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ABSTRACT

The remarkable capabilities of modern large reasoning models are largely un-
locked through post-training techniques such as supervised fine-tuning (SFT) and
reinforcement learning (RL). However, the architectural mechanisms behind such
improvements remain largely opaque. In this work, we use circuit analysis to
demonstrate that post-training for complex reasoning sparks the emergence of
novel, functionally specialized attention heads. These heads collectively support
structured reasoning and computation. Our comparative analysis across Qwen
families and Qwen-based DeepSeek-distilled model reveals that these emergent
heads evolve differently under different training regimes. Distillation and SFT
foster a cumulative addition of stable reasoning heads. In contrast, group relative
policy optimization (GRPO) operates in a dynamic search mode: relatively few
attention heads are iteratively activated, evaluated, and pruned, with their survival
closely tracking fluctuations in the task reward signal. Furthermore, we find that
controllable “think on/off” models do not possess dedicated “thinking” heads.
Instead, turning off explicit reasoning triggers a broader—but less efficient—set
of compensatory heads. Through ablation and qualitative analyses, we connect
these circuit-level dynamics to a crucial performance trade-off: strengthened heads
enable sophisticated problem-solving strategies for difficult problems but can also
introduce “over-thinking” failure modes, such as calculation errors or logical loops
on simpler tasks. These findings connect circuit-level dynamics to macro-level
performance, identifying an inherent tension where complex reasoning comes at
the cost of elementary computations. More broadly, our work points to future direc-
tions for training policy design, emphasizing the need to balance the development
of effective reasoning strategies with the assurance of reliable, flawless execution.

1 INTRODUCTION

User: … Let's think step by step and output ...

`Assistant:  <think>  Okay, so I have this problem…

Figure 1: Reasoning circuits trace the internal com-
putations of LRMs at each checkpoint. After post-
training, newly activated attention heads influence
the performance at those checkpoints.

The advent of large reasoning models (LRMs), such
as OpenAI o-series (Jaech et al., 2024; OpenAI,
2025b) and DeepSeek-R1 (Guo et al., 2025), has
marked a significant milestone in artificial intel-
ligence, demonstrating unprecedented ability in
solving complex, multi-step problems. These mod-
els typically employ Chain-of-Thought (CoT) pro-
cess (Wei et al., 2022b), generating an explicit
sequence of reasoning steps before arriving at a
final answer. This capability is substantially en-
hanced by extensive post-training methods, primar-
ily supervised fine-tuning (SFT) and reinforcement
learning (RL) (Trung et al., 2024; Xi et al., 2024;
Mukherjee et al., 2025), and by allocating more
test-time compute during inference (Zhang et al.,
2025b; Wu et al., 2025b; Snell et al., 2025).

Despite their empirical success, the mechanisms
by which these methods enhance reasoning remain
largely unclear. This opacity presents a significant
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(A) (B)

(C)

Figure 2: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during GRPO. (A) denotes
a cohort analysis of attention head activation across trained checkpoints. The blue line tracks the
absolute number of newly activated heads compared to the base model, while the red dashed line
indicates the number of original heads that are maintained. The stacked areas represent cohorts of
heads, color-coded by the checkpoint at which they first emerged, showing their persistence and
evolution over time. The fluctuation in newly activated heads shows a similar trend to the (B),
accuracy reward curve. (C) shows a heatmap detailing the changes in activation frequency. Red cells
denote heads from the original base model, with fading intensity indicating their gradual deactivation.
Blue cells represent newly emerged heads, with darker shades signifying higher activation frequency
across checkpoints. Heads active in the final checkpoint are outlined with a black border.

challenge. For instance, post-trained models often suffer from the “overthinking problem” (Chen et al.,
2024; Sui et al., 2025), generating excessively long and computationally expensive reasoning chains
even for simple tasks, which highlights a critical need for more efficient and adaptive strategies (Tu
et al., 2025; Zhang et al., 2025c). Furthermore, the community lacks a clear understanding of the
fundamental differences between post-training paradigms. Recent studies have debated whether
these methods instill genuinely new problem-solving skills or merely amplify latent capabilities
already present in the base model (Rajani et al., 2025; Yue et al., 2025; Ma et al., 2025). Motivated
by these trade-offs, several works have proposed “Think On/Off” controls to manually modulate
reasoning depth (Wu et al., 2025a; Yang et al., 2025; OpenAI, 2025a). However, without a granular
understanding of how post-training alters a model’s internal mechanism, efforts to improve reasoning
are confined to trial-and-error adjustments of training data and resources (Mukherjee et al., 2025).

In this work, we bridge this gap by shifting the analysis from high-level performance metrics to a
low-level mechanistic investigation of the model’s internal workings. We employ circuit analysis, a
powerful tool of mechanistic interpretability, to identify and characterize functional subgraphs within
the transformer architecture (Vaswani et al., 2017) that are responsible for specific behaviors (Olah
et al., 2020; Elhage et al., 2021; Wang et al., 2023; Bereska & Gavves, 2024; Lindsey et al., 2025).
By applying these lens, we trace the formation of specialized groups of attention heads through
reasoning circuits that emerge as a direct consequence of post-training procedures. This direction is
motivated by preliminary findings that particular attention heads correlate with the quality and length
of a model’s reasoning (Voita et al., 2019; Cabannes et al., 2024; Reddy, 2024).

Our investigation and ablation study yield a series of clear, mechanistically insightful findings:

1. Distillation and SFT: We find that distillation and SFT induce a large amount of newly
emergent heads in circuits. Distillation heads are mostly found in early-mid layers, whereas
SFT heads are focused on mid-to-late layers. They effectively instill complex reasoning
with a considerable proportion of attention heads, which also have a potential of confusion.

2. Group Relative Policy Optimization (GRPO): A prominent RL algorithm, GRPO, engages
in dynamic search for reasoning attention heads during the training process, mirroring
fluctuations of the task reward signal. Its targeted, minimal, but high-impact edits optimize
the use of existing knowledge and computational pathways, not building entirely new ones.
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3. Thinking On/Off: While think on mode does not have its own exclusive reasoning heads,
think off mode activates enormous attention heads to compensate performance gaps. Dis-
abling or scaling down those thinking off heads temporally boosts its performance, but those
heads are crucial asset for robust problem solving when the sampling coverage increases.

