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Abstract

Optical coherence tomography angiogra-

phy (OCTA) is a widely applied tool to

image microvascular networks with high

spatial resolution and sensitivity. Due to

limited imaging speed, the artifacts caused

by tissue motion can severely compromise

visualization of the microvascular net-

works and quantification of OCTA

images. In this article, we propose a deep-

learning-based framework to effectively

correct motion artifacts and retrieve microvascular architectures. This method

comprised two deep neural networks in which the first subnet was applied to

distinguish motion corrupted B-scan images from a volumetric dataset. Based

on the classification results, the artifacts could be removed from the en face

maximum-intensity-projection (MIP) OCTA image. To restore the disturbed

vasculature induced by artifact removal, the second subnet, an inpainting neu-

ral network, was utilized to reconnect the broken vascular networks. We

applied the method to postprocess OCTA images of the microvascular net-

works in mouse cortex in vivo. Both image comparison and quantitative analy-

sis show that the proposed method can significantly improve OCTA image by

efficiently recovering microvasculature from the overwhelming motion

artifacts.
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1 | INTRODUCTION

Optical coherence tomography angiography (OCTA) is a
functional extension of OCT that has been applied to var-
ious preclinical and clinical diagnoses, including brain
functional imaging [1–3], dermatology [4] and ophthal-
mology [5, 6]. To differentiate vasculature from the sur-
rounding tissue, OCTA utilizes an endogenous contrast

Abbreviations: ClNet, classification neural network; CNN,
convolutional neural network; ComNet, completion subnet; MIP,
maximum-intensity-projection; OCTA, optical coherence tomography
angiography; SegNet, segmentation subnet; TrainD, training dataset;
TestD, testing dataset; ValidD, validation dataset.
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mechanism that originates from speckle decorrelation
induced by the flowing red blood cells. Specifically,
OCTA is obtained by extracting the variance within mul-
tiple repeated B-scans at a cross-sectional location by
using traditional intensity-variance based methods [7]
and more recently deep-learning based methods [8]. The
decorrelated pixels, corresponding to vasculature, show
significantly higher interframe variance than the pixels of
static tissue. However, due to limited raster scanning
speed and other imperfections, OCTA is susceptible to
motion artifacts induced by various tissue motions such
as respiration, heartbeat and mechanical jittering. The
motion artifacts during consecutive B-scans result in
intensity fluctuations and thus generate strip-like arti-
facts in the en face OCTA MIP image. Such motion arti-
facts seriously degrade image quality, for example,
reducing image sensitivity and causing distortion in vas-
cular topology.

Efforts to correct motion artifacts in an OCTA image
can be categorized in the hardware-based or the soft-
ware-based approaches. The hardware methods typi-
cally require the integration of additional imaging
modality to evaluate tissue micromotion and guide the
OCTA rescan to counteract the artifacts [9]. Although
such techniques have proven effective, the associated
system implementation and image acquisition are
highly complex and cost-ineffective, which restricts
them from widespread adaptations. The software-based
methods circumvent the need for hardware modifica-
tion and thus exhibit high competitiveness for various
preclinical or clinical applications. Most of the post-
processing methods operate in a manner of image regis-
tration, in which strip artifacts on MIP images were
replaced by combining information from the repeated
OCTA acquisition of the same tissue [10, 11]. Although
the initial results were encouraging, such registration-
based methods required considerably repeated image
acquisition and extended imaging time, thus reducing
the practicability for many clinical diagnoses. To solve
the problem, we reported an automatic method utiliz-
ing tensor voting to reconnect the broken vascular seg-
ments and thus enable efficient correction of motion
artifacts based on a single OCTA image [12]. However,
the effectiveness of this method may deteriorate when
severe motion artifacts occur.

To tackle these challenges, here we propose a fully
automated motion correction method that employs
deep neural networks. The proposed method contains
two steps. First, a classification neural network (ClNet)
was applied to the acquired OCTA image dataset to dif-
ferentiate the motion corrupted B-scans from the clean
counterparts and remove them from the image cube.

However, removal of these motion-corrupted images
resulted in disruption of the en face OCTA projection
image, including inclusion of multiple blank image gaps.
Then, a segmentation network was applied to detect the
broken vasculature and an auxiliary inpainting network
was used to restore the vascular connections. Results of
both visual inspection and quantification show that the
deep-learning method is highly effective for correcting the
overwhelming artifacts on OCTA images caused by severe
and consecutive tissue motion, which is promising for sig-
nificantly enhancing OCTA for preclinical and clinical diag-
nosis and evaluation of disease prognosis and treatment
effects.

