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ABSTRACT

The dominant paradigm for machine learning on graphs uses Message Passing
Graph Neural Networks (MP-GNNs), in which node representations are updated
by aggregating information in their local neighborhood. Recently, there have been
increasingly more attempts to adapt the Transformer architecture to graphs in an
effort to solve some known limitations of MP-GNN. A challenging aspect of de-
signing Graph Transformers is integrating the arbitrary graph structure into the
architecture. We propose Graph Diffuser (GD) to address this challenge. GD
learns to extract structural and positional relationships between distant nodes in
the graph, which it then uses to direct the Transformer’s attention and node repre-
sentation. We demonstrate that existing GNNs and Graph Transformers struggle
to capture long-range interactions and how Graph Diffuser does so while admitting
intuitive visualizations. Experiments on eight benchmarks show Graph Diffuser
to be a highly competitive model, outperforming the state-of-the-art in a diverse
set of domains.

1 INTRODUCTION

Graph Neural Networks have seen increasing popularity as a versatile tool for graph representation
learning, with applications in a wide variety of domains such as protein design (e.g., Ingraham et al.
(2019)) and drug development (e.g., Gaudelet et al. (2020)). The majority of Graph Neural Net-
works (GNNs) operate by stacking multiple local message passing layers Gilmer et al. (2017), in
which nodes update their representation by aggregating information from their immediate neigh-
bors Li et al. (2016); Kipf & Welling (2017); Hamilton et al. (2017); Veličković et al. (2018); Wu
et al. (2019a); Xu et al. (2019b).

In recent years, several limitations of GNNs have been observed by the community. These include
under-reaching Barceló et al. (2020), over-smoothing Wu et al. (2020) and over-squashing Alon
& Yahav (2021); Topping et al. (2022). Over-smoothing manifests as node representations of well-
connected nodes become indistinguishable after sufficiently many layers, and over-squashing occurs
when distant nodes do not communicate effectively due to the exponentially growing amount of
messages that must get compressed into a fixed-sized vector. Even prior to the formalization of these
limitations, it was clear that going beyond local aggregation is essential for certain problems Atwood
& Towsley (2016); Klicpera et al. (2019).

Since their first appearance for natural language processing, Transformers have been applied to do-
mains such as computer vision(Han et al. (2022)), robotic control Kurin et al. (2020), and biological
sequence modeling Rives et al. (2021) with great success. They improve previous models’ expressiv-
ity and efficiency by replacing local inductive biases with the global communication of the attention
mechanism. Following this trend, the Transformer has been studied extensively in recent years as a
way to combat the issues mentioned above with GNNs. Graph Transformers (GTs) usually integrate
the input into the architecture by encoding node structural and positional information as features
or by modulating the attention between nodes based on their relationships within the graph. How-
ever, given the arbitrary structure of graphs, incorporating the input into the Transformer remains a
challenging aspect in designing GTs, and so far, there has been no universal solution.

We propose a simple architecture for incorporating structural data into the Transformer, Graph Dif-
fuser (GD). The intuition that guides us is that while the aggregation scheme of GNNs is limited, the
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propagation of information along the graph structure provides a valuable inductive bias for learning
on graphs.

Figure 1 shows an overview of our approach. We start with the graph structure (as shown on the left)
and construct Virtual Edges (middle) that capture the propagation of information between nodes at
multiple propagation steps. This allows our approach to zoom out of the local message passing and
relates distant nodes that do not have a direct connection in the original graph. We then use the
virtual edges to direct the transformer attention (shown on the right) and node representations.
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Figure 1: Illustration of our positional attention, focusing on node B. Information propagation from
multiple propagation steps is combined to create Virtual Edges(colored) between distant nodes,
which then direct the Transformer’s attention in each layer.

In the following sections, we first show that existing GNNs and Graph Transformers struggle to
model long-range interactions using a seemingly trivial problem. We follow by defining Graph
Diffuser and then show how it solves the same problem. Finally, we demonstrate the effectiveness
of our approach on eight benchmarks spanning multiple domains by showing it outperforms state-
of-the-art with no hyperparameter tuning.