2 PRELIMINARIES

2.1 CIRCUIT ANALYSIS FOR MECHANISTIC INTERPRETABLE TOOL

Transformer circuit models the internal computation of its architecture as a directed acyclic graph
(DAG) G = (N,E), where each node in N corresponds to a distinct component in the model:
attention heads Al,j (at layer l and head j), MLP modules Ml for each layer, the input node I
(embeddings) and the output node O (logits), following (Nanda et al., 2023; Conmy et al., 2023;
Ameisen et al., 2025):

N = {I, Al,j ,Ml, O}. (1)
Edges E encode how each node’s output contributes to later layers’ residual stream inputs:

E = {(nx, ny) | nx, ny ∈ N}. (2)

A circuit is defined as a subgraph C ⊆ (N,E) selected to explain a specific behavior, e.g, how
certain tokens influence the model’s output or how factual knowledge is stored and elicited (Yao et al.,
2024; Ou et al., 2025; Park et al., 2025). We specifically implement edge attribution patching with
integrated gradients (EAP-IG) which improves faithfulness, wherein ablating all non-circuit edges
preserve task performance (Nanda, 2023; Hanna et al., 2024).

Let (u→v) ∈ E and denote the clean activation by z and a corrupted activation by z′. We define
the input difference to the edge as ∆zu = zu − z′u. Following integrated gradients rule, we average
gradients along the straight-line path from z′ to z. Then we take gradients with respect to the input of
node v (i.e., v’s pre-activation into the residual stream) and use a task-agnostic divergence such as
KL as L. The EAP-IG edge score is

score(u→v) = ∆zu · 1

m

m∑
k=1

∂L
(
z′ + k

m (z − z′)
)

∂ (input of v)

∣∣∣∣∣
z′+ k

m (z−z′)

, (3)

where m is the number of Riemann-sum steps approximating the IG path integral. We rank edges by
equation 3 and select a sparse set by top-n selection. Lastly, we prune isolated nodes and validate
faithfulness via post-hoc interventions: ablate all non-circuit edges (e.g., patching to baseline) and
check that task performance is preserved.

3 IDENTIFYING EMERGENT ATTENTION HEADS WITH CIRCUITS

To systematically compare how different post-training paradigms change a model’s internal mech-
anisms, we design a rigorous experiment based on circuit analysis. Our methodology focuses
on identifying and validating the causal roles of emergent attention head circuits. Details of the
experimental setup are provided in Appendix A.1, moved there due to space limitations.

3.1 CIRCUIT DISCOVERY & ABLATION INFERENCE

Our core methodology for identifying emergent reasoning circuits is a practical application of causal
analysis, using ablation as a proxy for more complex patching experiments. The process is as follows:

1. Circuit Mapping: For a given task (e.g., solving an AIME problem), we first map the active
computational graph for both the baseline model and a post-trained model. As the circuit
is structured with pairs of prompts, clean and corrupted, we set clean prompts designed to
elicit the reasoning behavior by sampling the answer of each model category.

• Baseline model: Answer sets such as “To determine the molecular ...” or “We’ll use
Python to help us solve ...”.

• Reasoning model: Answer sets right after <think> such as “Okay, so I have this
problem ...” and “Alright, so I need to find ...”. Samples can be found in §A.2.

3
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Table 1: List of emergent attention heads found through circuits. L and H refers to the layer and
head indices, respectively. Circuits are constructed using AIME’24 benchmark as input. For each
post-training methods, we describe newly emergent attention heads. Visualization of total reasoning
heads aggregation in single model architecture is in Figure 10.

Post-Training List of Emergent Attention Heads in Circuits # of Heads

Qwen-2.5-Math-1.5B (Baseline) L0H7, L21H10, L2H6, L11H1, L14H10 ... 56

DeepSeek-R1-Distill-Qwen-1.5B L5H0, L5H2, L5H4, L6H10, L7H7 ... 32

SFT with OpenR1-Math-220k L0H8, L11H3, L3H3, L5H1, L7H3 ... 34

GRPO with OpenR1-Math-220k L0H8, L5H1, L7H1, L18H11, L11H8 ... 19

GRPO with GSM8K L0H8, L5H1, L7H2, L3H3, L21H2 ... 20

2. Identifying Emergent Components: By comparing circuits of the post-trained model to
that of the baseline model, we identify the set of “emergent heads”—those that are active in
the post-trained model but not in the baseline. These heads represent the structural changes
induced by the training process. We specifically pick Qwen families for pair comparison.

3. Causal Validation via Ablation: To confirm that these emergent heads are causally re-
sponsible for the new reasoning capabilities, we perform ablation inference. We run the
post-trained model on the evaluation benchmarks but surgically disable the emergent heads
by zeroing out their outputs. A difference in performance on the target task, compared to the
intact post-trained model, serves as strong causal evidence that these heads form a critical
part of the newly acquired reasoning circuits.

4. Head Activation Scaling: Furthermore, we scale up/down activations of each reasoning
head in baseline model with their attention head index (layer num and head num). We then
find out the difference in performance both quantitatively and qualitatively.

Figure 1 shows the overall process of our circuit findings. And Figure 11 to 13 visualize circuits.

4 IN-DEPTH ANALYSIS ON SFT & DISTILLATION

Our investigation reveals that different post-trainings do more than simply fine-tuning a model’s
parameters—they fundamentally reshape its internal architecture by activating new attention heads.

4.1 DISTILLATION HEADS STRONGLY AFFECT TO PERFORMANCE

The primary finding is that distillation induces a set of new, consistently activated attention heads that
are not present in the baseline circuits for the same tasks like AIME’24 and AMC, as in Table 1 and
Figure 10. Although two-thirds of the attention head nodes and all MLP nodes active in the baseline
model remain active in the distilled one as well, the number of these new heads is significant. They
represent an addition to the model’s existing machinery rather than a complete replacement, indicating
that distillation builds upon the pretrained foundation by writing in new, specialized components.

To validate the functional role of these newly identified heads, we perform attention head ablation
experiments. We systematically deactivate a set of emergent reasoning heads in the distilled model
and measure its performance. The results as in Table 2 demonstrate a consistent degradations in
performance across all benchmarks, e.g., AIME’24 pass@1 drop from 30 to 26.6. Although the
drop rate is smaller in GPQA and AMC as emergent reasoning heads are usually from the circuits of
AIMEs, the degradation remains significant. We also compare their effectiveness against other heads,
base model-exclusive heads with same benchmarks and Heads from TriviaQA circuits. Here, as 1.5B
model is too sensitive for head ablation like the case of TriviaQA heads, leading to the score of zero,
ablating base model heads in 7B model is quite interesting as its overall performance goes up across
various benchmarks. This provides a hint that not all attention heads emerging from post-training are
important for reasoning, or they can confuse the model when finding the suitable solution.

4.2 SFT INTRODUCES LARGE AMOUNT OF ATTENTION HEADS IN MIDDLE-TO-LATE LAYERS

We reproduce a method where SFT is applied to mimic reasoning traces, approximating the effect of
distillation. Following §A.1, we train baseline model with OpenR1-Math-220k dataset and construct
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Table 2: Reasoning Head Ablation Inference for DeepSeek-R1-Distill-Qwen-1.5B and 7B. Every
performance is measured with pass@1 score with temperature 0.6 and 32k context length. Each
ablation cases make the value of specific attention heads, around 5 to 10 number of heads from its
circuit results, into zero for checking its importance for reasoning tasks. We color some scores into
red which is the most degraded results except no ablation baseline, while the bold is the completely
ruined performance. We also color performance increase with green when its heads are ablated.

