
Under review as a conference paper at ICLR 2023

AN ALTERNATIVE APPROACH TO TRAIN NEURAL NET-
WORKS USING MONOTONE VARIATIONAL INEQUALITY

Anonymous authors
Paper under double-blind review

ABSTRACT

The current paper investigates an alternative approach to neural network training,
which is a non-convex optimization problem, through the lens of another convex
problem — to solve a monotone variational inequality (MVI) - inspired by a
recent work of (Juditsky & Nemirovsky, 2019). MVI solutions can be found by
computationally efficient procedures, with performance guarantee of ℓ2 and ℓ∞
bounds on model recovery and prediction accuracy under the theoretical setting
of training a single-layer linear neural network. We study the use of MVI for
training multi-layer neural networks by proposing a practical and completely
general algorithm called stochastic variational inequality (SVI). We demonstrate
its applicability in training fully-connected neural networks, graph neural networks
(GNN), and convolutional networks (CNN) (SVI is completely general for training
other network architectures). We show the competitive or better performance
of SVI compared to widely-used stochastic gradient descent methods on both
synthetic and real network data prediction tasks regarding various performance
metrics, especially in the improved efficiency in the early stage of training.

1 INTRODUCTION

Neural network (NN) training (Sutskever et al., 2013; Kingma & Ba, 2015; Ioffe & Szegedy, 2015;
Yehudai & Shamir, 2019) is the essential process in the study of deep models. Optimization guarantee
for training loss as well as generalization error have been obtained with over-parametrized networks
(Neyshabur et al., 2014; Mei et al., 2018; Arora et al., 2019a;b; Allen-Zhu et al., 2019; Du et al.,
2019). However, due to the inherent non-convexity of loss objectives, theoretical developments are
still diffused and lag behind the vast empirical successes.

Recently, the seminal work (Juditsky & Nemirovsky, 2019) presented a somehow surprising result
that some non-convex issues can be circumvented in special cases by problem reformulation. In
particular, it was shown that one can formulate the parameter estimation problem of the generalized
linear models (GLM) as solving an monotone variational inequality (MVI), a general form of convex
optimization. This differs from minimizing a least-square loss function, which leads to a non-
convex optimization problem, and thus no guarantees can be obtained for global convergence nor
model recovery. Thus, the formulation through MVI leads to strong performance guarantees and
computationally efficient procedures.

In this paper, inspired by (Juditsky & Nemirovsky, 2019) and the fact that certain GLM (such as
logistic regression) can be viewed as the simplest network with only one layer, we consider a new
scheme for neural network training based on MVI. This is a drastic departure from the widely used
gradient descent algorithm for neural network training — we replace the gradient of a loss function
with operators inspired by MVI theory. The benefits include (i) in special cases, we can establish
strong training and prediction guarantees in Section 4; (ii) for general cases, through extensive
numerical studies on synthetic and real-data in Section 5, we demonstrate the faster convergence to a
local solution by our approach relative to gradient descent in a comparable setup.

To the best of our knowledge, the current paper is the first to study MVI for training neural networks.
Our SVI, as a general way of modifying the parameter update scheme in NN training, can be
readily applied to various deep architectures. Our SVI is a general way of modifying the parameter
update scheme in NN training and can be readily applied to various deep architectures. In this work,

1

Under review as a conference paper at ICLR 2023

beyond fully-connected (FC) neural networks, we especially study node classification in graph neural
networks (GNN) (Wu et al., 2019; Pilanci & Ergen, 2020) and image classification. Our technical
contributions include:

• Develop a general and practical algorithm called stochastic variational inequality (SVI). In
particular, the algorithm provides a fundamentally different but easy-to-implement alterna-
tive to using gradient of the original loss objective with respect to parameters. In addition,
SVI and gradient-based methods barely differ in computation.

• Reformulate the single-layer neural network training as solving a monotone variational
inequality, with guarantees on recovery and prediction accuracy. For multi-layer networks,
similar guarantees are obtained assuming ϵ-approximate output from all except the last layer.