2 RELATED WORK

Message Passing Graph Neural Networks (MP-GNNs) MP-GNNs Gori et al. (2005); Scarselli
et al. (2008) have been the predominant method for graph representation learning in recent years,
and have been applied to a wide variety of domains (e.g., Kosaraju et al. (2019); Nathani et al.
(2019); Wang et al. (2019); Huang & Carley (2019); Yang et al. (2020); Ma et al. (2020); Wu et al.
(2020); Zhang et al. (2020)), MP-GNNss update node representation by stacking multiple layers in
which each node aggregates information from its local neighborhoodLi et al. (2016); Kipf & Welling
(2017); Veličković et al. (2018); Wu et al. (2019a); Xu et al. (2019b); Hamilton et al. (2017); Xu
et al. (2019a). However, as mentioned above, they suffer from under-reaching Barceló et al. (2020),
over-smoothing Wu et al. (2020) and over-squashing Alon & Yahav (2021); Topping et al. (2022).
Several works have addressed the problem of over-squashing. Gilmer et al. (2017) add “virtual
edges” to shorten long distances, and Scarselli et al. (2008) add “supersource nodes”. None of these
works, however, integrate such virtual nodes or edges into the Transformer. Another line of work
uses the attention mechanism Veličković et al. (2018); Brody et al. (2022) to dynamically propagate
information in the graph rather than use the original adjacency matrix or Laplacian.

Graph Transformers (GTs) Considering their successes in natural language understand-
ing Vaswani et al. (2017); Kalyan et al. (2021),computer vision d’Ascoli et al. (2021); Han et al.
(2022); Guo et al. (2021), robotic control Kurin et al. (2020) and a variety of other domains, there
have been numerous attempts to apply Transformers to graphs. These works add positional encod-
ing as node features, similar to the encoding in Vaswani et al. (2017), or use relative positioning to
bias the attention between nodes, similar to Shaw et al. (2018). Others combine Transformer with
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local MP-GNN models by interleaving Rampášek et al. (2022) or stacking them Jain et al. (2021),
much in the same way the Transformers were stacked on top of CNNs in computer vision Carion
et al. (2020). Early Graph Transformer works Dwivedi & Bresson (2020) used the graph Laplacian
eigenvectors as the node positional encoding (PE) to provide a sense of nodes’ location in the input
graph. SAN Kreuzer et al. (2021) significantly improved this idea by using an invariant aggregation
for the eigenvectors. Since then, there have been many recent works constructing PE from the Lapla-
cian Lim et al. (2022); Beaini et al. (2021); Wang et al. (2022); Lim et al. (2022), as well as other
structural or positional information such as the node degree Ying et al. (2021) and random-walk SE
Dwivedi et al. (2022a). Relative positioning was applied with great success on a large molecular
benchmark by Graphormer Ying et al. (2021); Shi et al. (2022) by using pair-wise graph distances
to direct the Transformer’s attention. Further, GraphiT Mialon et al. (2021) used relative positions
between nodes derived from the random walk kernel to bias the attention but heuristically chose a
single random walk length. In contrast, Graph Diffuser learns to combine multiple distances. Since
then, various works(e.g SAT Chen et al. (2022), EGT Hussain et al. (2021), GRPE Park et al. (2022))
applied the graph structure as a soft bias to the attention. However, all of the works above use the
original adjacency matrix or Laplacian to learn positional or relative encoding, unlike this work that
learns the adjacency matrix using node and edge features.

Diffusion Diffusion and other distance measures were used before to increase the expressivity of
MP-GNNs Li et al. (2020b), replace the local message passing scheme( Atwood & Towsley (2016);
Wu et al. (2019b); Klicpera et al. (2019; 2018)) or modulate the Transformers attention Mialon et al.
(2021). None of these works, however, combines information from multiple different propagation
steps.

