Under review as a conference paper at ICLR 2026

THINKING SPARKS!: EMERGENT ATTENTION HEADS
IN REASONING MODELS DURING POST TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

The remarkable capabilities of modern large reasoning models are largely un-
locked through post-training techniques such as supervised fine-tuning (SFT) and
reinforcement learning (RL). However, the architectural mechanisms behind such
improvements remain largely opaque. In this work, we use circuit analysis to
demonstrate that post-training for complex reasoning sparks the emergence of
novel, functionally specialized attention heads. These heads collectively support
structured reasoning and computation. Our comparative analysis across Qwen
families and Qwen-based DeepSeek-distilled model reveals that these emergent
heads evolve differently under different training regimes. Distillation and SFT
foster a cumulative addition of stable reasoning heads. In contrast, group relative
policy optimization (GRPO) operates in a dynamic search mode: relatively few
attention heads are iteratively activated, evaluated, and pruned, with their survival
closely tracking fluctuations in the task reward signal. Furthermore, we find that
controllable “think on/off” models do not possess dedicated “thinking” heads.
Instead, turning off explicit reasoning triggers a broader—but less efficient—set
of compensatory heads. Through ablation and qualitative analyses, we connect
these circuit-level dynamics to a crucial performance trade-off: strengthened heads
enable sophisticated problem-solving strategies for difficult problems but can also
introduce “over-thinking” failure modes, such as calculation errors or logical loops
on simpler tasks. These findings connect circuit-level dynamics to macro-level
performance, identifying an inherent tension where complex reasoning comes at
the cost of elementary computations. More broadly, our work points to future direc-
tions for training policy design, emphasizing the need to balance the development
of effective reasoning strategies with the assurance of reliable, flawless execution.

1 INTRODUCTION

The advent of large reasoning models (LRMs), such
as OpenAl o-series (Jaech et al. 2024} [OpenAlL
[2025b) and DeepSeek-R1 (Guo et al., 2025), has

marked a significant milestone in artificial intel-
ligence, demonstrating unprecedented ability in
solving complex, multi-step problems. These mod-
els typically employ Chain-of-Thought (CoT) pro-
cess (Wei et all 2022b)), generating an explicit
sequence of reasoning steps before arriving at a
final answer. This capability is substantially en-
hanced by extensive post-training methods, primar-
ily supervised fine-tuning (SFT) and reinforcement
learning (RL) 2024; [Xi et al} [2024;
Mukherjee et al., 2025), and by allocating more
test-time compute during inference (Zhang et al.)

2025b} [Wu et al| 20250} [Snell et al}, [2025).

Despite their empirical success, the mechanisms
by which these methods enhance reasoning remain
largely unclear. This opacity presents a significant

- User: ... Let's think step by step and output ...

? ®

) | Assistant: <think> Okay, so I have this problem...

Figure 1: Reasoning circuits trace the internal com-
putations of LRMs at each checkpoint. After post-
training, newly activated attention heads influence
the performance at those checkpoints.

Under review as a conference paper at ICLR 2026

(A) (B) train/rewards/accuracy_reward/mean
Emerging Attention Head During GRPO

0.1 W
train/global_step

500 1k 1.5k 2k 2.5k

(C) Attention Head Change from Base to Final Checkpoint

o

Number of Attention Head Nodes

Node Groups
mmm Born at Step 100 WM Born at Step 400 MWW Born at Step 1400 Born at Step 2500 == Maintained Nodes
= Born at Step 300 Wm Born at Step 800 Born at Step 2000 —— Newly Activated Nodes.

. D 1.00
|-
|]
.]
in "
T . =0.25
- m |-
200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 . ors
Checkpoint Step . . .
0

8 12 1
Layer IDs.

Figure 2: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during GRPO. (A) denotes
a cohort analysis of attention head activation across trained checkpoints. The blue line tracks the
absolute number of newly activated heads compared to the base model, while the red dashed line
indicates the number of original heads that are maintained. The stacked areas represent cohorts of
heads, color-coded by the checkpoint at which they first emerged, showing their persistence and
evolution over time. The fluctuation in newly activated heads shows a similar trend to the (B),
accuracy reward curve. (C) shows a heatmap detailing the changes in activation frequency. Red cells
denote heads from the original base model, with fading intensity indicating their gradual deactivation.
Blue cells represent newly emerged heads, with darker shades signifying higher activation frequency
across checkpoints. Heads active in the final checkpoint are outlined with a black border.

challenge. For instance, post-trained models often suffer from the “overthinking problem”
2024}, [Sui et all, [2023)), generating excessively long and computationally expensive reasoning chains
even for simple tasks, which highlights a critical need for more efficient and adaptive strategies
et alll 2025}, [Zhang et al.},[2025c)). Furthermore, the community lacks a clear understanding of the
fundamental differences between post-training paradigms. Recent studies have debated whether
these methods instill genuinely new problem-solving skills or merely amplify latent capabilities
already present in the base model (Rajani et al., 2025 [Yue et all, 2025} Ma et al,[2025)). Motivated
by these trade-offs, several works have proposed “Think On/Off” controls to manually modulate
reasoning depth (Wu et al.} 20252}, [Yang et al.l 2025; [OpenAlL [20254). However, without a granular
understanding of how post-training alters a model’s internal mechanism, efforts to improve reasoning
are confined to trial-and-error adjustments of training data and resources (Mukherjee et al., 2025).

In this work, we bridge this gap by shifting the analysis from high-level performance metrics to a
low-level mechanistic investigation of the model’s internal workings. We employ circuit analysis, a
powerful tool of mechanistic interpretability, to identify and characterize functional subgraphs within
the transformer architecture (Vaswani et al.} that are responsible for specific behaviors (Olah|
let all 2020; [Elhage et al, 2021; Wang et al., 2023}, Bereska & Gavves|,[2024; [Lindsey et al}[2025).
By applying these lens, we trace the formation of specialized groups of attention heads through
reasoning circuits that emerge as a direct consequence of post-training procedures. This direction is
motivated by preliminary findings that particular attention heads correlate with the quality and length
of a model’s reasoning (Voita et al.|[2019; [Cabannes et al., 2024} [Reddy}, [2024).

Our investigation and ablation study yield a series of clear, mechanistically insightful findings:

1. Distillation and SFT: We find that distillation and SFT induce a large amount of newly
emergent heads in circuits. Distillation heads are mostly found in early-mid layers, whereas
SFT heads are focused on mid-to-late layers. They effectively instill complex reasoning
with a considerable proportion of attention heads, which also have a potential of confusion.

2. Group Relative Policy Optimization (GRPO): A prominent RL algorithm, GRPO, engages
in dynamic search for reasoning attention heads during the training process, mirroring
fluctuations of the task reward signal. Its targeted, minimal, but high-impact edits optimize
the use of existing knowledge and computational pathways, not building entirely new ones.

Under review as a conference paper at ICLR 2026

3. Thinking On/Off: While think on mode does not have its own exclusive reasoning heads,
think off mode activates enormous attention heads to compensate performance gaps. Dis-
abling or scaling down those thinking off heads temporally boosts its performance, but those
heads are crucial asset for robust problem solving when the sampling coverage increases.

2 PRELIMINARIES

2.1 CIRCUIT ANALYSIS FOR MECHANISTIC INTERPRETABLE TOOL

Transformer circuit models the internal computation of its architecture as a directed acyclic graph
(DAG) G = (N, E), where each node in N corresponds to a distinct component in the model:
attention heads A; ; (at layer [and head j), MLP modules M; for each layer, the input node I
(embeddings) and the output node O (logits), following (Nanda et al.| 2023} |Conmy et al., 2023}
Ameisen et al., [2025)):

N = {I7Al,j;MlvO}' (1)
Edges F encode how each node’s output contributes to later layers’ residual stream inputs:
E = {(ng,ny) | ng,ny € N}. 2)

A circuit is defined as a subgraph C' C (N, E) selected to explain a specific behavior, e.g, how
certain tokens influence the model’s output or how factual knowledge is stored and elicited (Yao et al.
2024 |Ou et al., 2025} [Park et al., 2025). We specifically implement edge attribution patching with
integrated gradients (EAP-IG) which improves faithfulness, wherein ablating all non-circuit edges
preserve task performance (Nanda, |2023; Hanna et al.| [2024).

