
From Softmax to Score: Transformers Can
Effectively Implement In-Context Denoising Steps

Paul Rosu ∗

Duke University
paul.rosu@duke.edu

Lawrence Carin
Duke University

lcarin@duke.edu

Xiang Cheng∗
Duke University

xiang.cheng@duke.edu

Abstract

Transformers have emerged as powerful meta-learners, with growing evidence
that they implement learning algorithms within their forward pass. We study
this phenomenon in the context of denoising, presenting a unified framework
that shows Transformers can implement (a) manifold denoising via Laplacian
flows, (b) score-based denoising from diffusion models, and (c) a generalized
form of anisotropic diffusion denoising. Our theory establishes exact equiva-
lence between Transformer attention updates and these algorithms. Empirically,
we validate these findings on image denoising tasks, showing that even sim-
ple Transformers can perform robust denoising both with and without context.
These results illustrate the Transformer’s flexibility as a denoising meta-learner.
Code available at https://github.com/paulrosu11/Transformers_are_
Diffusion_Denoisers

1 Introduction
Two dominant paradigms in generative modeling—diffusion models and Transformer-based se-
quence models—have independently achieved remarkable success. Denoising diffusion probabilis-
tic models (DDPMs) generate data by reversing a stochastic noise process, reaching state-of-the-art
results in image synthesis [14, 2]. Transformers, trained autoregressively, power large language
models (LLMs) that excel at text generation [15, 16]. This convergence prompts a natural ques-
tion: can attention mechanisms perform diffusion-like denoising, and what does this imply about the
nature of generative modeling?

Recent work shows these paradigms are deeply connected. Diffusion Transformers are competi-
tive with U-Nets as backbones of diffusion models [14, 2], while diffusion-based language models
like Diffusion-LM [12] offer controllable text generation, suggesting attention can drive iterative de-
noising in both vision and language. Beyond empirical advances, Transformers have demonstrated
remarkable capabilities in meta-learning, particularly through in-context learning, where they emu-
late learning algorithms during inference without explicit parameter updates [3, 4]. Recent studies
show that Transformers can approximate gradient-based updates in their forward pass [7, 1], effec-
tively bridging meta-learning and classical optimization [6]. From a theoretical standpoint, Trans-
former dynamics have recently been linked to continuous-time probability flows and Wasserstein
gradient flows [8], offering a principled lens for understanding attention-driven generation. Yet our
theoretical understanding of Transformers as denoisers remains limited. How could attention layers
collectively implement a stepwise denoising process—a generative flow through high-dimensional
space? While invertible attention has been proposed in flow-based models [19], a general framework
for attention as a diffusion operator is still lacking.

We seek to develop theoretical insight into how Transformers can perform iterative denoising, by
analyzing the capability of Transformers to implement various denoising algorithms, and drawing

∗Correspondence: paul.rosu@duke.edu, xiang.cheng@duke.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/paulrosu11/Transformers_are_Diffusion_Denoisers
https://github.com/paulrosu11/Transformers_are_Diffusion_Denoisers

connections to their meta-learning behavior in denoising contexts. Understanding attention as a
generative flow could unify the strengths of both paradigms, and illuminate why Transformers are
such powerful generative learners.

Denoising is central to generative modeling, yet theory on in-context learning (ICL) has largely
focused on supervised settings with clean labels. Real contexts are noisy or partially observed,
motivating unsupervised ICL. We ask whether Transformers can perform stepwise denoising during
inference, and show that attention naturally implements structured denoising updates and, when
trained end-to-end, can learn geometry-aware anisotropic diffusion. This yields a unified view of
score-based diffusion and manifold learning as Transformer-implemented denoising and connects
to recent in-context diffusion generation (e.g., [20]).

1.1 Outline and Main Contributions

The main contributions of our work are as follows:

1. Transformers Implementing Manifold Denoising. In Section 3, we consider the problem of
in-context manifold denoising [10]: One is presented a set of points sampled from an arbi-
trary, context-dependent manifold perturbed by Gaussian noise, and the goal is to denoise these
points. We show in Lemma 3 that the Transformer can implement a Laplacian-based manifold-
denoising algorithm that iteratively applies a kernel-weighted update [10]. This result provides a
clear theoretical link between manifold denoising and the attention mechanism of Transformers,
highlighting their potential in learning implicit manifold structures in-context.

2. Transformers as Exact Score-Based Diffusion Denoisers. Section 4 examines the role of
Transformers in the context of score-based diffusion generative models [11, 17]. We show rigor-
ously that the Transformer architecture can implement the exact score-based denoising algo-
rithm through a suitable cross-attention construction (Lemma 4). In Section 4.2, we further ex-
plore the Transformer’s performance in an in-context denoising setup, demonstrating empirically
that it effectively generalizes from context-free to context-dependent denoising scenarios,
thus unifying these two important perspectives through the same attention-based mechanism.

3. Efficient Approximate Score-Based Denoising via Learnable Witness Tokens. Recognizing
the impracticality of exact score-based denoising, Section 4.3 introduces an approach utilizing a
small set of learnable tokens (“witnesses”) that approximate the exact score computation. This
significantly improves both accuracy and computational efficiency, as demonstrated in our empir-
ical results in Section 4.3. The use of learnable witnesses bears a connection to several established
methods in kernel approximation.

4. Generalization to Anisotropic Diffusion and Learned Attention Parameters. In Section 4.4,
we generalize beyond isotropic kernels and standard diffusion models by studying anisotropic
diffusion processes. We theoretically prove (Lemma 5) that Transformers, when their Query,
Key, and Value parameters are suitably aligned with the diffusion coefficient matrix, can exactly
implement the reverse ODE of anisotropic diffusion. This theoretical insight is substantiated em-
pirically in Section 4.5, demonstrating that the Transformer can learn more efficient, geometry-
adaptive denoising algorithms beyond the standard score-based denoising framework. We
visualize this process in Figure 1.

Collectively, these contributions elucidate how attention and cross-attention can naturally realize a
broad spectrum of denoising algorithms. Our results reveal the remarkable flexibility and effective-
ness of Transformers for both context-dependent and context-independent denoising.

2 Transformer and Kernel Weighted Update

Given tokens of the form z(1), . . . , z(n) ∈ Rd, we define the matrix Z0 :=
[
z(1), . . . , z(n)

]
∈

Rd×n. For a L-layer Transformer, we let WV
ℓ ,W

Q
ℓ ,W

K
ℓ ∈ Rd×d denote the value, query and key

parameter matrices of layer ℓ, and let WS
ℓ ∈ Rd×d parameterize a linear module. For convenience,

let Wℓ :=
{
WV
ℓ ,W

Q
ℓ ,W

K
ℓ ,W

S
ℓ

}
, and let W := {Wℓ}ℓ=0,...,L. Attnstd denotes the standard

attention:
Attnstd (Z;Wℓ) :=WV

ℓ Z smax
(
Z⊤WK

ℓ

⊤
WQ
ℓ Z

)
, (1)

2

Figure 1: Visualization of diffusion steps of a denoising algorithm implemented by a trained Trans-
former with diagonal WV ,WQ,WK matrices. The Transformer is modelled by the score-based
anisotropic diffusion reversal algorithm in Lemma 5, Section 4.5. The first 2 columns show the
clean and noisy images. Each subsequent column shows the output at a given layer of a 6-layer
Transformer. We visualize the difference between consecutive layers’ output at the bottom. Notice
that each Transformer layer denoises a roughly non-overlapping patch.

where smax applies column-wise softmax. We use a diagonal mask so that each token does not
attend to itself. This is standard when disallowing self-attention (diagonal mask) and is also common
in manifold denoising, where the update at each position is informed by its neighbors rather than
itself (see [10], Section 3.1). For notational simplicity, we omit the explicit mask matrix. Let
rbf(·, ·) : Rd×n × Rd×n → Rn×n be the matrix valued RBF kernel, defined as [rbf(U, V)]ij =

exp
(
−1/2 · ∥U (i) − V (j)∥22

)
. We define Attnrbf as

Attnrbf (Z;Wℓ) :=WV
ℓ Z smax(rbf(WK

ℓ Z,W
Q
ℓ Z)). (2)

We highlight that the difference between the standard Attnstd and Attnrbf as follows:

[smax
(
Z⊤WK

ℓ

⊤
WQ
ℓ Z

)
]ij ∝ exp

(
(WK

ℓ z
(i))⊤(WQ

ℓ z
(j))

)
[smax(rbf(WK

ℓ Z,W
Q
ℓ Z))]ij ∝ exp

(
(WK

ℓ z
(i))⊤(WQ

ℓ z
(j))−∥WK

ℓ z
(i)∥22/2− ∥WQ

ℓ z
(j)∥22/2

)
.

Given Attn ∈ {Attnstd, Attnrbf}, we define the Transformer via the iterative update:

Zℓ+1 =WS
ℓ Zℓ + Attn

(
Zℓ;W

V
ℓ ,W

Q
ℓ ,W

K
ℓ

)
. (3)

In many subsequent applications of interest, ∥WQ
ℓ z

(j)∥22 and ∥WK
ℓ z

(j)∥22 are constant, or close to
constant, due to concentration of norms of high-dimensional Gaussian vectors. In this case, we
verify that Attnstd and Attnrbf behave identically:
Lemma 1 (Equivalence of Attnstd and Attnrbf on the sphere (with WQ,WK identity-scaled)). If
∥z(i)ℓ ∥2 = C for some constant C, and if WQ

ℓ and WK
ℓ are scalings of the identity matrix, then

Attnstd(Zℓ,W) = Attnrbf(Zℓ,W).