Model Method AIME’24 AIME’25 GPQA AMC

No Ablation 30.0 26.6 18.6 66.2
DeepSeekR1-Distill Ablation with Reasoning Heads 26.6 16.6 17.1 59.0
Qwen-1.5B Ablation with Base Model Heads 30.0 23.3 12.1 53.0

Ablation with TriviaQA Heads 0.00 0.00 0.00 0.00

No Ablation 40.0 43.3 35.3 81.9
DeepSeekR1-Distill Ablation with Reasoning Heads 53.3 46.6 35.8 78.3
Qwen-7B Ablation with Base Model Heads 53.3 43.3 37.3 83.1

Ablation with TriviaQA Heads 50.0 50.0 34.3 79.5

circuits for each 100 step checkpoints. The results are in Figure 3 and 9. Similar with DeepSeek
distillation, SFT-trained models consistently activate a large amount of additional attention heads,
and almost every head continuously survives until the training is finished. Half of them emerge at the
step 100 checkpoint, and most of them are in middle-to-late layers. This pattern of newly activated
heads tending to persist throughout training, indicates the steady construction of new pathways for
reasoning in the internals of model.

Quantitative Analysis. We conduct ablation same as §4.1 with those many mid-to-late layer’s
SFT reasoning heads. When we ablate around 10 heads from mid-to-late layer, the performance of
every benchmark drops significantly, close to zero. This phenomenon is consistently observed at
multiple checkpoints, regardless of their performance. Going further, we also scale up those heads in
baseline to check its effectiveness by enhancing their activation 1.3 higher, and it reveals out those
heads introduce a trade-off of performance. Although the MATH score increases, the AMC decreases
slightly, and the AIME’24 still drops significantly.

Qualitative Analysis. When we do a comparative analysis on the newly solved and newly missed
problems at each checkpoint, we find meaningful insights into the performance trade-off. After
SFT, models try to solve questions in an over complicated way, such as replacing a one- or two-step
algebraic manipulation with long substitutions or theory first detours. This leads a net degradation,
as the number of newly introduced errors surpassed the number of resolved ones. This shows that,
although SFT installs a new, fixed piece of machinery with nudging models toward careful, procedure-
following math, it costs strategy selection and path efficiency, causing them to miss previously solved
items. Examples of qualitative analysis are in Appendix A.4.1 and A.5.1.

5 IN-DEPTH ANALYSIS ON GRPO

GRPO helps to find the optimal reasoning path. In stark contrast to the static installation of
emergent heads by SFT, GRPO reveals a dynamic and adaptive process of architectural refinement.
Here, emergent heads are not fixed but evolve in response to the reward signal. Like SFT, we train
baseline model with OpenR1-Math-220k and this time, also train with another dataset GSM8K shown
in §A.1. We construct circuits for each 100 step checkpoints for each dataset version, and the results
of AIME’24 circuits are in Figure 2 and Figure 6. Results of different learning rate are in the Figure 7.
And circuits with AMC is in the Figure 8. The temporal analysis of GRPO training checkpoints
shows that the set of active attention heads is in constant flux. As in Figure 2 (A), the number of newly
activated heads rises and falls throughout training, and these fluctuations are strongly correlated with
the model’s accuracy reward curve while training, as shown in Figure 2 (B). Heads that emerge early
in training may be pruned later if they do not consistently contribute to positive rewards, while new
heads continue to be trialed throughout the process, even though its overall number is not that many.
This suggests an iterative search towards finding an optimal circuit configuration. Notably, the final
set of emergent heads after GRPO is small and targeted, and crucially, does not much overlap with the
mid-to-late heads by SFT, indicating that the two methods discover different functional specialization.

5
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(A) (B)

Figure 3: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during SFT. (A) denotes
a cohort analysis of attention head activation over training checkpoints. The blue line tracks the
absolute number of newly activated heads compared to the base model, while the red dashed line
indicates the number of original heads that are maintained. The stacked areas represent cohorts of
heads, color-coded by the checkpoint at which they first emerged, showing their persistence and
evolution over time. (B) shows a heatmap detailing the changes in activation frequency. Red cells
denote heads from the original base model, with fading intensity indicating their gradual deactivation.
Blue cells represent newly emerged heads, with darker shades signifying higher activation frequency
across checkpoints. Heads active in the final checkpoint are outlined with a black border.

This dynamic behavior is a direct mechanistic manifestation of the explore-exploit trade-off inherent
to reinforcement learning. The activation of a new head represents an exploratory step, which is a test
of a new computational strategy. The retention or pruning of that head based on its impact on the
reward signal is exploitation, where the model refines its architecture to favor strategies that work.

This circuit-level perspective provides a compelling explanation for why RL acts as a scalpel (Rajani
et al., 2025) and results in sparse heads updates. GRPO is not overwriting the model wholesale; it
is performing a targeted search for minimal, high-impact edits to the model’s functional architec-
ture (Mukherjee et al., 2025) . This also clarifies why RL-trained models’ capabilities often remain
bounded by the base model’s potential (Yue et al., 2025). GRPO is primarily optimizing the use of
existing knowledge and computational pathways, rather than building entirely new ones from scratch.

Quantitative Analysis. With the similar approach of Section 4.2, we make a difference among
the scales of each attention heads. When we scale up the activation of GRPO reasoning heads with
baseline model, up to 1.3 higher activation, we observe actual performance gain with the heads from
100 step checkpoints GRPO GSM8K circuits. The performance of MATH benchmark increases
from 56 to 60, while other benchmarks like AIME’24 and AMC decrease. Meanwhile, when we
scale up 1.3 higher for the one head emergent from 2500 step checkpoints GRPO Math-220k, the
performance of AMC goes slightly down, and MATH goes slightly up, while AIME’24 remains static.
On the other side, when we scale down by half using that same attention heads emerging from 100
step checkpoints GRPO GSM8K circuits, AIME’24 performance decreases sharply from 13.3 to 3.3.
However, MATH and AMC score increase, 56 to 63, and 38.5 to 42.1. This trade-off is impressive
as some task specific heads affect strongly to that performance, while it may harm or make model
confused to do other tasks. As heads of 100 step checkpoints GRPO GSM8K circuits are mostly
coming from AIME dataset basis, it surely affect AIME the most, while scaling down its presence
could help model to do reasoning better at other benchmarks.