Let (u—wv) € E and denote the clean activation by z and a corrupted activation by z’. We define
the input difference to the edge as Az, = z,, — z/,. Following integrated gradients rule, we average
gradients along the straight-line path from 2’ to z. Then we take gradients with respect to the input of
node v (i.e., v’s pre-activation into the residual stream) and use a task-agnostic divergence such as
KL as £. The EAP-IG edge score is

; 3

z’+£(zfz’)

1 o= 0Lz + (2 —2))
score(u—v) = Az, —]; 0 (input of v)

where m is the number of Riemann-sum steps approximating the IG path integral. We rank edges by
equation |3|and select a sparse set by fop-n selection. Lastly, we prune isolated nodes and validate
faithfulness via post-hoc interventions: ablate all non-circuit edges (e.g., patching to baseline) and
check that task performance is preserved.

3 IDENTIFYING EMERGENT ATTENTION HEADS WITH CIRCUITS

To systematically compare how different post-training paradigms change a model’s internal mech-
anisms, we design a rigorous experiment based on circuit analysis. Our methodology focuses
on identifying and validating the causal roles of emergent attention head circuits. Details of the
experimental setup are provided in Appendix moved there due to space limitations.

3.1 CIRCUIT DISCOVERY & ABLATION INFERENCE

Our core methodology for identifying emergent reasoning circuits is a practical application of causal
analysis, using ablation as a proxy for more complex patching experiments. The process is as follows:

1. Circuit Mapping: For a given task (e.g., solving an AIME problem), we first map the active
computational graph for both the baseline model and a post-trained model. As the circuit
is structured with pairs of prompts, clean and corrupted, we set clean prompts designed to
elicit the reasoning behavior by sampling the answer of each model category.

¢ Baseline model: Answer sets such as “To determine the molecular ...” or “We’ll use
Python to help us solve ...”.

* Reasoning model: Answer sets right after <think> such as “Okay, so I have this
problem ...” and “Alright, so I need to find ...”. Samples can be found in

Under review as a conference paper at ICLR 2026

Table 1: List of emergent attention heads found through circuits. L and H refers to the layer and
head indices, respectively. Circuits are constructed using AIME’24 benchmark as input. For each
post-training methods, we describe newly emergent attention heads. Visualization of total reasoning
heads aggregation in single model architecture is in Figure

Post-Training List of Emergent Attention Heads in Circuits # of Heads
Qwen-2.5-Math-1.5B (Baseline) LOH7, L21H10, L2H6, L11H1, L14H10 ... 56
DeepSeek-R1-Distill-Qwen-1.5B L5H0, L5H2, L5H4, L6H10, L7H7 ... 32
SFT with OpenR1-Math-220k LOH8, L11H3, L3H3, L5H1, L7H3 ... 34
GRPO with OpenR1-Math-220k ~ LOH8, L5H1, L7H1, L18H11l, L11HS8 ... 19
GRPO with GSMSK LOH8, L5H1, L7H2, L3H3, L21H2 ... 20

2. Identifying Emergent Components: By comparing circuits of the post-trained model to
that of the baseline model, we identify the set of “emergent heads”—those that are active in
the post-trained model but not in the baseline. These heads represent the structural changes
induced by the training process. We specifically pick Qwen families for pair comparison.

3. Causal Validation via Ablation: To confirm that these emergent heads are causally re-
sponsible for the new reasoning capabilities, we perform ablation inference. We run the
post-trained model on the evaluation benchmarks but surgically disable the emergent heads
by zeroing out their outputs. A difference in performance on the target task, compared to the
intact post-trained model, serves as strong causal evidence that these heads form a critical
part of the newly acquired reasoning circuits.

4. Head Activation Scaling: Furthermore, we scale up/down activations of each reasoning
head in baseline model with their attention head index (layer num and head num). We then
find out the difference in performance both quantitatively and qualitatively.

Figure[I] shows the overall process of our circuit findings. And Figure [TT]to[I3]visualize circuits.

4 IN-DEPTH ANALYSIS ON SFT & DISTILLATION

Our investigation reveals that different post-trainings do more than simply fine-tuning a model’s
parameters—they fundamentally reshape its internal architecture by activating new attention heads.

4.1 DISTILLATION HEADS STRONGLY AFFECT TO PERFORMANCE

The primary finding is that distillation induces a set of new, consistently activated attention heads that
are not present in the baseline circuits for the same tasks like AIME’24 and AMC, as in Table|l|and
Figure[I0] Although two-thirds of the attention head nodes and all MLP nodes active in the baseline
model remain active in the distilled one as well, the number of these new heads is significant. They
represent an addition to the model’s existing machinery rather than a complete replacement, indicating
that distillation builds upon the pretrained foundation by writing in new, specialized components.

To validate the functional role of these newly identified heads, we perform attention head ablation
experiments. We systematically deactivate a set of emergent reasoning heads in the distilled model
and measure its performance. The results as in Table 2] demonstrate a consistent degradations in
performance across all benchmarks, e.g., AIME’24 pass@1 drop from 30 to 26.6. Although the
drop rate is smaller in GPQA and AMC as emergent reasoning heads are usually from the circuits of
AIMEzs, the degradation remains significant. We also compare their effectiveness against other heads,
base model-exclusive heads with same benchmarks and Heads from TriviaQA circuits. Here, as 1.5B
model is too sensitive for head ablation like the case of TriviaQA heads, leading to the score of zero,
ablating base model heads in 7B model is quite interesting as its overall performance goes up across
various benchmarks. This provides a hint that not all attention heads emerging from post-training are
important for reasoning, or they can confuse the model when finding the suitable solution.

4.2 SFT INTRODUCES LARGE AMOUNT OF ATTENTION HEADS IN MIDDLE-TO-LATE LAYERS

We reproduce a method where SFT is applied to mimic reasoning traces, approximating the effect of
distillation. Following we train baseline model with OpenR 1-Math-220k dataset and construct

Under review as a conference paper at ICLR 2026

Table 2: Reasoning Head Ablation Inference for DeepSeek-R 1-Distill-Qwen-1.5B and 7B. Every
performance is measured with pass@1 score with temperature 0.6 and 32k context length. Each
ablation cases make the value of specific attention heads, around 5 to 10 number of heads from its
circuit results, into zero for checking its importance for reasoning tasks. We color some scores into
red which is the most degraded results except no ablation baseline, while the bold is the completely
ruined performance. We also color performance increase with green when its heads are ablated.

Model Method AIME’24 AIME’25 GPQA AMC
No Ablation 30.0 26.6 18.6 66.2
DeepSeekR1-Distill ~ Ablation with Reasoning Heads 26.6 16.6 17.1 59.0
Qwen-1.5B Ablation with Base Model Heads 30.0 233 12.1 53.0
Ablation with TriviaQA Heads 0.00 0.00 0.00 0.00
No Ablation 40.0 43.3 35.3 81.9
DeepSeekR1-Distill ~ Ablation with Reasoning Heads 53.3 46.6 35.8 78.3
Qwen-7B Ablation with Base Model Heads 53.3 433 37.3 83.1
Ablation with TriviaQA Heads 50.0 50.0 343 79.5

circuits for each 100 step checkpoints. The results are in Figure [3]and[9] Similar with DeepSeek
distillation, SFT-trained models consistently activate a large amount of additional attention heads,
and almost every head continuously survives until the training is finished. Half of them emerge at the
step 100 checkpoint, and most of them are in middle-to-late layers. This pattern of newly activated
heads tending to persist throughout training, indicates the steady construction of new pathways for
reasoning in the internals of model.

Quantitative Analysis. We conduct ablation same as with those many mid-to-late layer’s
SFT reasoning heads. When we ablate around 10 heads from mid-to-late layer, the performance of
every benchmark drops significantly, close to zero. This phenomenon is consistently observed at
multiple checkpoints, regardless of their performance. Going further, we also scale up those heads in
baseline to check its effectiveness by enhancing their activation 1.3 higher, and it reveals out those
heads introduce a trade-off of performance. Although the MATH score increases, the AMC decreases
slightly, and the AIME’24 still drops significantly.