We defer proof of Lemma 1 to Appendix A. We also empirically verify the similar performance of
Attnstd and Attnrbf in Figure 3.

2.1 Transformer Construction for Kernel-Weighted Update.

Given tokens {z(i)}i=1,...,n ⊂ Rd, let F = {z(1), . . . , z(m)} denote the set of frozen tokens. Much
of our discussion in this paper revolves around the following kernel-weighted-update scheme:

z
(i)
ℓ+1 = (1− αℓ)z

(i)
ℓ + γℓ

∑
j ̸=i

κℓ(i, j)
(
z
(j)
ℓ − z

(i)
ℓ

)
for i ̸∈ F , (4)

κℓ(i, j) := 1 {i ̸= j} exp(−∥z(i)ℓ − z
(j)
ℓ ∥22/(2σ2

ℓ))/
∑
k ̸=j

exp(−∥z(j)ℓ − z
(k)
ℓ ∥22/(2σ2

ℓ)) (5)

and z(i)ℓ+1 = z
(i)
ℓ for i ∈ F . Motivated by (4), we consider a variant of the Transformer from (3)

that involves cross-attention: let ZF := [z(1), z(2), . . . , z(m)] ∈ Rd×m denote the matrix whose

3

columns are the frozen tokens. Let Z := [z(m+1), z(m+2), . . . , z(n)] denote the matrix of not-frozen
tokens. Let cross attention modules CrAttnstd (U,Z;Wℓ) := WV

ℓ U smax
(
U⊤WK

ℓ

⊤
WQ
ℓ Z

)
and

CrAttnrbf (U,Z;Wℓ) := WV
ℓ U smax(rbf(WK

ℓ U,W
Q
ℓ Z)) be defined analogously to Attnstd and

Attnrbf. We present below the Transformer with cross attention:

Zℓ+1 =WS
ℓ Zℓ + Attnrbf

(
Zℓ;W

V
ℓ ,W

Q
ℓ ,W

K
ℓ

)
+ CrAttnrbf

(
ZF , Zℓ;W

V
ℓ

′
,WQ

ℓ

′
,WK

ℓ

′)
. (6)

We will use TFℓ(Z,Z
F ;W) to denote the value of Zℓ, when evolved according to (6), initialized at

Z0 = Z and ZF ; i.e. the output of the ℓ-layer Transformer in (6). We verify below that TFℓ can
exactly implement the kernel-weighted update (4) (proof deferred to Appendix A):

Lemma 2 (Transformer implements kernel-weighted update.). By choosing WQ
ℓ =

1/σℓId×d,W
K
ℓ = 1/σℓId×d,W

V
ℓ = γℓId×d,W

S
ℓ = (1 − αℓ − γℓ)Id×d, the Transformer in

(6) exactly implements the kernel-weighted update in (4).

3 Manifold Denoising via Laplacian-based ODE

In this section, we are motivated by the following in-context manifold denoising problem, originally
proposed in [10]: Let M be a m-dimensional manifold embedded via an embedding T : M → Rd.
We identify a point a ∈ M with its d-dimensional embedding T (a). Let x(1), . . . , x(n) be sampled
from M, and we observe z(i) = x(i) + ε(i), where ε(i) ∼ N (0, σ2Id×d). The goal is to recover the
x(i)’s. This problem is particularly challenging because (1) the manifold M is unobserved, and (2)
the manifold M is context-dependent. Therefore, to solve this problem in-context, the Transformer
needs to be able to learn (implicitly or explicitly) the manifold structure, from the observations z(i)’s.
[10] propose the following manifold-denoising algorithm based on the Laplace-Beltrami operator:
Let the adjacency matrix W ∈ Rn×n be defined as Wij := exp(−∥z(i) − z(j)∥22/(2σ2)) and set
Wii = 0 to remove self-loops. Let D be the diagonal matrix with Dii :=

∑n
j=1 Wij . The RBF

Laplacian is defined as L = In×n−D−1W. The denoising algorithm is based on a Laplacian-based
flow ∂tz

(i)(t) = −γ
∑n
j=1 Lij z(j)(t), whose Euler discretization gives the discrete-time algorithm:

z
(i)
0 = z(i), z

(i)
ℓ+1 = z

(i)
ℓ − δℓ

(n∑
j=1

Łijz
(j)
ℓ

)
. (7)

In the Lemma 3, we verify that the Transformer from (6) can exactly implement the above algorithm
in its forward pass. This enables the Transformer to act as an effective in-context manifold denoiser.
Lemma 3 (Reformulation of Manifold Denoising). The manifold denoising algorithm in (7) is ex-
actly equivalent to (4), with F = ∅, αℓ = 0, σℓ = σ, and γℓ = δℓ. Consequently, the algorithm (7)
is implemented by the Transformer construction in Lemma 2.

The proof of Lemma 3 is just by algebra; we defer it to Appendix B.

3.1 Experiments for Manifold Denoising

We present experimental evidence demonstrating the Transformer construction in Lemma 2 can
indeed act as an effective manifold denoiser. The problem setup is very similar to the above: Let
x(1), . . . , x(n) be clean images sampled from a training set. We perturb each image via z(i) =
x(i) + ε(i), where ε(i) ∼ N (0, σ2I), for some noise level σ. The input matrix Z0 = [z(1), . . . , z(n)]
and the Transformer TFℓ(Z;Wℓ) are as defined in Section 2. Motivated by Lemma 2, we impose the
constraint that WV

ℓ ,W
Q
ℓ ,W

K
ℓ ,W

S
ℓ are each a (trainable) scalar multiple of identity. The training

loss is given by EZ0

[
1
n

∑n
i=1 ∥[TFL(Z0;W)](i) − x(i)∥22

]
. Throughout, we report noise levels via

a signal-to-noise ratio (SNR) defined as SNR := σnoise/σdata, i.e., the standard deviation of the
additive Gaussian noise divided by that of the clean data distribution.

Figure 2a shows that the test loss decreases with the context length; this agrees with the fact that the
discrete RBF Laplacian L becomes a better approximation to the Laplace-Beltrami operator with
increasing number of samples. Figure 2b shows the test loss of the intermediate layer outputs of a
6-layer Transformer; the test loss decreases with number of layers, which is consistent with (7), as
each layer implements one more discretization step of (7).

4

(a) Loss Against Context Length n. (b) Loss Against Layer ℓ. Context size n =100.

Figure 2: (a) Test-set RMSE on MNIST versus context size n for the Laplacian-based denoising
Transformer under a noise level of SNR ≈ 1. Each point shows the converged loss of a separately
trained 6-layer model; (b): Test RMSE of intermediate output at layer ℓ with fixed n = 100.

4 Score-Based Diffusion Denoising

As in standard score-based diffusion models [11, 18, 17], our training objective is defined over the
empirical distribution p̂ (equivalently denoted p0 below), the uniform distribution over training sam-
ples {x(i)}ni=1. We assume these samples are drawn i.i.d. from an unknown population distribution
p. While optimization is with respect to p̂, the modeling goal is to generalize to p. Unless otherwise
stated, all evaluations reported in this section are computed on unseen test examples.

Score-based diffusion generative models [11, 18] motivate the following problem: Let p0 denote the
uniform distribution over a (large) training set of samples

{
x(1), . . . , x(n)

}
. Let pt = p0 ∗N (0, tI),

where ∗ denotes convolution. As we review in Section 4.1, getting access to ∇ log pt(x) allows one
to turn an (almost pure) Gaussian noise x into a sample from p0 by reversing a diffusion process.
In practice, one trains a neural network sθ(x, t), parameterized by weights θ, to approximate the
(scaled) score, by minimizing the denoising objective E

[
∥sθ(x; t)− t∇ log pt(x)∥22

]
.

Conveniently, ∇ log pt(x) is exactly equal to a weighted-average between x and each {x(i)}i=1,...,n.
Consequently, we verify in Lemma 4 that the Transformer (6) can implement score-based denoising.

4.1 Standard Score-based Diffusion Denoising

Consider the variance-exploding SDE, defined as

x0 ∼ p0, dxt = dBt, (8)

where Bt denotes the standard Brownian motion. Let pt denote the distribution of xt. We verify
that pt = p0 ∗ N (0, tI). By the Fokker Planck equation, pt evolves as

vt(x) := −1

2
∇ log pt(x) ⇒ ∂

∂t
pt(x) = −div(pt(x)vt(x)). (9)

Consequently, if z0 ∼ p0 and dzt = − 1
2∇ log pt(zt)dt, then zt has the same distribution as xt

in (8). The above follows directly from integration-by-parts. The diffusion process of (8) can be
reversed by reversing the velocity field vt(x). Concretely, for any fixed time T , let y0 ∼ pT , and
dys =

1
2∇ log pT−s(ys)ds, then ys ∼ pT−s. The Euler discretization of the ODE for ys is given by

σ2
ℓ+1 = σ2

ℓ − δℓ, ȳℓ+1 = ȳℓ +
δℓ
2
∇ log pσ2

ℓ
(ȳℓ), (10)

where σ2
k is the time T − s at step k (equivalently, the Gaussian variance of ȳℓ).