2 | METHODS

2.1 | System setup and data acquisition

An ultrahigh-resolution optical coherence tomography
setup (μOCT) was used to acquire in-vivo OCTA images.
An ultra-broadband light source (λ = 1,310 nm,
ΔλFWHM≈220 nm) was applied to illuminate the μOCT
system, yielding an axial resolution of 2.5 μm. The beam
exiting from sample arm was collimated to 5 mm, steered
transversely by a galvo scanner (VM500, General Scan-
ning) and then focused by an achromatic lens (f16mm/
NA0.25) onto mouse cortex. The lateral resolution, deter-
mined by the effective NA of the achromat was ~5 μm.
The interference fringes spectrally encoding the depth
profile (A-scan) were detected by a fast linescan InGaAs
CMOS camera (2048-pixels; GL2048, Sensors Unlimited)
interfaced with an image workstation via a camera link
card (PCIe-1433, NI).

In this study, C57/B6 mice (male, 12–14 weeks of age,
Jackson Lab) were used, and a chronic cranial window
was implanted on the surface of each animal's sensorimo-
tor cortex prior to in vivo imaging. A total of 26 animals
were imaged and 22 images were used in the study. For
OCTA image acquisition, the animal was anesthetized
with inhalational isoflurane and the animal head was
mounted on a custom stereotaxic frame to minimize
motion artifacts, during which eight consecutive B-
scans (x-z plane) at each cross section (y-axis) were
acquired at an A-line rate of 27 kHz to derive a cross-
sectional OCTA image. The physiology of the animal
was monitored, including electrocardiography, respira-
tion rate, and body temperature, and so on. The depth
of anesthesia of the animal was adjusted by ramping
the isoflurane concentration (e.g., from 2.4% down to
1% or lower) to acquire motion-free and artifacts-
corrupted OCTA images, respectively.
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2.2 | Deep learning-based artifacts
correction pipeline

Removing motion artifacts is a crucial preprocessing
step to enhance OCTA image fidelity. The patterns of
motion artifacts may share similar features with vas-
culature. For example, it is difficult to separate the
strip artifacts from vessels in an en face MIP OCTA
image. A widely used strategy is to select image lines
with average intensity or vesselness over a global
threshold. However, some clean lines across large
branch vessels may be mistakenly selected, whereas
artifacts that are not across the entire image but
rather unevenly spaced cannot be efficiently detected.
To improve the robustness to detect artifacts, a con-
volutional neural network (ClNet) was first applied
for the classification of clean and motion corrupted B-
scan images. As shown in Figure 1A, the ClNet is
mainly based on the residual CNN [13]. Seven blocks,
each containing a 3 � 3 convolutional layer and a
batch normalization layer, were applied to extract the
image features. Skip connections with 1 � 1 con-
volutional layer used to unify filter number were con-
structed to facilitate the training. Downsampling was
performed by convolutional layers that have a stride
of 2 to reduce memory usage and computational time.
To train the ClNet, 600 B-scan images were manually
selected as training dataset and additional 200 images
were selected as testing dataset. All images were
resized to 512 � 512 before feeding into the network
after data normalization as shown in Figure 1C. We
used Adam with a mini-batch size of 64 and 10�4

learning rate. On the testing dataset, the network
achieved a 98.5% accuracy of the classification.

After artifacts detection, artificial B-scan images in a
volumetric dataset were discarded, resulting in stripe-
like gaps (empty spaces) on the projected OCTA image.
These gaps need to be refilled to restore the connectiv-
ity of the vascular network. This can be implemented
by the deep learning based inpainting, which can syn-
thesize alternative contents by learning adaptive image
features for different semantics [14]. However, directly
applying inpainting network on the broken OCTA
image may lead to suboptimal performance on vascular
reconnection. This is because the typical inpainting
reconstruction ensures the appearance consistency of
the generated regions with ground truth, but it does not
penalize topological mistakes. To facilitate learning of
vascular connectivity, a two-stage neural network was
utilized, as shown in Figure 1B. In stage 1, a segmenta-
tion subnet (SegNet) was performed on a broken OCTA
image to separate vasculature from the background. In
stage 2, an image completion subnet (ComNet) was