Qualitative Analysis. When we do a comparative analysis on the newly solved and newly missed
problems at each checkpoint, we find meaningful insights into the performance trade-off. After
SFT, models try to solve questions in an over complicated way, such as replacing a one- or two-step
algebraic manipulation with long substitutions or theory first detours. This leads a net degradation,
as the number of newly introduced errors surpassed the number of resolved ones. This shows that,
although SFT installs a new, fixed piece of machinery with nudging models toward careful, procedure-
following math, it costs strategy selection and path efficiency, causing them to miss previously solved

items. Examples of qualitative analysis are in Appendix [A.4.T]and[A.5.1]

5 IN-DEPTH ANALYSIS ON GRPO

GRPO helps to find the optimal reasoning path. In stark contrast to the static installation of
emergent heads by SFT, GRPO reveals a dynamic and adaptive process of architectural refinement.
Here, emergent heads are not fixed but evolve in response to the reward signal. Like SFT, we train
baseline model with OpenR1-Math-220k and this time, also train with another dataset GSM8K shown
in §A. T} We construct circuits for each 100 step checkpoints for each dataset version, and the results
of AIME’24 circuits are in Figure[2]and Figure[6] Results of different learning rate are in the Figure[7]
And circuits with AMC is in the Figure[§] The temporal analysis of GRPO training checkpoints
shows that the set of active attention heads is in constant flux. As in Figure[2](A), the number of newly
activated heads rises and falls throughout training, and these fluctuations are strongly correlated with
the model’s accuracy reward curve while training, as shown in Figure 2] (B). Heads that emerge early
in training may be pruned later if they do not consistently contribute to positive rewards, while new
heads continue to be trialed throughout the process, even though its overall number is not that many.
This suggests an iterative search towards finding an optimal circuit configuration. Notably, the final
set of emergent heads after GRPO is small and targeted, and crucially, does not much overlap with the
mid-to-late heads by SFT, indicating that the two methods discover different functional specialization.

Under review as a conference paper at ICLR 2026

Emerging Attention Head During SFT

Attention Head Change from Base to Final Checkpoint
B B8] f
Io 75

B B N [N

O O o
. -0.25
B O B0
800 900 1,000 1100 1,200 1,300 1400

Checkpoint Step . -
Node Groups
Bom at tep 600

Figure 3: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during SFT. (A) denotes
a cohort analysis of attention head activation over training checkpoints. The blue line tracks the
absolute number of newly activated heads compared to the base model, while the red dashed line
indicates the number of original heads that are maintained. The stacked areas represent cohorts of
heads, color-coded by the checkpoint at which they first emerged, showing their persistence and
evolution over time. (B) shows a heatmap detailing the changes in activation frequency. Red cells
denote heads from the original base model, with fading intensity indicating their gradual deactivation.
Blue cells represent newly emerged heads, with darker shades signifying higher activation frequency
across checkpoints. Heads active in the final checkpoint are outlined with a black border.

This dynamic behavior is a direct mechanistic manifestation of the explore-exploit trade-off inherent
to reinforcement learning. The activation of a new head represents an exploratory step, which is a test
of a new computational strategy. The retention or pruning of that head based on its impact on the
reward signal is exploitation, where the model refines its architecture to favor strategies that work.

This circuit-level perspective provides a compelling explanation for why RL acts as a scalpel
[2025)) and results in sparse heads updates. GRPO is not overwriting the model wholesale; it
is performing a targeted search for minimal, high-impact edits to the model’s functional architec-
ture (Mukherjee et al.,[2025)) . This also clarifies why RL-trained models’ capabilities often remain
bounded by the base model’s potential 2025). GRPO is primarily optimizing the use of
existing knowledge and computational pathways, rather than building entirely new ones from scratch.

Quantitative Analysis. With the similar approach of Section [#.2} we make a difference among
the scales of each attention heads. When we scale up the activation of GRPO reasoning heads with
baseline model, up to 1.3 higher activation, we observe actual performance gain with the heads from
100 step checkpoints GRPO GSMSK circuits. The performance of MATH benchmark increases
from 56 to 60, while other benchmarks like AIME’24 and AMC decrease. Meanwhile, when we
scale up 1.3 higher for the one head emergent from 2500 step checkpoints GRPO Math-220k, the
performance of AMC goes slightly down, and MATH goes slightly up, while AIME’24 remains static.
On the other side, when we scale down by half using that same attention heads emerging from 100
step checkpoints GRPO GSMSK circuits, AIME’24 performance decreases sharply from 13.3 to 3.3.
However, MATH and AMC score increase, 56 to 63, and 38.5 to 42.1. This trade-off is impressive
as some task specific heads affect strongly to that performance, while it may harm or make model
confused to do other tasks. As heads of 100 step checkpoints GRPO GSMSK circuits are mostly
coming from AIME dataset basis, it surely affect AIME the most, while scaling down its presence
could help model to do reasoning better at other benchmarks.

Qualitative Analysis. As GRPO sharpens multi-step mathematical reasoning and problem structur-
ing, it yields better reasoning on composite word problems when we qualitatively compare it against
baseline model’s one. However, it also degrades basic numeracy, execution stability, and tool-choice
agility. For the early checkpoints of OpenR1-Math-220k and GSM8K, they show gains in symbolic
manipulation with fewer end-stage slips, yet prefer cumbersome analytic derivations over simple
programmatic checks. For mid-later checkpoints, which show lower performance than others, they
exhibit overfitting and forgetting signs for the core algebra and geometry. Overall, GRPO yields
clearer, more systematic reasoning traces and improved strategy formation, but can erode numeracy
and robustness when optimization pressure or dataset style dominates. Examples of qualitative

analysis are given in the Appendix[A.4.2]and[A5.2]

Under review as a conference paper at ICLR 2026

pass@1 Score

o o

pass@1 Score

Performance Change on "AIME" Benchmark

0.20

°

°

°
=

°
=

°

°

°
8

°
g

GRPO Training with Dataset: GSM8K
Baseline = 0.133

Applying structured,
step-by-step reasoning

& & &

Checkpoint Step

GRPO Training with Dataset: MATH220
Baseline = 0.133

Effective solving strategies

with internal code-based logic

Disconnect between describing
solution and actual computing

N

o
5 S
&

Checkpoint Step

Performance Change on "AMC" Benchmark

pass@1 Score

pass@1 Score

GRPO Training with Dataset: GSM8K

/ Baseline = 0.386

Systematically
decompose problem
with mathematical
principles

Signs of overfitting;
rigidly applying specific solving style

%

& &
Checkpoint Step
GRPO Training with Dataset: MATH220
Baseline = 0.386

)
o

%,

Errors with code execution
and stuck in function calling loop

Checkpoint Step

Performance Change on "MATH" Benchmark

0.65

°
2
g

pass@1 Score
-

°
g

0.65

°
a2
3

pass@1 Score
-

0.50

GRPO Training with Dataset: GSM8K

/ Baseline = 0.560

—

Enhanced computational reliability

& & & <
Checkpoint Step
GRPO Training with Dataset: MATH220

Baseline = 0.560
Structure complex problems into
systematic equations
Cost of stability such as
calculation mistake

AN
"

®
RS

® ® ® ® y
$§ S S S S
& 5 & B i

Checkpoint Step

Figure 4: Performance change among various benchmarks for each checkpoints of GRPO training
with two different training dataset: GSM8K (Cobbe et al.,2021) and OpenR1-Math-220k (Hugging
Face, [2025). The green and red arrow indicate impressive performance gain and lose among various
checkpoints, and the captions are the summaries of qualitative analysis. The performance trade-off
of each checkpoints is similarly reproduced when we apply attention head scaling with emergent
reasoning heads for the baseline model. Actual examples are presented in the Appendix M to E}

6 IN-DEPTH ANALYSIS ON THINK ON/OFF

Recently suggested thinking on/off functionality in models provides a unique window into how
efficient reasoning is implemented (Tu et al., [2025). Efficiently controlling reasoning level is distinct
among architectures, for example, system level routing to select between the fast model and the
deeper reasoning model (OpenAll [2025a), and using system message keyword to control reasoning
level (Agarwal et al., 2025). In this work, we implement Qwen3-8B (Yang et al.,[2025) as it enable
controlled circuit comparison under an instruct-style template with explicit thinking on/off gating
using <think> token, yielding clean think on versus off conditions.

Think off compensate performance through enormous head emerging. Our analysis suggests
that effective reasoning is not about activating monolithic reasoning heads but about selecting the
most efficient computational pathway for the task at hand. Here, circuits constructed from the
default think on mode are not composing a set of unique, reasoning-only heads. Instead, it relatively
shares most of its components with the think off mode. Interestingly, when the think process is
disabled by predefined <think>\n</think> tokens, the model activates a much larger and more
complex set of attention heads. This observation suggests that the model has internalized a highly
efficient mechanism for selecting reasoning pathway. While this differs from phenomena observed in
post-training methods like GRPO, where new reasoning-specific heads emerge, the integrated nature,
unifying a general instruction following (think off) with a reasoning capability (think on), appears
to have fostered an ability to find the most resource efficient path. When the specialized reasoning
pathway is explicitly disabled, the model compensates for it by activating a broader, more redundant
network. In contrast, the think on mode allows it to engage a specific, optimized circuit already
embedded within its structure, demonstrating an advanced form of learned computational efficiency.