Qualitative Analysis. As GRPO sharpens multi-step mathematical reasoning and problem structur-
ing, it yields better reasoning on composite word problems when we qualitatively compare it against
baseline model’s one. However, it also degrades basic numeracy, execution stability, and tool-choice
agility. For the early checkpoints of OpenR1-Math-220k and GSM8K, they show gains in symbolic
manipulation with fewer end-stage slips, yet prefer cumbersome analytic derivations over simple
programmatic checks. For mid-later checkpoints, which show lower performance than others, they
exhibit overfitting and forgetting signs for the core algebra and geometry. Overall, GRPO yields
clearer, more systematic reasoning traces and improved strategy formation, but can erode numeracy
and robustness when optimization pressure or dataset style dominates. Examples of qualitative
analysis are given in the Appendix A.4.2 and A.5.2.
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Structure complex problems into 
systematic equations

Cost of stability such as 
calculation mistake

Effective solving strategies 
with internal code-based logic

Disconnect between describing 
solution and actual computing

Systematically
decompose problem
with mathematical
principles

Signs of overfitting; 
rigidly applying specific solving style

Enhanced computational reliabilityApplying structured, 
step-by-step reasoning

Errors with code execution 
and stuck in function calling loop

Figure 4: Performance change among various benchmarks for each checkpoints of GRPO training
with two different training dataset: GSM8K (Cobbe et al., 2021) and OpenR1-Math-220k (Hugging
Face, 2025). The green and red arrow indicate impressive performance gain and lose among various
checkpoints, and the captions are the summaries of qualitative analysis. The performance trade-off
of each checkpoints is similarly reproduced when we apply attention head scaling with emergent
reasoning heads for the baseline model. Actual examples are presented in the Appendix A.4 to A.5.

6 IN-DEPTH ANALYSIS ON THINK ON/OFF

Recently suggested thinking on/off functionality in models provides a unique window into how
efficient reasoning is implemented (Tu et al., 2025). Efficiently controlling reasoning level is distinct
among architectures, for example, system level routing to select between the fast model and the
deeper reasoning model (OpenAI, 2025a), and using system message keyword to control reasoning
level (Agarwal et al., 2025). In this work, we implement Qwen3-8B (Yang et al., 2025) as it enable
controlled circuit comparison under an instruct-style template with explicit thinking on/off gating
using <think> token, yielding clean think on versus off conditions.

Think off compensate performance through enormous head emerging. Our analysis suggests
that effective reasoning is not about activating monolithic reasoning heads but about selecting the
most efficient computational pathway for the task at hand. Here, circuits constructed from the
default think on mode are not composing a set of unique, reasoning-only heads. Instead, it relatively
shares most of its components with the think off mode. Interestingly, when the think process is
disabled by predefined <think>\n</think> tokens, the model activates a much larger and more
complex set of attention heads. This observation suggests that the model has internalized a highly
efficient mechanism for selecting reasoning pathway. While this differs from phenomena observed in
post-training methods like GRPO, where new reasoning-specific heads emerge, the integrated nature,
unifying a general instruction following (think off) with a reasoning capability (think on), appears
to have fostered an ability to find the most resource efficient path. When the specialized reasoning
pathway is explicitly disabled, the model compensates for it by activating a broader, more redundant
network. In contrast, the think on mode allows it to engage a specific, optimized circuit already
embedded within its structure, demonstrating an advanced form of learned computational efficiency.

Result of Head Intervention. Table 3 shows our quantitative analysis with head intervention
for each benchmark performance. We implement the attention head ablation and head activation
scale down for those heads found exclusively in think off circuits. Without thinking mode, model’s
performance drops significantly, especially for hard level benchmarks such as AIMEs. We find that
if we ablate parts of think off circuit heads in thinking off mode, the removal of overly activated
and confusing attention heads clarifies the model’s reasoning pathways, leading to improved perfor-
mance across multiple benchmarks. The most effective benchmarks are AIME’24 and 25, which
demand more complex and well structured mathematical reasoning compared with other benchmarks.
Meanwhile, scaling down the activation of those think off circuit heads in half also contributes to the
performance gain, even higher than ablation in some benchmarks like GPQA and AIME’25. It also
results in some trade off as the score of AIME’24 decreases from 30 to 20.

7
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Table 3: Emergent head ablation inference for Qwen3-8B. Every performance is measured with
pass@1 score with temperature 0.6 and 32k context length, as Yang et al. (2025) suggested for the
best performance setting. Each ablation cases make the value of specific attention heads, around 5 to
10 number of heads from its circuit results, into zero or scale down to half for checking its importance
for reasoning tasks. As no other reasoning heads are found among thinking mode, we do ablation
only for thinking off mode. We color some scores into red for the most degraded results and green
for the most performance improvement. Ablating overstuffed attention heads in thinking off mode
increases the baseline score with minimal performance trade-offs.

Model Method AIME’24 AIME’25 AMC GPQA MATH

Qwen3-8B

Think On 80.0 73.3 89.1 63.1 93.8

Think Off 30.0 13.3 67.4 44.9 81.4
Think Off & Ablation 36.6 20.0 61.4 49.4 83.6
Think Off & Scale Down 20.0 23.3 56.6 51.0 81.8

Figure 5: Performance difference against in-
creasing coverage. The left figure shows
pass@k difference when sampling coverage
increased, while the right figure shows effi-
cient correctness with success@k.

Performance Difference Against Coverage Com-
parison. To further investigate performance under
varying sampling coverage, we compare the models’
pass@k scores on AIME’24 with up to 64 samples.
Detail of metric is in §A.3. As shown in Figure 5
(left), the baseline think off model consistently main-
tains a slight performance advantage as k increases.
We hypothesize that its large number of active at-
tention heads facilitates the exploration of diverse
computational pathways, a benefit that scales with
the number of samples. In contrast, the ablation and
scale down to half models exhibit a diminished ca-
pacity to discover novel solutions at higher k values
and large n samples. This behavior is reminiscent
of models that, after post-training like GRPO, be-
come locked into specific reasoning paths and fail
to solve certain problems regardless of the increased
coverage (Yue et al., 2025).

This trade-off is more starkly illustrated when analyzing generation efficiency, success@k, which
calculates the probability of finding a correct solution within each trial, as shown in Figure 5 (right).
Here, the ablation model initially outperforms the baseline at very low sampling rates (k ≤ 2),
suggesting that simplification of attention heads helps focus the model on a more direct and efficient
reasoning path. However, this advantage quickly vanishes as k increases, where the baseline’s
ability to explore a wider solution space becomes more fruitful. Meanwhile, the scale down model
consistently under-performs, appearing to lack both the focused efficiency of the ablated model and
the exploratory breadth of the baseline. Collectively, these results highlight the dual nature of the
numerous emergent heads in the think off mode: they can introduce noise in low-sample scenarios but
become a crucial asset for robust problem-solving when a larger computational budget is available.

7 RELATED WORK

7.1 POST-TRAINING PARADIGMS FOR REASONING MODELS

Post-training is a crucial stage that adapts a general-purpose pretrained LLM for specialized tasks
such as complex reasoning (Zhang et al., 2025a).

