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ABSTRACT

Real-time motion-controllable video generation remains challenging due to the
inherent latency of bidirectional diffusion models and the lack of effective au-
toregressive (AR) approaches. Existing AR video diffusion models are limited to
simple control signals or text-to-video generation, and often suffer from quality
degradation and motion artifacts in few-step generation. To address these chal-
lenges, we propose AR-Drag, the first RL-enhanced few-step AR video diffu-
sion model for real-time image-to-video generation with diverse motion control.
We first fine-tune a base I2V model to support basic motion control, then further
improve it via reinforcement learning with a trajectory-based reward model. Our
design preserves the Markov property through a Self-Rollout mechanism and ac-
celerates training by selectively introducing stochasticity in denoising steps. Ex-
tensive experiments demonstrate that AR-Drag achieves high visual fidelity and
precise motion alignment, significantly reducing latency compared with state-of-
the-art motion-controllable VDMs, while using only 1.3B parameters. Additional
visualizations can be found on our project page: https://iclrcode2026.
github.io/AR-Drag.github.io/.

1 INTRODUCTION

Video diffusion models (VDMs) have made remarkable progress with bidirectional diffusion trans-
formers (DiTs), which denoise all frames simultaneously (Kong et al., 2024; Villegas et al., 2022;
Wan et al., 2025; Yang et al., 2024). As shown in Fig. 1 (a), they inherently allow future information
to influence the past and require generating the entire video frames jointly. All existing motion-
controllable VDMs are dominated by this bidirectional design. As a result, generation is delayed
until all control inputs are specified, causing high latency and disallowing real-time adjustment of
controls, e.g., sequential motion cues that evolve as the video unfolds. In contrast, autoregressive
(AR) VDMs (Yin et al., 2025; Gao et al., 2024; Gu et al., 2025; Lin et al., 2025) generate videos
sequentially, making them naturally aligned with real-time controllable video generation.

Despite being well-suited to real-time control, existing AR VDMs primarily target text-to-video
(T2V) generation and remain limited in the more challenging image-to-video (I2V) scenarios (Yin
et al., 2025; Huang et al., 2025), or only explore simple control signals such as pose or camera
motion Lin et al. (2025). Controllable AR VDMs face two major challenges: (1) quality degradation
and motion artifacts caused by error accumulation, especially for few-step models. (2) richer control
modalities such as trajectories or bounding boxes (Zhang et al., 2025), that broaden the action space
and require stronger generalization. To the best of our knowledge, our AR-Drag (Fig. 1(b)) is the
first AR VDM enabling real-time motion control with visual quality competitive with bidirectional
ones. As shown in Fig. 1(c), AR-Drag achieves substantially lower latency while maintaining
superior FID compared with state-of-the-art motion-controllable VDMs.

In response to the two challenges, reinforcement learning (RL) is a natural fit. Unlike supervised
learning, which enforces pixel-level reconstruction and limits the model to the training distribution,
RL explores the action space and optimizes policies via trial-and-error, enabling strategies that gen-
eralize beyond seen data. Recent work built on GRPO (Guo et al., 2025), such as DanceGRPO and
FlowGRPO (Xue et al., 2025; Liu et al., 2025), demonstrates the effectiveness of RL for bidirec-
tional flow-matching models in text-to-image (T2I) generation. However, extending GRPO to video
generation raises several challenges: (1) ensuring the Markov property, since typical AR VDMs
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Figure 1: Comparison for motion-controllable video generation. (a) Bidirectional VDMs denoise
all frames jointly; motion control can be adjusted only after all frames are generated, causing high
latency. (b) In contrast, AR VDMs generate frames sequentially; motion control can be updated
frame by frame and, if unsatisfactory, regenerated on the fly, enabling real-time adjustment. (c) Our
method achieves significantly lower latency while maintaining superior FID performance.

condition on ground-truth frames during training rather than self-generated ones, breaking the MDP
formulation; (2) handling the long decision process of video generation, where exploration across
the entire decision chain becomes prohibitively expensive; (3) the lack of well-defined reward mod-
els tailored to controllable video generation.

To address these issues, we propose AR-Drag, an RL-enhanced few-step AR VDM for real-time
motion-controllable I2V generation. Specifically, we first fine-tune the Wan2.1-1.3B (Wan et al.,
2025) I2V model on our curated control-aware data to enable basic motion control, and then further
improve it through reinforcement learning. To preserve the Markov property, we introduce Self-
Rollout, training on model-generated histories to align with AR inference. To keep long-horizon
exploration tractable, we adopt selective stochasticity: a single randomly chosen denoising step
uses an SDE update, while all remaining steps follow the deterministic ODE solver. In addition, we
design a trajectory-based reward model to enforce fine-grained control over complex motion signals.

Our contributions are threefold: (1) We propose AR-Drag, the first few-step AR VDM capable of
real-time controllable I2V generation. (2) We introduce RL-based training for AR VDM and design
a trajectory-based reward model tailored to fine-grained motion alignment. (3) We conduct extensive
experiments showing that AR-Drag significantly improves both visual quality and controllability,
despite using only 1.3B parameters.

2 RELATED WORKS

Controllable video generation. Early methods (Jeong et al., 2024; Wang et al., 2023; Zhao et al.,
2024) achieve motion control by injecting motion signals into VDMs, yet their capability is restricted
to reproducing pre-defined dynamics. Recent works (Geng et al., 2025; Ma et al., 2024; Mou et al.,
2024; Shi et al., 2024; Wang et al., 2024; Yin et al., 2023; Zhang et al., 2025; Wu et al., 2024; Wang
et al., 2025) leverage explicit control inputs such as motion trajectories, offering greater flexibility.
For example, DragNUWA (Yin et al., 2023) conditions on trajectories to model camera and object
motions, DragAnything (Wu et al., 2024) leverages object masks for entity-level control, and Tora
(Zhang et al., 2025) introduces trajectory conditioning into a DiT framework. However, all these
methods are non-autoregressive and therefore unsuitable for real-time interactive control.

