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Abstract

A challenge in human-AlI decision-making is to balance three factors: the cor-
rectness of predictions, the cost of knowledge and reasoning complexity, and the
confidence about whether to abstain from automated answers or escalate to hu-
man experts. In this work, we present a cascaded LLM decision framework that
adaptively delegates tasks across multiple tiers of expertise — a base model for
initial candidate answers, a more capable and knowledgeable (but costlier) large
model, and a human expert for when the model cascade abstains. Our method
proceeds in two stages. First, a deferral policy determines whether to accept the
base model’s answer or regenerate it with the large model based on the confidence
score. Second, an abstention policy decides whether the cascade model response
is sufficiently certain or requires human intervention. Moreover, to overcome
static policies and accommodate changing task difficulty, we incorporate an online
learning mechanism which uses human feedback. We demonstrate this approach to
general question-answering (ARC-Easy, ARC-Challenge, and MMLU) and medi-
cal question-answering (MedQA and MedMCQA). Our results demonstrate that
our cascaded strategy outperforms single-model baselines in most cases, achiev-
ing higher accuracy while reducing costs and providing a principled approach to
handling abstentions]T]

1 Introduction

Data-driven decision support has gained increasing traction in high-stakes fields such as healthcare
[Jin et al.l 2024, [Fan et al.,[2024, [Li et al., 2024]], finance [[Li et al., 2023a) [Zhao et al., [2024], and
education [Xu et al.,|2024]]. For example, in the medical context, large language models (LLMs) can
facilitate accurate diagnoses and treatment recommendations that encode vast knowledge [Kim et al.
[2024]. However, high accuracy in such complex settings often requires substantial computational
resources or multiple reasoning steps. Additionally, LLMs may hallucinate or generate incorrect
outputs with severe consequences. Effective human-Al collaboration should balance correctness,
cost, and abstention, ensuring Al-driven assistance integrates seamlessly with expert oversight.

The Challenge. A key challenge in effective human—AlI collaboration is how to allocate computa-
tional and human resources efficiently—deciding when an automated model should answer, when
it should escalate to a lager and more capable model, and when it should defer to human expertise.
Naive strategies — such as always relying on the cheaper model or always trusting the more capable
one — fail to optimise this trade-off. The former increases the risk of errors and hallucinations, while
the latter inflates costs. Likewise, static deferral policies, fixed thresholds, or one-off calibrations
cannot adapt to changing task distributions or evolving model competence.

'We provide the code for our experiments at https:/github.com/fanconic/cascaded-llms

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Figure 1: Cascaded LLM Human-AI Decision-Making Framework Examples. Given a decision-
making problem, the system (1) generates an initial response with a base model, (2) verifies correct-
ness probability, (2.5) defers to a larger model if needed, (3) assesses response uncertainty, and (3.5)
abstains to a human expert if necessary. If feedback is available, deferral and abstention modules are
adjusted over time. For this system to work efficiently, the modules should uphold three desiderata:
the deferral policy regenerates responses only when necessary, (D2) the abstention policy escalates

to humans only when uncertainty is high, (03) the system continuously improves with feedback.

These limitations motivate three requirements for any cost-effective human—AlI decision-making
framework:

1. (@1) Reduce Unnecessary Regenerations: Responses should only be regenerated by a more
capable model when there is sufficient evidence that the current one is unreliable..

2. Abstain when Uncertain: The system should defer to human experts when uncertainty
exceeds acceptable bounds, avoiding overconfident automation in high-risk scenarios.

3. Adapt over time: The framework should continuously refine its deferral and abstention
policies as feedback becomes available, ensuring sustained reliability and improvement.

Together, these desiderata define the principles an effective decision-making framework must satisfy,
irrespective of implementation.

Our Approach. We propose a cascaded LLM framework that explicitly satisfies these three require-
ments. The framework adaptively delegates tasks across multiple tiers of expertise: a lightweight
base model provides initial answers; a more capable but costlier large model regenerates responses
when confidence is low; and, if uncertainty remains high in the model-generated responses, the
system abstains to a human expert. An online learning mechanism continually adjusts the deferral
and abstention thresholds based on human feedback, improving decision quality over time. Figure[T]
provides an overview of this cascaded decision flow with three example questions of varying difficulty.
®
Contributions. Our main contributions are threefold:
* Cascaded LLM Human-ATI Decision System: We introduce a multi-tier decision-
making system that coordinates LLMs of varying capacity with human experts
to balance accuracy, cost, and abstention.

e Principled Deferral and Abstention Policies: We design confidence- and
uncertainty-based decision policies that regulate when to defer to a larger model
or abstain to humans, guided by Bayesian calibration for reliable verification.

* Online Learning for Adaptive Decision-Making: We propose an online optimi-
sation scheme that refines the deferral and abstention thresholds using human
feedback, enabling continual adaptation to task complexity.




2 Related Work

Multi-LLM Answer Generation. Several studies have explored collaborative frameworks that
leverage multiple LLMs of varying capacities to enhance both performance and cost-efficiency
beyond the capabilities of a single model [Chen et al., 2023 |Ding et al. 2024, |Aggarwal et al.,
2024]). |Chen et al.|[2023]] proposed cost-effective strategies such as prompt structuring, model
approximation, and cascaded LLM frameworks. Similarly, Ding et al.|[2024] introduced an intelligent
routing mechanism that dynamically assigns prompts to the most appropriate model. |Aggarwal et al.
[2024] developed a black-box LLM framework for cost-efficient response generation, formalised as
a Partially Observable Markov Decision Process (POMDP), requiring minimal training data. |[Zhu
et al.| [2023a] proposed a multiplexer-based approach that balances queries between a small and
a large LLM, employing a trained BERT classifier to determine when the smaller model suffices.
Sakota et al[[2024] introduced a meta-model-driven selection framework that requires pre-training
for optimal query distribution. In a parallel line of research, speculative decoding [Leviathan et al.|
2023, employs a lightweight model to generate multiple tokens, which a larger model subsequently
verifies.

In contrast to prior research, we propose a multi-tier framework for human-Al collaboration. Rather
than relying solely on automation, our approach integrates human intervention when model uncer-
tainty is too high, addressing a gap in previous multi-tier frameworks. Compared to speculative
decoding research, our work prioritises the factual correctness of complete responses rather than
token-wise distributions, enabling more robust decision-making rather than just fluent text generation.
Zellinger et al.|[2025] conducts a concurrent line of research that is closest to our work on cascaded
LLMs, as well as in their previous works [Zellinger and Thomson, 2024, |2025]]. They focus on
probabilistic modelling of cascading LLMs and their deferral and abstention mechanisms.

