
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THINKING SPARKS!: EMERGENT ATTENTION HEADS
IN REASONING MODELS DURING POST TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

The remarkable capabilities of modern large reasoning models are largely un-
locked through post-training techniques such as supervised fine-tuning (SFT) and
reinforcement learning (RL). However, the architectural mechanisms behind such
improvements remain largely opaque. In this work, we use circuit analysis to
demonstrate that post-training for complex reasoning sparks the emergence of
novel, functionally specialized attention heads. These heads collectively support
structured reasoning and computation. Our comparative analysis across Qwen
families and Qwen-based DeepSeek-distilled model reveals that these emergent
heads evolve differently under different training regimes. Distillation and SFT
foster a cumulative addition of stable reasoning heads. In contrast, group relative
policy optimization (GRPO) operates in a dynamic search mode: relatively few
attention heads are iteratively activated, evaluated, and pruned, with their survival
closely tracking fluctuations in the task reward signal. Furthermore, we find that
controllable “think on/off” models do not possess dedicated “thinking” heads.
Instead, turning off explicit reasoning triggers a broader—but less efficient—set
of compensatory heads. Through ablation and qualitative analyses, we connect
these circuit-level dynamics to a crucial performance trade-off: strengthened heads
enable sophisticated problem-solving strategies for difficult problems but can also
introduce “over-thinking” failure modes, such as calculation errors or logical loops
on simpler tasks. These findings connect circuit-level dynamics to macro-level
performance, identifying an inherent tension where complex reasoning comes at
the cost of elementary computations. More broadly, our work points to future direc-
tions for training policy design, emphasizing the need to balance the development
of effective reasoning strategies with the assurance of reliable, flawless execution.

1 INTRODUCTION

User: … Let's think step by step and output ...

`Assistant:  <think>  Okay, so I have this problem…

Figure 1: Reasoning circuits trace the internal com-
putations of LRMs at each checkpoint. After post-
training, newly activated attention heads influence
the performance at those checkpoints.

The advent of large reasoning models (LRMs), such
as OpenAI o-series (Jaech et al., 2024; OpenAI,
2025b) and DeepSeek-R1 (Guo et al., 2025), has
marked a significant milestone in artificial intel-
ligence, demonstrating unprecedented ability in
solving complex, multi-step problems. These mod-
els typically employ Chain-of-Thought (CoT) pro-
cess (Wei et al., 2022b), generating an explicit
sequence of reasoning steps before arriving at a
final answer. This capability is substantially en-
hanced by extensive post-training methods, primar-
ily supervised fine-tuning (SFT) and reinforcement
learning (RL) (Trung et al., 2024; Xi et al., 2024;
Mukherjee et al., 2025), and by allocating more
test-time compute during inference (Zhang et al.,
2025b; Wu et al., 2025b; Snell et al., 2025).

Despite their empirical success, the mechanisms
by which these methods enhance reasoning remain
largely unclear. This opacity presents a significant

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(A) (B)

(C)

Figure 2: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during GRPO. (A) denotes
a cohort analysis of attention head activation across trained checkpoints. The blue line tracks the
absolute number of newly activated heads compared to the base model, while the red dashed line
indicates the number of original heads that are maintained. The stacked areas represent cohorts of
heads, color-coded by the checkpoint at which they first emerged, showing their persistence and
evolution over time. The fluctuation in newly activated heads shows a similar trend to the (B),
accuracy reward curve. (C) shows a heatmap detailing the changes in activation frequency. Red cells
denote heads from the original base model, with fading intensity indicating their gradual deactivation.
Blue cells represent newly emerged heads, with darker shades signifying higher activation frequency
across checkpoints. Heads active in the final checkpoint are outlined with a black border.

challenge. For instance, post-trained models often suffer from the “overthinking problem” (Chen et al.,
2024; Sui et al., 2025), generating excessively long and computationally expensive reasoning chains
even for simple tasks, which highlights a critical need for more efficient and adaptive strategies (Tu
et al., 2025; Zhang et al., 2025c). Furthermore, the community lacks a clear understanding of the
fundamental differences between post-training paradigms. Recent studies have debated whether
these methods instill genuinely new problem-solving skills or merely amplify latent capabilities
already present in the base model (Rajani et al., 2025; Yue et al., 2025; Ma et al., 2025). Motivated
by these trade-offs, several works have proposed “Think On/Off” controls to manually modulate
reasoning depth (Wu et al., 2025a; Yang et al., 2025; OpenAI, 2025a). However, without a granular
understanding of how post-training alters a model’s internal mechanism, efforts to improve reasoning
are confined to trial-and-error adjustments of training data and resources (Mukherjee et al., 2025).

In this work, we bridge this gap by shifting the analysis from high-level performance metrics to a
low-level mechanistic investigation of the model’s internal workings. We employ circuit analysis, a
powerful tool of mechanistic interpretability, to identify and characterize functional subgraphs within
the transformer architecture (Vaswani et al., 2017) that are responsible for specific behaviors (Olah
et al., 2020; Elhage et al., 2021; Wang et al., 2023; Bereska & Gavves, 2024; Lindsey et al., 2025).
By applying these lens, we trace the formation of specialized groups of attention heads through
reasoning circuits that emerge as a direct consequence of post-training procedures. This direction is
motivated by preliminary findings that particular attention heads correlate with the quality and length
of a model’s reasoning (Voita et al., 2019; Cabannes et al., 2024; Reddy, 2024).

Our investigation and ablation study yield a series of clear, mechanistically insightful findings:

1. Distillation and SFT: We find that distillation and SFT induce a large amount of newly
emergent heads in circuits. Distillation heads are mostly found in early-mid layers, whereas
SFT heads are focused on mid-to-late layers. They effectively instill complex reasoning
with a considerable proportion of attention heads, which also have a potential of confusion.

2. Group Relative Policy Optimization (GRPO): A prominent RL algorithm, GRPO, engages
in dynamic search for reasoning attention heads during the training process, mirroring
fluctuations of the task reward signal. Its targeted, minimal, but high-impact edits optimize
the use of existing knowledge and computational pathways, not building entirely new ones.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3. Thinking On/Off: While think on mode does not have its own exclusive reasoning heads,
think off mode activates enormous attention heads to compensate performance gaps. Dis-
abling or scaling down those thinking off heads temporally boosts its performance, but those
heads are crucial asset for robust problem solving when the sampling coverage increases.

2 PRELIMINARIES

2.1 CIRCUIT ANALYSIS FOR MECHANISTIC INTERPRETABLE TOOL

Transformer circuit models the internal computation of its architecture as a directed acyclic graph
(DAG) G = (N,E), where each node in N corresponds to a distinct component in the model:
attention heads Al,j (at layer l and head j), MLP modules Ml for each layer, the input node I
(embeddings) and the output node O (logits), following (Nanda et al., 2023; Conmy et al., 2023;
Ameisen et al., 2025):

N = {I, Al,j ,Ml, O}. (1)
Edges E encode how each node’s output contributes to later layers’ residual stream inputs:

E = {(nx, ny) | nx, ny ∈ N}. (2)

A circuit is defined as a subgraph C ⊆ (N,E) selected to explain a specific behavior, e.g, how
certain tokens influence the model’s output or how factual knowledge is stored and elicited (Yao et al.,
2024; Ou et al., 2025; Park et al., 2025). We specifically implement edge attribution patching with
integrated gradients (EAP-IG) which improves faithfulness, wherein ablating all non-circuit edges
preserve task performance (Nanda, 2023; Hanna et al., 2024).