applied to the probability map from the above Segnet to
predict the missing vessel segments. With vascular seg-
mentation, the ComNet can pay special attention to
learn topological constraints of the vessels and focus on
the structure recovery inside the unknown region. The
SegNet is based on a U-net structure with dense con-
nection blocks, in which direct connections are built
from each convolutional layer to others for better fea-
ture propagation and fusion [15]. The max pooling and
deconvolution layers are utilized, respectively, in
expansive and contracting paths for downsampling and
upsampling. The ComNet follows an encoder-decoder
structure, which stacks gated convolution layers to han-
dle the gaps with various width in a broken OCTA
image [16]. In the ComNet, the feature maps are down-
sampled by two stride-2 gated convolutional layers to 1/
4 of the input size and then recovered to its full size by
deconvolutional gated layers before the outputs. The
SegNet and ComNet were trained jointly using Dice loss
functions:

lseg ¼ ldice1þ ldice2 ð1Þ

ldice ¼ 1� yŷþϵ

yþ ŷþ ϵ
� 1� yð Þ 1� ŷð Þþ ϵ

2�y� ŷþ ϵ
ð2Þ

where y and ŷ represent ground truth and predicted prob-
ability map, respectively, and ϵ is a smoothing term. Dur-
ing the training, OCTA images with missing areas were
used as the inputs. The corrupted vessel masks and their
uncorrupted counterparts were applied as ground truth
to train SegNet and ComNet, respectively.

A total of 16 MIP OCTA images of 750 � 512 pixels
(corresponding to 2.5 � 2 mm2) were manually labeled
and split into the training dataset (TrainD, n = 10) and
the validation dataset (ValiD, n = 6). The datasets that
were constructed on the OCTA images free of motion
artifacts were used to simplify the procedure for manual
segmentation. After data normalization, image patches of
128 � 128 pixels were extracted and fed into the net-
works as shown in Figure 1C. During the training, a frac-
tion of image lines with a predetermined occupation rate
(α) from the images patches and the corresponding vessel
masks in each training iteration were randomly removed
to simulate motion artifacts. The Adam optimizer was
used with a mini-batch size of 16 and 10�4 learning rate.
In addition, 6 MIP OCTA images corrupted by severe
motion artifacts were labeled as testing dataset (TestD,
n = 6) to evaluate the performance of the proposed
method. The neural networks were implemented on the
Keras platform (https://keras.io/) using NVIDIA GPUs
(RTX 2070).
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FIGURE 1 A, The classification network (CLNet) was applied to differentiate motion corrupted B-scan images from clean ones. The B-

scan images with artifacts were then removed from the MIP OCTA image. B, To fill the gaps in the MIP OCTA image, two-stage networks

containing the SegNet and ComNet were used, in which SegNet segmented the broken vessels and ComNet restored the vascular

connectivity. C, Flowchart to illustrate the data preprocessing steps
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3 | RESULTS AND DISCUSSION

Figure 2 shows an exemplary OCTA image (Figure 2A)
that contained corrupted frames induced by motion arti-
facts, their vessel masks (Figure 2B) derived by our deep-
learning method, and the corresponding correction
images (Figure 2C) after applying the vessel masks. Arti-
fact reduction is evident and vessel segmentation was
successfully achieved by the proposed framework. The

corrected vessel masks (Figure 2B) show that the micro-
vascular network can be effectively distinguished from
the background without noticeable strip artifacts pres-
ented. The resultant artifacts-corrected image (Figure 2C)
shows considerable signal-to-noise improvement in com-
parison with the original image (Figure 2A). Microvascu-
lature buried under overwhelming motion artifacts in the
original images can be clearly resolved and appear to be
continuous and natural within the vascular trees.

FIGURE 2 Deep-learning-based correction of motion artifacts in OCTA images of 3D microvascular network in mouse sensorimotor

cortex. A, two maximum-intensity-projection (MIP) OCTA images corrupted by severe motion artifacts; B, vessel masks of (A) using the

proposed deep-learning method; C, correction of motion artifacts in A by applying vessel masks in B

FIGURE 3 A, Original MIP OCTA image with overwhelming artifacts. B,C, vessel masks derived from tensor-voting based method and

the proposed deep-learning method overlayed with the ground truth, in which the false positive and false negative pixels are highlighted in

purple-color and blue-color regions, respectively. D-F, MIP OCTA images after artifact correction of the ground truth, the tensor-voting

method, and the proposed method. A1, D1-F1, zoom-in images of the corresponding dash boxes. G, the intensity profiles across the dashed