From the definition of p0 and pt, it follows that

pt(x) =
1

nZt

n∑
i=1

e−
1
2t∥x−x(i)∥2

2 ⇒ ∇ log pt(x) =

∑n
i=1 e

− 1
2t∥x−x(i)∥2

2

(
x(i) − x

)
t
∑n
i=1 e

− 1
2t∥x−x(i)∥2

2

, (11)

5

where Zt is the normalization constant for N (0, tI). Observe that the RHS of (11) is exactly the
kernel-weighted average κ from (4). Combining (11) and (10) then implies that the score-based
denoising algorithm (10) is equivalent to (4), which we formalize in the following lemma:
Lemma 4 (Score-based Denoising as Kernel-Weighted Update). The score-based denoising algo-
rithm (10) is equivalent to (4) with z(n+1)

ℓ := ȳℓ, F = {1, . . . , n}, and γℓ = δℓ/(2σ
2
ℓ). Conse-

quently, the Transformer construction in Lemma 2 can implement score-based denoising (10).

We defer the proof to Appendix C. We highlight an important difference from the manifold denoising
setup in Section 3: here, the set of training samples is typically large, and does not vary with context.
Instead, the training samples encode global context-free knowledge. On the other hand, the presence
of similar tokens in-context can indeed improve the denoising accuracy; we show this empirically
in Figure 5 in the next section. Thus the same attention architecture can be well-suited for both
in-context, and context-free learning.

In Section 4.3, we discuss a generalization of the construction of Lemma 4; where we train the cross-
attention tokens in (6) to learn an approximate score that significantly improves generalization error
and computational cost. In Section 4.4, we discuss a generalization of the score-based denoising
sequence (10) itself, which also leads to significant accuracy improvements.

4.2 Experiments for Score-Based Denoising

We empirically validate Lemma 4. Our experiment verifies that the Transformer construction of
Lemma 4 does indeed implement exact score-based denoising. The setup is as follows: for each
input context, we sample x(1), . . . , x(n) clean images from a training set. We let z(i) = x(i). The
query image is x(n+1). We perturb the query image by Gaussian noise: z(n+1) = x(n+1) + ε(n+1),
where ε(n+1) ∼ N (0, σ2I), where σ is chosen noise level. The Transformer TFℓ(Z;Wℓ) is as
defined in (6). Motivated by Lemma 2, we impose the constraint that WV

ℓ ,W
Q
ℓ ,W

K
ℓ ,W

S
ℓ are

each a (trainable) scalar multiple of identity. The training loss is given by the reconstruction error
EZ0

[
∥[TFL(Z0;W)](n+1) − x(n+1)∥22

]
.

Single-query score-based denoising. Figure 3 shows two architectures: {“RBF”, “STD”} refer
to Transformers that use Attnrbf (2) and Attnstd (1) respectively. For each architecture, “trained”
means the Transformer is trained on the above loss; “theory” means the Transformer parameters are
fixed at the construction in Lemma 4 (for a geometrically decreasing σk schedule). Figure 3 plots
the test loss of the per-layer output of 6-layer Transformers. We observe the following:

1. The reconstruction error decreases monotonically with layers, suggesting that the Transformer is
implementing an iterative denoising algorithm at training convergence. “RBF-trained” appears to
denoise more aggressively in the first few layers compared to the theory constructions.

2. RBF-theory and STD-theory have almost identical losses, supporting our claim in Lemma 1 that
the RBF and STD attentions behave similarly under our constructions.

In Figure 4, we visualize the clean and noisy query images, as well as the per-layer intermediate
outputs of the RBF-trained and RBF-theory Transformers from Figure 3. In Figure 4a and 4b, we
see that the trained Transformer can exactly recover the clean training set image, as does the exact
score-denoising algorithm. In Figure 4c and 4d, we see that test images are not being recovered;
instead the denoising algorithm produces a similar image from the training set. Though undesired,
this is the expected behavior for exact score-denoising. In Figure 4e and 4f, we see the ”generation”
capabilities of each Transformer from pure noise; again, the ”generated” image is in fact a sample
from the training set (as expected of exact score denoising). The generated outputs of RBF-trained
and RBF-theory are almost identical in all cases.

In-context score-based denoising. In Figures 5 and 6, we present a different experiment which
highlights the in-context aspect of score-based denoising. In this setup, the input consists of the
noiseless training samples {x(1), . . . , x(n)}, as well asm contextual images {x(n+1), . . . , x(n+m)}.
The query image is x(n+m+1). Crucially, all m contextual images belong to the same class as the
query image x(n+m+1). The Transformer input is z(i) = x(i) for i = 1, . . . , n +m, and the query
point is perturbed with Gaussian noise: z(n+m+1) = x(n+m+1)+N (0, σ2I). We callm the “context
length”. The query x(m+n+1) attends to the training set x(1), . . . , x(n) via the CrAttn module in

6

(a) MNIST (b) CIFAR10

Figure 3: (a) Test loss of intermediate output at layer ℓ versus ℓ on MNIST, (b) CIFAR-10, at an
injected noise level corresponding to SNR ≈ 3 for (a) and ≈ 5 for (b). All Transformers have 6-
layers total. For CIFAR-100 results and FID on CIFAR-10/100, see App. E.2.1.

(6), while the context samples + query x(n+1), . . . , x(n+m) attend to each other via the Attn module
in (6) (with appropriate masking). Experiment details are in Appendix E.4.

The training loss is again the reconstruction loss. In Figure 5, we plot the test reconstruction loss
against the context length. The presence of a few contextual examples leads to a significant im-
provement in reconstruction error. This demonstrates that the Transformer is indeed implementing
a denoising algorithm that can adapt to its context (at least partially). Figure 6 visualizes this phe-
nomenon. The injected noise has high SNR=5, so that the original image is difficult to recover. In
the leftmost block, we see that providing same-class contextual images guided the model to correctly
generate “6” (even though the intermediate output appears to tend towards “5”). In the middle block,
the contextual set consisted of images from random classes, and the Transformer had difficulty re-
covering the image. In the right block, a Transformer trained without context generated a different
digit from the same starting noisy image.

(a) MNIST (query from train set) (b) CIFAR10 (query from train set)

(c) MNIST (query from test set) (d) CIFAR10 (query from test set)

(e) MNIST (random noise query) (f) CIFAR10 (random noise query)

Figure 4: Visualization of denoised images. Query image from {train, test, random noise}. In
each sub-figure, the 1st row shows the trained Transformer, and the 2nd row shows the Transformer
with theoretical weights. First two columns in each figure shows the {clean, noisy} query image
respectively. Columns 2–7 show the per-layer intermediate outputs of a 6-layer Transformer.

4.3 Approximate Score-Based Denoising With Learnable Witnesses

In the preceding section, we show that exact score-based denoising can be implemented via cross-
attention between the noisy sample, and every other sample in the training dataset. This is in gen-

7

(a) MNIST: Test Loss vs Context Length (b) CIFAR-10: Test Loss vs Context Length

Figure 5: Test-set RMSE for a 6-layer RBF-attention denoiser as a function of the number of clean,
same-class context images nctx. The query token is severely noised (SNR ≈ 15 for MNIST, SNR≈
10 for CIFAR-10), while the full training set is available through cross-attention. Adding just a few
class-matched examples dramatically lowers the loss from the nearly unrecoverable zero-context
case. For CIFAR-100 results and FID on CIFAR-10/100, see App. E.3

Figure 6: Two leftmost images are the clean and noisy (SNR ≈ 15) query images respectively. We
show three sets of six intermediate layer outputs. Left: a Transformer trained using with a 100-
image contextual set is presented contextual images from the correct class at test time, and generates
the correct image. Middle: the same Transformer, when provided contextual images from random
classes, fails to generate the right image. Right: a different Transformer, trained without context,
generates the digit 2 from the same input. All three scenarios start from the identical noisy input.

erally practically infeasible. On the flip-side, the training set is typically not context-dependent.
Therefore, one can hope to approximate the exact score cross-attending to a small set of represen-
tative samples. Concretely, let Ψ = {ψ(1), . . . , ψ(τ)} ⊂ Rd denote a set of witnesses ψ(i), for some
τ << n. The goal is to choose a Ψ which well-approximates the kernel-weighted update from (4).

τ∑
j=1

e−∥ψ(j)−z∥2
2/(2σ

2)∑τ
k=1 e

−∥ψ(k)−z∥2
2/(2σ

2)

(
ψ(j) − z

)
︸ ︷︷ ︸

1

≈
n∑
j=1

e−∥z(j)−z∥2
2/(2σ

2)∑n
k=1 e

−∥z(k)−z∥2
2/(2σ

2)

(
z(k) − z

)
︸ ︷︷ ︸

2

. (12)

Observe that the 2 is equivalent to the κ-averaged term in (4). In the setting of score-based de-
noising, z(1), . . . , z(n) is drawn from p0 independently. An intuitively simple choice of Ψ is then to
sub-sample τ points from {z(1), . . . , z(n)}; under this choice, the LHS of (12) is simply a Monte-
Carlo estimate of the RHS of (12). Assume that p0 is compactly supported, we can show via basic
algebra that E

[
∥ 1 − 2 ∥22

]
= o(τ−1). We provide a short proof in Lemma 7 in Appendix C.

Much more sophisticated approaches exist, and the problem of picking a good witness set Ψ has
deep connections to a number of areas such as Nystrom’s method for kernel approximation [21, 9],
kernel mean embeddings [13] and kernel herding [5].

