstrates the higher725

rank and scaling factors tend to improve ROUGE-726

L scores, with the configuration r = 32, α = 32,727

dropout= 0.05, achieving the highest ROUGE-L728

score of 0.5921. The sentence similarity statis-729

tics reveal that models with a lower rank (r = 4)730

and smaller scaling factors generally exhibit lower731

mean similarity scores, suggesting reduced memo-732

rization. However, models with higher ranks and733

larger scaling factors tend to have slightly higher734

maximum similarity values, though still well below735

extraction thresholds.736

Overall, increasing rank and scaling factor737

enhances content alignment (higher ROUGE-L738

scores) but introduces a slight increase in mem-739

orization risk. Dropout helps regularize memoriza-740

tion, reducing extreme similarities while maintain- 741

ing task performance, reinforcing its role in miti- 742

gating overfitting-induced memorization. Despite 743

these variations, all maximum similarity scores re- 744

main below 0.8, supporting the conclusion that 745

LoRA fine-tuning effectively minimizes extractable 746

memorization compared to full fine-tuning. This 747

suggests that LoRA’s low-rank adaptation mecha- 748

nism naturally constrains memorization, even when 749

hyperparameters are adjusted for stronger adapta- 750

tion. 751

B Computational Resources 752

All GPT-2 models are fine-tuned and evaluated 753

on a server equipped with a single NVIDIA RTX 754

A6000 GPU (48GB VRAM), 21 vCPUs, and 83GB 755

of RAM. All Llama models are fine-tuned and eval- 756

uated on a server equipped with a single NVIDIA 757

A100 PCIe GPU (80GB VRAM), 16 vCPUs, and 758

188GB of RAM. 759
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r α Dropout BLEU ROUGE-L Mean Std Min Max Range
4 16 0.05 0.4507 0.5881 0.4792 0.0842 0.1567 0.7046 0.5479

16 16 0.05 0.4456 0.5854 0.4641 0.0888 0.1068 0.7513 0.6445
32 32 0.05 0.4528 0.5921 0.4639 0.0795 0.1519 0.7337 0.5818
4 8 0.1 0.4408 0.5772 0.4485 0.0923 0.1833 0.6761 0.4928
8 16 0.1 0.4442 0.5816 0.4621 0.0971 0.1611 0.7194 0.5583

16 16 0.1 0.4434 0.5837 0.4660 0.0905 0.1474 0.7047 0.5573

Table 2: BLEU and ROUGE-L scores, along with the statistical summary of sentence similarity scores, for fine-
tuned GPT-2 Small models under different LoRA hyperparameter settings on the Arxiver dataset.
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