Result of Head Intervention. Table [3] shows our quantitative analysis with head intervention
for each benchmark performance. We implement the attention head ablation and head activation
scale down for those heads found exclusively in think off circuits. Without thinking mode, model’s
performance drops significantly, especially for hard level benchmarks such as AIMEs. We find that
if we ablate parts of think off circuit heads in thinking off mode, the removal of overly activated
and confusing attention heads clarifies the model’s reasoning pathways, leading to improved perfor-
mance across multiple benchmarks. The most effective benchmarks are AIME’24 and 25, which
demand more complex and well structured mathematical reasoning compared with other benchmarks.
Meanwhile, scaling down the activation of those think off circuit heads in half also contributes to the
performance gain, even higher than ablation in some benchmarks like GPQA and AIME’25. It also
results in some trade off as the score of AIME’24 decreases from 30 to 20.

Under review as a conference paper at ICLR 2026

Table 3: Emergent head ablation inference for Qwen3-8B. Every performance is measured with
pass@1 score with temperature 0.6 and 32k context length, as|Yang et al.|(2025) suggested for the
best performance setting. Each ablation cases make the value of specific attention heads, around 5 to
10 number of heads from its circuit results, into zero or scale down to half for checking its importance
for reasoning tasks. As no other reasoning heads are found among thinking mode, we do ablation
only for thinking off mode. We color some scores into red for the most degraded results and green
for the most performance improvement. Ablating overstuffed attention heads in thinking off mode
increases the baseline score with minimal performance trade-offs.

Model Method AIME’24 AIME’25 AMC GPQA MATH
Think On 80.0 73.3 89.1 63.1 93.8

Qwen3-8B Think Off 30.0 13.3 67.4 44.9 81.4
Think Off & Ablation 36.6 20.0 61.4 494 83.6
Think Off & Scale Down 20.0 23.3 56.6 51.0 81.8

Performance Difference Against Coverage Com- , rassekEevalautionon AME Success@k Evalaution on AIME
parison. To further investigate performance under

varying sampling coverage, we compare the models’ *’ o7

pass@k scores on AIME’24 with up to 64 samples.

°
@

Detail of metric is in §A.3] As shown in Figure[§| 3 ¢

(left), the baseline think off model consistently main- §°* / g"-s

tains a slight performance advantage as k increases. §,, 2,

We hypothesize that its large number of active at- g / § /

tention heads facilitates the exploration of diverse ° / Cos

computational pathways, a benefit that scales with Hodel o ol
the number of samples. In contrast, the ablation and = Q?IL"TS;’SM — inn?é‘;Sown
scale down to half models exhibit a diminished ca- °u ! 6% e

2 a4 8 32 2 a4 8 32
Number of Samples k Number of Samples k

pacity to discover novel solutions at higher k values

and large n samples. This behavior is reminiscent Figure 5: Performance difference against in-
of models that, after post-training like GRPO, be- creasing coverage. The left figure shows
come locked into specific reasoning paths and fail pass@k difference when sampling coverage
to solve certain problems regardless of the increased increased, while the right figure shows effi-
coverage (Yue et al., [2025)). cient correctness with success @k.

This trade-off is more starkly illustrated when analyzing generation efficiency, success @k, which
calculates the probability of finding a correct solution within each trial, as shown in Figure [5 (right).
Here, the ablation model initially outperforms the baseline at very low sampling rates (k < 2),
suggesting that simplification of attention heads helps focus the model on a more direct and efficient
reasoning path. However, this advantage quickly vanishes as k increases, where the baseline’s
ability to explore a wider solution space becomes more fruitful. Meanwhile, the scale down model
consistently under-performs, appearing to lack both the focused efficiency of the ablated model and
the exploratory breadth of the baseline. Collectively, these results highlight the dual nature of the
numerous emergent heads in the think off mode: they can introduce noise in low-sample scenarios but
become a crucial asset for robust problem-solving when a larger computational budget is available.

7 RELATED WORK

7.1 POST-TRAINING PARADIGMS FOR REASONING MODELS

Post-training is a crucial stage that adapts a general-purpose pretrained LL.M for specialized tasks
such as complex reasoning (Zhang et al.,[2025a).

7.1.1 SUPERVISED FINE-TUNING (SFT) & DISTILLATION

Supervised Fine-Tuning (SFT) adapts a pretrained model to a specific tasks by training it on a
curated dataset of input-output examples (Wei et al.} 2022a). In the context of reasoning, a powerful
technique is to use a large, more capable “teacher” model (e.g., DeepSeek-R1 (Guo et al., [2025)) to
generate high-quality, step-by-step reasoning races, often called Chain-of-Tought (CoT) (Wei et al.,
2022b) prompts. A smaller “student” model is then fine-tuned on this synthetic dataset, learning to
mimic the teacher’s reasoning process (Kang et al.,|2023). SFT forces the student model’s output

Under review as a conference paper at ICLR 2026

distribution to match the teacher’s, and this direct and forceful adaptation often results in significant,
dense updates to the model’s parameter by memorizing specific reasoning paths (Chu et al., |2025]).
This form of knowledge distillation has proven effective for creating capable open-source reasoning
models (Toshniwal et al.| [2024)). In this work, we utilize distilled version of DeepSeek-R1 for the
corresponding Qwen2.5 Math (Yang et al., 2024)), and do SFT with sampled OpenR 1-Math-220k
dataset for comparison (Hugging Face, [2025).

7.1.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR)

Reinforcement learning (RL) offers an alternative paradigm where a model learns by interacting with
an environment and receiving reward signals (Ouyang et al.||2022)). It is particularly well-suited for
tasks like the mathematical reasoning where the correctness of a final answer can be automatically
verified, providing a clear, albeit sparse, reward signal. This Reinforcement Learning with Verifiable
Rewards (RLVR) allows the model to explore different reasoning paths and reinforces those that
lead to correct outcomes, without being constrained to a signal gold path as in SFT. A prominent RL
algorithm used for training reasoning models is Group Relative Policy Optimization (GRPO) (Shao
et al.| 2024), a variant of Proximal Policy Optimization (PPO) (Schulman et al.|[2017)), designed to
be more memory efficient and stable training.

For a prompt ¢, sample G candidate responses {o; }&_, from the old policy 7,q; the policy parameters
0 are updated to maximize

loi]

G
1 1 . A . A
Joreo () = E G ; o] ;mln(’r‘i,t(e) Ay, clip(rie(0), 1 —€, 1+¢) Ai,t) _ 8 Do ||7T]ref):|7
“
where the token-level policy ratio is
Ti_rt(g) _ ’/TG(Oi,t | q,0i7<t) .

Wold(oi,t | q, 0i,<t) '
In the outcome-reward variant used for verifiable tasks, a reward model assigns a scalar R; to each
output 0;. GRPO then uses a value-free, group-normalized advantage shared across all tokens of o;:

A - R; — mean(R)

ST std(R)
which compares each response to its group peers and obviates a learned critic. The min—clip structure
conservatively bounds updates, while the KL regularizer with coefficient 5 constrains divergence
from a reference policy ¢, improving stability and mitigating reward over-optimization. We

specifically implement OpenR1 with the same Math-220k for GRPO training to compare base model
with reasoning trained version (Hugging Facel 2025).

forallt € {1,...,]o:|}, (6)

8 CONCLUSION AND LIMITATION

We present comparative, mechanistic account of how post-training paradigms reconfigure the internal
mechanism of reasoning models. Our analyses show that these methods do not merely explore a fixed
parameter landscape, instead, they reshape functional structure: distillation and SFT steadily embed
new computational pathways via the sustained emergence of additional, large reasoning heads, on
the other hand, GRPO conducts reward-guided head configurations, with heads appearing and being
pruned over training, to optimize capabilities. The think on/off architecture behaves as a selective gate,
as thinking mode activates just the task-relevant heads, while thinking off compensates ability through
more diverse attentions with enormous heads. And their differences align with observed performance
trade-offs: the systems more often solve hard problems by forming deeper, more structured plans, yet
sometimes regress on previously easy items due to over reasoning or arithmetic slips.