7.1.1 SUPERVISED FINE-TUNING (SFT) & DISTILLATION

Supervised Fine-Tuning (SFT) adapts a pretrained model to a specific tasks by training it on a
curated dataset of input-output examples (Wei et al., 2022a). In the context of reasoning, a powerful
technique is to use a large, more capable ”teacher” model (e.g., DeepSeek-R1 (Guo et al., 2025)) to
generate high-quality, step-by-step reasoning races, often called Chain-of-Tought (CoT) (Wei et al.,
2022b) prompts. A smaller ”student” model is then fine-tuned on this synthetic dataset, learning to
mimic the teacher’s reasoning process (Kang et al., 2023). SFT forces the student model’s output
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distribution to match the teacher’s, and this direct and forceful adaptation often results in significant,
dense updates to the model’s parameter by memorizing specific reasoning paths (Chu et al., 2025).
This form of knowledge distillation has proven effective for creating capable open-source reasoning
models (Toshniwal et al., 2024). In this work, we utilize distilled version of DeepSeek-R1 for the
corresponding Qwen2.5 Math (Yang et al., 2024), and do SFT with sampled OpenR1-Math-220k
dataset for comparison (Hugging Face, 2025).

7.1.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR)

Reinforcement learning (RL) offers an alternative paradigm where a model learns by interacting with
an environment and receiving reward signals (Ouyang et al., 2022). It is particularly well-suited for
tasks like the mathematical reasoning where the correctness of a final answer can be automatically
verified, providing a clear, albeit sparse, reward signal. This Reinforcement Learning with Verifiable
Rewards (RLVR) allows the model to explore different reasoning paths and reinforces those that
lead to correct outcomes, without being constrained to a signal gold path as in SFT. A prominent RL
algorithm used for training reasoning models is Group Relative Policy Optimization (GRPO) (Shao
et al., 2024), a variant of Proximal Policy Optimization (PPO) (Schulman et al., 2017), designed to
be more memory efficient and stable training.

For a prompt q, sample G candidate responses {oi}Gi=1 from the old policy πold; the policy parameters
θ are updated to maximize

JGRPO(θ) = E

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,t(θ) Âi,t, clip

(
ri,t(θ), 1− ϵ, 1 + ϵ

)
Âi,t

)
− β DKL

(
πθ ∥πref

)]
,

(4)
where the token-level policy ratio is

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πold(oi,t | q, oi,<t)
. (5)

In the outcome-reward variant used for verifiable tasks, a reward model assigns a scalar Ri to each
output oi. GRPO then uses a value-free, group-normalized advantage shared across all tokens of oi:

Âi,t =
Ri −mean(R)

std(R)
for all t ∈ {1, . . . , |oi|}, (6)

which compares each response to its group peers and obviates a learned critic. The min–clip structure
conservatively bounds updates, while the KL regularizer with coefficient β constrains divergence
from a reference policy πref , improving stability and mitigating reward over-optimization. We
specifically implement OpenR1 with the same Math-220k for GRPO training to compare base model
with reasoning trained version (Hugging Face, 2025).

8 CONCLUSION AND LIMITATION

We present comparative, mechanistic account of how post-training paradigms reconfigure the internal
mechanism of reasoning models. Our analyses show that these methods do not merely explore a fixed
parameter landscape, instead, they reshape functional structure: distillation and SFT steadily embed
new computational pathways via the sustained emergence of additional, large reasoning heads, on
the other hand, GRPO conducts reward-guided head configurations, with heads appearing and being
pruned over training, to optimize capabilities. The think on/off architecture behaves as a selective gate,
as thinking mode activates just the task-relevant heads, while thinking off compensates ability through
more diverse attentions with enormous heads. And their differences align with observed performance
trade-offs: the systems more often solve hard problems by forming deeper, more structured plans, yet
sometimes regress on previously easy items due to over reasoning or arithmetic slips.

Although this provides a new lens through which to view post-training, its conclusions are subject
to offer avenues for future research. Taken together, our results motivate attention head informed
training policies that (i) encourage targeted head activation rather than uncontrolled head growth,
(ii) use reward shaping to jointly optimize plan quality and calculation reliability, and (iii) leverage
per-head influence estimates to guide selective post-training. We view this mechanistic perspective as
a foundation for principled, interpretable, and robust post-training of effective reasoning strategies
with the assurance of reliable, flawless execution.

9
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A APPENDIX

A.1 EXPERIMENTAL SETUP

Models. We select a consistent family of models to serve as the testbed for our analysis among
similar architecture and design. As Qwen series make it possible to compare almost every possible
reasoning training, we specifically pick this model variations and analyze deeply. The models include:

• Baseline Models: Qwen2.5-Math-1.5B-Instruct and Qwen2.5-Math-7B-Instruct (Yang et al.,
2024), which are strong base models pretrained with a focus on mathematical capabilities.

• Distilled Models: DeepSeek-R1-Distill-Qwen-1.5B and 7B (Guo et al., 2025), which
represent the outcome of knowledge distillation from a powerful teacher reasoning model.

• Think On/Off Model: Qwen3-8B (Yang et al., 2025), which features a Think On/Off
capability across various open source models, allowing for controlled study of selective
reasoning activation.

Datasets. Our training and evaluation cover the well-established, widely-used reasoning datasets:

• Training: For SFT and GRPO, we utilize standard, large-scale reasoning datasets, including
OpenR1-Math-220k (Hugging Face, 2025) and GSM8K (Cobbe et al., 2021), which contain
a diverse set of mathematical problems and their solutions.

• Evaluation: To assess both in-domain and out-of-domain generalization, we employed a
comprehensive suite of benchmarks: AIME’24 and AIME’25 (American Invitational Mathe-
matics Examination) (AIME, 2025), AMC (American Mathematics Competitions) (AI-MO,
2024), GPQA (Graduate-Level Google-Proof Q&A) (Rein et al., 2024), MATH-500 (Light-
man et al., 2024) and TriviaQA (Joshi et al., 2017) for general knowledge.

Training & Evaluation. For each post-training method, we follow established best practices and
maintain consistent hyperparameters where possible to facilitate fair comparison. For GRPO, we train
a Qwen2.5-Math-1.5B-Instruct for 3 epochs, saving checkpoints every 100 steps to enable a temporal
analysis of circuit formation. For SFT, we used a setup designed to mirror the GRPO training process
in terms of data exposure. We also utilize Light-R1 (Wen et al., 2025) as our codebase, modifying it
so that the pass@1 evaluation metric is computed as the average over multiple responses for each
setting. All training and inference are done with two NVIDIA H100 GPUs(80GB). Hyper-parameter
setup for each post-training is like below:

• SFT (Wei et al., 2022a): learning rate 4.0e− 5, 5 training epochs, 100 steps for saving and
circuit construction, Bfloat16, warm-up ratio 0.03.