Let (u→v) ∈ E and denote the clean activation by z and a corrupted activation by z′. We define
the input difference to the edge as ∆zu = zu − z′u. Following integrated gradients rule, we average
gradients along the straight-line path from z′ to z. Then we take gradients with respect to the input of
node v (i.e., v’s pre-activation into the residual stream) and use a task-agnostic divergence such as
KL as L. The EAP-IG edge score is

score(u→v) = ∆zu · 1

m

m∑
k=1

∂L
(
z′ + k

m (z − z′)
)

∂ (input of v)

∣∣∣∣∣
z′+ k

m (z−z′)

, (3)

where m is the number of Riemann-sum steps approximating the IG path integral. We rank edges by
equation 3 and select a sparse set by top-n selection. Lastly, we prune isolated nodes and validate
faithfulness via post-hoc interventions: ablate all non-circuit edges (e.g., patching to baseline) and
check that task performance is preserved.

3 IDENTIFYING EMERGENT ATTENTION HEADS WITH CIRCUITS

To systematically compare how different post-training paradigms change a model’s internal mech-
anisms, we design a rigorous experiment based on circuit analysis. Our methodology focuses
on identifying and validating the causal roles of emergent attention head circuits. Details of the
experimental setup are provided in Appendix A.1, moved there due to space limitations.

3.1 CIRCUIT DISCOVERY & ABLATION INFERENCE

Our core methodology for identifying emergent reasoning circuits is a practical application of causal
analysis, using ablation as a proxy for more complex patching experiments. The process is as follows:

1. Circuit Mapping: For a given task (e.g., solving an AIME problem), we first map the active
computational graph for both the baseline model and a post-trained model. As the circuit
is structured with pairs of prompts, clean and corrupted, we set clean prompts designed to
elicit the reasoning behavior by sampling the answer of each model category.

• Baseline model: Answer sets such as “To determine the molecular ...” or “We’ll use
Python to help us solve ...”.

• Reasoning model: Answer sets right after <think> such as “Okay, so I have this
problem ...” and “Alright, so I need to find ...”. Samples can be found in §A.2.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: List of emergent attention heads found through circuits. L and H refers to the layer and
head indices, respectively. Circuits are constructed using AIME’24 benchmark as input. For each
post-training methods, we describe newly emergent attention heads. Visualization of total reasoning
heads aggregation in single model architecture is in Figure 10.

Post-Training List of Emergent Attention Heads in Circuits # of Heads

Qwen-2.5-Math-1.5B (Baseline) L0H7, L21H10, L2H6, L11H1, L14H10 ... 56

DeepSeek-R1-Distill-Qwen-1.5B L5H0, L5H2, L5H4, L6H10, L7H7 ... 32

SFT with OpenR1-Math-220k L0H8, L11H3, L3H3, L5H1, L7H3 ... 34

GRPO with OpenR1-Math-220k L0H8, L5H1, L7H1, L18H11, L11H8 ... 19

GRPO with GSM8K L0H8, L5H1, L7H2, L3H3, L21H2 ... 20

2. Identifying Emergent Components: By comparing circuits of the post-trained model to
that of the baseline model, we identify the set of “emergent heads”—those that are active in
the post-trained model but not in the baseline. These heads represent the structural changes
induced by the training process. We specifically pick Qwen families for pair comparison.

3. Causal Validation via Ablation: To confirm that these emergent heads are causally re-
sponsible for the new reasoning capabilities, we perform ablation inference. We run the
post-trained model on the evaluation benchmarks but surgically disable the emergent heads
by zeroing out their outputs. A difference in performance on the target task, compared to the
intact post-trained model, serves as strong causal evidence that these heads form a critical
part of the newly acquired reasoning circuits.

4. Head Activation Scaling: Furthermore, we scale up/down activations of each reasoning
head in baseline model with their attention head index (layer num and head num). We then
find out the difference in performance both quantitatively and qualitatively.

Figure 1 shows the overall process of our circuit findings. And Figure 11 to 13 visualize circuits.

4 IN-DEPTH ANALYSIS ON SFT & DISTILLATION

Our investigation reveals that different post-trainings do more than simply fine-tuning a model’s
parameters—they fundamentally reshape its internal architecture by activating new attention heads.

4.1 DISTILLATION HEADS STRONGLY AFFECT TO PERFORMANCE

The primary finding is that distillation induces a set of new, consistently activated attention heads that
are not present in the baseline circuits for the same tasks like AIME’24 and AMC, as in Table 1 and
Figure 10. Although two-thirds of the attention head nodes and all MLP nodes active in the baseline
model remain active in the distilled one as well, the number of these new heads is significant. They
represent an addition to the model’s existing machinery rather than a complete replacement, indicating
that distillation builds upon the pretrained foundation by writing in new, specialized components.

To validate the functional role of these newly identified heads, we perform attention head ablation
experiments. We systematically deactivate a set of emergent reasoning heads in the distilled model
and measure its performance. The results as in Table 2 demonstrate a consistent degradations in
performance across all benchmarks, e.g., AIME’24 pass@1 drop from 30 to 26.6. Although the
drop rate is smaller in GPQA and AMC as emergent reasoning heads are usually from the circuits of
AIMEs, the degradation remains significant. We also compare their effectiveness against other heads,
base model-exclusive heads with same benchmarks and Heads from TriviaQA circuits. Here, as 1.5B
model is too sensitive for head ablation like the case of TriviaQA heads, leading to the score of zero,
ablating base model heads in 7B model is quite interesting as its overall performance goes up across
various benchmarks. This provides a hint that not all attention heads emerging from post-training are
important for reasoning, or they can confuse the model when finding the suitable solution.

4.2 SFT INTRODUCES LARGE AMOUNT OF ATTENTION HEADS IN MIDDLE-TO-LATE LAYERS

We reproduce a method where SFT is applied to mimic reasoning traces, approximating the effect of
distillation. Following §A.1, we train baseline model with OpenR1-Math-220k dataset and construct

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: Reasoning Head Ablation Inference for DeepSeek-R1-Distill-Qwen-1.5B and 7B. Every
performance is measured with pass@1 score with temperature 0.6 and 32k context length. Each
ablation cases make the value of specific attention heads, around 5 to 10 number of heads from its
circuit results, into zero for checking its importance for reasoning tasks. We color some scores into
red which is the most degraded results except no ablation baseline, while the bold is the completely
ruined performance. We also color performance increase with green when its heads are ablated.

Model Method AIME’24 AIME’25 GPQA AMC

No Ablation 30.0 26.6 18.6 66.2
DeepSeekR1-Distill Ablation with Reasoning Heads 26.6 16.6 17.1 59.0
Qwen-1.5B Ablation with Base Model Heads 30.0 23.3 12.1 53.0

Ablation with TriviaQA Heads 0.00 0.00 0.00 0.00

No Ablation 40.0 43.3 35.3 81.9
DeepSeekR1-Distill Ablation with Reasoning Heads 53.3 46.6 35.8 78.3
Qwen-7B Ablation with Base Model Heads 53.3 43.3 37.3 83.1

Ablation with TriviaQA Heads 50.0 50.0 34.3 79.5

circuits for each 100 step checkpoints. The results are in Figure 3 and 9. Similar with DeepSeek
distillation, SFT-trained models consistently activate a large amount of additional attention heads,
and almost every head continuously survives until the training is finished. Half of them emerge at the
step 100 checkpoint, and most of them are in middle-to-late layers. This pattern of newly activated
heads tending to persist throughout training, indicates the steady construction of new pathways for
reasoning in the internals of model.

Quantitative Analysis. We conduct ablation same as §4.1 with those many mid-to-late layer’s
SFT reasoning heads. When we ablate around 10 heads from mid-to-late layer, the performance of
every benchmark drops significantly, close to zero. This phenomenon is consistently observed at
multiple checkpoints, regardless of their performance. Going further, we also scale up those heads in
baseline to check its effectiveness by enhancing their activation 1.3 higher, and it reveals out those
heads introduce a trade-off of performance. Although the MATH score increases, the AMC decreases
slightly, and the AIME’24 still drops significantly.