Although this provides a new lens through which to view post-training, its conclusions are subject
to offer avenues for future research. Taken together, our results motivate attention head informed
training policies that (i) encourage targeted head activation rather than uncontrolled head growth,
(ii) use reward shaping to jointly optimize plan quality and calculation reliability, and (iii) leverage
per-head influence estimates to guide selective post-training. We view this mechanistic perspective as
a foundation for principled, interpretable, and robust post-training of effective reasoning strategies
with the assurance of reliable, flawless execution.

Under review as a conference paper at ICLR 2026

DECLARATION ON GENERATIVE Al

During the preparation of this work, the author(s) used Gemini 2.5 Pro in order to: Grammar, spelling
check and latex format check.

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-o0ss-120b & gpt-0ss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

AI-MO. Amc 2023, 2024. URL https://huggingface.co/datasets/AI-MO/
aimo-validation—amc.

AIME. AIME problems and solutions, 2025. URL https://artofproblemsolving.com/
wiki/index.php/AIME_Problems_and_Solutions.

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
computational graphs in language models. Transformer Circuits Thread, 2025. URL https:
//transformer-circuits.pub/2025/attribution-graphs/methods.html.

Leonard Bereska and Stratis Gavves. Mechanistic interpretability for Al safety - a review. Transac-
tions on Machine Learning Research, 2024. ISSN 2835-8856. URL |https://openreview.
net/forum?id=ePUVetPKué6, Survey Certification, Expert Certification.

Vivien Cabannes, Charles Arnal, Wassim Bouaziz, Xingyu Yang, Francois Charton, and Julia
Kempe. Iteration head: A mechanistic study of chain-of-thought. Advances in Neural Information
Processing Systems, 37:109101-109122, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of foundation
model post-training. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=dYur3yabMij.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adria Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. Advances in Neural
Information Processing Systems, 36:16318-16352, 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/202 1/framework/index.html.

10

https://huggingface.co/datasets/AI-MO/ aimo-validation-amc
https://huggingface.co/datasets/AI-MO/ aimo-validation-amc
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://openreview.net/forum?id=ePUVetPKu6
https://openreview.net/forum?id=ePUVetPKu6
https://openreview.net/forum?id=dYur3yabMj

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov. Have faith in faithfulness: Going beyond
circuit overlap when finding model mechanisms. In First Conference on Language Modeling, 2024.
URLhttps://openreview.net/forum?id=TZ0CCGDcuT.

Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL https:
//github.com/huggingface/open-rill

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale
distantly supervised challenge dataset for reading comprehension. In Regina Barzilay and
Min-Yen Kan (eds.), Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 1601-1611, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL https:
//aclanthology.orqg/P17-1147/.

Minki Kang, Seanie Lee, Jinheon Baek, Kenji Kawaguchi, and Sung Ju Hwang. Knowledge-
augmented reasoning distillation for small language models in knowledge-intensive tasks.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 48573-48602. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/97faedc90260eae5c400£92d5831c3d7-Paper—-Conference.pdfl

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview,
net/forum?id=v8LOpN6EOi.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.
pub/2025/attribution—-graphs/biology.html.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025.

Sagnik Mukherjee, Lifan Yuan, Dilek Hakkani-Tur, and Hao Peng. Reinforcement learning finetunes
small subnetworks in large language models. arXiv preprint arXiv:2505.11711, 2025.

Neel Nanda. Attribution Patching: Activation Patching At Industrial Scale. 2023.
URL https://www.neelnanda.io/mechanistic—interpretability/
attribution-patching.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

OpenAl. Gpt-5 system card. 2025a.

OpenAl. Openai 03 and 04-mini system card. 2025b.

11

https://openreview.net/forum?id=TZ0CCGDcuT
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://proceedings.neurips.cc/paper_files/paper/2023/file/97faedc90260eae5c400f92d5831c3d7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/97faedc90260eae5c400f92d5831c3d7-Paper-Conference.pdf
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://openreview.net/forum?id=9XFSbDPmdW

Under review as a conference paper at ICLR 2026

Yixin Ou, Yunzhi Yao, Ningyu Zhang, Hui Jin, Jiacheng Sun, Shumin Deng, Zhenguo Li, and Huajun
Chen. How do LLMs acquire new knowledge? a knowledge circuits perspective on continual
pre-training. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Findings of the Association for Computational Linguistics: ACL 2025, pp. 19889-19913,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-
5. doi: 10.18653/v1/2025. findings-acl.1021. URL https://aclanthology.org/2025.
findings—-acl.1021/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730—
27744, 2022.

Yein Park, Chanwoong Yoon, Jungwoo Park, Minbyul Jeong, and Jaewoo Kang. Does time have its
place? temporal heads: Where language models recall time-specific information. In Wanxiang
Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the
63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1661616643, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN
979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.812. URL https://aclanthology.
org/2025.acl-1ong.812/.

Neel Rajani, Aryo Pradipta Gema, Seraphina Goldfarb-Tarrant, and Ivan Titov. Scalpel vs. hammer:
Grpo amplifies existing capabilities, sft replaces them. arXiv preprint arXiv:2507.10616, 2025.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. In The Telfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=aN4Jf6Cx69.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024. URL https://openreviewl
net/forum?id=Ti67584b98.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Charlie Victor Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In The Thirteenth Inter-
national Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=4FWAwZtd2nl.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Na Zou, Hanjie Chen, and Xia Hu. Stop overthinking: A survey
on efficient reasoning for large language models. Transactions on Machine Learning Research,
2025. ISSN 2835-8856. URL https://openreview.net/forum?id=HvoG8Sxgga.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman.
Openmathinstruct-1: A 1.8 million math instruction tuning dataset. Advances in Neural Information
Processing Systems, 37:34737-34774, 2024.

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. ReFT: Rea-
soning with reinforced fine-tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 7601-7614, Bangkok, Thailand, August 2024. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.410. URL https:
//aclanthology.org/2024.acl-1long.410/.

12

https://aclanthology.org/2025.findings-acl.1021/
https://aclanthology.org/2025.findings-acl.1021/
https://aclanthology.org/2025.acl-long.812/
https://aclanthology.org/2025.acl-long.812/
https://openreview.net/forum?id=aN4Jf6Cx69
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=HvoG8SxggZ
https://aclanthology.org/2024.acl-long.410/
https://aclanthology.org/2024.acl-long.410/

Under review as a conference paper at ICLR 2026

Songjun Tu, Jiahao Lin, Qichao Zhang, Xiangyu Tian, Linjing Li, Xiangyuan Lan, and Dongbin
Zhao. Learning when to think: Shaping adaptive reasoning in r1-style models via multi-stage rl.
arXiv preprint arXiv:2505.10832, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-
head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna
Korhonen, David Traum, and Lluis Marquez (eds.), Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pp. 5797-5808, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1580. URL https:
//aclanthology.orqg/P19-1580/.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https
//openreview.net/forum?id=NpsVSN6o4dul.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022a. URL https://openreview.net/forum?
id=gEZrGCozdgR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022b.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu Tang,
Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, and Xiangzheng Zhang. Light-r1:
Curriculum sft, dpo and rl for long cot from scratch and beyond. arXiv preprint arXiv:2503.10460,
2025.

Tong Wu, Chong Xiang, Jiachen T Wang, G Edward Suh, and Prateek Mittal. Effectively controlling
reasoning models through thinking intervention. arXiv preprint arXiv:2503.24370, 2025a.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for LLM problem-solving. In The Thirteenth
International Conference on Learning Representations, 2025b. URL https://openreview,
net/forum?id=VNckp7JEHn.

Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, Wei He, Yiwen Ding, Shichun
Liu, Xin Guo, Junzhe Wang, et al. Training large language models for reasoning through reverse
curriculum reinforcement learning. In International Conference on Machine Learning, pp. 54030—
54048. PMLR, 2024.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen?2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang, Ziwen Xu, Shumin Deng, and Huajun
Chen. Knowledge circuits in pretrained transformers. Advances in Neural Information Processing
Systems, 37:118571-118602, 2024.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

13

https://aclanthology.org/P19-1580/
https://aclanthology.org/P19-1580/
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=VNckp7JEHn
https://openreview.net/forum?id=VNckp7JEHn

Under review as a conference paper at ICLR 2026

Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models.
arXiv preprint arXiv:2509.08827, 2025a.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
Guo, Yufei Wang, Niklas Muennighoff, et al. A survey on test-time scaling in large language
models: What, how, where, and how well? arXiv preprint arXiv:2503.24235, 2025b.