• GRPO (Shao et al., 2024) with OpenrR1-Math-220k: learning rate 1.0e − 6 for main
result and 2.0e− 5 for comparison in 7, 3 training epochs, 100 steps for saving and circuit
construction, Bfloat16, warm-up ratio 0.1, reward weights 1.0, 16 generations.

• GRPO (Shao et al., 2024) with GSM8K: learning rate 5e− 6, 1 training epoch, 100 steps
for saving and circuit construction, Bfloat16, warm-up ratio 0.1, reward weights 1.0, 16
generations.

For the system prompt of GRPO training, we use basic recipes of OpenR1 Hugging Face (2025).

You are a helpful AI Assistant that provides well-reasoned and detailed responses. You first
think about the reasoning process as an internal monologue and then provide the user with
the answer. Respond in the following format:
<think>\n...\n</think>\n<answer>\n...\n</answer>

A.2 CIRCUIT CONSTRUCTION SETUP

We construct circuits using EAP-IG (Hanna et al., 2024), where ig-step is 100 and top-n is 5000. We
also simplify each circuits with the threshold τ = 0.1 for filtering out important edges and nodes.
Examples of simplified circuits among various models are in Figure 11, 12, and 13.
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Prompt Settings. We sample various responses of baseline models and reasoning models, then
make an input prompt for circuit construction using chat template.

Reasoning Model

<think>Okay, so I have this problem where Aya goes ...

<think>Alright, so I have this geometry problem here ...

<think>Okay, so I need to find the eigenvector ...

<think>...

Baseline model

We’ll use Python to help us ...

To determine the molecular

A.3 DETAIL OF EVALUATION

Generation and Sampling Setup For our quantitative evaluation, we generate various responses
n = 4 to 64 for each problem in the respective test sets. The generation process for each models
uses a sampling temperature of T = 0.6 and a top-p (nucleus sampling) value of 0.95, or if the
model’s best practice is suggested such as Qwen3-8B, we follow those settings; T = 0.6, top-p=0.95,
top-k=20, and min-p=0 for thinking mode.

Pass@k for Overall Capability To assess the overall problem-solving capability of each model,
we employ the standard pass@k metric, as introduced by Chen et al. (2021). This metric provides
an unbiased estimator for the probability that at least one correct solution is generated in k attempts.
Given n total generated samples for a problem and c correct samples among them, the pass@k score
for that single problem is calculated as:

pass@k = 1−
(
n−c
k

)(
n
k

) (7)

The final reported pass@k score is the average of these values across all problems in the test set. This
metric is independent of the generation order and measures the model’s theoretical potential to solve
a problem given a budget of k samples.

Success@k for Generation Efficiency While pass@k measures overall capability, it is agnostic
to the generation order. To measure the practical generation efficiency, a model’s ability to find a
correct solution quickly, we also compute success@k. This metric evaluates the likelihood of finding
a correct solution within the trial k sequentially generated samples.

Let Rp = (r1, r2, . . . , rn) be the ordered sequence of responses for a problem p, and let v(ri) be a
verification function that returns 1 if response ri is correct and 0 otherwise. The success@k is then
the average success rate across all problems:

success@k = Eproblems

[
⊮

{
k∑

i=1

v(ri) > 0

}]
(8)

where ⊮{·} is the indicator function. This metric directly rewards models that produce correct
answers earlier in the generation process. The comparison between pass@k and success@k allows
us to disentangle a model’s latent capability from its practical efficiency, as discussed in our main
analysis.
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A.4 EXAMPLE OF QUALITATIVE ANALYSIS: NEWLY CORRECT

Input Question from AIME’24

Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards.
When she walks at a constant speed of s kilometers per hour, the walk takes her 4 hours,
including t minutes spent in the coffee shop. When she walks s+ 2 kilometers per hour, the
walk takes her 2 hours and 24 minutes, including t minutes spent in the coffee shop. Suppose
Aya walks at s + 1

2 kilometers per hour. Find the number of minutes the walk takes her,
including the t minutes spent in the coffee shop. Let’s think step by step and output the final
answer within \boxed{}.

Baseline model’s response just repeat same equation endlessly without specific conclusions or
reasoning. We qualitatively evaluate how each post-training’s answer is different from the original.

Response of Baseline model (Qwen2.5-Math-1.5B)

To solve this problem, we need to establish the relationship between the walking speed
and the time taken for the walk, including the time spent in the coffee shop. Let’s break
down the problem step by step. 1. **Define Variables:** - Let s be the walking speed
in kilometers per hour. - Let t be the time spent in the coffee shop in hours. - The total
time for the walk, including the coffee shop time, is given by 9

s = 4 hours and 9
s+2 = 2.4

hours. 2. **Set Up Equations:** - From the first condition: 9
s = 4 which gives s = 9

4 .
- From the second condition: 9

s+2 = 2.4 which gives s + 2 = 9
2.4 = 90

24 = 15
4 and thus

s = 15
4 − 2 = 15

4 − 8
4 = 7

4 . Since we have two different values for s from the two conditions,
we need to verify which one is correct. Let’s check both conditions with s = 9

4 and s = 7
4 . 3.

**Verify the Values:** - For s = 9
4 : - Time for the walk: 9

9
4

= 4 hours. - Time for the walk

at s+ 2 = 17
4 : 9

17
4

= 36
17 ≈ 2.12 hours, which is not 2.4 hours. - For s = 7

4 : - Time for the

walk: 9
7
4

= 36
7 ≈ 5.14 hours, which is not 4 hours. ... (endless repeat...)

A.4.1 SFT

Response of SFT checkpoint 1000

<think> Okay, let’s try to figure out this problem. So, Aya walks 9 kilometers every
morning, and her walking speed is either s km/h or s+2 km/h. When she walks at s km/h, the
total time, including a coffee shop break of t minutes, is 4 hours. When she walks faster at
s+2 km/h, the total time is 2 hours and 24 minutes, still including the same t minutes in the
coffee shop. We need to find the total time when she walks at s+0.5 km/h, including the coffee
shop time. First, let’s parse the problem. The key information is: 1. Distance: 9 km both
times. 2. Walking speed: s km/h initially, then s+2 km/h. 3. Time taken: 4 hours at speed s, 2
hours 24 minutes at speed s+2, with both include t minutes in the coffee shop. 4. Find the
total time when walking at s+0.5 km/h, including t minutes. So, the total time is the walking
time plus the coffee shop break. The walking time can be calculated by distance divided by
speed. The coffee shop break is t minutes each time, regardless of speed. Let me write down
the equations. First scenario: walking speed s km/h, total time 4 hours, including t minutes.
So the walking time is 4 hours minus t minutes. Wait, but time is usually in hours in these
problems. So maybe we need to convert everything to hours. ... But according to the problem,
when walking at 4.5 km/h, the total time is 2.4 hours, which is 144 minutes, which is correct.
So that checks out. Therefore, the total time when walking at 3 km/h is 3 hours 24 minutes,
which is 3*60 +24=204 minutes. So the answer is 204 minutes, so \boxed{204} **Final
Answer** \boxed{204} </think> Given that Aya walks 9 kilometers every morning, ...
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A.4.2 GRPO