Qualitative Analysis. When we do a comparative analysis on the newly solved and newly missed
problems at each checkpoint, we find meaningful insights into the performance trade-off. After
SFT, models try to solve questions in an over complicated way, such as replacing a one- or two-step
algebraic manipulation with long substitutions or theory first detours. This leads a net degradation,
as the number of newly introduced errors surpassed the number of resolved ones. This shows that,
although SFT installs a new, fixed piece of machinery with nudging models toward careful, procedure-
following math, it costs strategy selection and path efficiency, causing them to miss previously solved
items. Examples of qualitative analysis are in Appendix A.4.1 and A.5.1.

5 IN-DEPTH ANALYSIS ON GRPO

GRPO helps to find the optimal reasoning path. In stark contrast to the static installation of
emergent heads by SFT, GRPO reveals a dynamic and adaptive process of architectural refinement.
Here, emergent heads are not fixed but evolve in response to the reward signal. Like SFT, we train
baseline model with OpenR1-Math-220k and this time, also train with another dataset GSM8K shown
in §A.1. We construct circuits for each 100 step checkpoints for each dataset version, and the results
of AIME’24 circuits are in Figure 2 and Figure 6. Results of different learning rate are in the Figure 7.
And circuits with AMC is in the Figure 8. The temporal analysis of GRPO training checkpoints
shows that the set of active attention heads is in constant flux. As in Figure 2 (A), the number of newly
activated heads rises and falls throughout training, and these fluctuations are strongly correlated with
the model’s accuracy reward curve while training, as shown in Figure 2 (B). Heads that emerge early
in training may be pruned later if they do not consistently contribute to positive rewards, while new
heads continue to be trialed throughout the process, even though its overall number is not that many.
This suggests an iterative search towards finding an optimal circuit configuration. Notably, the final
set of emergent heads after GRPO is small and targeted, and crucially, does not much overlap with the
mid-to-late heads by SFT, indicating that the two methods discover different functional specialization.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(A) (B)

Figure 3: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during SFT. (A) denotes
a cohort analysis of attention head activation over training checkpoints. The blue line tracks the
absolute number of newly activated heads compared to the base model, while the red dashed line
indicates the number of original heads that are maintained. The stacked areas represent cohorts of
heads, color-coded by the checkpoint at which they first emerged, showing their persistence and
evolution over time. (B) shows a heatmap detailing the changes in activation frequency. Red cells
denote heads from the original base model, with fading intensity indicating their gradual deactivation.
Blue cells represent newly emerged heads, with darker shades signifying higher activation frequency
across checkpoints. Heads active in the final checkpoint are outlined with a black border.

This dynamic behavior is a direct mechanistic manifestation of the explore-exploit trade-off inherent
to reinforcement learning. The activation of a new head represents an exploratory step, which is a test
of a new computational strategy. The retention or pruning of that head based on its impact on the
reward signal is exploitation, where the model refines its architecture to favor strategies that work.

This circuit-level perspective provides a compelling explanation for why RL acts as a scalpel (Rajani
et al., 2025) and results in sparse heads updates. GRPO is not overwriting the model wholesale; it
is performing a targeted search for minimal, high-impact edits to the model’s functional architec-
ture (Mukherjee et al., 2025) . This also clarifies why RL-trained models’ capabilities often remain
bounded by the base model’s potential (Yue et al., 2025). GRPO is primarily optimizing the use of
existing knowledge and computational pathways, rather than building entirely new ones from scratch.

Quantitative Analysis. With the similar approach of Section 4.2, we make a difference among
the scales of each attention heads. When we scale up the activation of GRPO reasoning heads with
baseline model, up to 1.3 higher activation, we observe actual performance gain with the heads from
100 step checkpoints GRPO GSM8K circuits. The performance of MATH benchmark increases
from 56 to 60, while other benchmarks like AIME’24 and AMC decrease. Meanwhile, when we
scale up 1.3 higher for the one head emergent from 2500 step checkpoints GRPO Math-220k, the
performance of AMC goes slightly down, and MATH goes slightly up, while AIME’24 remains static.
On the other side, when we scale down by half using that same attention heads emerging from 100
step checkpoints GRPO GSM8K circuits, AIME’24 performance decreases sharply from 13.3 to 3.3.
However, MATH and AMC score increase, 56 to 63, and 38.5 to 42.1. This trade-off is impressive
as some task specific heads affect strongly to that performance, while it may harm or make model
confused to do other tasks. As heads of 100 step checkpoints GRPO GSM8K circuits are mostly
coming from AIME dataset basis, it surely affect AIME the most, while scaling down its presence
could help model to do reasoning better at other benchmarks.

Qualitative Analysis. As GRPO sharpens multi-step mathematical reasoning and problem structur-
ing, it yields better reasoning on composite word problems when we qualitatively compare it against
baseline model’s one. However, it also degrades basic numeracy, execution stability, and tool-choice
agility. For the early checkpoints of OpenR1-Math-220k and GSM8K, they show gains in symbolic
manipulation with fewer end-stage slips, yet prefer cumbersome analytic derivations over simple
programmatic checks. For mid-later checkpoints, which show lower performance than others, they
exhibit overfitting and forgetting signs for the core algebra and geometry. Overall, GRPO yields
clearer, more systematic reasoning traces and improved strategy formation, but can erode numeracy
and robustness when optimization pressure or dataset style dominates. Examples of qualitative
analysis are given in the Appendix A.4.2 and A.5.2.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Structure complex problems into 
systematic equations

Cost of stability such as 
calculation mistake

Effective solving strategies 
with internal code-based logic

Disconnect between describing 
solution and actual computing

Systematically
decompose problem
with mathematical
principles

Signs of overfitting; 
rigidly applying specific solving style

Enhanced computational reliabilityApplying structured, 
step-by-step reasoning

Errors with code execution 
and stuck in function calling loop

Figure 4: Performance change among various benchmarks for each checkpoints of GRPO training
with two different training dataset: GSM8K (Cobbe et al., 2021) and OpenR1-Math-220k (Hugging
Face, 2025). The green and red arrow indicate impressive performance gain and lose among various
checkpoints, and the captions are the summaries of qualitative analysis. The performance trade-off
of each checkpoints is similarly reproduced when we apply attention head scaling with emergent
reasoning heads for the baseline model. Actual examples are presented in the Appendix A.4 to A.5.

6 IN-DEPTH ANALYSIS ON THINK ON/OFF

Recently suggested thinking on/off functionality in models provides a unique window into how
efficient reasoning is implemented (Tu et al., 2025). Efficiently controlling reasoning level is distinct
among architectures, for example, system level routing to select between the fast model and the
deeper reasoning model (OpenAI, 2025a), and using system message keyword to control reasoning
level (Agarwal et al., 2025). In this work, we implement Qwen3-8B (Yang et al., 2025) as it enable
controlled circuit comparison under an instruct-style template with explicit thinking on/off gating
using <think> token, yielding clean think on versus off conditions.

Think off compensate performance through enormous head emerging. Our analysis suggests
that effective reasoning is not about activating monolithic reasoning heads but about selecting the
most efficient computational pathway for the task at hand. Here, circuits constructed from the
default think on mode are not composing a set of unique, reasoning-only heads. Instead, it relatively
shares most of its components with the think off mode. Interestingly, when the think process is
disabled by predefined <think>\n</think> tokens, the model activates a much larger and more
complex set of attention heads. This observation suggests that the model has internalized a highly
efficient mechanism for selecting reasoning pathway. While this differs from phenomena observed in
post-training methods like GRPO, where new reasoning-specific heads emerge, the integrated nature,
unifying a general instruction following (think off) with a reasoning capability (think on), appears
to have fostered an ability to find the most resource efficient path. When the specialized reasoning
pathway is explicitly disabled, the model compensates for it by activating a broader, more redundant
network. In contrast, the think on mode allows it to engage a specific, optimized circuit already
embedded within its structure, demonstrating an advanced form of learned computational efficiency.