Motivated by the above, we treat Ψ as a learnable parameter, alongside the other parameters of the
Transformer. In Lemma 4, we showed that the score-based denoising algorithm (10) is implemented
by the Transformer defined in (6). The witness-based Transformer is then defined as

Zℓ+1 =WS
ℓ Zℓ + Attnrbf

(
Zℓ;W

V
ℓ ,W

Q
ℓ ,W

K
ℓ

)
+ CrAttnrbf

(
Uℓ, Zℓ;W

V
ℓ

′
,WQ

ℓ

′
,WK

ℓ

′)
,

(13)

where Uℓ ∈ Rd×τ is the only difference from (6). The full set of parameters of (13) is
{Uℓ,WV

ℓ ,W
Q
ℓ ,W

K
ℓ }ℓ=1,...,L. In words, column i of Uℓ represents ψ(i) in the above discussion,

8

and Uℓ can differ from layer to layer (analogous to Ψ changing with each denoising step.) We ini-
tialize Uℓ with randomly sampled vectors from {z(i)}i=1,...,n. We show in Figure 7 that (13) has
significant advantages in computation and generalization error (see Section 4.5 for discussion).

4.4 Anisotropic Diffusion and its Reverse ODE

Consider a generalization of the standard diffusion process in (8): instead of dxt = dBt, let At :
R+ → Rd×d denote a time-parameterized family of matrices. For simplicity, we assume that At is
symmetric. The anisotropic diffusion is described by

x0 ∼ p0, dxt = AtdBt. (14)

Let pt denote the distribution of xt. Let T be some final time, and let pT = p0 ∗ N (0, T I). In
Appendix C.1, we show that (14) admits a simple continuous-time reverse ODE yt ∼ pT−t. Its
Euler discretization gives a denoising algorithm that can be implemented by a Transformer:

Lemma 5 (Anisotropic Denoising with Transformer). Let x(1), . . . , x(n) denote a training set. Let
z(i) = x(i) for i = 1, . . . , n. Let z(n+1) = x(n+1) + N (0, T I) denote the query token. Consider
the anisotropic diffusion in (14), where At is a family of arbitrary symmetric matrices. Let t0 := T ,
tℓ+1 := tℓ − δℓ, M0 := TI , Mℓ+1 =Mℓ − δℓA

2
tℓ

, where we identify Aℓ with Atℓ . Then there exists
a discrete-time denoising algorithm, based on the time-reversal ODE of the anisotropic diffusion in
(14). This denoising algorithm can be implemented by the Transformer in (6), with parameters

WS
ℓ = I − δℓA

2
ℓM

−1
ℓ /2, WV

ℓ = δℓA
2
ℓM

−1
ℓ /2, WQ

ℓ =WK
ℓ = (2Mℓ)

−1/2, (15)

and with F = {1, . . . , n}.

The proof of Lemma 5 uses the same tools from Section 4.1, and we defer it to Appendix C. The
importance of Lemma 5 lies in generalizing beyond the isotropic RBF kernel used in score-based
denoising, and justifies the choice of non-identity WS ,WQ,WK ,WV matrices, which enables
the Transformer to implement an anisotropic denoising algorithm that adapts to the distribution at
step ℓ. In Section 4.5, we evaluate a witness-variant of the Transformer from Lemma 5.

4.5 Experiments for Witness and Anisotropic Denoising

In the following, we present a set of experiments that serves two purposes: First, it demon-
strates the advantage of the Transformer with learnable witnesses from Section 4.3. Second, it
studies the anisotropic diffusion Transformer construction from Lemma 5, with general learnable
WQ,WK ,WV matrices. The setup is identical to the single-query score-based denoising experi-
ment in in Section 3.1. The one difference is in the architecture: let the Transformer TFℓ(z0;Uℓ,Wℓ)
be as defined in (13), where Uℓ denotes the set of learnable witnesses and Wℓ denotes the set of pa-
rameters at layer ℓ. The training loss is given by EZ0

[
∥TFL(z;U,W)− x∥22

]
.

We initialize the witnesses (U) by sampling a random subset of training examples to set the initial
columns of (U). During training, we treat (U) as a continuous, fully learnable parameter matrix and
optimize it jointly with (W) via gradient descent. Consequently, at convergence the columns of
(U) need not coincide with any training example (e.g., a column of (U) may represent an average
or a denoising-friendly summary of multiple samples). This makes witness selection differentiable
end-to-end and connects to classical kernel approximation methods (e.g., Nystrom and related con-
structions) that summarize large kernels with a small set of inducing points [21, 9, 5, 13].

In Figure 7, we compare the test loss of three models: the Baseline model is the Transformer from
Lemma 4 that exactly implements the score-based denoising algorithm in (10). The ”Witness+RBF”
model implements the witness-Transformer from (13), and its weights W are (trainable) scalar mul-
tiples of identity. The ”Witness+anisotropic” model is motivated by Lemma 5; we do not assign the
Transformer parameters as done in (15); instead, we simply make {WS

ℓ ,W
V
ℓ ,W

Q
ℓ ,W

K
ℓ } trainable

diagonal matrices. We provide details of the implementation in Appendix E.4.

With a moderate number of witnesses, both witness-based Transformers significantly outperform the
baseline Transformer that implements exact score matching. Furthermore, the anisotropic denoising
Transformer shows a significant advantage over the RBF (isotropic) denoising Transformer.

In Figure 1, we visualize the per-layer denoising progress of a 6-layer Witness+anisotropic Trans-
former (1000 witnesses). In contrast to the standard denoising sequence in Figure 4, where noise

9

is removed uniformly in space, the denoising sequence in Figure 1 proceeds patch-wise. Such
a patch-wise denoising procedure coincides with the anisotropic denoising algorithm when Aℓ for
each step ℓ is a sparse diagonal matrix, whose non-zero entries coincide with the pixel locations of
a localized image patch.

Across datasets and witness counts, the witness-based Transformer achieves lower test reconstruc-
tion error than the Baseline model that implements exact score-based denoising. Although the Base-
line can perfectly fit the empirical train distribution (p̂), its unconstrained attention tends to general-
ize poorly. In contrast, the Witness model’s learnable summary witnesses provide an inductive bias
that improves generalization to the population distribution (p).

(a) MNIST (b) CIFAR10

Figure 7: Test loss at SNR ≈ 3 for (a) and ≈ 5 for (b) with a 6-layer model as a function of the
number of trainable witness tokens τ . The horizontal line shows the performance of the exact-score
denoiser that uses the full training set, while the two curves plot witness-based approximations (13):
one based on anisotropic diffusion (Section 4.4), and one based on standard RBF kernel. All reported
metrics are computed on unseen test data to assess generalization. For CIFAR-100 results and FID
on CIFAR-10/100, see App. E.3.1.

All experiments are done on a single A5000 GPU, with each experiment taking at most a few hours.

5 Future Directions

Parameter-efficient denoising. Our characterization of anisotropic denoising with diagonal atten-
tion weights suggests that even highly constrained parameterizations can learn powerful denoising
algorithms. This opens up opportunities for efficient Transformer variants in generative models—
for example, using low-rank or diagonal attention in diffusion Transformers, or fine-tuning these
components in parameter-efficient learning settings.

Localized, interpretable attention. We observe that trained Transformers often specialize differ-
ent layers (or heads) to denoise approximately non-overlapping semantic patches (Figure 1). This
suggests a promising direction for designing sparse, locality-aware attention mechanisms in struc-
tured domains like vision. Such mechanisms may be more interpretable and robust to noisy or
incomplete context, and they align with the geometry-aware updates formalized in our analysis.

Multi-modal Contexts Incorporating conditioning signals (e.g., text) via cross-attention into our
kernel-weighted update view provides a principled path to conditional denoising and controllable
generation, and can be combined with parameter-efficient anisotropic modules.

6 Limitations:
Our analysis and experiments deliberately focus on small-scale image datasets and small-depth,
single-head Transformers. While this choice isolates the denoising mechanisms we study, it leaves
open how the same constructions behave on larger, more varied data (e.g., high-resolution images,
audio, or text) and in deeper, multi-stage architectures. Second, we evaluate only pixel-space RMSE;
assessing perceptual quality, class fidelity, or downstream generation tasks remains future work.

10

References
[1] E. Akyürek, D. Schuurmans, and J. Andreas. Transformers learn in-context by gradient de-

scent. In Proceedings of the 40th International Conference on Machine Learning. PMLR,
2023.

[2] J. Bao, C. Dong, D. Zhang, L. Zhang, J. Zhang, H. Liu, Y. Yang, L. Yuan, D. Chen, and F. Wen.
All are worth words: A vit backbone for diffusion models. arXiv preprint arXiv:2209.12152,
2022.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[4] S. C. Y. Chan, A. Santoro, A. K. Lampinen, J. X. Wang, A. Singh, P. H. Richemond, J. Mc-
Clelland, and F. Hill. Data distributional properties drive emergent in-context learning in trans-
formers. arXiv preprint arXiv:2205.05055, 2022.

[5] Y. Chen, M. Welling, and A. Smola. Super-samples from kernel herding. arXiv preprint
arXiv:1203.3472, 2012.

[6] D. Dai, Y. Sun, L. Dong, Y. Hao, S. Ma, Z. Sui, and F. Wei. Why can gpt learn in-context?
language models implicitly perform gradient descent as meta-optimizers. arXiv preprint
arXiv:2212.10559, 2022.

[7] S. Garg, D. Tsipras, P. Liang, and G. Valiant. What can transformers learn in-context? a case
study of simple function classes. arXiv preprint arXiv:2208.01066, 2022.

[8] B. Geshkovski, C. Letrouit, Y. Polyanskiy, and P. Rigollet. A mathematical perspective on
transformers. arXiv preprint arXiv:2312.10794, 2023.

[9] A. Gittens and M. W. Mahoney. Revisiting the nyström method for improved large-scale
machine learning. The Journal of Machine Learning Research, 17(1):3977–4041, 2016.