Response of GRPO checkpoint 2500

Please reason step by step, and put your final answer within \boxed{}. Offset OID Every
morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards. When
she walks at a constant speed of s kilometers per hour, the walk takes her 4 hours, including
t minutes spent in the coffee shop. When she walks s + 2 kilometers per hour, the walk
takes her 2 hours and 24 minutes, including t minutes spent in the coffee shop. Suppose Aya
walks at s+ 1

2 kilometers per hour. Find the number of minutes the walk takes her, including
the t minutes spent in the coffee shop. First, let’s establish the relationships from the given
information. 1. When walking at s kilometers per hour, the total time is 4 hours, including t
minutes in the coffee shop. Since 4 hours is 240 minutes, we can write:

Time spent walking =
9

s
hours =

9

s
× 60 minutes =

540

s
minutes.

So, the total time including the coffee shop time is:

540

s
+ t = 240.

This simplifies to:
540

s
= 240− t. (1)

2. When walking at s+2 kilometers per hour, the total time is 2 hours and 24 minutes, which
is 144 minutes. So, we can write:

Time spent walking =
9

s+ 2
hours =

9

s+ 2
× 60 minutes =

540

s+ 2
minutes.

So, the total time including the coffee shop time is:

540

s+ 2
+ t = 144.

... Now, we need to find the time it takes Aya to walk at s+ 1
2 = 2.5 + 0.5 = 3 kilometers

per hour:

Time spent walking =
9

3
hours =

9

3
× 60 minutes = 180 minutes.

Including the 24 minutes in the coffee shop, the total time is:

180 + 24 = 204 minutes.

The final answer is: \boxed{204}. ...
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A.5 EXAMPLE OF QUALITATIVE ANALYSIS: NEWLY INCORRECT

Input Question from AIME’24

Find the largest possible real part of

(75 + 117i)z +
96 + 144i

z

where z is a complex number with |z| = 4. Let’s think step by step and output the final
answer within \boxed{}.

Baseline model correctly calculate the result using python codes in this case.

Response of Baseline model (Qwen2.5-Math-1.5B)

To find the largest possible real part of (75 + 117i)z + 96+144i
z where z is a complex number

with |z| = 4, we can use the following approach: 1. Let z = 4eiθ where θ is a real number.
This is because |z| = 4. 2. Substitute z = 4eiθ into the expression (75 + 117i)z + 96+144i

z .
3. Simplify the expression and find the real part. 4. Maximize the real part with respect to θ.
Let’s proceed with the calculations: 1. Let z = 4eiθ = 4(cos θ+ i sin θ). 2. Substitute z into
the expression:

(75 + 117i)z +
96 + 144i

z
= (75 + 117i)(4 cos θ + 4i sin θ) +

96 + 144i

4 cos θ + 4i sin θ
.

3. Simplify the expression: ... Thus, the largest possible real part is 540. Let’s con-
firm this with Python code. “‘python import sympy as sp # Define the variables theta =
sp.symbols(’theta’, real=True) z = 4 * (sp.cos(theta) + sp.I * sp.sin(theta)) # Define the
expression expr = (75 + 117 * sp.I) * z + (96 + 144 * sp.I) / z # Simplify the expression
expr simplified = sp.simplify(expr) # Extract the real part real part = sp.re(expr simplified)
# Find the maximum value of the real part max real part = sp.maximum(real part, theta)
print(max real part) “‘ “‘output 540 “‘ The largest possible real part of (75+117i)z+ 96+144i

z
where z is a complex number with |z| = 4 is \boxed{540}.
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A.5.1 SFT

At first, it successfully computes the answer with a simplified mathematical expression. However, it
continues its computation, then goes wrong with its calculation, even incomplete output format.

Response of SFT checkpoint 1000

<think> Okay, so I need to find the largest possible real part of the expression

(75 + 117i)z +
96 + 144i

z
,

where z is a complex number with |z| = 4. Hmm, complex numbers and optimization... Let
me start by understanding the problem better. First, z is a complex number with magnitude
4. That means z can be written in the form z = 4eiθ, where θ is a real number between 0
and 2π. Since z is a complex number on a circle of radius 4, maybe I can parametrize z as
4(cos θ + i sin θ). Then, I can express the given expression in terms of θ and find its real part.
Then, maximize that real part with respect to θ.
Let me write that out. Let z = 4eiθ. Then, the expression becomes:

(75 + 117i)(4eiθ) +
96 + 144i

4eiθ
.

Simplify each term: ... Therefore, we need to maximize 324 cos θ − 432 sin θ. Hmm, okay.
So, the problem reduces to maximizing a linear combination of sin and cos. There’s a
standard method for maximizing such expressions.
The expression a cos θ + b sin θ can be written as R cos(θ − φ), where R =

√
a2 + b2.

Then, the maximum value is R. So for 324 cos θ − 432 sin θ (i.e., a = 324, b = −432), the
maximum value is √

3242 + (−432)2 =
√
3242 + 4322.

Compute:

3242 = 104,976, 4322 = 186,624, 3242 + 4322 = 291,600,

so √
291,600 = 540.

Therefore, the largest possible real part is 540.
But wait, hold on. Let me check my calculation again because 324 squared is 104,976, 432
squared is 186,624. ... 286
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A.5.2 GRPO

Although GRPO gives an ability of complex mathematical reasoning, model’s response simply goes
wrong with calculation mistakes.