Result of Head Intervention. Table 3 shows our quantitative analysis with head intervention
for each benchmark performance. We implement the attention head ablation and head activation
scale down for those heads found exclusively in think off circuits. Without thinking mode, model’s
performance drops significantly, especially for hard level benchmarks such as AIMEs. We find that
if we ablate parts of think off circuit heads in thinking off mode, the removal of overly activated
and confusing attention heads clarifies the model’s reasoning pathways, leading to improved perfor-
mance across multiple benchmarks. The most effective benchmarks are AIME’24 and 25, which
demand more complex and well structured mathematical reasoning compared with other benchmarks.
Meanwhile, scaling down the activation of those think off circuit heads in half also contributes to the
performance gain, even higher than ablation in some benchmarks like GPQA and AIME’25. It also
results in some trade off as the score of AIME’24 decreases from 30 to 20.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Emergent head ablation inference for Qwen3-8B. Every performance is measured with
pass@1 score with temperature 0.6 and 32k context length, as Yang et al. (2025) suggested for the
best performance setting. Each ablation cases make the value of specific attention heads, around 5 to
10 number of heads from its circuit results, into zero or scale down to half for checking its importance
for reasoning tasks. As no other reasoning heads are found among thinking mode, we do ablation
only for thinking off mode. We color some scores into red for the most degraded results and green
for the most performance improvement. Ablating overstuffed attention heads in thinking off mode
increases the baseline score with minimal performance trade-offs.

Model Method AIME’24 AIME’25 AMC GPQA MATH

Qwen3-8B

Think On 80.0 73.3 89.1 63.1 93.8

Think Off 30.0 13.3 67.4 44.9 81.4
Think Off & Ablation 36.6 20.0 61.4 49.4 83.6
Think Off & Scale Down 20.0 23.3 56.6 51.0 81.8

Figure 5: Performance difference against in-
creasing coverage. The left figure shows
pass@k difference when sampling coverage
increased, while the right figure shows effi-
cient correctness with success@k.

Performance Difference Against Coverage Com-
parison. To further investigate performance under
varying sampling coverage, we compare the models’
pass@k scores on AIME’24 with up to 64 samples.
Detail of metric is in §A.3. As shown in Figure 5
(left), the baseline think off model consistently main-
tains a slight performance advantage as k increases.
We hypothesize that its large number of active at-
tention heads facilitates the exploration of diverse
computational pathways, a benefit that scales with
the number of samples. In contrast, the ablation and
scale down to half models exhibit a diminished ca-
pacity to discover novel solutions at higher k values
and large n samples. This behavior is reminiscent
of models that, after post-training like GRPO, be-
come locked into specific reasoning paths and fail
to solve certain problems regardless of the increased
coverage (Yue et al., 2025).

This trade-off is more starkly illustrated when analyzing generation efficiency, success@k, which
calculates the probability of finding a correct solution within each trial, as shown in Figure 5 (right).
Here, the ablation model initially outperforms the baseline at very low sampling rates (k ≤ 2),
suggesting that simplification of attention heads helps focus the model on a more direct and efficient
reasoning path. However, this advantage quickly vanishes as k increases, where the baseline’s
ability to explore a wider solution space becomes more fruitful. Meanwhile, the scale down model
consistently under-performs, appearing to lack both the focused efficiency of the ablated model and
the exploratory breadth of the baseline. Collectively, these results highlight the dual nature of the
numerous emergent heads in the think off mode: they can introduce noise in low-sample scenarios but
become a crucial asset for robust problem-solving when a larger computational budget is available.

7 RELATED WORK

7.1 POST-TRAINING PARADIGMS FOR REASONING MODELS

Post-training is a crucial stage that adapts a general-purpose pretrained LLM for specialized tasks
such as complex reasoning (Zhang et al., 2025a).

7.1.1 SUPERVISED FINE-TUNING (SFT) & DISTILLATION

Supervised Fine-Tuning (SFT) adapts a pretrained model to a specific tasks by training it on a
curated dataset of input-output examples (Wei et al., 2022a). In the context of reasoning, a powerful
technique is to use a large, more capable ”teacher” model (e.g., DeepSeek-R1 (Guo et al., 2025)) to
generate high-quality, step-by-step reasoning races, often called Chain-of-Tought (CoT) (Wei et al.,
2022b) prompts. A smaller ”student” model is then fine-tuned on this synthetic dataset, learning to
mimic the teacher’s reasoning process (Kang et al., 2023). SFT forces the student model’s output

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

distribution to match the teacher’s, and this direct and forceful adaptation often results in significant,
dense updates to the model’s parameter by memorizing specific reasoning paths (Chu et al., 2025).
This form of knowledge distillation has proven effective for creating capable open-source reasoning
models (Toshniwal et al., 2024). In this work, we utilize distilled version of DeepSeek-R1 for the
corresponding Qwen2.5 Math (Yang et al., 2024), and do SFT with sampled OpenR1-Math-220k
dataset for comparison (Hugging Face, 2025).

7.1.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR)

Reinforcement learning (RL) offers an alternative paradigm where a model learns by interacting with
an environment and receiving reward signals (Ouyang et al., 2022). It is particularly well-suited for
tasks like the mathematical reasoning where the correctness of a final answer can be automatically
verified, providing a clear, albeit sparse, reward signal. This Reinforcement Learning with Verifiable
Rewards (RLVR) allows the model to explore different reasoning paths and reinforces those that
lead to correct outcomes, without being constrained to a signal gold path as in SFT. A prominent RL
algorithm used for training reasoning models is Group Relative Policy Optimization (GRPO) (Shao
et al., 2024), a variant of Proximal Policy Optimization (PPO) (Schulman et al., 2017), designed to
be more memory efficient and stable training.

For a prompt q, sample G candidate responses {oi}Gi=1 from the old policy πold; the policy parameters
θ are updated to maximize

JGRPO(θ) = E

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,t(θ) Âi,t, clip

(
ri,t(θ), 1− ϵ, 1 + ϵ

)
Âi,t

)
− β DKL

(
πθ ∥πref

)]
,

(4)
where the token-level policy ratio is

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πold(oi,t | q, oi,<t)
. (5)

In the outcome-reward variant used for verifiable tasks, a reward model assigns a scalar Ri to each
output oi. GRPO then uses a value-free, group-normalized advantage shared across all tokens of oi:

Âi,t =
Ri −mean(R)

std(R)
for all t ∈ {1, . . . , |oi|}, (6)

which compares each response to its group peers and obviates a learned critic. The min–clip structure
conservatively bounds updates, while the KL regularizer with coefficient β constrains divergence
from a reference policy πref , improving stability and mitigating reward over-optimization. We
specifically implement OpenR1 with the same Math-220k for GRPO training to compare base model
with reasoning trained version (Hugging Face, 2025).

8 CONCLUSION AND LIMITATION

We present comparative, mechanistic account of how post-training paradigms reconfigure the internal
mechanism of reasoning models. Our analyses show that these methods do not merely explore a fixed
parameter landscape, instead, they reshape functional structure: distillation and SFT steadily embed
new computational pathways via the sustained emergence of additional, large reasoning heads, on
the other hand, GRPO conducts reward-guided head configurations, with heads appearing and being
pruned over training, to optimize capabilities. The think on/off architecture behaves as a selective gate,
as thinking mode activates just the task-relevant heads, while thinking off compensates ability through
more diverse attentions with enormous heads. And their differences align with observed performance
trade-offs: the systems more often solve hard problems by forming deeper, more structured plans, yet
sometimes regress on previously easy items due to over reasoning or arithmetic slips.

Although this provides a new lens through which to view post-training, its conclusions are subject
to offer avenues for future research. Taken together, our results motivate attention head informed
training policies that (i) encourage targeted head activation rather than uncontrolled head growth,
(ii) use reward shaping to jointly optimize plan quality and calculation reliability, and (iii) leverage
per-head influence estimates to guide selective post-training. We view this mechanistic perspective as
a foundation for principled, interpretable, and robust post-training of effective reasoning strategies
with the assurance of reliable, flawless execution.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

DECLARATION ON GENERATIVE AI

During the preparation of this work, the author(s) used Gemini 2.5 Pro in order to: Grammar, spelling
check and latex format check.