To the best of our knowledge, this work is the first Graph Transformer to: (1) learn to construct
a new adjacency matrix using node and edge features to generate positional or relative encoding,
and (2) learn to combine information propagation over multiple different propagation steps in an
end-to-end manner.
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(a) An example of a 5× 5 grid. Nodes are colored in one out of 20
colors. The goal is to predict, for each node, how many other nodes
in the same row or column have the same color. For example, node
23, at the bottom row, has only a single node (node 20) that has the
same color(green) and is in the same row or column with node 23.
Therefore, its label is 1. The label for node 6 is 2, since it matches
with nodes 5 and 21.
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(b) Visualization of the position and content attention our trained model gives to node 23 in the input graph
shown in 2a. The model learns to pay attention to nodes in the same row and column using positional attention
and to nodes of the same color using content attention. Their element-wise product selects only the relevant
nodes for solving the task.

Figure 2: An example of 2D Grid Histogram Counting with a 5 × 5 grid. 2a shows the original
graph. 2b shows the attention patterns our model learns for node 23 in the graph.
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3 WHY DO WE NEED ANOTHER GRAPH TRANSFORMER?

Given the successful application of Transformers to other domains and the flurry of recent Graph
Transformers, it is natural to ask why is there a need for another Graph Transformer?

To illustrate the difficulties of current GNNs and Graph Transformers in modeling interactions in
a graph, we use a simple synthetic node classification task. Counting the frequencies of tokens in
a sequence is an elementary task that Weiss et al. (2021) showed the original Transformer could
easily solve. We propose a simple extension of this task to graphs: In Grid Histogram Counting
(Figure 2), we generate N × M grids with randomly colored nodes and ask models to predict,
for each node, how many other nodes in the same row or column have the same color. This is a
contrived problem but illustrates many real-world problems’ needs. Solving it requires far away
nodes to communicate, and the communication should consider both the nodes’ content (color) and
relation within the graph (being in the same row or column).

This is a straightforward generalization of the 1D sequential problem that Transformer easily solves
to a 2D graph. However, as we show in Section 5.1.2, it defeats all existing GNN and Graph
Transformer techniques, while Graph Diffuser succeeds.

4 GRAPH DIFFUSER
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Figure 3: An illustration of Graph Diffuser with 2 Transformer layers. Virtual Edges are created by
combining multiple powers of the weighted adjacency matrix(left). Virtual Edges modulate each of
the Transformers attention layers(right). Self-Virtual Edges are added to the Transformer input as
positional encoding(bottom right)

We now describe our approach for taking a graph G = (X,A) with a node embeddings matrix X
and edges A and processing it using the Transformer, which usually takes only a single matrix X as
input. Our approach consists of 2 stages, illustrated in the left and right halves of Figure 3. First, GD
embeds the structural relations between distant nodes in what we refer to as Virtual Edges. Then, the
Transformer processes the nodes while using the virtual edges to direct the computation at different
layers.

4.1 VIRTUAL EDGES

Virtual Edges are high-dimensional representations constructed between distant nodes in the graph.
They contain rich information on the structural and positional relationships.
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4.1.1 POWERS OF THE ADJACENCY MATRIX

To consider relations between distant nodes, the first step is broadening the receptive field on which
the architecture operates. In a row-normalized adjacency matrix A, Ak

ij corresponds to the proba-
bility of getting from node i to node j in a k step random walk. We stack different powers of A into
a 3 dimensional tensor E ∈ Rn×n×k

E = [I|A|A2|..|Ak] (1)

where k is the number of stacks and | denotes stacking matrices along the 3ed dimension and I is
the identity matrix.

Multiplication by the adjacency matrix is closely related to the aggregation scheme of MP-GNNS Xu
et al. (2018), however, considering multiple powers of the matrix at once, we zoom out of the local
Message Passing paradigm and discover information that GNNs may not detect. Virtual Edges
contain structural information such as if nodes are on an odd length cycle, can distinguish many
non-isomorphic graphs, and cover many distance measures such as shortest distance and generalized
PageRank Li et al. (2020b).

4.1.2 EDGE-WISE FEED-FORWARD NETWORK

In order to mix information between different propagation steps and extract meaningful structural
relations, each stack is processed by a fully connected edge-wise feed-forward network. Each layer
consists of 1 hidden layer with batch norm, ReLU activation, and a residual connection.