Xiaoyun Zhang, Jingqing Ruan, Xing Ma, Yawen Zhu, Haodong Zhao, Hao Li, Jiansong Chen,
Ke Zeng, and Xunliang Cai. When to continue thinking: Adaptive thinking mode switching for
efficient reasoning. arXiv preprint arXiv:2505.15400, 2025c.

14

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EXPERIMENTAL SETUP

Models. We select a consistent family of models to serve as the testbed for our analysis among
similar architecture and design. As Qwen series make it possible to compare almost every possible
reasoning training, we specifically pick this model variations and analyze deeply. The models include:

* Baseline Models: Qwen2.5-Math-1.5B-Instruct and Qwen2.5-Math-7B-Instruct (Yang et al.|
2024), which are strong base models pretrained with a focus on mathematical capabilities.

* Distilled Models: DeepSeek-R1-Distill-Qwen-1.5B and 7B (Guo et al.l 2025), which
represent the outcome of knowledge distillation from a powerful teacher reasoning model.

* Think On/Off Model: Qwen3-8B (Yang et al.l |2025), which features a Think On/Off
capability across various open source models, allowing for controlled study of selective
reasoning activation.

Datasets. Our training and evaluation cover the well-established, widely-used reasoning datasets:

¢ Training: For SFT and GRPO, we utilize standard, large-scale reasoning datasets, including
OpenR1-Math-220k (Hugging Facel [2025) and GSM8K (Cobbe et al.,|2021)), which contain
a diverse set of mathematical problems and their solutions.

* Evaluation: To assess both in-domain and out-of-domain generalization, we employed a
comprehensive suite of benchmarks: AIME’24 and AIME’25 (American Invitational Mathe-
matics Examination) (AIME| 2025), AMC (American Mathematics Competitions) (AI-MO)
2024), GPQA (Graduate-Level Google-Proof Q&A) (Rein et al., [2024), MATH-500 (Light{
man et al.;|2024) and TriviaQA (Joshi et al., | 2017) for general knowledge.

Training & Evaluation. For each post-training method, we follow established best practices and
maintain consistent hyperparameters where possible to facilitate fair comparison. For GRPO, we train
a Qwen2.5-Math-1.5B-Instruct for 3 epochs, saving checkpoints every 100 steps to enable a temporal
analysis of circuit formation. For SFT, we used a setup designed to mirror the GRPO training process
in terms of data exposure. We also utilize Light-R1 (Wen et al.| 2025) as our codebase, modifying it
so that the pass@ 1 evaluation metric is computed as the average over multiple responses for each
setting. All training and inference are done with two NVIDIA H100 GPUs(80GB). Hyper-parameter
setup for each post-training is like below:

» SFT (Wei et al.,|2022a)): learning rate 4.0e — 5, 5 training epochs, 100 steps for saving and
circuit construction, Bfloat16, warm-up ratio 0.03.

* GRPO (Shao et al.| 2024) with OpenrR1-Math-220k: learning rate 1.0e — 6 for main
result and 2.0e — 5 for comparison in[7] 3 training epochs, 100 steps for saving and circuit
construction, Bfloat16, warm-up ratio 0.1, reward_weights 1.0, 16 generations.

* GRPO (Shao et al.,[2024)) with GSM8K: learning rate 5e — 6, 1 training epoch, 100 steps
for saving and circuit construction, Bfloat16, warm-up ratio 0.1, reward_weights 1.0, 16
generations.

For the system prompt of GRPO training, we use basic recipes of OpenR1 |Hugging Face| (2025).

You are a helpful Al Assistant that provides well-reasoned and detailed responses. You first
think about the reasoning process as an internal monologue and then provide the user with
the answer. Respond in the following format:
<think>\n...\n</think>\n<answer>\n...\n</answer>

A.2 CIRCUIT CONSTRUCTION SETUP

We construct circuits using EAP-IG (Hanna et al.| [2024), where ig-step is 100 and fop-n is 5000. We
also simplify each circuits with the threshold 7 = 0.1 for filtering out important edges and nodes.
Examples of simplified circuits among various models are in Figure [IT} [I2} and[I3]

15

Under review as a conference paper at ICLR 2026

Prompt Settings. We sample various responses of baseline models and reasoning models, then
make an input prompt for circuit construction using chat template.

Reasoning Model

<think>Okay, so I have this problem where Aya goes ...

<think>...

Baseline model

We’ll use Python to help us ...

To determine the molecular

A.3 DETAIL OF EVALUATION

Generation and Sampling Setup For our quantitative evaluation, we generate various responses
n = 4 to 64 for each problem in the respective test sets. The generation process for each models
uses a sampling temperature of 7' = 0.6 and a top-p (nucleus sampling) value of 0.95, or if the
model’s best practice is suggested such as Qwen3-8B, we follow those settings; T' = 0.6, top-p=0.95,
top-k=20, and min-p=0 for thinking mode.

Pass@k for Overall Capability To assess the overall problem-solving capability of each model,
we employ the standard pass@k metric, as introduced by (Chen et al.|(2021)). This metric provides
an unbiased estimator for the probability that at least one correct solution is generated in & attempts.
Given n total generated samples for a problem and c correct samples among them, the pass @k score
for that single problem is calculated as:

pass@k =1 — (Z)

(%)

The final reported pass @k score is the average of these values across all problems in the test set. This

metric is independent of the generation order and measures the model’s theoretical potential to solve
a problem given a budget of £ samples.

)

Success @k for Generation Efficiency While pass @k measures overall capability, it is agnostic
to the generation order. To measure the practical generation efficiency, a model’s ability to find a
correct solution quickly, we also compute success@k. This metric evaluates the likelihood of finding
a correct solution within the trial k£ sequentially generated samples.

Let R, = (r1,72,...,ry) be the ordered sequence of responses for a problem p, and let v(r;) be a
verification function that returns 1 if response r; is correct and 0 otherwise. The success @k is then
the average success rate across all problems:

success@k = Epropiems

%{Zu(m) > OH (8)

i=1

where J¥{-} is the indicator function. This metric directly rewards models that produce correct
answers earlier in the generation process. The comparison between pass @k and success @k allows
us to disentangle a model’s latent capability from its practical efficiency, as discussed in our main
analysis.

Under review as a conference paper at ICLR 2026

A.4 EXAMPLE OF QUALITATIVE ANALYSIS: NEWLY CORRECT

Input Question from AIME’24

Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards.
When she walks at a constant speed of s kilometers per hour, the walk takes her 4 hours,
including ¢ minutes spent in the coffee shop. When she walks s + 2 kilometers per hour, the
walk takes her 2 hours and 24 minutes, including ¢ minutes spent in the coffee shop. Suppose
Aya walks at s + % kilometers per hour. Find the number of minutes the walk takes her,
including the ¢t minutes spent in the coffee shop. Let’s think step by step and output the final
answer within \boxed{}.

Baseline model’s response just repeat same equation endlessly without specific conclusions or
reasoning. We qualitatively evaluate how each post-training’s answer is different from the original.

Response of Baseline model (Qwen2.5-Math-1.5B)

To solve this problem, we need to establish the relationship between the walking speed
and the time taken for the walk, including the time spent in the coffee shop. Let’s break
down the problem step by step. 1. **Define Variables:** - Let s be the walking speed
in kilometers per hour. - Let ¢ be the time spent in the coffee shop in hours. - The total

time for the walk, including the coffee shop time, is given by % = 4 hours and 8_22 =24
9 9

hours. 2. **Set Up Equations:** - From the first condition: 3 = 4 which gives s = 1.

- From the second condition: 5 = 2.4 which gives s + 2 = 52 = 29 = 13 and thus

Tz =
s=1-2=15_2 — 7 Since we have two different values for s from the two conditions,

we need to verify which one is correct. Let’s check both conditions with s = % and s = %. 3.

*#Verify the Values:** - For s = 3: - Time for the walk: 9 = 4 hours. - Time for the walk
4

ats+2=1T: 2 = 38 ~ 2.12 hours, which is not 2.4 hours. - For s = : - Time for the
36

= <> ~ 5.14 hours, which is not 4 hours. ... (endless repeat...)