• Compare SVI with widely-used stochastic gradient descent methods to demonstrate that
SVI is flexible on various tasks and competitive against SGD or Adam, especially the
improved efficiency in the early stage of training.

Literature. MVI has been studied mainly in the optimization problem context (Kinderlehrer &
Stampacchia, 1980; Facchinei & Pang, 2003). More recently, VI has been used to solve min-max
problems in Generative Adversarial Networks (Lin et al., 2018) and reinforcement learning (Kotsalis
et al., 2020). Our theory and techniques are inspired by (Juditsky & Nemirovsky, 2019), but we
offer a thorough investigation of using MVI to train multi-layer NN. In retrospect, our techniques
bear similarity to works on “matching loss“ (Amid et al., 2022) but are fundamentally different as
we leverage MVI theory and lead to performance guarantees. In addition, we differ from (Pilanci
& Ergen, 2020), which views two-layer NNs as convex regularizers: we do not convexify the loss
minimization, and our SVI extends beyond two-layer networks.

2 PROBLEM SETUP

We briefly describe notation of general NN and GNN of interest and provide preliminaries of MVI.

2.1 NN Notations. Assume a generic feature X ∈ RC , where C denotes the feature dimension.
Suppose the conditional expectation E[Y |X] of the categorical response vector1 Y ∈ {1, . . . ,K} is
modeled by an L-layer neural network G(X,Θ) :

E[Y |X,Θ] := G(X,Θ) = ϕL(gL(XL,ΘL)), (1)

where XL = ϕL−1(gL−1(XL−1,ΘL−1)), X1 = X denote the nonlinear feature transformation from
the previous layer, Θ = {Θ1, . . . ,ΘL} denotes model parameters, and each ϕl denotes the activation
function at layer l. In particular, assume there exists Θ∗ so that E[Y |X] = f(X,Θ∗). Our GNN
notations are standard and are described in Appendix B.1.

In practice, our MVI framework to be introduced next applies to any form of gl(Xl,Θl) in (1) for
l = 1, . . . , L. If gL(XL,ΘL) at the last output layer has a particular linear form, we can also obtained
theoretical guarantees under idealized assumptions.

2.2 MVI Preliminaries. Given a parameter set Θ ⊂ Rp, we call a continuous mapping (operator)
F : Θ → Rp monotone if for all Θ1,Θ2 ∈ Θ, ⟨F (Θ1) − F (Θ2),Θ1 − Θ2⟩ ≥ 0 (Juditsky &
Nemirovsky, 2019). The operator is called strongly monotone with modulus κ if for all Θ1,Θ2 ∈ Θ,

⟨F (Θ1)− F (Θ2),Θ1 −Θ2⟩ ≥ κ∥Θ1 −Θ2∥22. (2)

For a monotone operator F on Θ, the problem VI[F,Θ] is to find an Θ̄ ∈ Θ such that for all Θ ∈ Θ,

⟨F (Θ̄),Θ− Θ̄⟩ ≥ 0. VI[F,Θ] (3)

It is known that if Θ is compact, then (3) has at least one solution (Outrata et al., 2013, Theorem
4.1). In addition, if κ > 0 in (2), then (3) has exactly one solution (Outrata et al., 2013, Theorem 4.4).
Under mild computability assumptions, the solution can be efficiently solved to high accuracy, using
various iterative schemes (Juditsky & Nemirovsky, 2019).

1 The techniques and theory in this work can be used to model the conditional expectation of continuous random
variables.