LLM Answer Verification and Uncertainty Quantification. Ensuring the reliability of LLM-
generated responses requires adequate verification and uncertainty quantification mechanisms. Several
studies have explored self-verification strategies [Weng et al.,2023|, Jiang et al., 2024, |Pan et al.| [2024]],
often leveraging the LLM’s internal knowledge [Dhuliawala et al., 2023|]. Alternative approaches
employ external knowledge sources for verification [Pan et al., [2024} |Gao et al., [2023| [Peng et al.|,
2023|]. |Aggarwal et al.| [2024]] introduced verification techniques based on available contextual
information, predominantly involving multiple LLM queries to validate response accuracy. Another
research direction quantifies factual correctness uncertainty [Mahaut et al., 2024]. [Kadavath et al.
[2022] conducted a detailed analysis of how LLMs express uncertainty through surrogate token
probabilities, demonstrating their effectiveness in calibration. |Azaria and Mitchell|[2023|] explored
internal LLLM states, training classifiers to quantify uncertainty, while methods such as semantic
uncertainty estimation [[Kuhn et al.,|2023| enhance robustness by analysing variations in semantically
equivalent token sequences.

Our approach relies on surrogate token probability [Kadavath et al., 2022[] as a core verification
component. However, we extend this methodology by integrating a hierarchical escalation mechanism
that dynamically transitions between models and human experts based on verification results.

Selective Prediction. Selective prediction enables models to abstain from uncertain queries [El-Yaniv
and Wiener, 2010]], a crucial feature in risk-sensitive settings where errors are costly. The idea dates
back to Chow’s work on optical character recognition [[Chow, |1957,|1970], and has since been shown
to improve deep learning performance [|Geifman and El-Yaniv} 2017]. In NLP, abstention has been
introduced through confidence-based thresholds [Xin et al., 2021}, |Yoshikawa and Okazaki, [2023]],
with recent work on uncertainty quantification for large language models advancing this line of
research [Manakul et al., 2023, [Farquhar et al., [2024} [Lin et al., [2024]].

LLMs in Online Learning. Traditional LLM research predominantly evaluates language models
on static datasets. However, our work aligns with online learning paradigms, wherein policies
are continuously refined in response to streaming data [[Cortes et al., 2018 |Ye et al.| [2024]. Our
methodology is inspired by Jarrett et al.| [2022], who introduced an online decision mediation
framework mediating between suboptimal human decisions and an expert oracle. A similar research
with the online learning approach is conducted by Zhu et al|[2023a]], which extended their multiplexer
mechanism to an online setting.



3 Background

3.1 Cascaded Decision System

We consider a two-tiered cascaded LLM decision system for question answering under resource
constraints, denoted by C' = Myae — Miare, following the notation of [Zellinger et al.| [2025]].
Let z € X be a problem statement or prompt, and let y € )} denote a system-generated response.
For every input z, the models return a confidence score ®;(x) € [0,1] and an uncertainty score
Ei(z) € [0,00), where i € {base, large}. The decision to predict using the base model My, or to
defer to the larger model M. is based on whether the confidence exceeds a deferral threshold, i.e.,
O () > dpase- Thus, a prediction is only made if the base model is sufficiently confident. In contrast,
abstention is governed by predictive uncertainty: if this exceeds a threshold, Z;(x) > &;, the system
abstains and forwards the query to a human expert.

We formally define the cascaded decision system as:

Mbase(x) if q)base(x) > ¢base A Ebase (LL') < gbase
C(LL') = Mlarge(x) if q)base(x) < Ppase A Ebase(x) < &pase N Elarge(x) < glarge (D
%] if Ebase(x) > gbase \ Ebase(x) > Sbase

The decision flow of this cascade is also illustrated in Figure[2] While we focus on a two-model
system here, the framework naturally generalises to cascades involving multiple LLMs of varying
sizes.

The objective is to generate accurate responses while accounting for the computational costs of the
models and abstaining when the system is too uncertain. As described in|Zellinger and Thomson
[2024], this constitutes a multi-objective optimisation problem over three dimensions: error, cost, and
abstention. Formally, we minimise the system risk:

R(C) = P(error A —abstention) + A E[Cost] + A, P(abstention) 2)

Here, P(error A —abstention) denotes the probability of the system making an error when it does not
abstain, E[Cost] is the expected computational cost incurred, and P(abstention) is the probability of
the system abstaining and deferring to a human expert. The terms A, and )\, weight the cost and
abstention penalties, respectively. We explain the system risk in more detail in Section[d.2]

Assumptions. The base model is cost-efficient but less accurate, whereas the large model is
more capable but computationally expensive. Generating responses incurs significantly higher
cost than processing inputs, especially in settings that require Chain-of-Thought (CoT) prompting
[Wei et al.,|2022] or advanced test-time reasoning [Xie et al.,[2024]. Each response is assumed to
be either correct or incorrect, with no ambiguity.
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Figure 2: Decision flow of the two-tiered cascaded LLM system. The base model first evaluates
each query. Confident, low-uncertainty responses are accepted; uncertain ones are passed to the large
model or, if still uncertain, deferred to a human expert. Online feedback progressively improves these
policies.

3.2 Cost Calculation

To estimate the computational cost of response generation, we define a cost function that scales
linearly with model size and token counts. Let s denote the model size (in billions of parameters,



e.g., Llama3.1-8B = s = 8), t;, and ¢,y the numbers of input and output tokens, and p > 0 the
output-to-input token cost ratio accounting for the higher cost of generation. The total cost is given
by:

COSt(S, tin, outs /J') =S (tin +p- tout) 3

This provides a simple yet effective way to compare models of different sizes under a unified
cost metric, independent of infrastructure-specific pricing. Additional cost components can be
incorporated as needed.

4 Methods

4.1 Calibrated Confidence and Uncertainty Estimation

Effective deferral and abstention decisions in a cascaded system critically depend on accurately quan-
tifying model confidence ®(x) and uncertainty =(x) for each input 2. Overconfident or miscalibrated
predictions can lead to errors, while excessive uncertainty may result in unnecessary escalations.
Therefore, the first part of our method focuses on analysing a range of techniques to estimate these
quantities in a reliable and cost-efficient manner. To this end, we evaluate four complementary
methods that approximate the probability that a response is correct.

(1) Self-Verification. Given an input = and a model response Ypase ~ M (), we prompt the same
model to quantify how likely the response is correct by generating a new response [Li et al., [2023b].
The model returns raw confidence score by outputting either a scalar value token in response to a
verification prompt (see Appendix [B.2)). The outputted probability serves as an uncalibrated estimate
of correctness.

(2) Consistent Self-Verification. We repeat the self-verification process n times under stochastic
sampling (e.g., with temperature), and aggregate the resulting probabilities. The empirical mean forms
the uncalibrated confidence score. This approach is inspired by self-consistency as in [[Aggarwal
et al.,[2024].