blue lines in panels A-F
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To demonstrate the efficacy of the proposed method
for motion-artifact reduction, we compared it with our
prior tensor voting based method [12]. The vessel-correc-
tion masks from tensor-voting method and the proposed
method are overlayed on the ground truth mask respec-
tively to highlight the segmentation accuracy, as shown
in Figure 3B,C. Tensor-voting method failed to identify
quite some vascular networks due to low image contrast
and significant errors caused by the overwhelming
motion artifacts, although the majority of the artifacts
were removed. In comparison, the proposed method
showed significantly improved performance on vessel
segmentation, for example, much better vascular connec-
tivity and microvasculature detection. The artifacts-
corrected images (Figure 3D-F) and the corresponding
zoom-in images (Figure 3D1-F1) further proves that the
proposed method is more effective in vessel preservation
and removal of artificial stripes. As highlighted by green
arrows in Figure 3E1, the tensor-voting method missed
considerable numbers of vasculature segments, whereas
artifacts were not thoroughly eliminated (blue arrow).
On contrary, the proposed method shows significantly
better fidelity, providing similar microvascular turnouts
as those of the ground truth. The intensity profiles
(Figure 3G) across a selected dashed green line in the
zoom-in images Figure 3A1-E1 indicates that the

proposed method (yellow trace) dramatically suppressed
artifacts with high preservation of signals. As a result, the
detailed capillary flow network was clearly resolved. A
quantitative analysis based on TestD further demon-
strated that the proposed method outperformed the ten-
sor-voting method, which significantly increased the Dice
score from 0.776 to 0.890.

We further conducted an ablation study and exam-
ined the outcome of only using segmentation network to
distinguish vasculatures from artifacts. To do so, we
trained the SegNet independently without ClNet and
ComNet on TrainD and compared it with the proposed
framework on TestD. Figure 4A,B shows a pair of exem-
plary maximum-intensity-projection OCTA images before
and after correction using manual segmentation. In the
case of applying single SegNet, Figure 4C shows partial
differentiation of vascular architecture from artifacts,
indicating that it still suffered from undesired artifacts as
highlighted by red arrows. In contrast, the proposed
framework enhanced artifact removal (Figure 4D). The
zoom-in images (Figure 4 A1-D1) revealed that the single
SegNet was unable to segment the microvasculature as
accurately as the proposed framework, which is
evidenced by considerable unconnected vascular seg-
ments (green arrows). The presence of strip artifacts led
to poor performance of SegNet. The Dice score graph in

FIGURE 4 A-D are original projected OCTA image, artifacts corrected image with manual segmentation, artifacts corrected image of

single SegNet and the proposed framework. A1-D1 are zoom-in images corresponding to dash boxes on A-D. E-G are vessel density maps of

ground truth, single SegNet and the proposed framework. H is the quantifications of vessel density errors (left) and Dice score (right)
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Figure 4H shows the quantitative improvement of the
proposed framework (0.890) over single SegNet (0.841).
In addition to the effects on visualization, the error of
vessel segmentation caused by single SegNet may signifi-
cantly bias the quantitative analysis of vascular networks.
To evaluate this, we quantified the vessel density on the
masks generated by single SegNet and the proposed
method. As shown in the density maps, single SegNet
caused serious overestimation of vessel density due to the
uncorrected strip artifacts (Figure 4F), whereas the pro-
posed method provided far more unbiased assessment
(Figure 4G) vs the ground truth (Figure 4E). The error
estimation of vessel density in Figure 4H shows the pro-
posed method generated much more accurate quantifica-
tion than single SegNet (0.098 vs 0.323).

The influence of severity of the motion-induced arti-
fact, represented by the artifact percentage (AP = artifact
line #/total line #), was simulated to further evaluate the
efficacy of the deep-learning method for restoring the
connectivity of the broken vasculature. In the ValiD
group, the artifact gaps were created by randomly remov-
ing lines (i.e., cross sections) with different AP levels
ranging from 0 to 70%. Then, the broken OCTA images
were restored by the two-stage reconstruction neural net-
work. Figure 5 shows the simulation results based on an
OCTA image of a mouse sensorimotor cortex during