2

Under review as a conference paper at ICLR 2023

3 MVI FOR NEURAL NETWORK TRAINING

3.1 Single-layer training. Let us first consider a single-layer neural network (i.e., L = 1 in (1)) with
a particular form of pre-activation: g(X,Θ) = η(X)Θ for an arbitrary feature transformation η.
Although this form can be overly simplistic, it is typically the last layer of a deep neural network.
For FC networks, η(X) = X , i.e., the identity map. For GNN models, η(X) =

∑R
r=1 hr(Lg)X

as the sum of R fixed graph filters determined by graph Laplacian Lg (Kipf & Welling, 2017;
Defferrard et al., 2016; Hamilton et al., 2017). One can also write down the corresponding formulation
for convolutional layers in image classification under more complex notation. Note that this is
mathematically equivalent to a GLM (Juditsky & Nemirovsky, 2019).

We construct the monotone operator F as

F (Θ) := EX,Y {η⊺(X)[ϕ(η(X)Θ)− Y]}, (4)

where η⊺(X) denotes the transpose of η(X). We will explain a few properties of F in Sec. 4, Lemma
4.1. Denote “F as the empirical sample version of F . Then the typical training based on MVI is the
projected gradient descent

Θ← ProjΘ(Θ− γ“F (Θ)). (5)
where γ > 0 is the step-size and ProjΘ projects back estimates to the feasible parameter domain Θ.

Note that (5) differs from the vanilla stochastic gradient descent (SGD) where the gradient of a certain
loss objective takes the role of the monotone operator “F . In particular, “F needs not correspond to the
gradient of any loss function. Nevertheless, we will show in Section 4.3, Proposition 4.8 that “F is
exactly the gradient of the cross-entropy loss, whereby (5) coincides with SGD.

3.2 Multi-layer training. Our goal is to train multi-layer networks based on (4). Specifically, we
want to obtain Fl(Θl) for parameters Θl in layer l of the neural network in (1). These {Fl(Θl)}Ll=1
are then used during optimization (e.g., via projected gradient descent (5) or Adam (Kingma & Ba,
2015)).

However, there are several fundamental difficulties of extending F (Θ) in (4) to training generic multi-
layer neural networks. First, (4) requires that the pre-activation mapping η(X)Θ is linear in Θ. This
linearity assumption does not hold for many network layer types. Second, more importantly, (4) is
defined using Y , the observation of response variable. However, such observation is unavailable when
we define Fl(Θl) for intermediate layers, where Yl denotes the response after the l-th hidden layer.
Third, note that (4) does not depend on any loss objective (e.g., mean-squared error, cross-entropy
loss, etc.), so that the extension under a specific loss objective when training the network is unclear.

Despite the difficulties, we propose an MVI-based scheme to train generic neural networks under any
loss objective. To motivate the scheme, we first present a mathematically equivalent view of F (Θ) in
(4). Assume we have the mean-squared-error (MSE) loss L(Ŷ , Y) := 1/2∥Ŷ − Y ∥22 and the linear
pre-activation mapping ‹X := η(X)Θ. Denote Ŷ := ϕ(‹X) as the prediction. By chain rule

F (Θ) : = EX,Y {η⊺(X)[ϕ(η(X)Θ)− Y]}
= EX,Y {∇Ŷ L ◦ ∇Θ

‹X}. (6)

Note that (6) comprises of two terms. The first term ∇Ŷ L is the gradient of the loss objective with
respect to the network output. The second term ∇Θ

‹X is the gradient of the pre-activation with
respect to the parameter. In particular, (6) is well-defined for any loss objective L and at any hidden
layer l—we would simply replace ‹X with ‹Xl, the pre-activation mapping at the l-th layer.

Therefore, based on the observation (6), SVI in Algorithm 1 heuristically extends MVI to training
any neural network described by (1); Figure 1 illustrates the idea. Notation-wise, the subscript i

denotes sample index and the subscript l denotes the output of first l network layers. In retrospect,
comparing with the commonly used gradient∇ΘL, Algorithm 1 only differs by skipping the additional
computation ∇η(X)ΘŶ = ∇η(X)Θϕ(η(X)Θ). This operation is precisely the derivative of the
point-wise non-linearity ϕ. Therefore, SVI barely differs in terms of computational cost against
gradient-based methods. In practice, this skipping leads to a different neuron update dynamics—see
Remark 3.1 for details.