Edge-FFN(Eij) = ReLU(BN(EijW1))W21 (2)

Eij = Edge-FFN(Eij) + Eij (3)

The Edge-Wise FFN consists of 2 such layers and we apply batch norm on the input, before the first
layer. This network is applied once, before any of the Transformers layers.

4.1.3 WEIGHTED ADJACENCY

Rather than using the original adjacency matrix in equation 1, we found it beneficial to learn a new
adjacency matrix using the node and edge features.

Âij = ReLU(BN([xi;xj , eij ]W1))W2 (4)

Aij = normalize(σ(Âij)) (5)

Where ; means contacting vectors, σ is the sigmoid function and noramlize means l1 row normal-
ization. xi,xj ∈ Rd, eij ∈ Rdedge , W1 ∈ R(2d+dedge)×2d and W2 ∈ R2d×1. If there are no edge
features, we use only the nodes. This aligns with existing approaches such as GAT (Veličković et al.
(2018); Brody et al. (2022)), which find it beneficial to dynamically learn a new adjacency matrix.

4.2 INTEGRATING WITH THE TRANSFORMER

Most Graph Transformers use the graph structure to either alter the node’s representations or to
affect the attention mechanism itself. Graph Diffuser combines the 2 approaches. In the input layer,
Self-Virtual Edges are added to the node representation as positional encoding, and at each attention
layer, the Virtual Edges are reduced to an attention matrix that is combined with the standard dot-
product attention.

4.2.1 ATTENTION

At each of the Transformer attention layers, we linearly project each virtual edge Eij separately to
get the positional attention score between i and j.

Âtt
Position

ij = EijWp (6)

1Omitting bias for clearity
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We then combine the positional attention and the content(dot-product) attention scores and apply
row-wise normalization.

Âtt
Content

ij =
QKT

√
d ij

(7)

Att = normalize(exp(Âtt
Content

)⊙ σ(Âtt
Position

)) (8)

Where σ is the sigmoid function and ⊙ means element-wise multiplication. In multi-head attention
with h heads, the projection in equation 6 is done h times.

equation 8 can be viewed as scaling the content attention coefficients based on the positional atten-
tion. As we will see in the next section, separating the attention based on content and positions and
then combining them seems to assist with learning meaningful connections in the data and provides
a natural visualization mechanism.

4.3 POSITIONAL ENCODING

Self-Virtual-Edges, Eii, are Virtual Edges between a node to itself. They contain important struc-
tural information, such as whether the node is part of an odd length cycle and the degrees of adjacent
nodes. We project Self-Virtual-Edges to the node’s representation dimensionality and add them as
positional encoding.

Xi = Xi +Relu(EiiWpe) (9)

Where Wpe ∈ Rk×d.

Self-walks were shown (Dwivedi et al. (2022a)) to be an effective positional encoding. Adding such
features to the node representations allows the Transformer to use structural information in all of its
layers, including the feed-forward network.

5 EXPERIMENTS

5.1 GRID HISTOGRAM COUNTING

5.1.1 SETUP

We generate 10k grids of size 10× k, where k ∈ {10, 11, 12, 13} with node colors uniformly from
a set of 20 colors, and split them into 8k/1k/1k train/valid/test sets. The task is cast as a node
multi-class classification task, where each node representation is used to predict the number of other
nodes in the same row or column with the same color, as illustrated in Figure 2a. More details are
in Appendix A.1

5.1.2 RESULTS

Table 1: Grid Histogram Counting average accuracy and s.d over 10 different seeds. GNN→
Transformer refers to Transformer blocks stacked on top of GNN (Jain et al. (2021)) and
GNN | Transformer refers to combining Transformer and GNN blocks in the same layer (Rampášek
et al. (2022)).