(3) Surrogate Token Probability. We adopt the approach of |Kadavath et al.| [2022], where the
model M; is asked to verify whether a generated response y is correct, and we extract the next-token
probability over the discrete label set YES/NO. Specifically:

(o) = M (YES | 2,y)
PR = ML (YES [ 2, y) + M(NO | 2, y)

“

(4) Monte-Carlo Surrogate Token Probability. To obtain better confidence estimates, we apply
Monte Carlo Dropout [[Gal and Ghahramani| at test time when computing the surrogate token
probability. For each of n stochastic forward passes, we sample an estimate ;35” (z), and the empirical
mean forms the uncalibrated confidence score:

el

1 n
pi(x) = = > b (z) 5)
t=1

Model Evaluation by Larger Models. For each of the above methods, the evaluating model M,
can either be the same model that generated the original response, or a larger model in the cascade, if
available. While self-evaluation is cheap and self-contained, verifying a small model’s output using a
larger model is still substantially cheaper than generating a new response from scratch—particularly
when generation involves long-form reasoning, as per Assumption A2. Additionally, larger models
tend to be better calibrated and may yield more reliable verification, improving downstream deferral
and abstention decisions [Zhu et al.| 2023b, |Chhikaral 2025]].

Bayesian Calibration. To ensure that the extracted confidence scores are comparable across models
and consistent with empirical correctness, we fit a Bayesian logistic regression model on a small
calibration set of 100 samples. This is a Bayesian version of Platt scaling [Platt, [2000]], and we
assume a Normal distribution as prior. We follow [Zellinger and Thomson| [2024]]’s approach and



apply a non-linear transformation on the raw confidence score before inputting it into the Bayesian
model, to spread out the clusters of overconfident probabilities.

r\Pi) = s . 6
Pir(Pi) {log(Z) - log(i) if p; < 0.5 ©)

Subsequently, the Bayesian Logistic Regression outputs a posterior distribution over correctness. The
mean of the posterior predictive distribution defines the calibrated confidence ®(x), while we use
standard deviation as a model-based uncertainty estimate =(x), as in [Fanconi et al.,|[2023].

4.2 Online Improvement

To enable online learning , we parameterise the deferral and abstention thresholds and optimise

them online. Given a dataset D(*) at time ¢ € N with previous problem statements and ground truth
labels, we update the thresholds using stochastic gradient descent. While the system is deployed, we
assume that we will receive a ground truth response (y*) at the end of every decision if the system
abstains. Thus, our dataset continually increases D) = D¢ U {x, y*} every time the cascade
abstains.

Our objective function is the system risk R(C') (Equation . We expand this risk into the concrete,
differentiable losses. Throughout, let

®;(x) € [0,1], Ei(z) €[0,1], i € {base, large}
denote the calibrated probability of correctness (posterior predictive) and a uncertainty score (i.e.
posterior predictive standard deviation) returned by model ¢ for an input . The optimisation variables
are

¢basea gbasea glarge S (07 1)3

For numerical stability we treat their raw, unconstrained versions ¢, ade, Slare € R as the true

optimisation parameters and map them to (0, 1) with a sigmoid function:
Dbase = 0'( {%/e)’ Ebase = O'(ng:‘é), flarge = 0,(7_]1;\;/6).

To keep the loss fully differentiable, we replace every Boolean test with a soft logistic step, where k
determines the steepness

1{z >0} — gix(2) =0o(k2).
With this convention the three mutually exclusive masks at the base stage are

Pavst1 () = gi(Sbase () — Evase) (7N
Mpred1 () = (1 = Mabstt) * G Pase () — Prase) s 3
Maetert () = (1 = Mabstt) * G Poase — Phase (2)), )
and the masks at the large stage are
Pavs2 () = Mactert () * i Etarge (T) — Elarge ), (10)
Mpred2 (2) = Maetert () (1 = g (Crarge (T) — Elarge)) - (11)

Probability of abstention. The cascade abstains in two mutually exclusive ways, so
P(abstention) = pabsti + Pabst2- (12)

Expected correctness. Only the prediction masks contribute a non-zero probability of correctness;
we weight each by the calibrated confidence:

]E[C()rrect] = E[mpredl . (I)base] + E[mpredZ : q)large] . (13)

Expected cost. Let c; be the costs from the base model, which consist of the generation cost and the
verification cost (either by itself or by a larger model). Furthermore, c5 is the generation cost and the
verification cost caused by the large model. The first term is incurred on every query; the second is
incurred only if we defer:

E[Cost] = ¢1 + E[mgefer1] - c2- (14
System-risk objective. Substituting the three expectations above into Eq. (2) produces the differen-

tiable loss that is back-propagated during threshold optimisation in online learning:
R(C)=1—ElCorrect] + A.E[Cost] + A, (pabstl +pabst2). (15)



5 Experiments

In this section, we empirically assess whether the desiderata (01), 2, and (03, introduced in Section

are satisfied. For and , we analyse in Section the performance of various confidence
estimation techniques with respect to calibration and cost-efficiency. Subsequently, in Section
we investigate whether the system improves through online learning.

General Setup. We evaluate a cascade of two LLMs, specifically (Qwen-2.5-1.5B —
Qwen-2.5-7B). Additional results for other cascades—(Llama3.2-3B — Llama3.1-8B),
(Llama3.2-1B — Llama3.1-8B) , and (Qwen-2.5-3B — Quen-2.5-7B)—are reported in Ap-
pendix [C| These model pairs are selected due to their open-source availability and our ability to run
them on an NVIDIA A100 GPU.

To evaluate the generalisability of our framework across domains, we use five question-answering
datasets: (1) ARC2-Easy and (2) ARC2-Challenge [Clark et al., 2018|], which are part of the
AI2 Reasoning Challenge and require reasoning over grade-school science; (3) Massive Multitask
Language Understanding (MMLU) benchmark [Hendrycks et al., 2021]], which covers 57 subjects
ranging from complex STEM to international law, nutrition, and religion; and two medical QA
benchmarks: (4) MedQA [Jin et al., |2020]], consisting of US medical board exam questions, and
(5) MedMCQA [Pal et al.} 2022], comprising entrance exam questions from the Indian medical
school curriculum. All datasets are in multiple-choice format, with ground-truth answers satisfying
Assumption . Chain-of-Thought reasoning is employed to generate answers. The cost proportion
between input and output tokens is set to p = 5, consistent with Anthropic’s current pricing to date
[Anthropic| [2025]|. Details on generation and verification prompts can be found in Appendix [B.2]

5.1 Cost-Benefit Analysis of Verification Methods

We begin by empirically analysing which verification method from Section[.T]is most suitable for
estimating the confidence of a generated response. Once calibrated via Bayesian logistic regression,
these confidence estimates determine whether to defer a prediction from the base model to the larger
model.

To assess both cost-efficiency and accuracy, we compare the calibrated base model confidence ®y,5
against two baselines: (1) using only the base model (Qwen-2.5-1.5B) and (2) using only the large
model (Quen-2.5-7B). In Figure[3] we visualise accuracy versus cost per sample across the datasets.
We use a threshold-agnostic strategy where deferral to the large model is performed with probability
Dpase (7). We evaluate four methods: Self-Verification (SV, n=1), Surrogate Token Probability (STP,
n=1), Consistent Self-Verification (SV, n=>5), and Monte Carlo STP (MC-STP, n=5). For the latter
two, we perform five regenerations or stochastic passes. Each experiment is conducted once using
Mppase as the verifying LLM, and once using M grge.