[10] M. Hein and M. Maier. Manifold denoising. Advances in neural information processing
systems, 19, 2006.

[11] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[12] X. L. Li, J. Thickstun, I. Gulrajani, P. Liang, and T. B. Hashimoto. Diffusion-lm improves
controllable text generation. arXiv preprint arXiv:2205.14217, 2022.

[13] K. Muandet, K. Fukumizu, B. Sriperumbudur, B. Schölkopf, et al. Kernel mean embedding
of distributions: A review and beyond. Foundations and Trends® in Machine Learning, 10(1-
2):1–141, 2017.

[14] W. Peebles and S. Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

[15] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

[16] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[17] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

[18] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based gen-
erative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,
2020.

[19] R. Sukthanker, Q. Huang, H. Wang, Z. S. Liu, and E. P. X. Wang. Generative flows with
invertible attentions. arXiv preprint arXiv:2106.03959, 2021.

11

[20] Z. Tang, Z. Yang, M. Khademi, Y. Liu, C. Zhu, and M. Bansal. Codi-2: In-context inter-
leaved and interactive any-to-any generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 27425–27434, June 2024.

[21] C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. Advances
in neural information processing systems, 13, 2000.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a subsection dedicated to discussing limitations. See Section 6.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have several lemmas, and all details and assumptions connected to them
are discussed. All proofs are provided and to the best of our knowledge are correct.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All details of our experiments are provided. All code will be released upon
publication.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] X
Justification: All data we have considered here is publicly available, and in the Appendix
we provide details for reproduction of synthetic data.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] X
Justification: All experimental details are provided and code will be released upon publi-
cation.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We explain what type of GPU was used for our computations, and needed
compute time above the Limitations Section.

9. Code of ethics

13

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the code of conduct, and have complied with it.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: We discuss some broader impact of the work in introduction. The work is
mainly foundational and has no direct social impact.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There are no safety issues with the data that we have considered.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We are using no code or data that would require this.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: The main new asset is the related code we have developed. It will be freely
released and is well documented with its license.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
[NA]
Justification: No experiments of this type were performed.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: None of our work requires an IRB.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not involve any non-standard usages of LLMs.

14

https://neurips.cc/public/EthicsGuidelines

A Theory for Transformer Construction

Proof of Lemma 1. Recall from Section 2 the following expression for smax:

[smax
(
Z⊤WK

ℓ

⊤
WQ
ℓ Z

)
]ij ∝ exp

(
(WK

ℓ z
(i))⊤(WQ

ℓ z
(j))

)
[smax(rbf(WK

ℓ Z,W
Q
ℓ Z))]ij ∝ exp

(
(WK

ℓ z
(i))⊤(WQ

ℓ z
(j))−∥WK

ℓ z
(i)∥22/2− ∥WQ

ℓ z
(j)∥22/2

)
.

In particular, the ∝ symbol is applied for fixed column j, across rows i.

Under our assumptions that WK
ℓ = aId×d and WQ

ℓ = bId×d, we can simplify

(WK
ℓ z

(i))⊤(WQ
ℓ z

(j)) = abz(i)
⊤
z(j)

∥WK
ℓ z

(i)∥22/2 = a2∥z(i)∥22/2 = a2C2

∥WQ
ℓ z

(j)∥22/2 = b2∥z(j)∥22/2 = b2C2

Carefully writing the expression for the smax term in Attnrbf gives

[smax(rbf(WK
ℓ Z,W

Q
ℓ Z))]ij

=
exp

(
(WK

ℓ z
(i))⊤(WQ

ℓ z
(j))−∥WK

ℓ z
(i)∥22/2− ∥WQ

ℓ z
(j)∥22/2

)
∑
k ̸=j(W

K
ℓ z

(k))⊤(WQ
ℓ z

(j))−∥WK
ℓ z

(k)∥22/2− ∥WQ
ℓ z

(j)∥22/2

=
exp

(
abz(i)

⊤
z(j) − (a2 + b2)C2

)
∑
k ̸=j exp

(
abz(k)

⊤
z(j)−(a2 + b2)C2

)
=

exp
(
abz(i)

⊤
z(j)

)
∑
k ̸=j exp

(
abz(k)

⊤
z(j)

)
=[smax(Z⊤WK

ℓ

⊤
WQ
ℓ Z)]ij .

This concludes our proof.

Proof of Lemma 2. WQ
ℓ = 1/σℓId×d,W

K
ℓ = 1/σℓId×d,W

V
ℓ = γℓId×d,W

S
ℓ = (1−αℓ− γℓ)Id×d

Reproducing (4) below:

z
(i)
ℓ+1 = (1− αℓ)z

(i)
ℓ + γℓ

∑
j ̸=i

κℓ(i, j)
(
z
(j)
ℓ − z

(i)
ℓ

)
for i ̸∈ F ,

κℓ(i, j) := 1 {i ̸= j} exp(−∥z(i)ℓ − z
(j)
ℓ ∥22/(2σ2

ℓ))/
∑
k ̸=j

exp(−∥z(k)ℓ − z
(i)
ℓ ∥22/(2σ2

ℓ)).

For simplicity, we present the proof for the empty frozen set F = ∅. The case for non-empty frozen
set F follows almost identically, by observing that ZF is never updated.

Let z(i)ℓ denote the ith column of Zℓ. Plugging in our choice of WK ,WQ,WV ,

(WK
ℓ z

(i)
ℓ)⊤(WQ

ℓ z
(j)
ℓ) =

1

σ2
ℓ

z(i)
⊤
z(j)

∥WK
ℓ z

(i)
ℓ ∥22/2 =

1

2σ2
ℓ

∥z(i)∥22

∥WQ
ℓ z

(j)
ℓ ∥22/2 =

1

2σ2
ℓ

∥z(j)∥22.

Therefore, by definition of Attnrbf in Section 2,[
smax

(
rbf

(
Zℓ;W

V
ℓ ,W

Q
ℓ ,W

K
ℓ

))]
ij
=
1 {i ̸= j} exp(−∥z(i)ℓ − z

(j)
ℓ ∥22/(2σ2

ℓ))∑
k ̸=j exp(−∥z(k)ℓ − z

(j)
ℓ ∥22/(2σ2

ℓ)
.

15

Plugging the above into Attnrbf in Section 2, and letting [Attnrbf(. . .)]
(j) denote the jth column

of Attnrbf(. . .),[
Attnrbf

(
Zℓ;W

V
ℓ ,W

Q
ℓ ,W

K
ℓ

)](j)
= γℓ

∑
i ̸=j exp(−∥z(i)ℓ − z

(j)
ℓ ∥22/(2σ2

ℓ))z
(i)∑

k ̸=j exp(−∥z(k)ℓ − z
(j)
ℓ ∥22/(2σ2

ℓ)
.

On the other hand by definition of WS
ℓ ,[

WS
ℓ Zℓ

](j)
=(1− αℓ − γℓ)z

(j)
ℓ

=(1− αℓ)z
(j)
ℓ − γℓ

∑
i ̸=j exp(−∥z(i)ℓ − z

(j)
ℓ ∥22/(2σ2

ℓ))z
(j)∑

k ̸=j exp(−∥z(k)ℓ − z
(j)
ℓ ∥22/(2σ2

ℓ)
,

where the last equality is because z(j) is independent of the sum over i, and can be pulled out; the
sum then evaluates to 1. Plugging both equation blocks above into (6), we get

z
(j)
ℓ+1 = (1− αℓ)z

(j) + γℓ
∑
i ̸=j

1 {i ̸= j} exp(−∥z(i)ℓ − z
(j)
ℓ ∥22/(2σ2

ℓ))(z
(i) − z(j))∑

k ̸=j exp(−∥z(k)ℓ − z
(j)
ℓ ∥22/(2σ2

ℓ)
.

We verify that the above update equation is equal to (4).

B Theory for Manifold Denoising

Proof of Lemma 3. By definition of L, we have
n∑
j=1

Lij x(j)ℓ =Lii x(i)ℓ −
∑
j ̸=i

Lij x(j)ℓ =
∑
j ̸=i

Lij
(
x
(i)
ℓ − x

(j)
ℓ

)
,

where we use the fact that Lii =
∑
j ̸=i Lij .

Plugging the above into (7) gives

x
(i)
ℓ+1 =x

(i)
ℓ − δℓ

∑
j ̸=i

Lij
(
x
(i)
ℓ − x

(j)
ℓ

)
= x

(i)
ℓ − δℓ

∑
j ̸=i exp

(
−∥x(i) − x(j)∥22/(2σ2)

)(
x
(i)
ℓ − x

(j)
ℓ

)
∑
k ̸=i exp

(
−∥x(i) − x(k)∥22/(2σ2)

) .

By definition of κℓ in (5), the above is exactly x(i) + δℓ
∑n
j=1 κℓ(i, j)

(
x
(j)
ℓ − x

(i)
ℓ

)
. Consequently,

the update for x(i)ℓ is exactly equal to(4).