Real-time video generation. Video diffusion models typically adopt bidirectional attention mech-
anism (Blattmann et al., 2023a;b; Brooks et al., 2024; Ho et al., 2022; Kong et al., 2024; Villegas
et al., 2022; Wan et al., 2025; Yang et al., 2024). While effective for quality, this design requires
jointly denoising all frames of video, limiting their applicability to real-time interactive. Autore-
gressive models (Hu et al., 2024; Jin et al., 2024; Yin et al., 2025; Gao et al., 2024; Gu et al., 2025;
Li et al., 2025b), in contrast, generate tokens sequentially, making them inherently better suited for
real-time controllable video generation. Some attempts (Yin et al., 2025; Lin et al., 2025; Yang

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2025) distill multi-step VDMs into few-step autoregressive VDMs using distribution match-
ing distillation (Yin et al., 2024b;a) or consistency distillation (Song et al., 2023; Song & Dhariwal,
2023). However, AR VDMs still exhibit a train–test mismatch, making them prone to error ac-
cumulation across frames—particularly in few-step models. To mitigate this, some works (Chen
et al., 2024; Teng et al., 2025; Sun et al., 2025) propose progressive noise schedules that gradu-
ally increase noise from early to later frames, partially alleviating error accumulation. However,
they neither close the train–test gap nor support real-time interaction, since future frames must be
pre-generated before the current frame is rendered, introducing latency and limiting control effec-
tiveness. Self-Forcing (Huang et al., 2025) narrows the train–test gap and improves stability by
unrolling autoregressive generation during training, conditioning each frame on previously gener-
ated outputs rather than ground truth. However, it does not strictly follow the autoregressive chain
rule and leaves residual discrepancies (see Sec. 3.2). In contrast, our Self-Rollout strategy strictly
adheres to the chain rule and aligns training with inference, providing a more principled formulation
for integration with reinforcement learning.

Alignment for diffusion model. Existing approaches include scalar reward fine-tuning (Prabhude-
sai et al., 2023; Clark et al., 2023; Xu et al., 2023; Prabhudesai et al., 2024), Reward-Weighted
Regression (RWR) (Peng et al., 2019; Lee et al., 2023; Furuta et al., 2024), and Direct Preference
Optimization (DPO)-based methods (Rafailov et al., 2023; Wallace et al., 2024; Dong et al., 2023).
However, policy gradient methods (Schulman et al., 2017; Fan et al., 2023) often suffer from insta-
bility. To improve stability in generative modeling, recent works such as DanceGRPO (Xue et al.,
2025) and FlowGRPO (Liu et al., 2025) extend GRPO to flow-matching models. Building on this
line of research, we extend GRPO to the I2V setting, achieving improved motion controllability
while maintaining visual quality and efficiency.

3 METHOD

Our AR-Drag has two steps: In step 1 (Section 3.2), we build a real-time AR base model with
basic motion control ability—assemble control-aware data, train a bidirectional teacher, and distill
to a few-step causal student; during distillation we introduce Self-Rollout to align training with
AR inference. In step 2 (Section 3.3), we treat AR video generation as an MDP and optimize with
GRPO, designing selective stochastic sampling and a reward to improve realism and motion control.

3.1 PRELIMINARY

Flow matching. Given a prior p0(x) and target data distribution p1(x), flow matching constructs an
interpolating distribution pt(x). The sample trajectory xt follows the probability flow ODE:

dxt

dt
= vθ(xt, t), x0 ∼ p0. (1)

The training objective minimizes the squared error between the predicted vector field vθ and the
ground-truth flow v:

LFM(θ) = Et,xt[∥vθ(xt, t)− v∥22], (2)
where the target velocity field is v = x1 − x0.

Flow-ODE to SDE. In flow-based probability models, the forward process is deterministic and
follows an ODE: dxt = vtdt. To introduce stochasticity while preserving the same marginal distri-
butions, a reverse-time SDE formulation can be defined as:

dxt =
(
vt(xt)− 1

2σ
2
t∇ log pt(xt)

)
dt+ σt dw, (3)

which leads to the update rule:

xt+∆t = xt + [vθ(xt, t) +
1
2tσ

2
t (xt + (1− t)vθ(xt, t))]∆t+ σt

√
∆tϵ. (4)

Distribution matching distillation (DMD). DMD distills a multi-step teacher model into a few-step
student model (Yin et al., 2024b;a) by minimizing the KL divergence between student-generated
distribution pθ,t and data distribution distribution pdata,t across randomly sampled time t:

Et [KL (pθ,t∥pdata,t)] (5)

3
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Figure 2: Comparison between typical AR VDMs and Self-Rollout. Self-Rollout faithfully follows
the inference process during training, minimizing the train–test gap and naturally preserving the
Markov property.

3.2 STEP 1: FINE-TUNING A REAL-TIME MOTION-CONTROLLABLE BASE VDM

In Step 1, we build a base AR VDM with basic real-time motion control by (i) curating videos with
control signals, (ii) fine-tuning a bidirectional VDM on this data to learn motion control, (iii) distill-
ing it into a few-step causal AR model for real-time inference with Self-Rollout, which “Markovize”
AR training and paves the way for GRPO in Step 2.