Response of GRPO checkpoint 2500

Please reason step by step, and put your final answer within \boxed{}.ageration agerationuser
Find the largest possible real part of (75 + 117i)z + 96+144i

z where z is a complex number
with |z| = 4. To solve this problem, we will use the following steps: 1. Represent the complex
number z in terms of its real and imaginary parts. 2. Express the given expression in terms of
z and its conjugate. 3. Use the constraint |z| = 4 to simplify the expression. 4. Maximize
the real part of the expression. Let’s start by representing z as z = 4eiθ = 4(cos θ + i sin θ).
Given the expression (75 + 117i)z + 96+144i

z , we substitute z = 4eiθ:

(75 + 117i)z = (75 + 117i) · 4eiθ = 4(75 + 117i)(cos θ + i sin θ)

96 + 144i

z
=

96 + 144i

4eiθ
=

96 + 144i

4
e−iθ = (24 + 36i)(cos θ − i sin θ)

So the expression becomes:

4(75 cos θ+117 sin θ+i(75 sin θ−117 cos θ))+(24 cos θ+36 sin θ−i(24 sin θ−36 cos θ))

Combining the real and imaginary parts, we get:

(4·75 cos θ+4·117 sin θ+24 cos θ+36 sin θ)+i(4·75 sin θ−4·117 cos θ−24 sin θ+36 cos θ)

= (300 cos θ+468 sin θ+24 cos θ+36 sin θ)+i(300 sin θ−468 cos θ−24 sin θ+36 cos θ)

= (324 cos θ + 504 sin θ) + i(276 sin θ − 432 cos θ)

The real part of this expression is 324 cos θ + 504 sin θ. To maximize this, we use the fact
that the maximum value of a cos θ + b sin θ is

√
a2 + b2. Here, a = 324 and b = 504, so the

maximum value is:√
3242 + 5042 =

√
(324 · 3) · (1764 + 252) =

√
3242 + 5042 =

√
92 · 362 + 1262

... So the largest possible real part of the expression is \boxed{1134}.
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(A) (B)

Figure 6: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during GRPO with
GSM8k (Cobbe et al., 2021) dataset. (A) denotes a cohort analysis of attention head activation
over training checkpoints. The blue line tracks the absolute number of newly activated heads com-
pared to the base model, while the red dashed line indicates the number of original heads that are
maintained. The stacked areas represent cohorts of heads, color-coded by the checkpoint at which
they first emerged, showing their persistence and evolution over time. (B) shows a heatmap detailing
the changes in activation frequency. Red cells denote heads from the original base model, with fading
intensity indicating their gradual deactivation. Blue cells represent newly emerged heads, with darker
shades signifying higher activation frequency across checkpoints. Heads active in the final checkpoint
are outlined with a black border.

(A) (B)

Figure 7: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during GRPO with OpenR1-
Math-220k (Hugging Face, 2025) dataset with learning rate 2e-05. (A) denotes a cohort analysis
of attention head activation over training checkpoints. The blue line tracks the absolute number of
newly activated heads compared to the base model, while the red dashed line indicates the number
of original heads that are maintained. The stacked areas represent cohorts of heads, color-coded by
the checkpoint at which they first emerged, showing their persistence and evolution over time. The
fluctuation in newly activated heads shows a similar trend to the (B), accuracy reward curve. (C)
shows a heatmap detailing the changes in activation frequency. Red cells denote heads from the
original base model, with fading intensity indicating their gradual deactivation. Blue cells represent
newly emerged heads, with darker shades signifying higher activation frequency across checkpoints.
Heads active in the final checkpoint are outlined with a black border.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(A) (B)

Figure 8: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during GRPO with OpenR1-
Math-220k (Hugging Face, 2025) dataset, and circuit construction with AMC (AI-MO, 2024) bench-
mark. (A) denotes a cohort analysis of attention head activation over training checkpoints. The blue
line tracks the absolute number of newly activated heads compared to the base model, while the red
dashed line indicates the number of original heads that are maintained. The stacked areas represent
cohorts of heads, color-coded by the checkpoint at which they first emerged, showing their persistence
and evolution over time. (B) shows a heatmap detailing the changes in activation frequency. Red cells
denote heads from the original base model, with fading intensity indicating their gradual deactivation.
Blue cells represent newly emerged heads, with darker shades signifying higher activation frequency
across checkpoints. Heads active in the final checkpoint are outlined with a black border.

(A) (B)

Figure 9: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during SFT with OpenR1-
Math-220k (Hugging Face, 2025) dataset, and circuit construction with AMC (AI-MO, 2024) bench-
mark. (A) denotes a cohort analysis of attention head activation over training checkpoints. The blue
line tracks the absolute number of newly activated heads compared to the base model, while the red
dashed line indicates the number of original heads that are maintained. The stacked areas represent
cohorts of heads, color-coded by the checkpoint at which they first emerged, showing their persistence
and evolution over time. The fluctuation in newly activated heads shows a similar trend to the (B),
accuracy reward curve. (C) shows a heatmap detailing the changes in activation frequency. Red cells
denote heads from the original base model, with fading intensity indicating their gradual deactivation.
Blue cells represent newly emerged heads, with darker shades signifying higher activation frequency
across checkpoints. Heads active in the final checkpoint are outlined with a black border.
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Map of Reasoning
From Qwen2.5-Math-1.5B To DeepSeek-R1-Distill-Qwen-1.5B 

Figure 10: Map of Reasoning: Visualization of emergent reasoning heads in circuits based on
Qwen2.5-Math-1.5B with various post-training, and DeepSeek-R1-Distill-Qwen-1.5B. (Top) A map
of emergent attention heads for each post-training method, compared to the baseline model (white).
(Bottom) A cumulative map of the reasoning heads, with columns sorted by the number of newly
activated heads. Each GRPO and SFT category encompass both AIME and AMC benchmark based
circuits, with checkpoints of both training using OpenR1-Math-220k and GSM8k dataset. DeepSeek
Distillation activates enormous heads (blue), as SFT activates similarly large amount of heads, though
SFT heads are mostly concentrated in mid-to-late layer (green). Some of attention heads from GRPO
training are also common in the SFT and Distillation reasoning heads (yellow and purple), however,
the number of GRPO heads are much smaller and distributed across layers (red).
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(A) (B)

(C)

Figure 11: Actual Example of Circuits. Color of nodes are randomly mapped to differentiate each
others. (A) denotes AIME circuit with baseline model, Qwen-2.5-Math-7B. (B) shows AIME circuit
with DeepSeek-R1-Distill-Qwen-7B. (C) is the comparative example with same AIME dataset, which
is constructed with DeekSeek-R1-Distill-Qwen-7B and its own sampled answer, without explicit
<think>. (C) is more complex than other two circuits, which could be mixed with confusable
attention heads. The trend of this enormous attention heads in (C) is also similar with the thinking off
mode in Figure 13 (B), where the model compensate its performance gap through large emergent
attention heads.

(A) (B)

Figure 12: Actual Example of Circuits After Post-Training. Color of nodes are randomly mapped
to differentiate each others. (A) denotes AIME circuit after SFT with baseline model, Qwen-2.5-
Math-1.5B. (B) shows AIME circuit after GRPO with the same baseline model. (A) activates more
attention heads while (B) has more complexly connected specific nodes which refer its internalized
high-level mathematical reasoning.
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(A)

(B)

Figure 13: Actual Example of Circuits of Think On/Off. Color of nodes are randomly mapped to
differentiate each others. (A) denotes AIME circuit of Thinking on mode in Qwen3-8B. (B) shows
AIME circuit of Thinking off on the same baseline model. (B) activates more attention heads, in
contrast, (A) has more complexly connected specific nodes which refer its internalized high-level
mathematical reasoning, similar as GRPO circuit in Figure 12 (B).
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