3

Under review as a conference paper at ICLR 2023

∇SVIΘ ℒ = ∇X1ℒ ∘ ∇Θ X̃ (Backprop. with skipping)

∇GDΘ ℒ = ∇X1ℒ ∘ ∇ X̃ X1 ∘ ∇Θ X̃ (Backprop.)

(X, Θ) X̃ := f(X, Θ) X1 := ϕ(X̃) ℒ
f ϕ

…
∇X1ℒ∇ X̃ X1∇Θ X̃

Forward
Backprop.

Figure 1: Gradient descent (GD) vs. SVI: the difference appears
in the skipping of differentiation with respect to the point-wise
non-linearity ϕ. Details are in Algorithm 1.

There are several important ben-
efits of Algorithm 1. First,
it addresses the aforementioned
challenges of extending MVI to
multi-layer training—the Algo-
rithm is applicable to arbitrary
form of gl(Xl,Θl) and loss func-
tion L. It requires no observation
of responses from hidden layers.
Second, it is easy to implement
upon leveraging the benefit of
automatic differentiation (Paszke
et al., 2017). We implement the skipping idea via backpropagating another loss L̃(Θl) as in line 4 on
the parameters. This loss L̃(Θl) is simple to compute, as the quantity ‹Xl+1 is available during the
forward pass on data and the gradient∇Xl+1

L is available upon backpropagating the original loss
with respect to output of the current layer l. Third, SVI is very flexible as one can apply SVI to all
or a subset of layers in the network.
Remark 3.1 (Effect on training dynamics). We remark a key difference between parameter update
in SGD and in SVI, which ultimately affects training dynamics. Suppose the activation function is
ReLU. It is well-known that SGD does not update weights of inactive neurons because the gradient
of ReLU with respect to them is zero. However, SVI does not discriminate as it skips this derivative
computation. Thus, one can expect that SVI results in further weight updates than SGD, which
experimentally seems to speed up the initial model convergence. We illustrate this phenomenon in
Figure 4 and will provide explanations in future works.

Algorithm 1 Stochastic variational inequality (SVI).

Require: Inputs are (a) Training data {(Xi, Yi)}Ni=1 (b) An L-layer network G(X,Θ) :=
{ϕl(gl(Xl,Θl))}Ll=1 (c) Boolean mask BM of length L (d) Loss function L := L(G(X,Θ), Y)

Ensure: Estimated parameters Θ̂ := {Θ̂l}Ll=1
1: while Training not stopped do
2: for Layer l = L, . . . , 1 do
3: if BM [l] is True then {▷ Use SVI}
4: Compute Fl(Θl) :=∇Θl

L̃(Θl) over mini-batches, where
(a). L̃(Θl) :=

∑
x∈Xl

Xl {▷ Sum over all elements of the tensor Xl}
(b). Xl := ‹Xl+1 ⊙∇Xl+1

L {▷ Use element-wise product ⊙}
(c). ‹Xl+1 := gl(Xl,Θl) and Xl+1 := ϕl(‹Xl+1) as in (1)

5: “Θl = “Θl − η∇Θl
Fl(Θl).2

6: else {▷ Use gradient descent}
7: “Θl = “Θl − η∇Θl

L.
8: end if
9: end for

10: end while

4 GUARANTEE OF MODEL RECOVERY BY MVI
We now present training and estimation guarantees on model recovery for the last-layer training
when gL(XL,ΘL) = ηL(XL)ΘL in (1) and previous layers are estimated with ϵ accuracy.