Data curation. We collect a training corpus of real and synthetic videos featuring diverse motions.
Control signals are obtained by generating keypoint trajectories with an automatic detector (Doer-
sch et al., 2022) and retaining only samples that pass human verification. For challenging cases,
such as occlusion or fast motion, we additionally curate a high-quality dataset that is fully anno-
tated by human annotators. Our curated corpus encompasses a rich spectrum of actions and visual
styles—spanning humans, animals, and cartoons—and includes videos of varying resolutions and
durations, making it well-suited for evaluating generalization across diverse scenarios. In addition,
each video is accompanied by rich textual descriptions (both positive and negative prompts). Please
refer to Appendix B.1 for the details.

Bidirectional fine-tuning with motion-control. At m-th frame, we use three control signals

cm =

{(
ctraj
m , ctext, cref

)
, m = 0,(

ctraj
m , ctext,∅

)
, otherwise.

(6)

Here, ctraj
m is a motion-trajectory embedding obtained by encoding the raw coordinate heatmap at

frame m with a VAE encoder (Wan et al., 2025). ctext encodes the textual signal, combining both
positive and negative prompts. The text embedding is shared across all frames. At the initial frame
(m = 0), the reference image embedding cref is encoded by a VAE encoder and a CLIP visual
encoder (Radford et al., 2021). For subsequent frames (m>0), we do not condition on a reference
image (∅) and inject Gaussian noise in its place.

The model is trained with the flow matching objective, extended to incorporate control signals:

LFM(θ) = Et,xt[∥vθ(c, t,xt)− v∥22], (7)

where c denotes the full set of control inputs across the entire video, e.g., c = {cm}Mm=0.

Distilling to real-time AR model. Following previous techniques (Huang et al., 2025; Yin et al.,
2025), we distill the bidirectional teacher model into a few-step student model by replacing bidirec-
tional attention with causal attention. The student is further optimized with DMD (Yin et al., 2024a)
and adversarial losses (Goodfellow et al., 2020). Given a noise schedule T = {t0 = T, . . . , tN =
0}, each frame is denoised over N steps, where N is significantly smaller than that in multi-step
VDMs, enabling real-time inference.

Self-Rollout: Markovizing AR training. Although an AR VDM conditions on its own generated
history at inference, AR training typically uses teacher forcing—each step conditions on ground-
truth past frames rather than model outputs—creating a train–test mismatch (exposure bias) and
breaking the Markov property required for RL. As illustrated in Fig. 2 (a), noise is added to the
ground-truth frame, and the model predicts the corresponding vector field.
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To address this issue, we propose a Self-Rollout strategy, which maintains a key–value (KV) memory
cache storing previously denoised frames as causal context. As shown in Fig. 2 (b), frames are
denoised sequentially from pure noise during training. Let xm,n denote the m-th frame at denoising
step n. For the m-th frame, we randomly sample a denoising step n, denoise step-by-step from xm,0

to xm,n, and compute the DMD loss in Eq. (5) and adversarial loss. We then continue denoising
from xm,n to xm,N step-by-step, updating the KV cache with the generated clean frame xm,N . In
this way, subsequent frames are conditioned on the self-generated KV cache rather than ground-
truth history. In contrast, Self-Forcing (Huang et al., 2025) updates the KV cache by collapsing the
denoising trajectory from xm,n to xm,N into a single step. Our step-by-step Rollout more faithfully
matches inference dynamics and naturally integrates with RL–based training.

3.3 STEP 2: REINFORCEMENT LEARNING ON AR VDM

Our Self-Rollout strategy (Sec. 3.2) “Markovizes” AR training by conditioning on model-generated
histories and the ODE-to-SDE conversion in Eq. (4) supplies the stochasticity. Taken together, these
resolve the two obstacles to applying GRPO—it requires an MDP and stochastic rollouts. In the
sequel, we first set notations and formulate the MDP underlying video generation.

Notations. Consider a video of M+1 frames, each denoised in N steps. We denote the m-th frame
at denoising step n by xm,n. Let x<m,N = {x0,N , ...,xm−1,N} be the m − 1 already denoised
clean frames and x>m,0 = {xm+1,0, ...,xM,0} the unprocessed, noise-initialized frames. At state
(m,n), the video snapshot is

Xm,n = x<m,N︸ ︷︷ ︸
fully generated

∪ {xm,n}︸ ︷︷ ︸
being denoised

∪ x>m,0︸ ︷︷ ︸
initial noise

, (8)

The final clean video is then XM,N = {x0,N , . . . ,xM,N}. For autoregressive video generation, the
denoising across frames produces a trajectory

τ = {X0,0,X0,1, . . . ,X0,N ,︸ ︷︷ ︸
trajectory of frame 0

X1,0,X1,1, . . . ,X1,N︸ ︷︷ ︸
trajectory of frame 1

, . . . ,XM,0,XM,1, . . . ,XM,N︸ ︷︷ ︸
trajectory of frame M

}. (9)

Video generation as MDP. The denoising process in VDM can be formulated as a Markov decision
process (MDP) (Liu et al., 2025; Xue et al., 2025):

• State: sm,n ≜ (cm, tn,Xm,n), where cm is the control signals. The initial-state distribution is
p(s0,0) = p(c, t0,X0,0) = p(c0) δ(t−t0)

∏M
m=0N (xm,0 | 0, I), i.e., the control c0 is drawn from

its prior, t is fixed to t0, and all frames start from Gaussian. δ(·) denotes the Dirac distribution.