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

AI-MO. Amc 2023, 2024. URL https://huggingface.co/datasets/AI-MO/
aimo-validation-amc.

AIME. AIME problems and solutions, 2025. URL https://artofproblemsolving.com/
wiki/index.php/AIME_Problems_and_Solutions.

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
computational graphs in language models. Transformer Circuits Thread, 2025. URL https:
//transformer-circuits.pub/2025/attribution-graphs/methods.html.

Leonard Bereska and Stratis Gavves. Mechanistic interpretability for AI safety - a review. Transac-
tions on Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.
net/forum?id=ePUVetPKu6. Survey Certification, Expert Certification.

Vivien Cabannes, Charles Arnal, Wassim Bouaziz, Xingyu Yang, Francois Charton, and Julia
Kempe. Iteration head: A mechanistic study of chain-of-thought. Advances in Neural Information
Processing Systems, 37:109101–109122, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
o1-like llms. arXiv preprint arXiv:2412.21187, 2024.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of foundation
model post-training. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=dYur3yabMj.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. Advances in Neural
Information Processing Systems, 36:16318–16352, 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

10

https://huggingface.co/datasets/AI-MO/ aimo-validation-amc
https://huggingface.co/datasets/AI-MO/ aimo-validation-amc
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://openreview.net/forum?id=ePUVetPKu6
https://openreview.net/forum?id=ePUVetPKu6
https://openreview.net/forum?id=dYur3yabMj


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov. Have faith in faithfulness: Going beyond
circuit overlap when finding model mechanisms. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=TZ0CCGDcuT.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale
distantly supervised challenge dataset for reading comprehension. In Regina Barzilay and
Min-Yen Kan (eds.), Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL https:
//aclanthology.org/P17-1147/.

Minki Kang, Seanie Lee, Jinheon Baek, Kenji Kawaguchi, and Sung Ju Hwang. Knowledge-
augmented reasoning distillation for small language models in knowledge-intensive tasks.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 48573–48602. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/97faedc90260eae5c400f92d5831c3d7-Paper-Conference.pdf.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.
pub/2025/attribution-graphs/biology.html.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025.

Sagnik Mukherjee, Lifan Yuan, Dilek Hakkani-Tur, and Hao Peng. Reinforcement learning finetunes
small subnetworks in large language models. arXiv preprint arXiv:2505.11711, 2025.

Neel Nanda. Attribution Patching: Activation Patching At Industrial Scale. 2023.
URL https://www.neelnanda.io/mechanistic-interpretability/
attribution-patching.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

OpenAI. Gpt-5 system card. 2025a.

OpenAI. Openai o3 and o4-mini system card. 2025b.

11

https://openreview.net/forum?id=TZ0CCGDcuT
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://proceedings.neurips.cc/paper_files/paper/2023/file/97faedc90260eae5c400f92d5831c3d7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/97faedc90260eae5c400f92d5831c3d7-Paper-Conference.pdf
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://openreview.net/forum?id=9XFSbDPmdW


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yixin Ou, Yunzhi Yao, Ningyu Zhang, Hui Jin, Jiacheng Sun, Shumin Deng, Zhenguo Li, and Huajun
Chen. How do LLMs acquire new knowledge? a knowledge circuits perspective on continual
pre-training. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Findings of the Association for Computational Linguistics: ACL 2025, pp. 19889–19913,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-
5. doi: 10.18653/v1/2025.findings-acl.1021. URL https://aclanthology.org/2025.
findings-acl.1021/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Yein Park, Chanwoong Yoon, Jungwoo Park, Minbyul Jeong, and Jaewoo Kang. Does time have its
place? temporal heads: Where language models recall time-specific information. In Wanxiang
Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the
63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 16616–16643, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN
979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.812. URL https://aclanthology.
org/2025.acl-long.812/.

Neel Rajani, Aryo Pradipta Gema, Seraphina Goldfarb-Tarrant, and Ivan Titov. Scalpel vs. hammer:
Grpo amplifies existing capabilities, sft replaces them. arXiv preprint arXiv:2507.10616, 2025.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=aN4Jf6Cx69.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=Ti67584b98.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In The Thirteenth Inter-
national Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=4FWAwZtd2n.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Na Zou, Hanjie Chen, and Xia Hu. Stop overthinking: A survey
on efficient reasoning for large language models. Transactions on Machine Learning Research,
2025. ISSN 2835-8856. URL https://openreview.net/forum?id=HvoG8SxggZ.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman.
Openmathinstruct-1: A 1.8 million math instruction tuning dataset. Advances in Neural Information
Processing Systems, 37:34737–34774, 2024.

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. ReFT: Rea-
soning with reinforced fine-tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 7601–7614, Bangkok, Thailand, August 2024. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.410. URL https:
//aclanthology.org/2024.acl-long.410/.

12

https://aclanthology.org/2025.findings-acl.1021/
https://aclanthology.org/2025.findings-acl.1021/
https://aclanthology.org/2025.acl-long.812/
https://aclanthology.org/2025.acl-long.812/
https://openreview.net/forum?id=aN4Jf6Cx69
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=HvoG8SxggZ
https://aclanthology.org/2024.acl-long.410/
https://aclanthology.org/2024.acl-long.410/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Songjun Tu, Jiahao Lin, Qichao Zhang, Xiangyu Tian, Linjing Li, Xiangyuan Lan, and Dongbin
Zhao. Learning when to think: Shaping adaptive reasoning in r1-style models via multi-stage rl.
arXiv preprint arXiv:2505.10832, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-
head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna
Korhonen, David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pp. 5797–5808, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1580. URL https:
//aclanthology.org/P19-1580/.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022a. URL https://openreview.net/forum?
id=gEZrGCozdqR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu Tang,
Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, and Xiangzheng Zhang. Light-r1:
Curriculum sft, dpo and rl for long cot from scratch and beyond. arXiv preprint arXiv:2503.10460,
2025.

Tong Wu, Chong Xiang, Jiachen T Wang, G Edward Suh, and Prateek Mittal. Effectively controlling
reasoning models through thinking intervention. arXiv preprint arXiv:2503.24370, 2025a.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for LLM problem-solving. In The Thirteenth
International Conference on Learning Representations, 2025b. URL https://openreview.
net/forum?id=VNckp7JEHn.

Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, Wei He, Yiwen Ding, Shichun
Liu, Xin Guo, Junzhe Wang, et al. Training large language models for reasoning through reverse
curriculum reinforcement learning. In International Conference on Machine Learning, pp. 54030–
54048. PMLR, 2024.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang, Ziwen Xu, Shumin Deng, and Huajun
Chen. Knowledge circuits in pretrained transformers. Advances in Neural Information Processing
Systems, 37:118571–118602, 2024.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

13

https://aclanthology.org/P19-1580/
https://aclanthology.org/P19-1580/
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=VNckp7JEHn
https://openreview.net/forum?id=VNckp7JEHn


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models.
arXiv preprint arXiv:2509.08827, 2025a.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
Guo, Yufei Wang, Niklas Muennighoff, et al. A survey on test-time scaling in large language
models: What, how, where, and how well? arXiv preprint arXiv:2503.24235, 2025b.

Xiaoyun Zhang, Jingqing Ruan, Xing Ma, Yawen Zhu, Haodong Zhao, Hao Li, Jiansong Chen,
Ke Zeng, and Xunliang Cai. When to continue thinking: Adaptive thinking mode switching for
efficient reasoning. arXiv preprint arXiv:2505.15400, 2025c.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EXPERIMENTAL SETUP

Models. We select a consistent family of models to serve as the testbed for our analysis among
similar architecture and design. As Qwen series make it possible to compare almost every possible
reasoning training, we specifically pick this model variations and analyze deeply. The models include:

• Baseline Models: Qwen2.5-Math-1.5B-Instruct and Qwen2.5-Math-7B-Instruct (Yang et al.,
2024), which are strong base models pretrained with a focus on mathematical capabilities.