C Theory for Score-Based Diffusion (Section 4)

Proof of Lemma 4. Let x(1), . . . , x(n) denote the training set of unperturbed samples. Let x(n+1)

denote the query sample. Let z(i)0 = x(i) for i = 1, . . . , n. Let z(n+1)
0 = x(n+1) + N (0, σ2

0I),
where σ2

0 := T is the initial noise level. From (10),

z
(i)
ℓ+1 = z

(i)
ℓ for i = 1, . . . , n

z
(n+1)
ℓ+1 = z

(n+1)
ℓ +

δℓ
2
∇ log pσ2

ℓ
(z

(n+1)
ℓ)

= z
(n+1)
ℓ +

δℓ
2σ2

ℓ

∑n
i=1 exp

(
− 1

2σ2
ℓ

∥∥∥z(n+1)
ℓ − x(i)

∥∥∥2
2

)(
x(i) − z

(n+1)
ℓ

)
∑n
i=1 exp

(
− 1

2σ2
ℓ

∥∥∥z(n+1)
ℓ − x(i)

∥∥∥2
2

)

=

(
1− δℓ

2σ2
ℓ

)
z
(n+1)
ℓ +

δℓ
2σ2

ℓ

∑n
i=1 exp

(
− 1

2σ2
ℓ

∥∥∥z(n+1)
ℓ − x(i)

∥∥∥2
2

)
x(i)

∑n
i=1 exp

(
− 1

2σ2
ℓ

∥∥∥z(n+1)
ℓ − x(i)

∥∥∥2
2

) (16)

16

Where the second equality is by (10), and the third equality is by the expression of the score in (11).

Comparing (16) to (4), we see that it is equivalent to letting F = {z(1), . . . , z(n)}, and σℓ = σℓ, and
γℓ =

δ
2σ2

ℓ
. Consequently, let

Z0 := [z(n+1)] ∈ Rd×1, ZF :=
[
z(1), . . . , z(n)

]
∈ Rd×n.

From (6),

Zℓ+1 =WS
ℓ Zℓ + CrAttnrbf

(
ZF , Zℓ;W

V
ℓ

′
,WQ

ℓ

′
,WK

ℓ

′)
,

where we leave out the Attnrbf term because Zℓ contains the single token query z(n+1)
ℓ , and we

assumed in Section 2 that Attn does not have tokens attending to themselves.

By the lemma statement, we choose

WV
ℓ = γℓ =

δℓ
2σ2

ℓ

Id×d, WQ
ℓ =WK

ℓ =
1

σℓ
Id×d, WS

ℓ = 1− δ

2σ2
ℓ

.

Recall from Section 2.1 that CrAttnrbf (U,Z;Wℓ) := WV
ℓ U smax(rbf(WK

ℓ U,W
Q
ℓ Z)). Here,

U = ZF =
{[
z(1), . . . , z(n)

]}
and Z = Zℓ. Thus

Zℓ+1 =

(
1− δ

2σ2
ℓ

)
Zℓ + CrAttnrbf

(
ZF , Zℓ;W

V
ℓ

′
,WQ

ℓ

′
,WK

ℓ

′)
=

(
1− δ

2σ2
ℓ

)
Zℓ +

δℓ
2σ2

ℓ

ZF smax

(
rbf

(
1

σℓ
ZF ,

1

σℓ
Zℓ

))
.

Under the definition of CrAttn, ZF , and Zℓ = [z
(n+1)
ℓ], we verify that the above is identical to (16).

Lemma 6 (Continuity Equation). Let pt = p0 ∗ N (0, tI). Its continuity equation is satisfied by
vt = − 1

2∇ log pt(x), as defined in (9).

Proof of Lemma 6. Because the forward SDE is standard Brownian motion, its density satisfies the
heat equation2 ∂tpt =

1
2∆pt. Define the velocity field vt(x) := − 1

2∇log pt(x). Then, using the
identity pt∇log pt = ∇pt,

−∇·
(
ptvt

)
= −∇·

(
− 1

2 pt∇log pt

)
= 1

2∇·
(
∇pt

)
= 1

2∆pt = ∂tpt,

which is exactly (9).

Lemma 7. Consider the setting in Section 4.3. Assume that
∥∥z(i)∥∥

2
≤ R for all i. Then for any

∥z∥ ≤ R, we have

E


∥∥∥∥∥∥
τ∑
j=1

e−∥ψ(j)−z∥2
2/(2σ

2)∑τ
k=1 e

−∥ψ(k)−z∥2
2/(2σ

2)

(
ψ(j) − z

)
−

n∑
j=1

e−∥z(j)−z∥2
2/(2σ

2)∑n
k=1 e

−∥z(k)−z∥2
2/(2σ

2)

(
z(j) − z

)∥∥∥∥∥∥
2

2

 = o(τ−1)

Proof. For convenience,

1 =

τ∑
j=1

e−∥ψ(j)−z∥2
2/(2σ

2)∑τ
k=1 e

−∥ψ(k)−z∥2
2/(2σ

2)

(
ψ(j) − z

)
2 =

n∑
j=1

e−∥z(j)−z∥2
2/(2σ

2)∑n
k=1 e

−∥z(k)−z∥2
2/(2σ

2)

(
z(j) − z

)
2For unit-variance Brownian motion the infinitesimal generator is 1

2
∆, hence ∂tpt =

1
2
∆pt.

17

Let Aτ := 1
τ

∑τ
j=1 e

−∥ψ(j)−z∥2
2/(2σ

2)
(
ψ(j) − z

)
and Bτ = 1

τ

∑τ
k=1 e

−∥ψ(j)−z∥2
2/(2σ

2). Analo-

gously let An := 1
n

∑n
j=1 e

−∥z(j)−z∥2
2/(2σ

2)
(
z(k) − z

)
and Bn := 1

n

∑n
k=1 e

−∥z(k)−z∥2
2/(2σ

2). Un-

der our assumptions, there exists constants C, a, a′ such that e−∥z
(i)−z∥2

2
/(2σ2)(z(j) − z

)
≤ C, and

a ≤ e−∥z
(i)−z∥2

2
/(2σ2) ≤ a′

We can decompose

Aτ
Bτ

− An
Bn

=
Aτ −An
Bn

+Aτ

(
1

Bτ
− 1

Bn

)
. (17)

The first term can be bound as

E
[
∥Aτ −An∥22

]
Bn

≤ 1

τBn
E
[
∥A1 −An∥22

]
≤ C2

τBn
= o(τ−1)

The second term can be bound using a Taylor expansion of f(r) = 1/r:

f(r + c) =
1

r
− c

r2
+

∫ r+c

r

∫ s

r

1

2s3
dtds

⇒
∣∣∣f(r + c)− f(r) +

c

r2

∣∣∣ ≤ c2

min {r, r + c}3

Thus we can bound the second term of (17) as

E

[∥∥∥∥Aτ(1

Bτ
− 1

Bn

)∥∥∥∥2
2

]
≤C2E

[∣∣∣∣ 1

Bτ
− 1

Bn

∣∣∣∣2
2

]

≤C
2

Bn
E
[
(Bτ −Bn)

2
]
+

C2

min {Bn, Bτ}6
E
[
(Bτ −Bn)

4
]

≤
C2E

[
(B1 −Bn)

2
]

aτ
+
C2E

[
(B1 −Bn)

4
]

τ2a6

≤C
2a′

2

aτ
+
C2a′

4

τ2a6
= o(τ−1)

C.1 Anisotropic Diffusion

Proof of Lemma 5. Let x0 ∼ p0, and dxt = AtdBt for some matrix-valued function t → At. For
simplicity, assume that At is symmetric, so that AtA⊤

t = A2
t . By the Fokker Planck equation,

∂

∂t
pt(x) =

1

2
tr
(
A2
t∇2pt

)
=

1

2
div

(
pt(x)A

2
t∇ log pt

)
From the RHS, we verify that the continuity equation is satisfied by dxt = −A2

t∇ log pt(x). The
forward ODE is thus given by

dxt = −1

2
A2
t∇ log pt(x).

Let pt denote the distribution of xt. Notice that the total Gaussian covariance under dxt = AtdBt
is Mt :=

∫ t
0
A2
sds. Thus pt = p0 ∗ N (0,Mt) The explicit form of ∇ log pt(x) is

∇ log pt(x) =M−1
t

∫
exp

(
−(x− x0)

⊤(2Mt)
−1(x− x0)

)
(x0 − x)dp0(x0)∫

exp (−(x− x0)⊤(2Mt)−1(x− x0))dp0(x0)
.

18

Therefore, the forward ODE is also more explicitly written as

dxt = −1

2
A2
tM

−1
t

∫
exp

(
−(x− x0)

⊤(2Mt)
−1

(x− x0)
)
(x0 − x)dp0(x0)∫

exp (−(x− x0)⊤(2Mt)−1(x− x0))dp0(x0)︸ ︷︷ ︸
F (Mt,x)

dMt = A2
tdt.

Let yt = xT−t denote the time-reversal of the forward ODE. Then the Euler-discretization of yt is
given by

tℓ+1 = T − δℓ

yℓ+1 = yℓ +
δℓ
2
A2
tℓ
M−1
tℓ
F (Mtℓ , x) (18)

Mtℓ+1
=Mtℓ − δℓA

2
tℓ

In the above, Atℓ is a sequence that we assume is known a priori. Mtℓ can be computed from Atℓ
via the last line. M0 denotes the initial Gaussian noise covariance, thus M0 = TI . Subsequently,
we simplify the notation Mtℓ →Mℓ and Atℓ → Aℓ.