As shown in Figure[3](and Figures[7] [I0] and[13]in Appendix [C), using a larger model for verification
generally yields a better cost-benefit profile, particularly on simpler datasets (ARC2-Easy, ARC2-
Challenge, MMLU). In contrast, base-model verification provides only marginal gains. On the more
complex medical datasets (MedQA and MedMCQA), all methods struggle. STP (n=1) is the most
effective the ARC2-Easy and ARC2-Challenge dataset.

To quantitatively assess cost-efficiency, we compute the Incremental Benefit per Cost IBC) metric
from |Aggarwal et al.|[2024]], defined as:
Pcascade - Pbase -Plarge - Pbase

1B Cbase =

IBCcascade = 5 A~ —_
C¢m2m — Chase C1large — Chase

where P denotes accuracy and C denotes cost. We then compute the relative gain:

IBCcascade - IBCbase

AIBC =
1B Cbase

- 100.

Higher AIBC values indicate improved cost-efficiency over the baseline.

As seen in Tablemverifying with M. consistently leads to higher AIBC scores, particularly on
ARC2-Easy, ARC2-Challenge, and MMLU. On the medical datasets, no single method consistently
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Figure 3: Cost-Accuracy Trade-off for Calibrated Verification Methods (Qwen-2.5 1.5B—7B).
Accuracy versus cost per sample is shown for the cascaded model using various verification methods.
Performance above the linear interpolation line between base and large model baselines indicates a
positive cost-benefit. Error bars represent standard error.

ARC2 Easy , ARC2 Challenge , MMLU MedQA MedMCQA

SV (n=1) 24 £326 -11.6 £ 20.5 -18.74+£49 | 273 £ 143 | -248£9.5

2 SV (n=5H) 10.2 £29.6 -26.2 £ 19.1 -1944+49 | -254+£134 | -195+94
& STP (n=1) -16.9 £33.2 -19.3 £209 204 +45 | -239+£147 | -229£9.7
MC-STP (n=5) | -37.4 £+ 28.8 -16.0 £ 21.0 246+£42 | -273+£13.7 | -2224+94

© SV(n=1) | 25844391 | 705+260 | -7.8+47 | -6.1+158 |-11.6+100

En SV (n=5) 188.5 £31.5 51.0 £23.7 -2414+39 | -119+£147 | -11.0£9.8
3 STP(n=1) 2427 £ 36.3 89.3 £26.2 25+£52 1.7 +£16.3 | -10.0 £ 10.1
MC-STP (n=5) | 171.4 £ 36.4 39.24+220 -224+£40 | -168£145 | -19.7+£93

Table 1: Calibrated AIBC Scores for Qwen-2.5 (1.5B—7B). Each row indicates a verification
method (SV or STP) with n = 1 or n = 5, grouped by whether the base or large model was used for
verification.

outperforms the others significantly. Moreover, we see that on the medical datasets, the AIBC
standard error rates for the verification scores using the large model are around 0, indicating no
cost-benefit compared to the easier datasets. We report additional results for the other cascades in
Tables 2| 31 [} 5| and[6]in Appendix [Cl Interestingly, the uncalibrated confidence scores appear to
yield higher AIBC, albeit with a significantly higher standard error, suggesting the instability of
uncalibrated confidence scores. We conduct an ablation study of the size of the calibration set in
Appendix which demonstrates that the calibration size between 50-500 samples, does not lead to
a significant performance change. Moreover, we report on the various subjects of the MMLU dataset
in Appendix Section|C.6] which reveals a stark difference in AIBC scores across different areas of
expertise.

5.2 Online Improvement of the Decision System

Desideratum (p3) requires that “the framework should continuously refine its deferral and abstention
policies as feedback becomes available, ensuring sustained reliability and improvement”. We simulate



an online setting in which the system selects among Myase, Miarge, OF @ human expert, adjusting its
thresholds based on feedback from abstentions.
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Figure 4: Cumulative Regret in Online Setting (Qwen-2.5 1.5B — 7B). Cumulative system risk
over time. Training data is collected only when abstentions occur. The cascaded system consistently
achieves lower regret.

Specifically, the experiment streams 1,000 unseen questions in a random order to simulate production
traffic. Before the first query, the deferral probabilities are calibrated using the values learned from
the 100-sample calibration set. Thereafter, we add queries that were marked for abstention and
answered by an oracle expert to a replay buffer. This replay buffer is used to perform the ADAM
optimiser [Kingma and Ba| 2014] updates on the differentiable risk 2] with a learning rate of 0.05 and
a batch size of 10, on the deferral and abstention thresholds 8 = {¢pase, Ebase, Elarge }- The prediction
is made on an unseen query and the regret is calculated on it. If a query is added to the replay buffer,
the regret associated with it has already been calculated, and the sample now becomes a training
sample; however, it is not further evaluated. We compare the cascaded system C' to using only Myase
and only M . with a single abstention threshold &. The system risk for a single model is explained
in more detail in Appendix[A.I] As we are considering a deployed system, we track the cumulative
regret over time, which we define as follows:

Regret(M)[n] == iR(M(t)),

where M € {C, Mpgse, Miarge } and M®) evolves based on abstention feedback D;. We chose regret
as the metric for this experiment, inspired by the work on online decision mediation [Jarrett et al.,
2022]|. Regret is the running sum of our per-query risk. Because error, compute, and human-hand-off
are already weighted into the same units, adding them over time tells you the exact “bill” the system
has paid. A lower regret curve indicates a higher benefit, as it represents a combination of abstentions,
correct predictions, and costs, and we can see it grow over time in a deployed setting. The regret
curve illustrates how quickly a policy learns online and whether early mistakes are compensated for
later.

We initialise the thresholds at () = {0.5,0.05,0.05}, where & = 0.05 corresponds to the standard
deviation of 5% confidence. For the single model baselines, we initialise the abstention threshold



as with £ = 0.05, and keep the rest of the hyperparameters the same. Throughout this experiment,
we employ the STP (n = 1) verification strategy, which was found to be the most competitive in the
previous section. To avoid trivial solutions (e.g., always selecting one model), we balance system risk
using A\, = 107° and A\, = 0.1, in line with |Zellinger et al|[2025].

Figure ] shows that the cascaded system yields lower cumulative regret over 1000 test samples
on ARC2-Easy, ARC2-Challenge, MMLU, and MedMCQA, compared to using either model in
isolation. On MedQA, gains are less clear, likely due to poor confidence estimation, which was also
observed in the section above. Similar trends are observed in other cascades (see Figures [ [12] [T3]in
Appendix [C). Nevertheless, in four of the five cases, the cascaded LLM system demonstrates lower
cumulative regret than when using single models online, where feedback is received when abstaining
from action. Additionally, we experiment by comparing our proposed gradient-based approach to a
traditional grid search over 6 in Appendix

— | No Label-Flipping
20% Label-Flipping

800 0, —
50% Label-Flipping
—— 100% Label-Flipping

5.3 The Effect of Imperfect Expert

To recall the system risk objective in Equation the part
where wrong human annotations will have an impact is the
expected correctness (Equation [I3). More precisely, the
calibrated confidence scores Ppye and Piyge. The noisier
the feedback is, the more uncalibrated Ppase and Pparge Will
become. Therefore, optimisation of the cascaded model will
become unreliable.
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We demonstrate this through an additional experiments in
the online setting, where we progressively swap correct of

200 400 600 800 1000

to incorrect predictions while calibrating the model, and
how this affects the trajectory on the ARC-Easy dataset
with Qwen-2.5-1.5B — Qwen-2.5-7B. The results are dis-
played in Figure[5] We observe that the higher the percentage
of label corruption is in the calibration set, the higher the
cumulative regret becomes while deploying the decision-
making system.