• Distilled Models: DeepSeek-R1-Distill-Qwen-1.5B and 7B (Guo et al., 2025), which
represent the outcome of knowledge distillation from a powerful teacher reasoning model.

• Think On/Off Model: Qwen3-8B (Yang et al., 2025), which features a Think On/Off
capability across various open source models, allowing for controlled study of selective
reasoning activation.

Datasets. Our training and evaluation cover the well-established, widely-used reasoning datasets:

• Training: For SFT and GRPO, we utilize standard, large-scale reasoning datasets, including
OpenR1-Math-220k (Hugging Face, 2025) and GSM8K (Cobbe et al., 2021), which contain
a diverse set of mathematical problems and their solutions.

• Evaluation: To assess both in-domain and out-of-domain generalization, we employed a
comprehensive suite of benchmarks: AIME’24 and AIME’25 (American Invitational Mathe-
matics Examination) (AIME, 2025), AMC (American Mathematics Competitions) (AI-MO,
2024), GPQA (Graduate-Level Google-Proof Q&A) (Rein et al., 2024), MATH-500 (Light-
man et al., 2024) and TriviaQA (Joshi et al., 2017) for general knowledge.

Training & Evaluation. For each post-training method, we follow established best practices and
maintain consistent hyperparameters where possible to facilitate fair comparison. For GRPO, we train
a Qwen2.5-Math-1.5B-Instruct for 3 epochs, saving checkpoints every 100 steps to enable a temporal
analysis of circuit formation. For SFT, we used a setup designed to mirror the GRPO training process
in terms of data exposure. We also utilize Light-R1 (Wen et al., 2025) as our codebase, modifying it
so that the pass@1 evaluation metric is computed as the average over multiple responses for each
setting. All training and inference are done with two NVIDIA H100 GPUs(80GB). Hyper-parameter
setup for each post-training is like below:

• SFT (Wei et al., 2022a): learning rate 4.0e− 5, 5 training epochs, 100 steps for saving and
circuit construction, Bfloat16, warm-up ratio 0.03.

• GRPO (Shao et al., 2024) with OpenrR1-Math-220k: learning rate 1.0e − 6 for main
result and 2.0e− 5 for comparison in 7, 3 training epochs, 100 steps for saving and circuit
construction, Bfloat16, warm-up ratio 0.1, reward weights 1.0, 16 generations.

• GRPO (Shao et al., 2024) with GSM8K: learning rate 5e− 6, 1 training epoch, 100 steps
for saving and circuit construction, Bfloat16, warm-up ratio 0.1, reward weights 1.0, 16
generations.

For the system prompt of GRPO training, we use basic recipes of OpenR1 Hugging Face (2025).

You are a helpful AI Assistant that provides well-reasoned and detailed responses. You first
think about the reasoning process as an internal monologue and then provide the user with
the answer. Respond in the following format:
<think>\n...\n</think>\n<answer>\n...\n</answer>

A.2 CIRCUIT CONSTRUCTION SETUP

We construct circuits using EAP-IG (Hanna et al., 2024), where ig-step is 100 and top-n is 5000. We
also simplify each circuits with the threshold τ = 0.1 for filtering out important edges and nodes.
Examples of simplified circuits among various models are in Figure 11, 12, and 13.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt Settings. We sample various responses of baseline models and reasoning models, then
make an input prompt for circuit construction using chat template.

Reasoning Model

<think>Okay, so I have this problem where Aya goes ...

<think>Alright, so I have this geometry problem here ...

<think>Okay, so I need to find the eigenvector ...

<think>...

Baseline model

We’ll use Python to help us ...

To determine the molecular

A.3 DETAIL OF EVALUATION

Generation and Sampling Setup For our quantitative evaluation, we generate various responses
n = 4 to 64 for each problem in the respective test sets. The generation process for each models
uses a sampling temperature of T = 0.6 and a top-p (nucleus sampling) value of 0.95, or if the
model’s best practice is suggested such as Qwen3-8B, we follow those settings; T = 0.6, top-p=0.95,
top-k=20, and min-p=0 for thinking mode.

Pass@k for Overall Capability To assess the overall problem-solving capability of each model,
we employ the standard pass@k metric, as introduced by Chen et al. (2021). This metric provides
an unbiased estimator for the probability that at least one correct solution is generated in k attempts.
Given n total generated samples for a problem and c correct samples among them, the pass@k score
for that single problem is calculated as:

pass@k = 1−
(
n−c
k

)(
n
k

) (7)

The final reported pass@k score is the average of these values across all problems in the test set. This
metric is independent of the generation order and measures the model’s theoretical potential to solve
a problem given a budget of k samples.

Success@k for Generation Efficiency While pass@k measures overall capability, it is agnostic
to the generation order. To measure the practical generation efficiency, a model’s ability to find a
correct solution quickly, we also compute success@k. This metric evaluates the likelihood of finding
a correct solution within the trial k sequentially generated samples.

Let Rp = (r1, r2, . . . , rn) be the ordered sequence of responses for a problem p, and let v(ri) be a
verification function that returns 1 if response ri is correct and 0 otherwise. The success@k is then
the average success rate across all problems:

success@k = Eproblems

[
⊮

{
k∑

i=1

v(ri) > 0

}]
(8)

where ⊮{·} is the indicator function. This metric directly rewards models that produce correct
answers earlier in the generation process. The comparison between pass@k and success@k allows
us to disentangle a model’s latent capability from its practical efficiency, as discussed in our main
analysis.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 EXAMPLE OF QUALITATIVE ANALYSIS: NEWLY CORRECT

Input Question from AIME’24

Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards.
When she walks at a constant speed of s kilometers per hour, the walk takes her 4 hours,
including t minutes spent in the coffee shop. When she walks s+ 2 kilometers per hour, the
walk takes her 2 hours and 24 minutes, including t minutes spent in the coffee shop. Suppose
Aya walks at s + 1

2 kilometers per hour. Find the number of minutes the walk takes her,
including the t minutes spent in the coffee shop. Let’s think step by step and output the final
answer within \boxed{}.

Baseline model’s response just repeat same equation endlessly without specific conclusions or
reasoning. We qualitatively evaluate how each post-training’s answer is different from the original.

Response of Baseline model (Qwen2.5-Math-1.5B)

To solve this problem, we need to establish the relationship between the walking speed
and the time taken for the walk, including the time spent in the coffee shop. Let’s break
down the problem step by step. 1. **Define Variables:** - Let s be the walking speed
in kilometers per hour. - Let t be the time spent in the coffee shop in hours. - The total
time for the walk, including the coffee shop time, is given by 9

s = 4 hours and 9
s+2 = 2.4

hours. 2. **Set Up Equations:** - From the first condition: 9
s = 4 which gives s = 9

4 .
- From the second condition: 9

s+2 = 2.4 which gives s + 2 = 9
2.4 = 90

24 = 15
4 and thus

s = 15
4 − 2 = 15

4 − 8
4 = 7

4 . Since we have two different values for s from the two conditions,
we need to verify which one is correct. Let’s check both conditions with s = 9

4 and s = 7
4 . 3.

**Verify the Values:** - For s = 9
4 : - Time for the walk: 9

9
4

= 4 hours. - Time for the walk

at s+ 2 = 17
4 : 9

17
4

= 36
17 ≈ 2.12 hours, which is not 2.4 hours. - For s = 7

4 : - Time for the

walk: 9
7
4

= 36
7 ≈ 5.14 hours, which is not 4 hours. ... (endless repeat...)