17
4

walk:

RS

A.4.1 SFT

Response of SFT checkpoint 1000

<think> Okay, let’s try to figure out this problem. So, Aya walks 9 kilometers every
morning, and her walking speed is either s km/h or s+2 km/h. When she walks at s km/h, the
total time, including a coffee shop break of t minutes, is 4 hours. When she walks faster at
s+2 km/h, the total time is 2 hours and 24 minutes, still including the same t minutes in the
coffee shop. We need to find the total time when she walks at s+0.5 km/h, including the coffee
shop time. First, let’s parse the problem. The key information is: 1. Distance: 9 km both
times. 2. Walking speed: s km/h initially, then s+2 km/h. 3. Time taken: 4 hours at speed s, 2
hours 24 minutes at speed s+2, with both include t minutes in the coffee shop. 4. Find the
total time when walking at s+0.5 km/h, including t minutes. So, the total time is the walking
time plus the coffee shop break. The walking time can be calculated by distance divided by
speed. The coffee shop break is t minutes each time, regardless of speed. Let me write down
the equations. First scenario: walking speed s km/h, total time 4 hours, including t minutes.
So the walking time is 4 hours minus t minutes. Wait, but time is usually in hours in these
problems. So maybe we need to convert everything to hours. ... But according to the problem,
when walking at 4.5 km/h, the total time is 2.4 hours, which is 144 minutes, which is correct.
So that checks out. Therefore, the total time when walking at 3 km/h is 3 hours 24 minutes,
which is 3*60 +24=204 minutes. So the answer is 204 minutes, so \boxed{204} **Final
Answer** \boxed{204} </think> Given that Aya walks 9 kilometers every morning, ...

17

Under review as a conference paper at ICLR 2026

A.4.2 GRPO

Response of GRPO checkpoint 2500

Please reason step by step, and put your final answer within \boxed{}._Offset OID Every
morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards. When
she walks at a constant speed of s kilometers per hour, the walk takes her 4 hours, including
t minutes spent in the coffee shop. When she walks s + 2 kilometers per hour, the walk
takes her 2 hours and 24 minutes, including ¢ minutes spent in the coffee shop. Suppose Aya
walks at s + % kilometers per hour. Find the number of minutes the walk takes her, including
the ¢t minutes spent in the coffee shop. First, let’s establish the relationships from the given
information. 1. When walking at s kilometers per hour, the total time is 4 hours, including ¢
minutes in the coffee shop. Since 4 hours is 240 minutes, we can write:

9 9 o4
Time spent walking = — hours = — x 60 minutes = — minutes.
s s s

So, the total time including the coffee shop time is:

240 +t = 240.
s
This simplifies to:
4
540 =240 —¢. (1)
s

2. When walking at s + 2 kilometers per hour, the total time is 2 hours and 24 minutes, which
is 144 minutes. So, we can write:

9 540
Time spent walking = PR hours = % 60 minutes = PR minutes.
s s

So, the total time including the coffee shop time is:
540
s+2

... Now, we need to find the time it takes Aya to walk at s + % = 2.5+ 0.5 = 3 kilometers
per hour:

+t =144

9 9
Time spent walking = 3 hours = 3 x 60 minutes = 180 minutes.

Including the 24 minutes in the coffee shop, the total time is:
180 + 24 = 204 minutes.
The final answer is: \boxed{204}. ...

18

Under review as a conference paper at ICLR 2026

A.5 EXAMPLE OF QUALITATIVE ANALYSIS: NEWLY INCORRECT

Input Question from AIME’24

Find the largest possible real part of

96 + 144i
(75 + 1174) + %

where z is a complex number with |z| = 4. Let’s think step by step and output the final
answer within \boxed{}.

Baseline model correctly calculate the result using python codes in this case.

Response of Baseline model (Qwen2.5-Math-1.5B)

To find the largest possible real part of (75 + 1174)z + % where z is a complex number
with |z| = 4, we can use the following approach: 1. Let z = 4¢* where 6 is a real number.
This is because |z| = 4. 2. Substitute z = 4¢* into the expression (75 + 117i)z + 261441,
3. Simplify the expression and find the real part. 4. Maximize the real part with respect to 6.
Let’s proceed with the calculations: 1. Let z = 4e?® = 4(cos @ + i sin #). 2. Substitute z into
the expression:

96 + 1444 96 + 1441
75+ 1173 ——— = (75 4+ 117i)(4cos 0 + 4isinf) + ——.
5 QG z (754 117i)(4 cos 6 + disin)+4cost9+4isin9
3. Simplify the expression: ... Thus, the largest possible real part is 540. Let’s con-

firm this with Python code. “‘python import sympy as sp # Define the variables theta =
sp.symbols(’theta’, real=True) z = 4 * (sp.cos(theta) + sp.I * sp.sin(theta)) # Define the
expression expr = (75 + 117 * sp.I) * z + (96 + 144 * sp.I) / z # Simplify the expression
expr_simplified = sp.simplify(expr) # Extract the real part real_part = sp.re(expr_simplified)
Find the maximum value of the real part max_real_part = sp.maximum(real_part, theta)
print(max_real_part) “* “‘output 540 “‘ The largest possible real part of (754 117i)z+ %
where z is a complex number with |z| = 4 is \boxed{540}.

Under review as a conference paper at ICLR 2026

A5.1 SFT

At first, it successfully computes the answer with a simplified mathematical expression. However, it
continues its computation, then goes wrong with its calculation, even incomplete output format.

Response of SFT checkpoint 1000

<think> Okay, so I need to find the largest possible real part of the expression

(75 + 1171)z + w,

where z is a complex number with |z| = 4. Hmm, complex numbers and optimization... Let
me start by understanding the problem better. First, z is a complex number with magnitude
4. That means z can be written in the form z = 4e'?, where @ is a real number between 0
and 27. Since z is a complex number on a circle of radius 4, maybe I can parametrize z as
4(cos 8 + isin). Then, I can express the given expression in terms of § and find its real part.
Then, maximize that real part with respect to 6.

Let me write that out. Let z = 4¢'?. Then, the expression becomes:

96 + 144i

4ei0
Simplify each term: ... Therefore, we need to maximize 324 cos § — 432 sin . Hmm, okay.
So, the problem reduces to maximizing a linear combination of sin and cos. There’s a
standard method for maximizing such expressions.

The expression acos@ + bsin @ can be written as Rcos(f — ¢), where R = va? + b.
Then, the maximum value is R. So for 324 cos § — 432sin 6 (i.e., a = 324, b = —432), the

maximum value is
3242 + (—432)2 = /3242 4 4322,

(75 + 117i) (4€?) +

Compute:

3242 = 104,976, 4322 = 186,624, 3242 + 4322 = 291,600,

1/291,600 = 540.

Therefore, the largest possible real part is 540.
But wait, hold on. Let me check my calculation again because 324 squared is 104,976, 432
squared is 186,624. ... 286

SO

20

Under review as a conference paper at ICLR 2026

A.5.2 GRPO

Although GRPO gives an ability of complex mathematical reasoning, model’s response simply goes
wrong with calculation mistakes.

Response of GRPO checkpoint 2500

Please reason step by step, and put your final answer within \boxed{ }.ageration agerationuser
Find the largest possible real part of (75 + 117:)z + % where z is a complex number
with |z| = 4. To solve this problem, we will use the following steps: 1. Represent the complex
number z in terms of its real and imaginary parts. 2. Express the given expression in terms of
z and its conjugate. 3. Use the constraint |z| = 4 to simplify the expression. 4. Maximize
the real part of the expression. Let’s start by representing z as z = 4 = 4(cos @ + isin 6).
Given the expression (75 + 1174)z + M, we substitute z = 4e'?:

(75 4 117i)z = (75 + 117i) - 4¢?® = 4(75 + 117i)(cos @ + i sin 0)
96 + 1447 96+ 144: 96 + 1442'6

% C 4et® 4
So the expression becomes:

4(75cos 4117 sin 0+i(75sin 0 —117 cos))+ (24 cos 0+ 36 sin § —i(24 sin § — 36 cos 9))

~10 — (24 4 36i)(cos § — isinh)

Combining the real and imaginary parts, we get:

(475 cos 0+4-117 sin 0424 cos +36 sin 0)+i(4-75 sin 6 —4-117 cos §—24 sin 6+36 cos 6)

= (300 cos 0 +468 sin 6 +24 cos 0 + 36 sin 0) + (300 sin & — 468 cos § — 24 sin § + 36 cos)
= (324 cos 6 + 504 sin 0) + (276 sin @ — 432 cos 0)

The real part of this expression is 324 cos 6 + 504 sin f. To maximize this, we use the fact

that the maximum value of a cos @ + bsin 6 is va? + b2. Here, a = 324 and b = 504, so the
maximum value is:

/3242 4 5042 = /(324 - 3) - (1764 + 252) = /3242 + 5042 = 1/92 - 362 + 1262

... So the largest possible real part of the expression is \boxed{1134}.