In the score-based denoising setup, we have p0 be a discrete distribution over the training set
x(1), . . . , x(n). Thus

F (M,x) =

∑n
i=1 exp

(
−(x− x(i))⊤(2M−1)(x− x(i))

)
(x(i) − x)∑n

i=1 exp
(
−(x− x(i))⊤(2M−1)(x− x(i))

)
Let ZF :=

[
z(1), . . . , z(n+1)

]
, and Zℓ := [z

(n+1)
ℓ]. Observe that we are trying to denoise the query

z
(n+1)
ℓ , so z(n+1)

ℓ is yℓ in (18). Therefore, (18) is equivalent to

z
(n+1)
ℓ+1 =z

(n+1)
ℓ +

δℓA
2
ℓM

−1
ℓ

2
F (Mℓ, z

(n+1)
ℓ)

=z
(n+1)
ℓ +

δℓA
2
ℓM

−1
ℓ

2
ZF smax

(
rbf

(
(2Mℓ)

−1/2ZF , (2Mℓ)
−1/2Zℓ

))
−
δℓA

2
ℓM

−1
ℓ z

(n+1)
ℓ

2
,

where the last line can be verified by definition of smax and rbf. Observe that z(n+1)
ℓ above is equal

to Zℓ.

By pattern matching, we see that the above coincides with the choices of

WV
ℓ =

δℓA
2
ℓM

−1
ℓ

2
, WQ

ℓ =WK
ℓ = (2Mℓ)

−1/2, WS
ℓ =

(
I −

δℓA
2
ℓM

−1
ℓ

2

)
,

which is exactly the parameter setting in the paper.

D Miscellaneous Theory

The following standard result guarantees that Gaussian distributions, and the sum between a Gaus-
sian distribution and an arbitrary unit-length vector, lie on a sphere

Lemma 8 (Radius concentration under Gaussian perturbation.). Let v ∈ Sd−1. Let u ∼
N (0, cId×d). Then

P
(
|∥u∥22 − cd| ≥ tcd

)
≤ 2e−dt

2/(8c2)

P
(
|∥v + u∥22 − (1 + c(d− 1))| ≥ tcd

)
≤ 2e−dt

2/(16c2)

Proof of Lemma 8. The first equality is simply follows by (2
√
d, 4)-sub-exponential concentration

of d-dimensional Gaussians.

19

The second equality follows by decomposing u into u∥ =
〈
u, v

∥v∥2

〉
v

∥v∥2
and u⊥ = u− u∥ By the

same subgaussian bound applied to u⊥, we have

P
(
|∥u⊥∥22 − c(d− 1)| ≥ tcd/2

)
≤ 2e−dt

2/(16c2)

On the other hand, we have

P
(
|∥v + u∥∥22 − 1| ≥ tcd/2

)
=P

(
∥u∥∥22 ≥ tcd/2

)
≤ 2e−d

2t2/(16c2).

The second inequality then follows by union bound.

E Experiments

E.1 General Experiment Details

In our experiments, we use both the MNIST (60,000 samples, 10 classes) and CIFAR10 (50,000, 10
classes) datasets. In each case, we use a train/test split of 9:1. All experiments are run on a single
A5000 GPU.

In all our experiments, we do not use any positional encoding or tokenization of the image. Instead,
we simply represent each image as a vector of all its pixel values. For MNIST, the vector dimension
is 784 = 28 ∗ 28. For CIFAR10 and CIFAR100, the vector dimension is 3072 = 3 ∗ 32 ∗ 32.

E.2 Additional CIFAR-10/100 Metrics and FID

FID protocol (minimal). We report Fréchet Inception Distance (FID) using the Inception-V3
pool 3 features (2048-D), with feature normalization enabled. Real images are the held-out test
split; fake images are generated by the same pipeline used for the corresponding figure (e.g., per-
layer denoising outputs when the figure plots layerwise losses). We compute FID per configuration
and report the mean ± standard deviation over k independent runs (same seeds used for CIFAR-10
and CIFAR-100 for parity). Unless otherwise noted, we use batch sizes matching the main experi-
ments and evaluate on the full test split.

E.2.1 Addendum to Fig. 3: score test loss — CIFAR-100 and FID

What we add. (i) CIFAR–100 analog of the loss curves (see Fig. 8); (ii) FID for CIFAR–10 and
CIFAR–100 at each layer for the two trained variants (RBF, STD). We follow the same evaluation
protocol as in App. E.2.

Figure 8: CIFAR–100 RMSE per layer for the curves in Fig. 3.

20

Table 1: Per-layer FID and RMSE for CIFAR–10 and CIFAR–100. Mean ± std over seeds.
Dataset Metric Layer RBF trained STD trained
CIFAR10 FID 1 347.2712± 2.4329 403.9372± 0.9406

2 198.1683± 1.4204 321.1340± 1.1317
3 99.7453± 1.6279 233.5431± 1.5499
4 43.6949± 1.2320 163.7732± 0.9192
5 21.8445± 0.4051 114.8899± 0.5935
6 19.7110± 0.0940 78.7409± 0.1956

RMSE 1 20.4389± 0.3717 30.8847± 0.0038
2 11.0475± 0.0544 18.2189± 0.0016
3 9.9866± 0.0112 12.4526± 0.0037
4 10.0475± 0.0148 10.3822± 0.0064
5 10.1168± 0.0144 9.8443± 0.0080
6 10.1454± 0.0141 9.7725± 0.0087

CIFAR100 FID 1 327.7921± 5.2556 390.9332± 1.5852
2 181.1612± 3.7589 300.4900± 2.2285
3 95.6904± 2.5033 212.3552± 2.2666
4 47.0779± 1.8721 150.9074± 1.3448
5 25.1974± 1.0298 107.3123± 1.1695
6 22.5363± 0.4453 77.9261± 0.9152

RMSE 1 20.4177± 0.3744 30.8679± 0.0044
2 10.9805± 0.0717 18.1712± 0.0147
3 9.8963± 0.0532 12.3639± 0.0331
4 9.9517± 0.0570 10.2620± 0.0485
5 10.0194± 0.0577 9.7092± 0.0565
6 10.0477± 0.0578 9.6317± 0.0600

Takeaways (brief). FID decreases monotonically with layer index on both datasets, indicating
progressive denoising. Across layers, RBF trained attains consistently lower (better) FID than STD
trained. For RMSE, both datasets converge near 10 at the final layer; STD trained ends slightly
lower than RBF trained at layer 6 (CIFAR–10: 9.77 vs. 10.15; CIFAR–100: 9.63 vs. 10.05).

E.3 Addendum to Fig. 5: Context vs. Loss on CIFAR-100 and FID on CIFAR-10/100

We report test-set FID and RMSE across context lengths. Values are mean ± one standard deviation
over three seeds. Results mirror the trend in Fig. 5: modest context substantially lowers error, with
diminishing returns at larger context.

Table 2: Addendum to Fig. 5: FID and RMSE vs. context length (nctx). Mean ± 1σ over 3 seeds.
CIFAR-10

nctx FID RMSE
0 368.79± 22.66 133.9387± 6.7723
2 102.12± 130.07 10.3142± 0.7683
6 14.06± 0.71 11.1293± 0.0403

16 30.14± 14.65 10.3618± 0.4681
32 31.80± 11.76 10.2821± 0.4452
60 47.28± 0.81 9.8351± 0.0090

CIFAR-100
nctx FID RMSE

0 333.26± 77.20 150.0745± 36.1599
2 16.55± 1.23 11.0319± 0.1125
8 21.16± 4.74 10.7499± 0.2683

16 21.94± 4.06 10.6655± 0.2589
32 42.78± 1.26 9.9464± 0.0324
48 44.02± 0.40 9.9238± 0.0206

Note. FID decreases sharply with small context; RMSE shows smaller but consistent gains with
additional context. CIFAR-100 exhibits the same qualitative pattern as CIFAR-10.

21

E.3.1 Addendum to Fig. 7: witness/anisotropic — CIFAR-100 and FID

What we add. (i) CIFAR-100 loss vs. #witness tokens; (ii) FID and RMSE on CIFAR-10 and
CIFAR-100 vs. τ for the Witness+RBF and Witness+anisotropic models. Baseline exact-score
model metrics from Fig. 7 are also provided for comparison.

Table 3: Fig. 7 addendum: FID and RMSE at the final layer vs. #witness tokens (τ) for CIFAR-10.
Mean ± std over k seeds.

Witness+RBF Witness+Anisotropic
Witnesses (τ) FID RMSE FID RMSE
20 339.00 ± 0.70 7.8919 ± 0.0020 306.09 ± 0.34 7.4240 ± 0.0016
40 360.82 ± 0.13 7.5876 ± 0.0034 240.09 ± 0.60 7.2523 ± 0.0017
100 312.56 ± 0.02 7.3838 ± 0.0026 193.31 ± 0.56 7.1351 ± 0.0007
200 267.91 ± 1.01 7.2784 ± 0.0019 173.66 ± 0.24 7.0598 ± 0.0005
400 219.15 ± 0.86 7.2307 ± 0.0016 161.80 ± 0.70 7.0427 ± 0.0012
800 239.34 ± 0.18 7.2414 ± 0.0032 168.74 ± 0.64 7.0427 ± 0.0019
1000 271.73 ± 0.51 7.2924 ± 0.0014 168.89 ± 0.37 7.0462 ± 0.0003
Baseline (Exact) 21.57 10.0805 23.57 9.5456

Table 4: Fig. 7 addendum: FID and RMSE at the final layer vs. #witness tokens (τ) for CIFAR-100.
Mean ± std over k seeds.