Model Accuracy ↑ Parameters

GNN 0.4832 ±0.003 68k
Transformer 0.44 ±0.003 53k
Transformer+RWPE 0.4797 ±0.0044 53k
Transformer+SignNet 0.488 ±0.003 72k
GNN → Transformer 0.4795 ±0.003 44k
GNN | Transformer+RWPE 0.534 ±0.0043 86k
Graph Diffuser position only 0.6073 ±0.011 34k
Graph Diffuser 0.9755± 0.025 43k
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Table 1 shows the results. First, we observe that the vanilla Transformer, which easily solves the
histogram task over sequential input, fails here and performs the worst. This is not surprising as the
Transformer is oblivious to the graph structure. Next, we observe that RWPE Dwivedi et al. (2022a),
a popular positional embedding technique, improves very slightly over the base Transformer. This
may be because RWPE is unable to detect symmetries in the graph. Nodes 0,4,20 and 24 in the ex-
ample illustrated in Figure 2a will all get the same embedding by RWPE. Adding SignNet Lim et al.
(2022), a theoretically expressive positional embedding technique based on the graph eigenvectors,
does not yield much improvement either. This may indicate difficulties learning useful embeddings
in eigenvectors based techniques. The GNN baseline, which in theory can solve the task, achieves
0.483 accuracy. This may be due to the over-squashing phenomenon. Indeed in a 10 × 10 grid,
passing information between opposing nodes in the same row will require 9 message passing layers
to deliver a single message that has been “squashed” with nearly 90k other messages. Next, we
observe that using only positional attention(without dot-product attention) performs the second best
while having the least parameters. Finally, Graph Diffuser nearly solves the task entirely by com-
bining both positional and content attention. Looking at Figure 2b, we can see the model learns to
use the different attention mechanisms in an intuitive way, with content attention detecting nodes in
the same color and position attention detecting nodes in the same row or column.

5.2 BENCHMARKING GRAPH DIFFUSER

Throughout our experiments, we take an existing Graph Transformer architecture and use it “as
is” as our Transformer module without doing any hyper-parameter search. That is, we take a graph
Transformer with the same hyperparameters used by the original work and only add our positional at-
tention and encoding.2 For 5 of the datasets, ZINC, OGBG-{molpcba, ppa,code2}, PCQM-Contact
and PCQM4Mv2, we use the very competitive GPS Rampášek et al. (2022) as the Transformer
model. For the LRGB benchmarks, Peptides-func and Peptides-struct, there are no official GPS
hyperparameters, and we use a Transformer with the authors’ baseline hyperparameters and a CLS
token added to the input. For a detailed hyperparameters report, see Table 8 and 9.

5.2.1 RESULTS

We evaluate our model on 8 datasets overall and compare our results with those of popular MP-
GNNs, Graph Transformers and other recent state-of-the-art models. Graph Diffuser exceeds SOTA
in 6 of them and achieves very competitive results in the rest. All results for the comparison methods
are taken from the original paper or their official leaderboards.

ZINC Dwivedi et al. (2020a) is a molecular regression dataset, where the value to be predicted is
the molecule’s constrained solubility. Table 2 shows the results, where we exceed SOTA results by
a substitutional margin.

Open Graph Benchmark Hu et al. (2020) is a highly competitive benchmark with a variety of
datasets. We evaluate GD on three graph-level prediction tasks from different domains and report
the results at Table 3 OGBG-MOLPCBA is a multi-task binary classification dataset containing
438k molecules, and the task is to predict the activity/inactivity of 128 properties. Here we rank the
second highest and the first among all GNN or Transformer architectures. OGBG-PPA consists of
protein-protein interaction networks of different species, where the task is predicting the category
of species the network is from. The previously highest-ranking model is GPS, and adding our
positional attention and encoding to it proves to be an efficient strategy that reaches a new state-of-
the-art. OGBG-CODE2 contains Abstract Syntax Trees(ASTs) of Python methods, and models are
tasked with predicting the methods’ names. The average distance between nodes in this dataset is
larger than that of any other dataset in our experiments, which can explain why Graph Transformers
variations dominate its leaderboards. Since positional encoding was not found to be significant by
the previous three highest ranking models in this dataset, and considering the large improvement of
our model over GPS, it seems that positional attention brings significant benefits in this benchmark,
which allows us to reach a new state-of-the-art. OGB-LSC PCQM4Mv2 Hu et al. (2021) is a large-
scale molecular dataset with over 3.7M graphs. Here, our results are similar to GPS, which ranks
highest among Graph Transformers variations. Our results lag behind only GEM-2 Liu et al. (2022),
which was designed specifically for modeling molecular interactions.