• Action: am,n ≜ xm,n+1, i.e., the next denoised state of the m-th frame at step n+1. The policy
is parameterized by the VDM with θ:

am,n = xm,n+1 ∼ pθ(· | cm, tn,Xm,n). (10)

where stochasticity is introduced through the ODE-to-SDE conversion in Eq. (4).
• Transition: (1) intra-frame transition. With in a frame, the transition is deterministic given the

current state and action: p(s | sm,n,am,n) = δ(s − sm,n+1). (2) inter-frame transition. When
denoising of frame m is complete (n = N ), the state transitions to the initial state of the next
frame m+1:

sm+1,0 = (cm+1, t0,Xm+1,0), where Xm+1,0 = Xm,N by definition. (11)

• Reward function: Rewards are provided only when a frame is fully denoised (n = N ):

R(sm,n,am,n) ≜ R(xm,N , cm) = 1[n = N ] · (Rquality(xm,N ) +Rmotion(xm,N , cm)) (12)

where 1[·] is the indicator function, Rquality measures perceptual fidelity and temporal smoothness
and Rmotion measures alignment with control signals. (We defer precise definitions to the sequel.)

GRPO for AR VDM. We extend GRPO framework to AR video generation. Under the MDP
formulation, the AR VDM samples a group of G videos {X(i)

M,N}Gi=1 along with their trajectories

5
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{τ (i)}Gi=1. The advantage of the i-th video is computed as:

Â(i)
m,n =

R
(
x
(i)
m,N , cm

)
−mean

({
R
(
x
(j)
m,N , cm

)}G

j=1

)
std

({
R
(
x
(j)
m,N , cm

)}G

j=1

) . (13)

The GRPO objective is defined as:
LGRPO (πθ) = E

c,{τ(i)}G
i=1

∼πθold (·|c)[
1

GMN

G∑
i=1

M∑
m=1

N∑
n=1

(
min

(
r(i)m,n(θ)Â

(i)
m,n, clip

(
r(i)m,n(θ), 1− ε, 1 + ε

)
Â(i)

m,n

)
− βKL(πθ∥πref)

)],
(14)

where the importance ratio is: r(i)m,n(θ) = pθ
(
x
(i)
m,n+1 | x

(i)
m,n, cm

)
/pθold

(
x
(i)
m,n+1 | x

(i)
m,n, cm

)
.

Selective stochastic sampling. GRPO requires stochasticity for advantage estimation and policy
exploration, which we introduce via the ODE-to-SDE conversion. However, in video generation the
Markov chain is extremely long, and applying SDE sampling at every denoising step induces very
high variance in trajectory returns, which substantially increases the number of rollouts (G) needed
for stable loss estimation and thus incurs prohibitive cost.

To balance exploration and efficiency, we adopt selective stochasticity: a single denoising step ñ
is randomly chosen to follow the SDE formulation, while all remaining steps stay deterministic
under the ODE solver. This strategy injects sufficient randomness for effective RL training, while
maintaining computational efficiency.

Reward design. We design a composite reward that jointly evaluates visual realism (Rquality)
and motion controllability (Rmotion). For realism, we adopt the LAION Aesthetic Quality Predic-
tor (Schuhmann, 2022) denoted as fAQ that assigns an aesthetic score (1-5) to each image. The
realism reward is defined as

Rquality(xm,N ) = fAQ(xm,N ). (15)
For motion controllability, we employ Co-Tracker (Karaev et al., 2024) to first estimate the object
trajectory ĉtraj

m at frame m from the generated image and measure their alignment with the ground-
truth ctraj

m . The motion reward is defined as
Rmotion(xm,N , cm) = λmax(0, α− ∥ĉtraj

m − ctraj
m ∥22), (16)

where α is an offset, and λ is the scaling hyperparameter.

3.4 DISCUSSION WITH EXISTING TECHNIQUES.

Our Self-Rollout eliminates this collapse entirely by continuing full step-by-step ancestral sampling
using only the model’s own predictions—identical to inference. Combined with selective stochas-
ticity (Sec. 3.3), we reduce the effective horizon by 5–20× while preserving exploration, enabling
stable and effective GRPO training on autoregressive video diffusion for the first time.

Comparison with Self-Forcing Although our Self-Rollout strategy and Self-Forcing (Huang et al.,
2025) both address exposure bias by using self-generated context in autoregressive video diffu-
sion, they differ fundamentally in how the KV cache is updated after the supervised prefix. These
differences critically impact alignment with inference-time dynamics and compatibility with rein-
forcement learning objectives such as GRPO.

By performing a full step-by-step rollout instead of a single non-sequential collapse, Self-Rollout
perfectly eliminates the train–inference distribution mismatch, provides a clean sequential decision
process that GRPO can directly optimize, and—when combined with selective stochasticity sam-
pling—effectively mitigates the extremely long-horizon problem. This enables successful applica-
tion of GRPO to high-fidelity autoregressive video generation for the first time.

4 EXPERIMENTS

Implementation details. We implement our base model with Wan2.1-1.3B-I2V Wan et al. (2025),
using a 3-step diffusion process in a frame-wise manner, denosing one latent at a time. To accommo-
date varying resolutions, we define a set of bucket sizes and resize each video to its nearest bucket.

6
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Table 1: Quantitative comparisons with motion-controllable VDMs. Best results are bold.

Method Latency (s) ↓ FID ↓ FVD ↓ Aesthetic
Quality ↑

Motion
Smoothness ↑

Motion
Consistency ↑

DragNUWA 94.26 36.31 376.39 3.30 0.9759 3.71
DragAnything 68.76 38.13 367.74 3.22 0.9811 3.63
Tora 176.51 32.84 283.43 3.86 0.9855 3.97
MagicMotion 1426.37 30.04 230.53 4.01 0.9871 3.95
Self-Forcing 0.95 34.47 315.87 3.70 0.9920 4.06
AR-Drag 0.44 28.98 187.49 4.07 0.9948 4.37

The KV cache is set to hold 7 frames; when updating the cache, the oldest frame is removed if
the cache exceeds this size. All training is performed using the AdamW optimizer (Loshchilov &
Hutter, 2017) with a learning rate of 1 × 10−5, on 8 NVIDIA H20 GPUs. For evaluation, we cu-
rate a new benchmark consisting of 206 video clips covering diverse motion trajectories and scene
variations, specifically designed to assess motion controllability.