Witness+RBF Witness+Anisotropic
Witnesses (τ) FID RMSE FID RMSE
20 313.06 ± 0.16 7.8954 ± 0.0020 284.66 ± 6.37 7.4390 ± 0.0055
40 337.84 ± 0.84 7.7204 ± 0.0027 221.24 ± 0.46 7.2714 ± 0.0035
100 306.16 ± 0.14 7.4170 ± 0.0027 181.34 ± 0.36 7.1272 ± 0.0032
200 262.20 ± 0.22 7.2780 ± 0.0022 168.53 ± 0.06 7.0650 ± 0.0019
400 222.98 ± 0.98 7.2226 ± 0.0038 164.91 ± 0.22 7.0323 ± 0.0036
800 236.45 ± 0.14 7.2424 ± 0.0038 163.78 ± 0.34 7.0244 ± 0.0048
1000 258.02 ± 0.27 7.2733 ± 0.0034 167.02 ± 0.26 7.0415 ± 0.0036
Baseline (Exact) 26.64 9.5048 26.53 9.5242

We discuss a few key observations from Tables 3 and 4:

Exact Baseline: low FID, high RMSE. RMSE measures per-image reconstruction, whereas FID
measures distribution-level realism. The Baseline (Exact) model implements the exact score-based
denoising via cross-attention to the full training set (Section 4.2); at test time, this dynamics pulls
the noisy query toward an actual training example. This behavior is visible in Figure 4, where
exact score denoising reproduces training images rather than the held-out target. Thus the model
essentially ”memorizes” the training set of real images, yielding excellent FID. However, this same
behavior results in a worse RMSE – when the noisy test image’s ground truth is not in the training
set, the model selects a different point from the data manifold (i.e., a different training image), which
is often far from the clean test image.

Witness models: high FID, low RMSE. In contrast, the Witness+RBF and Wit-
ness+Anisotropic models replace full-set cross-attention with a compact, learned witness set (Sec-
tion 4.3 - E.4.2). This induces a geometry-aware score approximation that avoids instance-level
copying, so the denoising trajectory tracks the actual test instance rather than a nearest training
neighbor, i.e. better generalization, and thus lower test RMSE. The cost is higher FID: outputs
are less tightly matched to the empirical sample distribution measured by Inception features. Wit-
ness+Anisotropic consistently outperforms Witness+RBF, reflecting the benefit of geometry-aware
updates.

These results highlight a generalization–realism trade-off: the Exact Baseline optimizes distribu-
tional realism (FID) by memorizing the training set, whereas Witness models trade some FID for
stronger generalization to unseen test inputs.

22

E.4 Implementation Details for Specific Experiments

In this section, we describe details of several experiment setups and Transformer implementations:

1. The in-context score-based denoising experiment from Section 4.2 is explained in Ap-
pendix E.4.1.

2. The experiments comparing Witness-based denoising and Anisotropic Denoising from Sec-
tion 4.5 is explained in Appendix E.4.2.

E.4.1 Implementation Details for In-Context Score-based Denoising

In this section, we provide further details on the in-context score-based denoising experiment out-
lined in Section 4.2. For ease of reference, we repeat below the setup described in the main paper:

Input consists of the noiseless training samples {x(1), . . . , x(n)}, as well as m contextual images
{x(n+1), . . . , x(n+m)}. The query image is x(n+m+1). Importantly, all m contextual images belong
to the same class as the query image x(n+m+1). The Transformer input is z(i) = x(i) for i =
1, . . . , n + m, and the query point is perturbed with Gaussian noise: z(n+m+1) = x(n+m+1) +
N (0, σ2I). We callm the “context length”. In terms of implementation, the query x(n+m+1) attends
to the training set x(1), . . . , x(n) via the CrAttn module in (6), while the context samples + query
x(n+1), . . . , x(n+m) attend to each other via the Attn module in (6) (with appropriate masking).

The Transformer architecture is as defined in (6):

Zℓ+1 =WS
ℓ Zℓ + Attnrbf

(
Zℓ;W

V
ℓ ,W

Q
ℓ ,W

K
ℓ

)
+ CrAttnrbf

(
ZF , Zℓ;W

V
ℓ

′
,WQ

ℓ

′
,WK

ℓ

′)
.

We let

Z0 =
[
x(n+1), . . . , x(n+m), x(n+m+1)

]
∈ Rd×(m+1)

denote the context plus queries, and let

ZF =
[
x(1), . . . , x(n)

]
∈ Rd×n

denote the frozen training set. Since the context tokens in the first m columns of Z0 are noiseless,
we enforce that they are not updated using an additional mask. In summary,

Z
(m+1)
ℓ+1 =

[
WS
ℓ Zℓ + Attnrbf

(
Zℓ;W

V
ℓ ,W

Q
ℓ ,W

K
ℓ

)
+ CrAttnrbf

(
ZF , Zℓ;W

V
ℓ

′
,WQ

ℓ

′
,WK

ℓ

′)](m+1)

Z
(i)
ℓ+1 = Z

(i)
ℓ for i = 1, . . . ,m.

Note that Z(i)
ℓ+1 denotes the ith column of Zℓ and corresponds to token z(n+i).

Each parameter is constrained to be a scalar multiple of identity, i.e.

WS
ℓ = wSℓ Id×d, WQ

ℓ = wQℓ Id×d, WK
ℓ = wKℓ Id×d, WV

ℓ = wVℓ Id×d

WQ
ℓ

′
= wQℓ

′
Id×d, WK

ℓ

′
= wKℓ

′
Id×d, WV

ℓ

′
= wVℓ

′
Id×d,

so the total trainable parameters are
{
wSℓ , w

Q
ℓ , w

K
ℓ , w

V
ℓ , w

Q
ℓ

′
, wKℓ

′
, wVℓ

′
}
ℓ=1,...,L

⊂ R.

E.4.2 Implementation Details for Witness and Anisotropic+Witness Experiments

In this section, we provide further details on the in-context score-based denoising experiment out-
lined in Section 4.5. For ease of reference, we repeat below the setup described in the main paper:

Input consists of the noiseless training samples {x(1), . . . , x(n)}. The query image is x(n+1). The
Transformer input is z(i) = x(i) for i = 1, . . . , n, and the query point is perturbed with Gaussian
noise: z(n+1) = x(n+1) +N (0, σ2I). In terms of implementation, the query x(n+1) attends to the
training set x(1), . . . , x(n) via the CrAttn module in (13).

23

The Transformer architecture is as defined in (13):

Zℓ+1 =WS
ℓ Zℓ + CrAttnrbf

(
Uℓ, Zℓ;W

V
ℓ

′
,WQ

ℓ

′
,WK

ℓ

′)
,

in the above, we leave out the Attn module since it is not used. For all subsequent discussion,
Uℓ ∈ Rd×S is a trainable parameter, where S is the number of witnesses in one layer. We initialize
each Uℓ by setting its ith column to be a randomly drawn training sample from x(1), . . . , x(n). Note
that each layer ℓ has a separate Uℓ.

For Witness+RBF, we have

Z0 =
[
z(n+1)

]
∈ Rd×1,

Z
(1)
ℓ+1 =

[
WS
ℓ Zℓ + CrAttnrbf

(
Uℓ, Zℓ;W

V
ℓ

′
,WQ

ℓ

′
,WK

ℓ

′)](1)
,

where Z(1)
ℓ+1 corresponds to the query token z(n+1). Each parameter is constrained to be a scalar

multiple of identity, i.e.

WS
ℓ = wSℓ Id×d,W

Q
ℓ

′
= wQℓ

′
Id×d, WK

ℓ

′
= wKℓ

′
Id×d, WV

ℓ

′
= wVℓ

′
Id×d,

so the total trainable parameters are the learned witnesses {Uℓ}ℓ=1,...,L ⊂ Rd×S , and the (scalar)

parameters
{
wSℓ , w

Q
ℓ

′
, wKℓ

′
, wVℓ

′
}
ℓ=1,...,L

⊂ R.

For Witness+Anisotropic, we have

Z0 =
[
z(n+1)

]
∈ Rd×1,

Z
(1)
ℓ+1 =

[
WS
ℓ Zℓ + CrAttnrbf

(
Uℓ, Zℓ;W

V
ℓ

′
,WQ

ℓ

′
,WK

ℓ

′)](1)
,

where Z(1)
ℓ+1 corresponds to the query token z(n+1). Each parameter is constrained to be a d× d di-

agonal matrix, so the total trainable parameters are the learned witnesses {Uℓ}ℓ=1,...,L ⊂ Rd×S and

the diagonal parameter matrices
{
WS
ℓ ,W

Q
ℓ

′
,WK

ℓ

′
,WV

ℓ

′
}
ℓ=1,...,L

⊂ Rd×d (each parameterized by

the d diagonal scalars).

24

	Introduction
	Outline and Main Contributions

	Transformer and Kernel Weighted Update
	Transformer Construction for Kernel-Weighted Update.

	Manifold Denoising via Laplacian-based ODE
	Experiments for Manifold Denoising

	Score-Based Diffusion Denoising
	Standard Score-based Diffusion Denoising
	Experiments for Score-Based Denoising
	Approximate Score-Based Denoising With Learnable Witnesses
	Anisotropic Diffusion and its Reverse ODE
	Experiments for Witness and Anisotropic Denoising

	Future Directions
	Limitations:
	Theory for Transformer Construction
	Theory for Manifold Denoising
	Theory for Score-Based Diffusion (Section 4)
	Anisotropic Diffusion

	Miscellaneous Theory
	Experiments
	General Experiment Details
	Additional CIFAR-10/100 Metrics and FID
	Addendum to Fig. 3: score test loss — CIFAR-100 and FID

	Addendum to Fig. 5: Context vs. Loss on CIFAR-100 and FID on CIFAR-10/100
	Addendum to Fig. 7: witness/anisotropic — CIFAR-100 and FID

	Implementation Details for Specific Experiments
	Implementation Details for In-Context Score-based Denoising
	Implementation Details for Witness and Anisotropic+Witness Experiments