2We remove any positional encoding used by the original work.
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Table 2: MAE for the ZINC dataset from Dwivedi et al. (2020b).

Model MAE ↓
GCN Kipf & Welling (2017) 0.367 ± 0.011
GIN Xu et al. (2019a) 0.526 ± 0.051
GAT Veličković et al. (2018) 0.384 ± 0.007
GatedGCN Bresson & Laurent (2017); Dwivedi et al. (2020b) 0.282 ± 0.015
GatedGCN-LSPE Dwivedi et al. (2022a) 0.090 ± 0.001
CRaWl Toenshoff et al. (2021) 0.085 ± 0.004
GIN-AK+ Zhao et al. (2022) 0.080 ± 0.001
SAN Kreuzer et al. (2021) 0.139 ± 0.006
Graphormer Ying et al. (2021) 0.122 ± 0.006
K-Subgraph SAT Chen et al. (2022) 0.094 ± 0.008
GPS Rampášek et al. (2022) 0.070 ± 0.004

Graph Diffuser(ours) 0.0683 ± 0.002

Long Range Graph Benchmark Dwivedi et al. (2022b) is a recently proposed dataset specifically
designed to evaluate models on their ability to capture long-range interactions. We are the first, other
than the author’s baselines, to evaluate our model on these datasets and currently rank first in all of
them. Peptides-func and Peptides-struct are multi-label graph classification and regression datasets
containing 15.5k Peptides molecular graphs. They are of particular interest since the molecules in
them consist of many more nodes, on average, than the other molecular datasets in our experiments.
As we can see in Table 5, adding our positional attention and encoding outperforms both RWSE and
LapPE encodings. PCQM-Contact is a molecular dataset with an edge prediction task of predicting
if two atoms interact. Our results are reported in Table 6.

Table 3: Test results in OGB graph-level benchmarks Hu et al. (2020). Pre-trained or ensemble
models are not included. Bold:first, Underlined:Second.

Model ogbg-molpcba ogbg-ppa ogbg-code2
Avg. Precision ↑ Accuracy ↑ F1 score ↑

GCN+virtual node Kipf & Welling (2017) 0.2424 ± 0.0034 0.6857 ± 0.0061 0.1595 ± 0.0018
GIN+virtual node Xu et al. (2019a) 0.2703 ± 0.0023 0.7037 ± 0.0107 0.1581 ± 0.0026
PNA Corso et al. (2020) 0.2838 ± 0.0035 – 0.1570 ± 0.0032
GIN-AK+ Zhao et al. (2022) 0.2930 ± 0.0044 – –
DeeperGCN Li et al. (2020a) 0.2781 ± 0.0038 0.7712 ± 0.0071 –
DGN Beaini et al. (2021) 0.2885 ± 0.0030 – –
CRaWl Toenshoff et al. (2021) 0.2986 ± 0.0025 – –
ExpC Yang et al. (2022) 0.2342 ± 0.0029 0.7976 ± 0.0072 –

SAN Kreuzer et al. (2021) 0.2765 ± 0.0042 – –
GraphTrans (GCN-Virtual) Jain et al. (2021) 0.2761 ± 0.0029 – 0.1830 ± 0.0024
K-Subtree SAT Chen et al. (2022) – 0.7522 ± 0.0056 0.1937 ± 0.0028
GPS Rampášek et al. (2022) 0.2907 ± 0.0028 0.8015 ± 0.0033 0.1894 ± 0.0024

Graph Diffuser 0.2931 ± 0.0034 0.8133 ± 0.0057 0.1941 ± 0.0014

Table 4: Evaluation on PCQM4Mv2 Hu et al. (2021). Since the test set labels are private, we use
150k examples from the train set as our validation and the validation set is treated as the test set.

Model MAE ↓ # Param.
GCN Kipf & Welling (2017) 0.1379 2.0M
GCN-virtual 0.1153 4.9M
GIN Xu et al. (2019a) 0.1195 3.8M
GIN-virtual 0.1083 6.7M

GRPE Park et al. (2022) 0.0890 46.2M
EGT Hussain et al. (2021) 0.0869 89.3M
Graphormer Shi et al. (2022) 0.0864 48.3M
GPS Rampášek et al. (2022) 0.0858 19.4M
GEM-2 Liu et al. (2022) 0.0806 32.0M

Graph Diffuser(ours) 0.0867 20.3M
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Table 5: Evaluation on the recently suggested Peptides-func and Peptides-struct Dwivedi et al.
(2022b).