Online time steps (t)

Figure 5: Imperfect Experts. We in-
crease the percentage of flipped labels
during system calibration, simulating
imperfect experts, which in turn in-
creases the system’s risk of error.

6 Limitations

Our cascaded multi-LLM decision-making framework strikes a balance between accuracy, cost, and
abstention, but it has limitations. Sensitivity to cost and abstention variations can impact efficiency,
leading to trivial solutions (only using the cheapest model or the model with the lowest error rate).
Discrepancies in model performance or relative costs may lead to over-reliance on specific models,
thereby reducing adaptability. Furthermore, parameter initialisation affects the convergence of the
deferral policy. Additionally, the framework relies on human feedback, which may hinder adaptation
if it is sparse or noisy in a real-world scenario. Finally, fitting a Bayesian logistic regression model is
usually more complex than fitting a regular one, depending on the different posterior approximations
or sampling strategies employed.

7 Conclusion

We proposed a multi-tier decision-making framework that escalates tasks between a base model,
a large model, and human experts. By leveraging deferral and abstention policies, our approach
aims to enhance performance, accuracy, and abstention while adapting through online learning. Our
experiments show that the framework outperforms single-model baselines by reducing unnecessary
escalations and improving response correctness on the ARC2-Easy, ARC2-Challenge, MMLU, and
MedMCQA datasets. On MedQA, a cascaded model did not outperform the single model approach,
potentially due to the complexity of the dataset. Nevertheless, we believe that this proposed system
could be beneficial where performance, costs, and abstention of LLMs need to be carefully balanced.
Future work should investigate different uncertainty quantification methods of LL.Ms to enhance
abstention. Moreover, it would be crucial to examine whether there are theoretical guarantees that
justify the application of cascaded LLMs.
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A Additional Method Details

A.1 Single-model System Risk

For completeness we report the risk of running either model alone. If £ is that model’s abstention
threshold and c its total cost,

Rsingle(M) =1- E[(l - mabSl)q)} + Acc+ )\aE[mabSl]’
where Mg () = gi (E(fﬂ) - f)'

B Implementation Details

The code for this paper, to reproduce the results is provided at https://github.com/fanconic/cascaded-
Ilms, All experiments are implemented in Python [[Van Rossum and Drake Jr, |1995] with Py-
Torch [Paszke et al.L|2017]] and Hugging Face Transformers [Wolf et al., [2020].

Compute. Experiments are conducted on a single A100-class GPUs.

B.1 Generation Models

Policies are initialised from instruction-tuned checkpoints and trained with the learned reward signal.
The following policy backbones are used:

* meta-llama/Llama-3.2-1B-Instruct
* meta-llama/Llama-3.2-3B-Instruct
e meta-llama/Llama-3.1-8B-Instruct
* Qwen/Qwen2.5-1.5B-Instruct

e Qwen/Qwen2.5-3B-Instruct

¢ Qwen/Qwen2.5-7B-Instruct

B.2 Prompts

Throughout this paper, we use prompts to make decision predictions using Chain-of-Thought and
verification prompts to determine a response’s factual correctness or uncertainty.

Response Generation Prompt ARC2-Easy + ARC2-Challenge
You are a helpful AI.

Answer the following multiple-choice question using step-by-step reasoning,
then conclude with a final line stating the best answer.
Question: {question}

Choices:

{choice_0}

{choice_1}

{choice_2}

{choice_3}

({choice_4})

Let’s reason step-by-step, then conclude with: "The best answer is: <X>"

Reasoning:
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Response Generation Prompt MMLU

You are an expert in {subject}.

Answer the following multiple-choice question using step-by-step reasoning,
then conclude with a final line stating the best answer.

Question: {question}

Choices:
{choices}

Let’s reason step-by-step, then conclude with: "The best answer is: <X>"

Reasoning:
nun

Response Generation Prompt MedQA

You are a medical doctor taking the US Medical Licensing Examination.
Answer the following multiple-choice question using step-by-step reasoning,
then conclude with a final line stating the best answer.

Question: {question}
Choices:

{choice_0}
{choice_1}
{choice_2}
{choice_3}
{choice_4}

Let’s reason step-by-step, then conclude with: "The best answer is: <X>"

Reasoning:

Response Generation Prompt MedMCQA

You are a medical doctor answering real world medical entrance exam questions.
Answer the following multiple-choice question using step-by-step reasoning,
then conclude with a final line stating the best answer.

Question: {question}

Choices:

{choice_0}

{choice_1}

{choice_2}

{choice_3}

Let’s reason step-by-step, then conclude with: "The best answer is: <X>"

Reasoning:

17



Self Verification Prompt

Given the following question and the model’s answer, please evaluate correctness.
Question: {question}

Model Answer: {candidate_answer}
Please give a confidence score on a scale of 0.0 to 1.0 for this prediction.

Answer:

Surrogate Token Probability Prompt

Given the following question and the model’s answer, please evaluate correctness.
Respond with a single token: {yes_token} or {no_token}

Question: {question}
Model Answer: {candidate_answer}
Is this answer correct: {yes_token} or {no_token}?

Answer:
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C Additional Results

C.1 Qwen-2.51.5B — 7B
C.1.1 Uncalibrated
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Figure 6: Benefit-Cost Analysis of Uncalibrated Verification Methods (Qwen-2.5 1.5B-7B). We dis-
play the cost vs accuracy of the various verification methods, using the cascade (Qwen-2.5-1.5B —
Quen-2.5-7B). Verification methods, which are located above the linear interpolation between the
base or large models, indicate a positive cost-benefit ratio. The error bars indicate the standard error.