21

Under review as a conference paper at ICLR 2026

Emerging Attention Head During GRPO

Attention Head Change from Base to Final Checkpoint

«
8
H . . e
S
z
° 0.75
1
3
z 0.50
T -
] - B
H 0.25
E . . 0.00
s [
e . 0.25
g
2
5 '”. . . . o
3
H
0.75
. . . . 1.00

Figure 6: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during GRPO with
GSMS8k (Cobbe et al 2021) dataset. (A) denotes a cohort analysis of attention head activation
over training checkpoints. The blue line tracks the absolute number of newly activated heads com-
pared to the base model, while the red dashed line indicates the number of original heads that are
maintained. The stacked areas represent cohorts of heads, color-coded by the checkpoint at which
they first emerged, showing their persistence and evolution over time. (B) shows a heatmap detailing
the changes in activation frequency. Red cells denote heads from the original base model, with fading
intensity indicating their gradual deactivation. Blue cells represent newly emerged heads, with darker
shades signifying higher activation frequency across checkpoints. Heads active in the final checkpoint
are outlined with a black border.

Emerging Attention Head During GRPO, Ir: 2.0e-05

Attention Head Change from Base to Final Checkpoint

O
. 1.00
I
. 0.50
&
B o -
. 0.25
. . 050
N]
O 0

Figure 7: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during GRPO with OpenR1-
Math-220k (Hugging Face], [2025) dataset with learning rate 2e-05. (A) denotes a cohort analysis
of attention head activation over training checkpoints. The blue line tracks the absolute number of
newly activated heads compared to the base model, while the red dashed line indicates the number
of original heads that are maintained. The stacked areas represent cohorts of heads, color-coded by
the checkpoint at which they first emerged, showing their persistence and evolution over time. The
fluctuation in newly activated heads shows a similar trend to the (B), accuracy reward curve. (C)
shows a heatmap detailing the changes in activation frequency. Red cells denote heads from the
original base model, with fading intensity indicating their gradual deactivation. Blue cells represent
newly emerged heads, with darker shades signifying higher activation frequency across checkpoints.
Heads active in the final checkpoint are outlined with a black border.

22

Under review as a conference paper at ICLR 2026

€y (B)

Emerging Attention Head During GRPO, AMC Circuits

Attention Head Change from Base to Final Checkpoint

Number of Attention Head Nodes

Head IDs
s
e N
]
h
]

1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,8C 0 4 8
Checkpoint Step

12
Layer IDs

Node Groups
matStep 100 — Newly Activated Nodes
natStep 1300 == Maintained Nodes
o a Step 1500

Figure 8: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during GRPO with OpenR1-
Math-220k (Hugging Face] 2025) dataset, and circuit construction with AMC bench-
mark. (A) denotes a cohort analysis of attention head activation over training checkpoints. The blue
line tracks the absolute number of newly activated heads compared to the base model, while the red
dashed line indicates the number of original heads that are maintained. The stacked areas represent
cohorts of heads, color-coded by the checkpoint at which they first emerged, showing their persistence
and evolution over time. (B) shows a heatmap detailing the changes in activation frequency. Red cells
denote heads from the original base model, with fading intensity indicating their gradual deactivation.
Blue cells represent newly emerged heads, with darker shades signifying higher activation frequency
across checkpoints. Heads active in the final checkpoint are outlined with a black border.

Emerging Attention Head During SFT, AMC Circuits

Number of Attention Head Nodes

1,000 1100 1,200 1,300 1400

Figure 9: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during SFT with OpenR1-
Math-220k (Hugging Face| 2025) dataset, and circuit construction with AMC bench-
mark. (A) denotes a cohort analysis of attention head activation over training checkpoints. The blue
line tracks the absolute number of newly activated heads compared to the base model, while the red
dashed line indicates the number of original heads that are maintained. The stacked areas represent
cohorts of heads, color-coded by the checkpoint at which they first emerged, showing their persistence
and evolution over time. The fluctuation in newly activated heads shows a similar trend to the (B),
accuracy reward curve. (C) shows a heatmap detailing the changes in activation frequency. Red cells
denote heads from the original base model, with fading intensity indicating their gradual deactivation.
Blue cells represent newly emerged heads, with darker shades signifying higher activation frequency
across checkpoints. Heads active in the final checkpoint are outlined with a black border.

23

Under review as a conference paper at ICLR 2026

Map of Reasoning
From Qwen2.5-Math-1.5B To DeepSeek-R1-Distill-Qwen-1.5B

n
a
°
[
Q
I

8

0 4 8 12 16 20 24
Layer IDs
Post-Training Methods & Combinations
[Base Model Distillation & SFT Distillation & GRPO GRPO
Distillation SFT GRPO & SFT

)

]

£

]

2

°

(]

Q

I

0 4 8 12 16 20 24
Layer

Figure 10: Map of Reasoning: Visualization of emergent reasoning heads in circuits based on
Qwen2.5-Math-1.5B with various post-training, and DeepSeek-R1-Distill-Qwen-1.5B. (Top) A map
of emergent attention heads for each post-training method, compared to the baseline model (white).
(Bottom) A cumulative map of the reasoning heads, with columns sorted by the number of newly
activated heads. Each GRPO and SFT category encompass both AIME and AMC benchmark based
circuits, with checkpoints of both training using OpenR1-Math-220k and GSM8k dataset. DeepSeek
Distillation activates enormous heads (blue), as SFT activates similarly large amount of heads, though
SFT heads are mostly concentrated in mid-to-late layer (green). Some of attention heads from GRPO
training are also common in the SFT and Distillation reasoning heads (yellow and purple), however,
the number of GRPO heads are much smaller and distributed across layers (red).

24

Under review as a conference paper at ICLR 2026

al0h14) (a27.n10) (a27.011) (a27.n12) (a27.n13

m10 m27

@) @

a27.n12) (a27.n13) (a27.n10) [(a27.n11

7 ~
[CD)]
e

-

Figure 11: Actual Example of Circuits. Color of nodes are randomly mapped to differentiate each
others. (A) denotes AIME circuit with baseline model, Qwen-2.5-Math-7B. (B) shows AIME circuit
with DeepSeek-R1-Distill-Qwen-7B. (C) is the comparative example with same AIME dataset, which
is constructed with DeekSeek-R 1-Distill-Qwen-7B and its own sampled answer, without explicit
<think>. (C) is more complex than other two circuits, which could be mixed with confusable
attention heads. The trend of this enormous attention heads in (C) is also similar with the thinking off
mode in Figure [I3|(B), where the model compensate its performance gap through large emergent
attention heads.

Figure 12: Actual Example of Circuits After Post-Training. Color of nodes are randomly mapped
to differentiate each others. (A) denotes AIME circuit after SFT with baseline model, Qwen-2.5-
Math-1.5B. (B) shows AIME circuit after GRPO with the same baseline model. (A) activates more
attention heads while (B) has more complexly connected specific nodes which refer its internalized
high-level mathematical reasoning.

25

Under review as a conference paper at ICLR 2026

[N = &)

———gf

Figure 13: Actual Example of Circuits of Think On/Off. Color of nodes are randomly mapped to
differentiate each others. (A) denotes AIME circuit of Thinking on mode in Qwen3-8B. (B) shows
AIME circuit of Thinking off on the same baseline model. (B) activates more attention heads, in
contrast, (A) has more complexly connected specific nodes which refer its internalized high-level
mathematical reasoning, similar as GRPO circuit in Figurerlzl (B).

26

	Introduction
	Preliminaries
	Circuit Analysis for Mechanistic Interpretable Tool

	Identifying Emergent Attention Heads with Circuits
	Circuit Discovery & Ablation Inference

	In-Depth Analysis on SFT & Distillation
	Distillation heads strongly affect to performance
	SFT introduces large amount of attention heads in middle-to-late layers

	In-Depth Analysis on GRPO
	In-Depth Analysis on Think On/Off
	Related Work
	Post-Training Paradigms for Reasoning Models
	Supervised Fine-Tuning (SFT) & Distillation
	Reinforcement Learning with Verifiable Rewards (RLVR)

	Conclusion and Limitation
	Appendix
	Experimental Setup
	Circuit Construction Setup
	Detail of Evaluation
	Example of Qualitative Analysis: Newly Correct
	SFT
	GRPO

	Example of Qualitative Analysis: Newly Incorrect
	SFT
	GRPO