Model # Params. Peptides-func Peptides-struct

AP ↑ MAE ↓
GCN 508k 0.5930±0.0023 0.3496±0.0013
GINE 476k 0.5498±0.0079 0.3547±0.0045
GatedGCN 509k 0.5864±0.0077 0.3420±0.0013
GatedGCN+RWSE 506k 0.6069±0.0035 0.3357±0.0006

Transformer+LapPE 488k 0.6326±0.0126 0.2529±0.0016
SAN+LapPE 493k 0.6384±0.0121 0.2683±0.0043
SAN+RWSE 500k 0.6439±0.0075 0.2545±0.0012

Graph Diffuser 509k 0.6651±0.001 0.2461±0.001

Table 6: Comparison with the baselines in the PCQM-Contact dataset.

Model # Params. Hits@1 ↑ Hits@3 ↑ Hits@10 ↑ MRR ↑
GINE 517k 0.1337±0.0013 0.3642±0.0043 0.8147±0.0062 0.3180±0.0027
GCN 504k 0.1321±0.0007 0.3791±0.0004 0.8256±0.0006 0.3234±0.0006
GatedGCN 527k 0.1279±0.0018 0.3783±0.0004 0.8433±0.0011 0.3218±0.0011
GatedGCN+RWSE 524k 0.1288±0.0013 0.3808±0.0006 0.8517±0.0005 0.3242±0.0008

Transformer+LapPE 502k 0.1221±0.0011 0.3679±0.0033 0.8517±0.0039 0.3174±0.0020
SAN+LapPE 499k 0.1355±0.0017 0.4004±0.0021 0.8478±0.0044 0.3350±0.0003
SAN+RWSE 509k 0.1312±0.0016 0.4030±0.0008 0.8550±0.0024 0.3341±0.0006

Graph Diffuser(ours) 521k 0.1369± 0.0012 0.4053 ± 0.0011 0.8592± 0.0007 0.3388± 0.0011

6 CONCLUSION

In this work, we introduced a simple and effective architecture for machine learning on graphs,
Graph Diffuser. Using a controlled example, we demonstrated its effectiveness in modeling long-
range interactions while providing better interpretability. We then showed that this translates to
real-world problems by evaluating GD on eight benchmarks from multiple domains. With minimal
hyperparameter tuning, Graph Diffuser achieves a new state-of-the-art on most datasets and reaches
very competitive results on the rest.

In the future, we plan to integrate Graph Diffuser with other promising Graph Transformer compo-
sitions, such as Transformers stacked on top of GNNs. Another area of interest is amplifying virtual
edges, for example, by considering paths between nodes rather than just information propagation.

Limitations Our architecture integrates with the Transformer and consequently suffers from the
quadratic memory complexity of the attention mechanism, which can restrict its applicability to
larger graphs.

REPRODUCIBILITY STATEMENT The authors support and advocate the principles of open
science and reproducible research. We describe Graph Diffuser in detail in the text and figures and
mention all relevant hyperparameters to reproduce our experiments in the appendix. Moreover, we
will release our code as open-source with clear instructions on how to reproduce all of our results,
as well as how to extend our model and apply it to new datasets.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS FOR THE GRID HISTOGRAM COUNTING TASK

We generate 10k graphs and split them into 8k/1k/1k train/val/test sets. Each grid is of size 10× k,
where k ∈ {10, 11, 12, 13}. Node colors are drawn uniformly from a set of 20 colors. We search
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over learning rates in {3e−4, 4e−4, 8e−4}, repeat each experiment with ten different random seeds
and report the average and standard deviation of the best configuration. All models have a hidden
dimension of 32. We use GatedGCN as GNN modules, and four attention heads in Transformer
modules. Transformer models use six layers, GNN → Transformer uses 3 GNN layers and 3
Transformer layers. GNNs model has 12 layers to avoid underreaching. For Graph Diffuser, we
found 3 layers sufficient. We use 0.2 dropout for GNN’s modules and 0.5 dropout for attention. For
the Diffuser model, we found no need for dropout.