ARC2Easy | ARC2 Challenge , MMLU MedQA MedMCQA
SV (n=1) 2785+£2373 | 8051741 |-187+£49 | 4581188 | 70.4+89.0
g SV (n=5) 933 £ 1127 | -156+1042 |-194+49 | -65.6+£553 | 29.3+63.2
2 STP(n=1) -100.0 +948.0 | -100.0 + 847.4 | 204 £4.5 | -87.0 £ 313.1 | -100.0 & 835.5
MC-STP (n=5) | -66.3+142.6 | 743+ 1434 | -246+4.2 | 69.7+£729 | -71.6 + 1147
© SV(n=l) | 2805+416 | 848+246 | 3.0+£50 | 247+210 | 320+ 140
% SV (n=5) 219.7 £35.8 66.5 +22.3 70+£48 | 13.9+189 | 246+138
8 STP (n=1) 284.5 £ 404 96.9 +24.2 75£55 | 21.6+£194 | 350+ 142
MC-STP (n=5) | 66.5 £ 19.2 213+£146 | -57+49 | -105+ 146 | -3.5+102

Table 2: Uncalibrated AIBC Scores for Qwen-2.5 (1.5B—7B). Each row indicates a verification
method (SV or STP) with n = 1 or n = 5, grouped by whether the base or large model was used for

verification.
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C.2 LLama3 1B — 8B
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Figure 7: Benefit-Cost Analysis of Calibrated Verification Methods (Llama3 1B—8B). We display
the cost vs accuracy of the various verification methods, using the cascade (Llama3.2-1B —
Llama3.1-8B). Verification methods, which are located above the linear interpolation between the
base or large models, indicate a positive cost-benefit ratio. The error bars indicate the standard error.

ARC2 Easy , ARC2 Challenge MMLU MedQA | MedMCQA
SV (n=1) -8.8+ 164 -132+£114 96+£26 | -8.0+95 -9.9 £ 89

2 SV (n=hH) -12.8 £ 16.5 -19.6 + 10.8 -119+2.6 | -21.3 £ 86 | -15.6+8.7
& STP (n=1) -44 £16.7 -52+£117 -68+£28 | -136+93 | 48£93
MC-STP (n=5) | 0.8 £15.2 9.0£114 9.0+£27 | 94+£92 | -11.2+838

 SV(n=1) [ 386+145 | 28+I111 [-106+26| -41+99 | -00+91

Eo SV (n=5) 50.1 £13.7 107 £11.8 -197+£23 | -8.7+9.1 -3.1£9.0
= STP(n=1) 118.3 £ 15.8 38.1+13.7 -12+£29 | 56+9.7 -37£92
MC-STP (n=5) | 97.7 + 14.4 154+ 11.7 -11.7£25 | -6.8£9.2 2.6 £9.0

Table 3: Calibrated AIBC Scores for Llama3 (1B—8B). Each row indicates a verification method
(SV or STP) with n = 1 or n = 5, grouped by whether the base or large model was used for

verification.
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C.2.2 Uncalibrated
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Figure 8: Benefit-Cost Analysis of Uncalibrated Verification Methods (Llama3 1B—8B). We
display the cost vs accuracy of the various verification methods, using the cascade (L1lama3.2-1B —
Llama3.1-8B). Verification methods, which are located above the linear interpolation between the
base or large models, indicate a positive cost-benefit ratio. The error bars indicate the standard error.

ARC2 Easy , ARC2 Challenge , MMLU MedQA MedMCQA
SV (n=1) 6.5+ 13.1 2.6+ 138 -9.6 £2.6 | -389+98.5 -42+£120
2 SV (n=5H) 16.1 £21.3 -11.3+ 184 -119+2.6 | -557+824 | -144£18.6
& STP (n=1) 6.4+3443 -30.0 £211.7 -6.8 £2.8 | -13.9+£87.0 | -21.2 £ 159.6
MC-STP (n=5) | -42.5 £ 116.2 -39.0 £ 113.6 9.0+27 | -198+107.9 | -42.9 £68.9
©SV(n=1) [ 16794380 | 893+366 | -79+27 | 994102 | 73.3+328
E':” SV (n=5) 143.4 £ 33.6 83.1 £31.6 9.1£26 | 10.1£102 63.5 +32.0
3 STP(n=1) 129.4 £+ 19.1 59.1 £16.5 1.6 £3.0 73+£99 300£11.8
MC-STP (n=5) | 71.0£17.2 240+ 16.5 03+29 4.2+ 10.0 924132

Table 4: Uncalibrated AIBC Scores for Llama3 (1B—8B). Each row indicates a verification
method (SV or STP) with n = 1 or n = 5, grouped by whether the base or large model was used for
verification.
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C.2.3 Online Learning
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Figure 9: Cumulative Regret in Online Setting (Llama3 1B—8B). We display the cumulative
regret of the system risk when using Cascade (L1ama3.2-1B — Llama3.1-8B). Points are only
added to the training set if an abstention is made. The error bars indicate the standard error.
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C.3 LLama 3B — 8B

Due to the large size of the MMLU dataset and the costs associated with making predictions on it, we
omit this for the (L1ama3.2-3B — Llama3. 1-8B) combination in this subsection.

ARC?2 Easy ARC?2 Challenge MedQA MedMCQA
uncal. cal. uncal. cal. uncal. cal. uncal. cal.
SV (n=1) 267.7 + 364.0 3.8 £96.2 3223 +£3352 -11.5+£ 814 157 2057 -48.6 =469 | 93.6 + 1545 -27.8 +209
g SV (n=5) 2472 +359.8  32.1 £ 100.9 | 352.2 43253 0.0 £ 84.4 125 +£200.0 -282 4494 | 96.1 +146.7 -39.5 + 204
5 STP (n=1) 2727 £ 3386 349 199.6 | 279.7 3375 -40.7 £ 80.9 | -35.6 = 199.1 -8.2+493 91.7 £153.0 -192+219
MC-STP (n=>5) | 2724 +325.0 44.0496.7 | 279.9 £312.6 33.0£100.0 | 9242049 -232+£528 | 119.0 & 1543 -45.0 £ 20.0
T T TSV(n=1) 312243219 842+ 1106 | 2374+ 277.6 205+ 84.8 | -12.4 + 1367 253 +£49.1 | 81.04+ 100.1 233 4+ 215
’g:a SV (n=5) 2574 + 3247 63.2 £ 1064 | 281.6 292.7 374 £ 83.1 4.7+ 1315 -32.4 +£488 | 84.8+107.0 -142+22.1
3 STP (n=1) 331.9 +287.7 77.0 £ 112.2 | 254.6 +291.8 -0.7 4 83.7 -8.8 £ 1268  -34.4 +46.2 95.7 +99.5 -38.6 £ 20.3
MC-STP (n=>5) | 422.2 +328.8 7824+ 109.8 | 325.5 & 306.1 -6.6 = 78.7 65.2 £ 150.7 -52.8 +48.1 914 £1003 -11.5 £ 22.1

Table 5: AIBC scores for Llama3 (3B—8B) across datasets and calibration settings. Rows show
methods (SV or STP) with n = 1 or n = 5, grouped by whether probabilities come from the base or
large model. All values are rounded to 1 decimal place.
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Figure 10: Benefit-Cost Analysis of Calibrated Verification Methods (Llama3 3B—8B). We
display the cost vs accuracy of the various verification methods, using the cascade (Llama3.2-3B —
Llama3.1-8B). Verification methods, which are located above the linear interpolation between the
base or large models, indicate a positive cost-benefit ratio. The error bars indicate the standard error.
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Figure 11: Benefit-Cost Analysis of Uncalibrated Verification Methods (Llama3 3B—8B). We
display the cost vs accuracy of the various verification methods, using the cascade (L1ama3.2-3B —
Llama3.1-8B). Verification methods, which are located above the linear interpolation between the
base or large models, indicate a positive cost-benefit ratio. The error bars indicate the standard error.
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Figure 12: Cumulative Regret in Online Setting (Llama3 3B—8B). We display the cumulative
regret of the system risk when using Cascade (Llama3.2-3B — Llama3.1-8B). Points are only
added to the training set if an abstention is made. The error bars indicate the standard error.