week 3 after viral injection (the dark hole is the injection
spot showing disruption to the local vascular network). The
top panels are the original input OCTA image (Figure 5A:
AP = 0%) and those with simulated moderate (Figure 5B:
30%), medium (Figure 5C: 50%) and severe (Figure 5D:
70%) motion artifacts. The mid panels (Figure 5A1-D1) are
the corresponding vesselness masks derived by our deep-
learning method and the panels (Figure 5 A2-D2) are their
zoom-in views of the dashed boxes to highlight the
degraded restoration of the capillary networks. Interest-
ingly, a comparison among panels (Figure 5A1-D1) shows
that deep learning was able to seamlessly fill up the gaps
for moderate (30%, 50%) and even severe (70%) artifacts
except that few stripes were present as shown by arrows.
This indicates that the efficacy of deep learning might be
limited to fully restore large gaps, leading to more vascular
disconnections if motion-induced artifacts are substantial. It
is noteworthy that higher motion artifacts resulted in more
errors of the restored capillary networks. Indeed, as
highlighted by the dashed circles in panels Figure 5A2-D2,
the number of missing junctions is significantly higher in
severely corrupted image Figure 5D2 than the moderately
corrupted cases Figure 5B2,C2. This trend is indicated in
the quantitative analysis Figure 5E, in which the Dice score
decreased with the AP increase, especially when AP
increased to 70%.

FIGURE 5 Simulation results of the efficacy of deep learning to restore moderate to severe motion artifacts. A-D, OCTA images of

original, moderate (AP = 30%), medium (50%) and severe (70%) motion artifacts; A1-D1: binary vesselness maps recovered by our deep-

learning method, arrows show the unrestored stripes; A2-D2, zoom-in images corresponding to dash boxes in panels A1-D1, dashed circles

show the missing capillary junctions; E, the influence of artifact severity on vascular connection, Dice scores dropped from 0.92 for AP≤50%
to 0.85 for AP = 70%
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4 | CONCLUSIONS

It is known that OCTA imaging often suffers from severe
motion-induced artifacts in various awake scenarios,
resulting in suboptimal vascular visualization and biased
quantification. These include OCTA imaging in preclini-
cal applications such as brain functional studies and in
clinical diagnoses of diseases ophthalmology and derma-
tology. To tackle the challenge, we reported a deep learn-
ing framework for efficient correction of motion artifacts
and presented in vivo rodent brain imaging results to
demonstrate that this method is well suited for removing
severe motion artifacts based on a single OCTA image.

As shown in Figure 1A, the classification network,
CLNet, characterized the vascular morphology on a
cross-sectional OCTA image (B-scan) and differentiated
the motion corrupted B-scans from the clean B-scan
dataset, thus allowing more efficient detection of partial
or mild strip artifacts than the widely used threshold-
based method. Following the artifacts removal, a two-
stage neural network was designed to restore the broken
vascular image as illustrated in Figure 1B. Specifically,
the first subnet distinguished the vascular morphology
(vesselness) from the background; then, the second sub-
net facilitated a robust and accurate restoration of vascu-
lar connectivity. The experimental results in Figure 2
demonstrate that the proposed method enabled efficient
recovery of the microvascular network overwhelmed by
severe motion artifacts. To further examine the efficacy
of the proposed deep-learning method, we compared the
outcome of this method with that of the previously
reported tensor voting method. The results in Figure 3
show that the new deep-learning method significantly
outperformed the tensor voting method on motion-arti-
fact removal and vasculature reconnection. We also dem-
onstrated in Figure 4 that the proposed framework with
artifacts identification and image inpainting was able to
achieve better performance than direct separation of ves-
sels and strip artifacts. It is noteworthy that a potential
limitation of this method was that the neural network
was unable to fully fill up large gaps induced by several
consecutive motion artifacts (strips). The simulation
results in Figure 5 indicate that the performance of the
proposed method for vesselness restoration was high and
stable when moderate (30%) and medium (50%) motion
artifacts were present. However, unfilled stripes
(highlighted by arrows) and gaps across the microvascu-
lar network (dashed circles) started to appear when
severe (70%) motion artifacts occurred. The probable rea-
son is that the deep-learning networks could not capture
enough contextual information within a large gap to
make a reasonable prediction for the missing vascular

segments. This problem may be solved by increasing the
depth of reconstruction neural network to enlarge
the receptive field. Another potential limitation of the pro-
posed method is that it cannot effectively correct the geomet-
ric distortion of vascular network caused by severe tissue
motion along slow axis. The reconstruction network in the
method has the potential to reconnect vasculature with struc-
tural distortion by learning features of normal vasculature
from motion-free OCTA images. However, the CLNet
applied in our study cannot explicitly detect the distortion.
To overcome this limitation, an additional deep neural net-
work may be introduced as an extra step to detect the image
areas corresponding to the geometric distortion. Another lim-
itation of the proposed method is the small testing dataset.
We will increase the number of samples in future studies to
further prove the generalization the proposed method.

In conclusion, we reported a deep-learning-based
image processing method for motion artifact correction
and demonstrated its great potential for efficiently mini-
mizing motion artifacts in OCTA images in both preclini-
cal and clinical applications.
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