Metrics. We adopt standard metrics such as Fréchet Inception Distance (FID) (Seitzer, 2020),
Fréchet Video Distance (FVD) (Unterthiner et al., 2018), and Aesthetic Quality (Schuhmann, 2022)
to quantitatively evaluate visual quality. To assess motion controllability, we employ two comple-
mentary measures: Motion Smoothness (Huang et al., 2024), which captures the stability of motion
across frames, and Motion Consistency, which evaluates the alignment between control trajectories
and the resulting motion dynamics, computed using our proposed reward model. We report first-
frame latency calculated on a single NVIDIA H20 GPU as an indicator of real-time performance.

Baselines. We compare our method against strong open-source motion-guided VDMs, including
DragNUWA (Yin et al., 2023), DragAnything (Wu et al., 2024), Tora (Zhang et al., 2025) and
Magicmotion (Li et al., 2025a). Following prior work (Zhang et al., 2025), we improve DragNUWA
by adoping its motion trajectory design to a DiT-based architecture. Tora is the first one to apply
DiT in this task, and MagicMotion further support complex trajectories-based controls. Since no AR
motion-control I2V baseline is available, we fine-tune a chunk-wise AR VDM, Self-Forcing (Huang
et al., 2025), which was originally designed for text-to-video (T2V) generation. Specifically, we
fine-tune Wan2.1-1.3B-I2V following the Self-Forcing architecture and training procedure using the
same datasets as AR-Drag. In this adaptation, the model denoises three latents simultaneously in
each denoising loop to achieve effective motion controllability.

4.1 RESULTS

Quantitative comparisons. The overall performance comparisons are reported in Tab. 1, leading to
the following key observations: Our method significantly reduces latency. It requires only 0.44s,
while bidirectional approaches such as Tora take 176.51s—less than 1% of their latency. For the 5B
model MagicMotion, the latency is even higher at 1426.37 s. Thanks to the few-step distillation and
causal design, our model can produce results immediately once the first frame is generated..

Despite being a few-step autoregressive design, AR-Drag still delivers the best visual quality.
Specifically, it achieves the lowest FID and FVD, as well as the highest Aesthetic Quality, re-
flecting superior visual fidelity and temporal coherence. In terms of motion control metrics, our
model attains the highest motion smoothness and consistency, highlighting its strength in precise
and stable motion control. This contributes to our RL post training, which incentivizes the model’s
ability to follow motion guidance, enabling more flexible and robust controllability. Remarkably,
AR-Drag even outperforms the 5B MagicMotion, particularly on motion-control. MagicMotion
does not utilize RL training, which limits its ability to achieve fine-grained, highly flexible control.

Self-Forcing baseline also adopts a few-step AR design, but requires 0.95s—more than twice our
latency—since it denoises three frames simultaneously. Moreover, AR-Drag outperforms Self-
Forcing in both visual quality and motion control. These results demonstrate the effectiveness of
our RL post-training and Self-Rollout for real-time motion-controllable video generation.

Qualitative comparisons. We conduct qualitative comparisons with three competitive baselines,
Tora, MagicMotion and Self-Forcing. As shown in Fig. 3, we evaluate across different prompts,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Tora

Self-Forcing

AR-Drag

(a) Prompt: a brown dog, shaking its head, 
sits on a light-colored sofa in a cozy room.

(b) Prompt: motion along trajectories

Self-Forcing

(c) Prompt: the person takes off their clothes, 
with the hands and garments moving along the trajectory. 

(d) Prompt: the hair or clothes of the character are blown 
by the wind, following the trajectory.

AR-Drag

MagicMotion

Figure 3: Qualitative comparisons with Tora and Self-Forcing across different prompts, data do-
mains, and resolutions, demonstrating the superior fidelity and controllability of our method.

Table 2: Ablation study on key training strategies. ‘w/o RL’ denotes removing the RL post-training.
‘Initial model’ refers to Wan2.1-1.3B-I2V prior to adaptation. ‘Teacher model’ is the fine-tuned
multi-step bidirectional model. ‘w/o Self-Rollout’ denotes training without the Self-Rollout design.

Method Latency (s) ↓ FID ↓ FVD ↓ Aesthetic
Quality ↑

Motion
Smoothness ↑

Motion
Consistency ↑

AR-Drag 0.44 28.98 187.49 4.07 0.9948 4.37
w/o RL 0.44 31.65 210.35 3.92 0.9926 4.12
Initial model 45.72 35.94 303.16 3.84 0.9915 3.22
Teacher model 45.64 29.38 151.46 4.15 0.9941 4.36
w/o Self-Rollout 0.44 38.13 353.75 3.38 0.9904 4.02

ranging from specific actions such as head shaking and taking off clothes, to more general motions
such as following a trajectory. We further compare performance on both synthetic data (a), (c), (d)
and real-world data (b), as well as across different resolutions. Since Tora only supports a fixed
resolution, the resolution-based comparison in (c) and (d) is conducted only against Self-Forcing.
For clarity, we visualize the entire trajectory across frames in blue and highlight the control signal
of the current frame in red. The reference image is provided for the first frame. Since the same
negative prompt is applied to all videos, only the positive prompt is shown.

As illustrated in Fig. 3(a&b), Tora and MagicMotion struggle to maintain consistency with the con-
trol signals. Self-Forcing achieves partial controllability but suffers from noticeable deformation and
severe quality degradation. In contrast, our method delivers superior fidelity and control alignment.
Furthermore, as shown in Fig. 3(c&d), Self-Forcing exhibits substantial detail loss—particularly
in fine structures such as fingers and hair strands—and suffers from increased color saturation in
(c), whereas our method consistently preserves high-quality details and maintains faithful motion
control.