C4 Qwen3B — 7B

Due to the large size of the MMLU dataset and the costs associated with making predictions on it, we
omit this for the (Qwen-2.5-3B — Qwen-2.5-7B) combination in this subsection.

ARC?2 Easy ARC?2 Challenge MedQA MedMCQA
uncal. cal. uncal. cal. uncal. cal. uncal. cal.
SV (n=1) 72.6 + 67.1 80.6 + 98.5 -35.1£458 -39+625 | -37.5+£27.8 -462+157 | -21.0 £ 21.1 -40.3 + 144
g SV(n=5) 3.7+ 48.0 13.7 £ 76.4 -17.8 £39.0 -59.1 £50.3 | -51.3 £20.8 -54.6+ 132 | -39.9+ 190 -462+ 135
:g STP (n=1) -19.4 £235 447 £97.3 -42.1 4+ 168 -53.6 £57.0 | -41.5+12.1 -5204 155 | -37.5+ 106 -31.5+ 153
MC-STP (n=5) | -32.1 +21.8 -1.5+755 -433 4+ 181 -5324538 | -47.8 £ 119 -50.4 +13.7 | -39.9 = 11.0 -45.5 + 14.0
T T TSV(n=1) | 2466+ 1062 27894 1253 | 83.6+ 568 437 +656 | 984205 463+ 154 | 1004216 2964 156
En SV (n=5) 99.0 £+ 60.4 139.1 + 842 21.5+£387 2744581 | -349+ 142 -43.0+142 | -134+17.7 -303 £+ 149
3 STP (n=1) 3429+ 121.3 3139+ 1356 | 96.1 £57.9 994 + 758 -83 4200 2374174 | 163+222 -17.1+16.5
MC-STP (n=5) 21.0 £+ 35.6 97.2 + 89.8 -19.4 4249 162 +568 | -52.8 & 11.1 -44.7 + 142 | -37.4 + 129 -29.5 + 149

Table 6: AIBC scores for Qwen-2.5 (3B—7B) across datasets and calibration settings. Rows show
methods (SV or STP) with n = 1 or n = 5, grouped by whether probabilities come from the base or
large model. All values are rounded to 1 decimal place.

(a) ARC2-Easy (b) ARC2-Challenge (d) MedQA (e) MedMCQA
I e I AR ARAR AR A T AR SO eI R B e A AR I e RN AU
0.96 : 0.550 ] -
] ] 0.54 1
-0.90 0.525 E ]
0.95 1 - % 2052 -
] 0.500 E 1
> U>.“-88 a’ g i ]
e <3 € 0475 ! ©-0.50 3
S 0.04 £l s 1 i
3 81 e 3 3
< <]0:86 : < 0450 < ]
I 1 £0.48 -
0.93 ] ] 1
1 0.425 - 1
jo84 ] 046 -
1 0.400 I 1 I
0.92 ] ] ] 1
10.82 | 20.44 1
4 5 6 7 2.0 2.5 3.0 3.5 2 3 1 0.75 1.00 1.25 1.50
Cost per Sample x109 Cost per Sample %109 Cost per Sample x108 Cost per Sample x107
@ Base Model SVpase (n=1) X STPpe (n=1) X SViarge (n=1) X STPiarge (n=1)
@ Large Model SVpase (1 =5) A STPh (n=15) T Vi (n=5) Z STPug (n=5)

Figure 13: Benefit-Cost Analysis of Calibrated Verification Methods (Qwen-2.5 3B—7B). We
display the cost vs accuracy of the various verification methods, using the cascade (Qwen-2.5-3B —
Quen-2.5-7B). Verification methods, which are located above the linear interpolation between the
base or large models, indicate a positive cost-benefit ratio. The error bars indicate the standard error.
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Figure 14: Benefit-Cost Analysis of Uncalibrated Verification Methods (Qwen-2.5 3B—7B). We
display the cost vs accuracy of the various verification methods, using the cascade (Qwen-2.5-3B —
Quen-2.5-7B). Verification methods, which are located above the linear interpolation between the
base or large models, indicate a positive cost-benefit ratio. The error bars indicate the standard error.
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Figure 15: Cumulative Regret in Online Setting (Qwen-2.5 3B—7B). We display the cumulative
regret of the system risk when using Cascade (Qwen-2.5-3B — Qwen-2.5-7B). Points are only
added to the training set if an abstention is made. The error bars indicate the standard error.

C.5 Ablation of Different Calibration Size

We conducted an ablation study to investigate the effect of calibration size on deferral probability
verification, using STP (n = 1). The results can be found here in Tablem

Generally, it appears that the calibration size has little influence on these magnitudes. If we examine
the standard error across the various sizes, none of them is significantly better than the others. The
only thing that we noted was that with a too small calibration set, we would have more diverging
chains in the Bayesian Logistic Regression sampling.

Model Dataset Cal. Size =50 Cal. Size =100 Cal. Size =200 Cal. Size =500

ARC2 Easy 239.5 + 36.1 242.7 + 36.3 273.5 £ 42.7 254.9 +43.5

Qwen-2.5 (1.5B—7B) ARC2 Challenge 87.8 £24.3 89.3 £+ 26.2 68.7 £ 25.4 62.1 + 28.7

o2 L1 MedQA —3.0+ 154 1.7 + 16.3 —7.7+16.6 —16.6 + 18.6
MedMCQA —7.54+£9.9 —10.0 £ 10.1 —8.0+9.9 -5.7+10.4

ARC?2 Easy 121.9+15.6 118.3 £15.8 122.6 + 16.5 102.8 £ 16.0

Liama 3 (1B—8B) ARC?2 Challenge 457 £ 13.1 38.1 £13.7 40.3 £12.8 43.4 £ 15.6
MedQA 10.1 +9.7 5.6 £9.7 5.3 £10.0 9.8+ 11.9
MedMCQA 74+ 9.5 —3.7+9.2 6.7+ 9.1 7.0£9.3

Table 7: AIBC scores across different calibration sizes for Qwen-2.5 and Llama-3 models on multiple
datasets, using STP (n = 1) as verification strategy.
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C.6 MMLU Subject