A.4.1 SFT

Response of SFT checkpoint 1000

<think> Okay, let’s try to figure out this problem. So, Aya walks 9 kilometers every
morning, and her walking speed is either s km/h or s+2 km/h. When she walks at s km/h, the
total time, including a coffee shop break of t minutes, is 4 hours. When she walks faster at
s+2 km/h, the total time is 2 hours and 24 minutes, still including the same t minutes in the
coffee shop. We need to find the total time when she walks at s+0.5 km/h, including the coffee
shop time. First, let’s parse the problem. The key information is: 1. Distance: 9 km both
times. 2. Walking speed: s km/h initially, then s+2 km/h. 3. Time taken: 4 hours at speed s, 2
hours 24 minutes at speed s+2, with both include t minutes in the coffee shop. 4. Find the
total time when walking at s+0.5 km/h, including t minutes. So, the total time is the walking
time plus the coffee shop break. The walking time can be calculated by distance divided by
speed. The coffee shop break is t minutes each time, regardless of speed. Let me write down
the equations. First scenario: walking speed s km/h, total time 4 hours, including t minutes.
So the walking time is 4 hours minus t minutes. Wait, but time is usually in hours in these
problems. So maybe we need to convert everything to hours. ... But according to the problem,
when walking at 4.5 km/h, the total time is 2.4 hours, which is 144 minutes, which is correct.
So that checks out. Therefore, the total time when walking at 3 km/h is 3 hours 24 minutes,
which is 3*60 +24=204 minutes. So the answer is 204 minutes, so \boxed{204} **Final
Answer** \boxed{204} </think> Given that Aya walks 9 kilometers every morning, ...

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.4.2 GRPO

Response of GRPO checkpoint 2500

Please reason step by step, and put your final answer within \boxed{}. Offset OID Every
morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards. When
she walks at a constant speed of s kilometers per hour, the walk takes her 4 hours, including
t minutes spent in the coffee shop. When she walks s + 2 kilometers per hour, the walk
takes her 2 hours and 24 minutes, including t minutes spent in the coffee shop. Suppose Aya
walks at s+ 1

2 kilometers per hour. Find the number of minutes the walk takes her, including
the t minutes spent in the coffee shop. First, let’s establish the relationships from the given
information. 1. When walking at s kilometers per hour, the total time is 4 hours, including t
minutes in the coffee shop. Since 4 hours is 240 minutes, we can write:

Time spent walking =
9

s
hours =

9

s
× 60 minutes =

540

s
minutes.

So, the total time including the coffee shop time is:

540

s
+ t = 240.

This simplifies to:
540

s
= 240− t. (1)

2. When walking at s+2 kilometers per hour, the total time is 2 hours and 24 minutes, which
is 144 minutes. So, we can write:

Time spent walking =
9

s+ 2
hours =

9

s+ 2
× 60 minutes =

540

s+ 2
minutes.

So, the total time including the coffee shop time is:

540

s+ 2
+ t = 144.

... Now, we need to find the time it takes Aya to walk at s+ 1
2 = 2.5 + 0.5 = 3 kilometers

per hour:

Time spent walking =
9

3
hours =

9

3
× 60 minutes = 180 minutes.

Including the 24 minutes in the coffee shop, the total time is:

180 + 24 = 204 minutes.

The final answer is: \boxed{204}. ...

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.5 EXAMPLE OF QUALITATIVE ANALYSIS: NEWLY INCORRECT

Input Question from AIME’24

Find the largest possible real part of

(75 + 117i)z +
96 + 144i

z

where z is a complex number with |z| = 4. Let’s think step by step and output the final
answer within \boxed{}.

Baseline model correctly calculate the result using python codes in this case.

Response of Baseline model (Qwen2.5-Math-1.5B)

To find the largest possible real part of (75 + 117i)z + 96+144i
z where z is a complex number

with |z| = 4, we can use the following approach: 1. Let z = 4eiθ where θ is a real number.
This is because |z| = 4. 2. Substitute z = 4eiθ into the expression (75 + 117i)z + 96+144i

z .
3. Simplify the expression and find the real part. 4. Maximize the real part with respect to θ.
Let’s proceed with the calculations: 1. Let z = 4eiθ = 4(cos θ+ i sin θ). 2. Substitute z into
the expression:

(75 + 117i)z +
96 + 144i

z
= (75 + 117i)(4 cos θ + 4i sin θ) +

96 + 144i

4 cos θ + 4i sin θ
.

3. Simplify the expression: ... Thus, the largest possible real part is 540. Let’s con-
firm this with Python code. “‘python import sympy as sp # Define the variables theta =
sp.symbols(’theta’, real=True) z = 4 * (sp.cos(theta) + sp.I * sp.sin(theta)) # Define the
expression expr = (75 + 117 * sp.I) * z + (96 + 144 * sp.I) / z # Simplify the expression
expr simplified = sp.simplify(expr) # Extract the real part real part = sp.re(expr simplified)
# Find the maximum value of the real part max real part = sp.maximum(real part, theta)
print(max real part) “‘ “‘output 540 “‘ The largest possible real part of (75+117i)z+ 96+144i

z
where z is a complex number with |z| = 4 is \boxed{540}.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.5.1 SFT

At first, it successfully computes the answer with a simplified mathematical expression. However, it
continues its computation, then goes wrong with its calculation, even incomplete output format.

Response of SFT checkpoint 1000

<think> Okay, so I need to find the largest possible real part of the expression

(75 + 117i)z +
96 + 144i

z
,

where z is a complex number with |z| = 4. Hmm, complex numbers and optimization... Let
me start by understanding the problem better. First, z is a complex number with magnitude
4. That means z can be written in the form z = 4eiθ, where θ is a real number between 0
and 2π. Since z is a complex number on a circle of radius 4, maybe I can parametrize z as
4(cos θ + i sin θ). Then, I can express the given expression in terms of θ and find its real part.
Then, maximize that real part with respect to θ.
Let me write that out. Let z = 4eiθ. Then, the expression becomes:

(75 + 117i)(4eiθ) +
96 + 144i

4eiθ
.

Simplify each term: ... Therefore, we need to maximize 324 cos θ − 432 sin θ. Hmm, okay.
So, the problem reduces to maximizing a linear combination of sin and cos. There’s a
standard method for maximizing such expressions.
The expression a cos θ + b sin θ can be written as R cos(θ − φ), where R =

√
a2 + b2.

Then, the maximum value is R. So for 324 cos θ − 432 sin θ (i.e., a = 324, b = −432), the
maximum value is √

3242 + (−432)2 =
√
3242 + 4322.

Compute:

3242 = 104,976, 4322 = 186,624, 3242 + 4322 = 291,600,

so √
291,600 = 540.

Therefore, the largest possible real part is 540.
But wait, hold on. Let me check my calculation again because 324 squared is 104,976, 432
squared is 186,624. ... 286

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.5.2 GRPO

Although GRPO gives an ability of complex mathematical reasoning, model’s response simply goes
wrong with calculation mistakes.