A.2 THE EFFECTS OF GD ON GRAPH TRANSFORMER VARIATIONS

We Conducted a simplified experiment to see the effects of GD when used as an out-of-the-box
addition to different Transformer compositions, with no hyperparameter tuning. We evaluated 3
Transformer variations: Transformer, Transformer layers stacked on top of GNN layers (GNN →
Transformer), and Transformer interleaved with GNN in the same layer ( GNN | Transformer). For
each variation, we evaluate the unmodified architecture with no positional embedding or positional
attention, the architecture with our positional encoding and attention added, but not learning the
adjacency matrix(+ Graph Diffuser), and one we learn a new weighted adjacency matrix(+ Weighted
Adjacency), as described in Section 4.1.3. The results are in Table 7.

Table 7: The effects of our architecture on different Graph Transformers. Adding positional en-
coding and attention improves all Transformer baselines. Learning a weighted adjacency improves
GNN-Transformer combinations, but not the vanilla Transformer.

Model OGBG-PPA ZINC
Accuracy ↑ MAE ↓

Transformer 0.09483 0.7043
+ Graph Diffuser 0.7676 0.152
Weighted Adjacency 0.7750 0.1611

GNN → Transformer 0.3896 0.2068
+ Graph Diffuser 0.4954 0.1225
Weighted Adjacency 0.6372 0.1160
GNN | Transformer 0.6793 0.1516
+ Graph Diffuser 0.7866 0.0880
Weighted Adjacency 0.7931 0.08671

A.3 COMPUTATION ENVIRONMENT AND RESOURCES

Our implementation is based on the excellent open source Graph GPS implementation3, which it
self it based on Pyg and GraphGym Fey & Lenssen (2019); You et al. (2020). We use a machine
with 24GB NVIDIA A10G GPU with 32GB or 64GB RAM for the larger datasets(ogbg-ppa, ogbg-
code2,PCQM4Mv2), and a shared cluster equipped with NVIDIA TITAN Xp for the other datasets.

3https://github.com/rampasek/GraphGPS
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Table 8: Graph Diffuser hyperparameters for the OGB benchmarks.

Hyperparameter ogbg-molpcba ogbg-ppa ogbg-code2 ZINC
Transformer/GPS Layers 5 3 4 10
Edge-Wise FFN Layers 2 2 2 2
number of stacks(k) 16 10 20 16
MP-NN GatedGCN GatedGCN GatedGCN GINE
Hidden dim 384 256 256 64
Transformer FFN multiplier x2 x2 x4 x2
Attention Heads 4 8 4 4
Dropout 0.2 0.1 0.2 0.
Attention dropout 0.5 0.5 0.5 0.5
Graph pooling mean mean mean sum
Batch size 512 32 32 32
Learning Rate 0.0005 0.0003 0.0001 0.001
Epochs 100 200 30 2000
Warmup epochs 5 10 2 50
Weight decay 1e− 5 1e− 5 1e− 5 1e− 5
Parameters 10646k 3050k 13912k 443k

Table 9: Hyperparameters for ZINC and the LRGB datasets.

Hyperparameter ZINC PCQM-Contact Peptides-func Peptides-struct
Transformer/GPS Layers 10 4 4 4
Edge-Wise FFN Layers 2 2 2 2
number of stacks(k) 16 16 16 16
MP-NN GINE GatedGCN - -
Hidden dim 64 92 112 112
Transformer FFN multiplier x2 x2 x2 x2
Attention Heads 4 4 4 4
Dropout 0. 0. 0. 0.
Attention dropout 0.5 0.5 0.5 0.5
Graph pooling sum sum CLS CLS
Batch size 32 128 128 128
Learning Rate 0.001 0.0003 0.0003 0.0003
Epochs 2000 200 200 200
Warmup epochs 50 10 10 10
Weight decay 1e− 5 0 0 0
Parameters 443k 503k 509k 509k
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