Subject AIBC (Base — Large)
International Law 58.66 £ 89.93
US Foreign Policy 54.20 £ 147.34
Jurisprudence 45.95 £+ 76.81
Business Ethics 33.53 £77.09
Sociology 33.10 £ 66.72
High School Psychology 31.38 £ 37.80
High School Government And Politics 29.64 £ 35.23
Logical Fallacies 28.68 £ 87.21
World Religions 23.14 £ 68.51
Human Aging 20.88 £+ 47.71
Philosophy 18.97 £ 44.90
Computer Security 16.84 £ 440.64
Miscellaneous 16.78 + 20.86
Management 16.30 £ 61.84
High School Microeconomics 15.60 £ 27.56
High School Geography 13.66 £ 29.49
Marketing 12.23 £+ 61.58
Prehistory 11.94 £ 33.99
High School Biology 11.23 £42.87
Security Studies 10.47 £ 50.74
Medical Genetics 8.21 £ 34.18
College Biology 8.20 £ 39.82
Professional Psychology 443 +£22.52
High School US History 4.28 +30.17
Clinical Knowledge 3.93 £48.41
Formal Logic 3.25 + 46.67
Human Sexuality 3.07 £ 65.82
All Subjects (Average) 2.52 +£523
Anatomy 2.32 £+ 54.35
Public Relations 1.82 + 152.51
College Medicine 1.19 £ 46.04
Global Facts 0.70 = 51.04
High School Macroeconomics 0.52 4+ 26.42
High School European History 0.24 4+ 65.82
Abstract Algebra -
Nutrition -1.55 +28.62
Professional Accounting -1.67 £+ 31.01
High School Chemistry -1.85 +26.87
High School Mathematics -2.46 4+ 29.03
Machine Learning -2.84 4+ 40.49
Moral Disputes -3.36 + 36.88
Elementary Mathematics -3.60 + 23.81
Conceptual Physics -3.78 £29.27
High School Computer Science -4.81 4 44.25
Professional Law -6.02 4+ 21.39
High School Physics -6.83 + 21.16
College Physics -8.02 £ 28.96
Astronomy -8.60 £ 30.55
High School Statistics -10.18 £ 26.16
Econometrics -10.50 £ 36.09
Electrical Engineering -10.79 £ 41.71
College Mathematics -12.30 £ 62.39
High School World History -16.96 £ 53.38
Professional Medicine -18.75 £ 21.12
Moral Scenarios -22.65 £+ 16.20
College Chemistry -22.82 £ 41.65
College Computer Science -25.63 £ 35.75
Virology 00 £ oo

Table 8: AIBC Scores by Subject (Qwen-2.5). Values show the change in IBC from the cas-
caded LLM framework using the surrogate token probability method, sorted by subject for the
(Qwen-2.5-1.5B — Qwen-2.5-7B) combination, after calibration.
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Subject AIBC (Base — Large)

World Religions 35.95 £ 35.25
Anatomy 34.10 £ 50.56
Virology 29.82 £ 77.02
Miscellaneous 28.80 £ 15.64
High School Psychology 15.37 £+ 14.03
Clinical Knowledge 14.80 £ 23.85
Prehistory 14.27 £ 20.97
Marketing 13.94 £ 27.15
US Foreign Policy 13.70 £ 34.01
Conceptual Physics 13.37 £22.75
High School Geography 12.50 £ 29.38
Jurisprudence 12.22 + 42.25
Logical Fallacies 11.77 £ 32.46
Moral Disputes 11.12 £ 21.71
High School Biology 7.66 + 16.00
Management 6.73 £+ 35.36
College Medicine 5.84 £ 26.08
International Law 4.88 +24.42
High School Microeconomics 4.38 +15.48
Human Aging 4.16 &+ 39.64
High School Macroeconomics 2.51 £+ 14.27
Sociology 2.05 £ 22.75
Astronomy 1.97 £19.43
Philosophy 0.88 4 20.96
Electrical Engineering 0.33 £+ 26.12
Nutrition 0.31 +19.88
College Biology 0.30 4+ 23.37
Abstract Algebra -
Computer Security -0.26 4+ 31.92
All Subjects (Average) -1.16 +2.87
Medical Genetics -1.39 +£27.97
Business Ethics -1.59 4+ 35.09
High School Government And Politics -1.61 4+ 16.63
Formal Logic -2.01 +43.78
Professional Psychology -2.29 £ 13.79
High School Computer Science -2.58 +29.56
Human Sexuality -3.19 £+ 19.56
Security Studies -4.89 4+ 31.41
Public Relations -5.57 £ 61.18
Econometrics -5.67 +29.45
College Computer Science -7.06 £ 29.54
High School Statistics -7.70 £ 15.34
High School Physics -9.27 +£25.92
College Physics -9.43 + 1595
Moral Scenarios -9.63 +13.23
Professional Medicine -10.05 £ 18.46
Elementary Mathematics -10.43 £+ 8.50
Professional Accounting -10.69 £ 17.82
High School World History -10.72 £+ 19.96
High School US History -11.81 £ 17.55
High School Mathematics -12.64 £ 11.41
High School Chemistry -13.66 £ 17.31
Professional Law -14.33 £ 10.24
High School European History -17.91 £+ 24.25
College Chemistry -17.92 £ 38.05
College Mathematics -17.95 £ 26.48
Machine Learning -20.64 £ 19.84
Global Facts -35.32 £ 36.23

Table 9: AIBC Scores by Subject (Llama3). Values show the change in IBC from the cascaded LLM
framework using the surrogate token probability method, sorted by subject for the (L1ama3.2-1B —
Llama3.1-8B) combination, after calibration.
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C.7 Grid-Search over Threshold Parameters

we perform an additional experiment on the ARC2-Easy dataset with the (Qwen-2.5-1.5B —
Qwen-2.5-7B) combination. We perform a grid search with every parameter 0 = {Pvase, Epase, flarge}
over {0.5,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95}. The search grid’s time complexity
is cubic, O(n?), and increases with the addition of expert data to the replay buffer, becoming
computationally extremely expensive compared to the gradient-based approach. We report our
findings in Figure[T6] We observe from the results, that the gradient-based approach achieves lower
cumulative regret, compared to the grid-search approach, be it on single-model strategies, and also on
the cascsaded LLM framework.
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Figure 16: Gradient-Based vs. Grid-Search. Online learning performance of the cascaded LLM
framework over 1000 samples using the proposed gradient-based approach against a grid-search
(16b) over the threshold parameters 6.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: For assumptions see section[3] for results see section [5] where the experiments
represent the claims made in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our methods and experiments in section 6}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

29



Justification: In this paper there are no theoretical results. It is purely empirical.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the full set of description of the experiments in section @ and
section [5} Moreover, we provide our code: https://anonymous.4open.science/t/helm-82D7

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide our code: https://anonymous.4open.science/r/helm-82D7 and all
the models and datasets in our experiments are open-source and available for everyone.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: To the best of our knowledge, weWe provide the full set of hyperparame-
ters in section 5} Moreover, we provide our code with all the experimental config files:
https://github.com/fanconic/cascaded-1Ims

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In section [5] we report all the tables and figures with the standard error and
95%-confidence intervals.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, in sectionE]we point out the available access to an A100 GPU.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: To the best of my knowledge, we do this.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any data or model with this paper
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: To the best of our knowledge we have credited the original owners
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: no research with crowdsourcing or human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: no research with crowdsourcing or human subjects

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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