Response of GRPO checkpoint 2500

Please reason step by step, and put your final answer within \boxed{}.ageration agerationuser
Find the largest possible real part of (75 + 117i)z + 96+144i

z where z is a complex number
with |z| = 4. To solve this problem, we will use the following steps: 1. Represent the complex
number z in terms of its real and imaginary parts. 2. Express the given expression in terms of
z and its conjugate. 3. Use the constraint |z| = 4 to simplify the expression. 4. Maximize
the real part of the expression. Let’s start by representing z as z = 4eiθ = 4(cos θ + i sin θ).
Given the expression (75 + 117i)z + 96+144i

z , we substitute z = 4eiθ:

(75 + 117i)z = (75 + 117i) · 4eiθ = 4(75 + 117i)(cos θ + i sin θ)

96 + 144i

z
=

96 + 144i

4eiθ
=

96 + 144i

4
e−iθ = (24 + 36i)(cos θ − i sin θ)

So the expression becomes:

4(75 cos θ+117 sin θ+i(75 sin θ−117 cos θ))+(24 cos θ+36 sin θ−i(24 sin θ−36 cos θ))

Combining the real and imaginary parts, we get:

(4·75 cos θ+4·117 sin θ+24 cos θ+36 sin θ)+i(4·75 sin θ−4·117 cos θ−24 sin θ+36 cos θ)

= (300 cos θ+468 sin θ+24 cos θ+36 sin θ)+i(300 sin θ−468 cos θ−24 sin θ+36 cos θ)

= (324 cos θ + 504 sin θ) + i(276 sin θ − 432 cos θ)

The real part of this expression is 324 cos θ + 504 sin θ. To maximize this, we use the fact
that the maximum value of a cos θ + b sin θ is

√
a2 + b2. Here, a = 324 and b = 504, so the

maximum value is:√
3242 + 5042 =

√
(324 · 3) · (1764 + 252) =

√
3242 + 5042 =

√
92 · 362 + 1262

... So the largest possible real part of the expression is \boxed{1134}.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(A) (B)

Figure 6: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during GRPO with
GSM8k (Cobbe et al., 2021) dataset. (A) denotes a cohort analysis of attention head activation
over training checkpoints. The blue line tracks the absolute number of newly activated heads com-
pared to the base model, while the red dashed line indicates the number of original heads that are
maintained. The stacked areas represent cohorts of heads, color-coded by the checkpoint at which
they first emerged, showing their persistence and evolution over time. (B) shows a heatmap detailing
the changes in activation frequency. Red cells denote heads from the original base model, with fading
intensity indicating their gradual deactivation. Blue cells represent newly emerged heads, with darker
shades signifying higher activation frequency across checkpoints. Heads active in the final checkpoint
are outlined with a black border.

(A) (B)

Figure 7: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during GRPO with OpenR1-
Math-220k (Hugging Face, 2025) dataset with learning rate 2e-05. (A) denotes a cohort analysis
of attention head activation over training checkpoints. The blue line tracks the absolute number of
newly activated heads compared to the base model, while the red dashed line indicates the number
of original heads that are maintained. The stacked areas represent cohorts of heads, color-coded by
the checkpoint at which they first emerged, showing their persistence and evolution over time. The
fluctuation in newly activated heads shows a similar trend to the (B), accuracy reward curve. (C)
shows a heatmap detailing the changes in activation frequency. Red cells denote heads from the
original base model, with fading intensity indicating their gradual deactivation. Blue cells represent
newly emerged heads, with darker shades signifying higher activation frequency across checkpoints.
Heads active in the final checkpoint are outlined with a black border.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(A) (B)

Figure 8: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during GRPO with OpenR1-
Math-220k (Hugging Face, 2025) dataset, and circuit construction with AMC (AI-MO, 2024) bench-
mark. (A) denotes a cohort analysis of attention head activation over training checkpoints. The blue
line tracks the absolute number of newly activated heads compared to the base model, while the red
dashed line indicates the number of original heads that are maintained. The stacked areas represent
cohorts of heads, color-coded by the checkpoint at which they first emerged, showing their persistence
and evolution over time. (B) shows a heatmap detailing the changes in activation frequency. Red cells
denote heads from the original base model, with fading intensity indicating their gradual deactivation.
Blue cells represent newly emerged heads, with darker shades signifying higher activation frequency
across checkpoints. Heads active in the final checkpoint are outlined with a black border.

(A) (B)

Figure 9: Analysis of Emergent Attention Head in Qwen2.5-Math-1.5B during SFT with OpenR1-
Math-220k (Hugging Face, 2025) dataset, and circuit construction with AMC (AI-MO, 2024) bench-
mark. (A) denotes a cohort analysis of attention head activation over training checkpoints. The blue
line tracks the absolute number of newly activated heads compared to the base model, while the red
dashed line indicates the number of original heads that are maintained. The stacked areas represent
cohorts of heads, color-coded by the checkpoint at which they first emerged, showing their persistence
and evolution over time. The fluctuation in newly activated heads shows a similar trend to the (B),
accuracy reward curve. (C) shows a heatmap detailing the changes in activation frequency. Red cells
denote heads from the original base model, with fading intensity indicating their gradual deactivation.
Blue cells represent newly emerged heads, with darker shades signifying higher activation frequency
across checkpoints. Heads active in the final checkpoint are outlined with a black border.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Map of Reasoning
From Qwen2.5-Math-1.5B To DeepSeek-R1-Distill-Qwen-1.5B 

Figure 10: Map of Reasoning: Visualization of emergent reasoning heads in circuits based on
Qwen2.5-Math-1.5B with various post-training, and DeepSeek-R1-Distill-Qwen-1.5B. (Top) A map
of emergent attention heads for each post-training method, compared to the baseline model (white).
(Bottom) A cumulative map of the reasoning heads, with columns sorted by the number of newly
activated heads. Each GRPO and SFT category encompass both AIME and AMC benchmark based
circuits, with checkpoints of both training using OpenR1-Math-220k and GSM8k dataset. DeepSeek
Distillation activates enormous heads (blue), as SFT activates similarly large amount of heads, though
SFT heads are mostly concentrated in mid-to-late layer (green). Some of attention heads from GRPO
training are also common in the SFT and Distillation reasoning heads (yellow and purple), however,
the number of GRPO heads are much smaller and distributed across layers (red).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(A) (B)

(C)

Figure 11: Actual Example of Circuits. Color of nodes are randomly mapped to differentiate each
others. (A) denotes AIME circuit with baseline model, Qwen-2.5-Math-7B. (B) shows AIME circuit
with DeepSeek-R1-Distill-Qwen-7B. (C) is the comparative example with same AIME dataset, which
is constructed with DeekSeek-R1-Distill-Qwen-7B and its own sampled answer, without explicit
<think>. (C) is more complex than other two circuits, which could be mixed with confusable
attention heads. The trend of this enormous attention heads in (C) is also similar with the thinking off
mode in Figure 13 (B), where the model compensate its performance gap through large emergent
attention heads.

(A) (B)

Figure 12: Actual Example of Circuits After Post-Training. Color of nodes are randomly mapped
to differentiate each others. (A) denotes AIME circuit after SFT with baseline model, Qwen-2.5-
Math-1.5B. (B) shows AIME circuit after GRPO with the same baseline model. (A) activates more
attention heads while (B) has more complexly connected specific nodes which refer its internalized
high-level mathematical reasoning.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(A)

(B)

Figure 13: Actual Example of Circuits of Think On/Off. Color of nodes are randomly mapped to
differentiate each others. (A) denotes AIME circuit of Thinking on mode in Qwen3-8B. (B) shows
AIME circuit of Thinking off on the same baseline model. (B) activates more attention heads, in
contrast, (A) has more complexly connected specific nodes which refer its internalized high-level
mathematical reasoning, similar as GRPO circuit in Figure 12 (B).

26


	Introduction
	Preliminaries
	Circuit Analysis for Mechanistic Interpretable Tool

	Identifying Emergent Attention Heads with Circuits
	Circuit Discovery & Ablation Inference

	In-Depth Analysis on SFT & Distillation
	Distillation heads strongly affect to performance
	SFT introduces large amount of attention heads in middle-to-late layers

	In-Depth Analysis on GRPO
	In-Depth Analysis on Think On/Off
	Related Work
	Post-Training Paradigms for Reasoning Models
	Supervised Fine-Tuning (SFT) & Distillation
	Reinforcement Learning with Verifiable Rewards (RLVR)


	Conclusion and Limitation
	Appendix
	Experimental Setup
	Circuit Construction Setup
	Detail of Evaluation
	Example of Qualitative Analysis: Newly Correct
	SFT
	GRPO

	Example of Qualitative Analysis: Newly Incorrect
	SFT
	GRPO