4.2 ABLATION STUDIES

In Tab. 2, we present the ablations on key training strategies.
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AR-Drag Teacher Model

w/o Self-Rolloutw/o RL

Figure 4: Ablation on key training strategies. Prompt: movement following the trajectory.

w/o RL. Removing reinforcement learning leads to a noticeable drop in both quality and motion-
related metrics, highlighting the importance of RL in enhancing fidelity and motion controllability.

Initial model. The initial Wan2.1-1.3B-I2V model performs worse than our base model (w/o RL)
on video quality and have a high latency, demonstrating that our motion fine-tuning and real-time
post-training strategies provide a strong foundation for RL training.

Teacher model. The teacher model, a fine-tuned bidirectional multi-step baseline, achieves strong
performance but suffers from high latency. While it represents the upper bound of DMD-based
method, our AR-Drag achieves comparable or even better results in FID, Aesthetic Quality, Motion
Smoothness, and Motion Consistency, confirming the effectiveness of our RL approach.

w/o Self-Rollout. Removing the Self-Rollout design leads to severe quality degradation, under-
scoring its necessity for maintaining the Markov property and mitigating the train-test mismatch in
autoregressive generation.

Visualization. Since the initial model performs significantly worse, we exclude it from the com-
parison. As shown in Fig. 4, due to the absence of the feet in the reference image, both the teacher
model and the model without RL fail to generate clear foot details, reflecting limited generalization.
In contrast, our RL-based method encourages exploration, enhancing the model’s generalization ca-
pability. Additionally, the model w/o RL exhibits increased color saturation, while the model with-
out Self-Rollout suffers from severe image artifacts and quality degradation, caused by the train–test
discrepancy and the disruption of the Markov property.

Visualization on diverse motion. We show qualitative results of our model conditioned on different
motion trajectories in Fig. 5. The results demonstrate that our method can accurately follow diverse
motion commands, while preserving visual quality, and temporal consistency across frames.

5 DISCUSSION

To better clarify our contributions and limitations, we discuss the two key technical components of
AR-Drag along with its primary limitation.

Difference between Self-Rollout and Self-Forcing. Applying GRPO to AR VDMs requires the
base model to follow the Markov Decision Chain. However, standard AR VDMs exhibit a train-
ing–inference gap—training conditions on ground truth while inference conditions on generated
frames—breaking the Markov property and preventing direct GRPO training. Self-Forcing partially
reduces this gap by using self-generated frames as KV cache (Alg. 2), but it skips remaining de-
noising steps and thus still violates the MDP. Our Self-Rollout enforces the full denoising rollout
for every frame, restoring the proper Markov structure. This simple but critical correction makes
RL training valid and leads to clear performance gains, as shown in Table 1, Figure 3, and the ‘w/o
Self-Rollout’ ablations in Table 2 and Figure 4.
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Figure 5: Visualization on diverse motion. Prompt: movement following the trajectory.

Importance of selective stochastic sampling. In bidirectional VDMs, frames are denoised jointly,
so the decision-chain length equals the number of denoising steps. In AR VDMs, however, frames
are denoised sequentially, making the chain length scale with denoising steps × frame count, leading
to extremely long horizons. This causes return variance to explode and gradient estimates to be-
come unusably noisy, making direct GRPO (or any policy-gradient method) practically infeasible.
Our selective stochasticity sampling provides controlled exploration at each step without triggering
variance explosion, enabling stable and sample-efficient GRPO training for AR video generation.

Limitation of AR-Drag. Our generative model is trained on data that follows physical plausibility,
and our reward model is also designed to evaluate motion based on physical principles. Therefore, if
a user intentionally provides highly exaggerated or physically impossible control signals, the model
may not strictly follow such inputs because they fall outside the distribution it is trained and rewarded
to respect. Handling deliberately non-physical or cartoon-like motion is an interesting direction for
future work, and we believe extending controllability beyond physically plausible dynamics is a
valuable avenue for exploration.

6 CONCLUSION

We present AR-Drag, the first RL-enhanced few-step autoregressive video diffusion model for
real-time motion-controllable image-to-video generation. By combining selective stochasticity, and
a trajectory-based reward model, our approach effectively addresses the challenges of quality degra-
dation, motion artifacts, and complex control spaces in few-step AR video generation. Extensive
experiments demonstrate that AR-Drag achieves high visual fidelity, precise motion alignment,
and significantly lower latency compared with state-of-the-art motion-controllable VDMs, while
maintaining a compact model size of only 1.3B parameters.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work presents a method for real-time controllable video generation. Our experiments are con-
ducted on de-identified datasets that do not contain personally identifiable information. The study is
intended solely for scientific research, and we adhere to the ICLR Code of Ethics regarding fairness,
integrity, and responsible use of data and models.

REPRODUCIBILITY STATEMENT

We provide detailed implementation settings, including model architecture, training objectives, op-
timization strategies, and hyperparameters in the main text and Appendix. The code, configuration
files, and instructions for reproducing the main experiments are available in Supplementary Materi-
als to facilitate verification and further research.
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Algorithm 1 Self-Rollout Training

Require: Denoising schedule {t0, t1, . . . , tN}, Number of frames M + 1, model Gθ,
{c0, c1, . . . , cN}

1: loop
2: Initialize model output Xθ ← [],KV cache KV← []
3: Sample s ∼ Unif{1, . . . , N}
4: for m = 0 to M do
5: Initialize xm,0 ∼ N (0, I)
6: for n = 0 to s do
7: if n = s then ▷ Ensure all denoising steps could be optimized
8: Enable gradient computation
9: x̂m,N ← Gθ(xm,s, ts, cm,KV)

10: Xθ.append(x̂m,N )
11: else
12: Disable gradient computation
13: x̂m,N ← Gθ(xm,n, tn, cm,KV)
14: Sample ϵ ∼ N (0, I)
15: x̂m,k−1 ← Ψ(x̂m,N , ϵ, tk−1)
16: end if
17: end for
18: x̂m,s+1 ← Ψ(x̂m,N , ϵ, ts+1)
19: for n = s+ 1 to N do
20: if n = s then ▷ Enforce the MDP defined in Eq. 9
21: x̂m,N ← Gθ(xm,s, ts, cm,KV)
22: kvm ← Gθ(x̂m,N ,KV) ▷ Update KV cache with the right generation
23: KV.append(kvm)
24: else
25: x̂m,N ← Gθ(xm,n, tn, cm,KV)
26: Sample ϵ ∼ N (0, I)
27: x̂m,n+1 ← Ψ(x̂m,N , ϵ, tn+1)
28: end if
29: end for
30: end for
31: Update θ on Xθ

32: end loop

A MORE DETAILS ABOUT ARCHITECTURE

To better illustrates the difference between Self-Rollout and Self-Forcing, we provide the detailed
training process in Alg. 1 and Alg. 2, respectively. As shown in Line 7 of Alg. 2, Self-Forcing
randomly selects ts from denoising schedule and use the output at this step to compute loss (Line
9), ensuring that all denoising steps could be optimized. However, it directly treats the output at
this intermediate denoising step as the final generated clean frame (Line 8), and uses it to update the
KV cache (Line 10). This skips the remaining denoising steps from s to N, which breaks the MDP
defined in Eq. 9. And the incorrect KV cache subsequently affects future generation. To address
this issue, our Self-Rollout continues the denoising process all the way to step N , enforcing the full
MDP transition defined in Eq. 9. This complete rollout is implemented in Lines 18–28 of Alg. 1.

In addition, we also provide the pseudo-code of Self-Rollout and Self-Forcing in Listing 1 and 2.

B MORE EXPERIMENTAL SETTINGS

B.1 DATA CURATION

We construct our training corpus by combining both real and synthetic videos to cover diverse mo-
tion patterns. For the real videos, we directly collect footage from real-world sources. For the syn-
thetic videos, we use Wan2.1-14B-I2V to generate videos containing a wide range of motion types

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 Self-Forcing Training

Require: Denoising schedule {t0, t1, . . . , tN}, Number of frames M+1, model Gθ, control signals
{c0, c1, . . . , cN}

1: loop
2: Initialize model output Xθ ← [],KV cache KV← []
3: Sample s ∼ Unif{1, . . . , N}
4: for m = 0 to M do
5: Initialize xm,0 ∼ N (0, I)
6: for n = 0 to s do
7: if n = s then ▷ One-step collapse from s to N, which skip steps in MDP
8: x̂m,N ← Gθ(xm,s, ts, cm,KV)
9: Xθ.append(x̂m,N )

10: kvm ← Gθ(x̂m,N ,KV) ▷ Update KV cache with the collapsed generation
11: KV.append(kvm)
12: else
13: x̂m,N ← Gθ(xm,n, tn, cm,KV)
14: Sample ϵ ∼ N (0, I)
15: x̂m,n+1 ← Ψ(x̂m,N , ϵ, tn+1)
16: end if
17: end for
18: end for
19: Update θ on Xθ

20: end loop

but without control signals. In total, we gather approximately 10,000 videos. We then generate
trajectory-based control signals using an automatic detector, followed by manual filtering to remove
videos containing sensitive content, low-quality samples, or incorrect trajectories. For challenging
scenarios, such as severe occlusion or fast motion, we curate a high-quality subset of approximately
3,000 videos, all of which are fully annotated by human annotators. Control signals include motion
trajectories, prompts, and reference images. For motion trajectories, to better simulate actual user
interactions, we represent each point as a bright spot with intensity ranging from 0 to 1 rather than a
single isolated coordinate, mimicking the user’s touch force on each frame.

For prompts, we provide both negative and positive prompts. The negative prompt is shared across
all videos and follows the template:

Negative Prompt Template

Overly vivid colors, overexposed, static, blurry details, subtitles, style, artwork, frame, still,
overall grayish, worst quality, low quality, JPEG compression artifacts, ugly, incomplete,
extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, malformed
limbs, fused fingers, motionless frame, cluttered background, three legs, many people in the
background, walking upside down.

For positive prompts, we include either general motions along trajectories or specific actions to guide
the desired video content.

To handle videos of varying resolutions, we define a set of predefined “bucket sizes” and resize
each input video to its nearest bucket. The buckets include resolutions such as 480×368, 400×400,
368×480, 640×368, and 368×640. This strategy ensures consistent input dimensions while preserv-
ing aspect ratios as much as possible.

B.2 IMPLEMENTATION DETAILS

We implement our base model using Wan2.1-1.3B-I2V Wan et al. (2025), employing a 3-step dif-
fusion process with N = 3, and timesteps t0 = 1000, t1 = 755, t2 = 522, t3 = 0. We set chunk
size as 1, cache size as 7. For distillation post training, we set DMD loss weight as 1, generator loss
weight as 0.1, discriminator loss as 0.05.
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1 def self_rollout_training(model, x_gt, cond_list, schedule):
2 # schedule = [t_0, t_1, ..., t_N], len(schedule) = N+1
3 # cond_list = [c_0, c_1, ..., c_M]
4 M = len(cond_list) - 1
5 X_theta = [] # collect supervised clean predictions
6 KV = [] # KV cache
7

8 # Sample random supervised prefix length
9 s = random.randint(0, N) # Unif{0, ..., N}

10

11 for m in range(M+1):
12 c_m = cond_list[m]
13 x = torch.randn_like(x_gt[m]) # x_{m,0} ˜ N(0,I)
14

15 # ===Phase 1: Supervised prefix (0 to s) ===
16 for n in range(s + 1): # n = 0,1,...,s
17 if n == s:
18 # Last supervised step: gradient flows
19 torch.enable_grad()
20 # predict clean frame
21 x_hat_N = model(x, schedule[n], c_m, KV)
22 X_theta.append(x_hat_N)
23 else:
24 torch.no_grad()
25 x_hat_N = model(x, schedule[n], c_m, KV)
26 epsilon = torch.randn_like(x_hat_N)
27 x = reverse_step(x_hat_N, epsilon, schedule[n+1])
28 x = reverse_step(x_hat_N, epsilon, schedule[s+1])
29 # ===Phase 2: Self-generated rollout (s+1 to N) ===
30 torch.no_grad()
31 for n in range(s + 1, N + 1):
32 # Final step: update KV cache
33 if n == N:
34 x_hat_N = model(x, schedule[n], c_m, KV)
35 # extract KV from clean frame
36 kv_m = model.get_kv(x_hat_N, KV)
37 KV.append(kv_m)
38 else:
39 x_hat_N = model(x, schedule[n], c_m, KV)
40 epsilon = torch.randn_like(x_hat_N)
41 x = reverse_step(x_hat_N, epsilon, schedule[n+1])
42

43 # Update model using DMD loss on collected clean frames
44 loss = loss_func(X_theta, x_gt)
45 loss.backward()
46 optimizer.step()
47 optimizer.zero_grad()

Listing 1: Pseudo code for Self-Rollout

C MORE ANALYSIS

C.1 PARAMETER ANALYSIS

We conduct parameter analysis, as shown in Tab. 3.

Chunk size. Typical AR VDMs operate in a chunk-wise manner, applying bidirectional attention
within each chunk and causal attention across chunks. During inference, chunk-wise AR VDMs
denoise all frames in a chunk simultaneously, which introduces some latency. In contrast, our ap-
proach adopts a frame-wise strategy, denoising one latent at a time. While this increases the potential
for error accumulation, the combination of Self-Rollout and RL post-training allows us to achieve
comparable performance even with a chunk size of 3.
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1 def self_rollout_training(model, x_gt, cond_list, schedule):
2 # schedule = [t_0, t_1, ..., t_N], len(schedule) = N+1
3 # cond_list = [c_0, c_1, ..., c_M]
4 M = len(cond_list) - 1
5 X_theta = [] # collect supervised clean predictions
6 KV = [] # KV cache
7

8 # Sample random supervised prefix length
9 s = random.randint(0, N) # Unif{0, ..., N}

10

11 for m in range(M+1):
12 c_m = cond_list[m]
13 x = torch.randn_like(x_gt[m]) # x_{m,0} ˜ N(0,I)
14

15 # ===Phase 1: Supervised prefix (0 to s) ===
16 for n in range(s + 1): # n = 0,1,...,s
17 if n == s:
18 # Last supervised step: gradient flows
19 torch.enable_grad()
20 # predict clean frame
21 x_hat_N = model(x, schedule[n], c_m, KV)
22 X_theta.append(x_hat_N)
23 # extract KV from collapsed generation
24 kv_m = model.get_kv(x_hat_N, KV)
25 KV.append(kv_m)
26 else:
27 torch.no_grad()
28 x_hat_N = model(x, schedule[n], c_m, KV)
29 epsilon = torch.randn_like(x_hat_N)
30 x = reverse_step(x_hat_N, epsilon, schedule[n+1])
31 x = reverse_step(x_hat_N, epsilon, schedule[s+1])
32

33

34 # Update model using DMD loss on collected clean frames
35 loss = loss_func(X_theta, x_gt)
36 loss.backward()
37 optimizer.step()
38 optimizer.zero_grad()

Listing 2: Pseudo code for Self-Forcing.

Table 3: Parameter analysis.

Method Latency (s) ↓ FID ↓ FVD ↓ Aesthetic
Quality ↑

Motion
Smoothness ↑

Motion
Consistency ↑

AR-Drag 0.44 28.98 187.49 4.07 0.9948 4.37

chunk size 3 0.94 27.47 179.23 4.09 0.9945 4.37

cache size
15 0.44 28.96 188.08 4.07 0.9946 4.34
25 0.46 28.99 185.31 4.05 0.9948 4.39

Cache size. We set the KV cache size to 7 in our experiments. During inference, when the cache
exceeds this length, the earliest frame is removed to maintain the fixed size. We observe that varying
the cache size has little impact on the final performance, indicating that our method is robust to
different cache lengths.

C.2 VISUALIZATION OF REWARD CURVES.

Fig. 6 illustrates the training dynamics of our two reward signals: Smoothed Motion Consistency
Reward and Smoothed Aesthetic Quality Reward. Both curves show a clear upward trend as training
progresses, reflecting the model’s improving ability to maintain coherent motion and generate vi-

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600
Step

4.200

4.225

4.250

4.275

4.300

4.325

4.350

4.375

Va
lu

e

(a) Smoothed Motion Consistency Reward
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Figure 6: Smoothed Reward Curves for Motion Consistency and Aesthetic Quality

sually appealing outputs. The motion consistency reward rises steadily, indicating better alignment
with the target trajectories, while the aesthetic reward demonstrates rapid gains in the early stages
followed by a slower convergence, suggesting progressive refinement in visual quality. Together,
these smoothed reward curves highlight the effectiveness of our reinforcement learning design in
balancing motion control and perceptual quality.

D LLM USAGE STATEMENT

ChatGPT was employed solely for minor editorial assistance, such as improving grammar and read-
ability. The research ideas, methodology, experiments, and analysis were entirely developed and
conducted by the authors without the use of LLMs.
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