Let {(Xi, Yi)}Ni=1 be N training data from model (1) with Θ = Θ∗. Let f∗
1:L−1(·) and f̂1:L−1(·)

be the oracle and estimated mapping from the previous L− 1 layers, and let X∗
i,L and X̂i,L be the

corresponding outputs from the mappings. For the subsequent theoretical analyses, we will assume
that the expected ℓp difference of these two mappings are close enough (see Assumption 4.2). In this
setting, η(X) thus becomes η(X̂L) for a generic feature X . For the operator F (ΘL) in (4), where
Θ is the parameter space of ΘL, consider its empirical average F1:N (ΘL) := (1/N)

∑N
i=1 Fi(ΘL),

where Fi(ΘL) := η⊺(X̂i,L)[ϕ(η(X̂i,L)ΘL) − Y] . Let “Θ(T)
L be the estimated parameter after T

2 One can use any alternative optimizer, such as Adam (Kingma & Ba, 2015).

4

Under review as a conference paper at ICLR 2023

training iterations, using F1:N and (5). For a test feature Yt and the transformation X̂t,L, consider

Ê[Yt|Yt] := ϕL(η(X̂t,L)“Θ(T)
L), (7)

which is the estimated prediction using “Θ(T)
L and will be measured against the true model E[Yt|Yt]

under Θ∗
L and X∗

t,L. In particular, we will provide error bound on ∥Ê[Yt|Yt] − E[Yt|Yt]∥p, p ≥ 2

which crucially depends on the strong monotonicity modulus κ in (2) for F (ΘL).

We state a few properties of F (ΘL) defined in (4), which explicitly identify the form of κ. All proofs
of Lemmas and Theorems, as well as certain remarks, are contained in Appendix A.
Lemma 4.1. Assume ϕL is K-Lipschitz continuous and monotone on its domain. For an input X ,

1. F (ΘL) is both monotone and K2-Lipschitz, where K2 := KEX{∥η(X̂L)∥22.
2. κ = λmin(∇ϕL)EX [λmin(η

⊺(X̂L)η(X̂L))] if ∇ϕL exists; it is 0 otherwise.

For simplicity, we assume from now on the stronger condition that λmin(η
⊺(X̂L)η(X̂L)) > 0 for any

generic nonlinear feature X̂L. In addition, because we are considering the last layer in classification,
ϕL is typically chosen as sigmoid or softmax, both of which are differentiable so λmin(∇ϕL) exits.

4.1 CASE 1: MODULUS κ > 0

We first state several assumptions used in convergence analyses.

Assumption 4.2 (ϵ-approximate estimate from previous layers). Let X̂L := f∗
1:L−1(X) and X̂L :=

f̂1:L−1(X) be the oracle and estimated output from the previous L − 1 layers. There exists ϵ > 0

such that EX∥X̂L − X̂L∥2 ≤ ϵ.

Assumption 4.3. (1) The oracle parameter Θ∗
L of the last layer satisfies the MVI inequality (3) for F .

(2) The mapping η(·) is D-Lipschitz continuous. (3) For any ΘL ∈ Θ, ∥ΘL∥2 ≤ B.

We bound the recovered parameters following techniques in (Juditsky & Nemirovsky, 2019).
Lemma 4.4 (Parameter recovery guarantee). Suppose that there exists M <∞ such that ∀ΘL ∈ Θ,

EX,Y ΘL∥η(X̂L)Y
ΘL∥2 ≤M,

where E[Y ΘL |X] = ϕ(η(X̂L)ΘL). Choose adaptive step sizes γ = γt := [κ(t+ 1)]−1 in (5). The
sequence of estimates “Θ(T)

L obeys the error bound

E“Θ(T)
L ,X

{∥“Θ(T)
L −Θ∗

L∥22} ≤
4M2

κ2(T + 1)
. (8)

We can use the above result to bound the error in posterior prediction.
Theorem 4.5 (Prediction error bound for model recovery, strongly monotone F). Under Assumptions
4.2 and 4.3, we have for a given test signal Xt, t > N that for p ∈ [2,∞],

E“Θ(T)
L ,X

{∥Ê[Yt|Xt]− E[Yt|Xt]∥p} ≤ (T + 1)−1Ct+Cϵ,

where Ê[Yt|Xt] is defined in (7) under constants Ct := [4M2Kλmax(η
⊺(X̂t,L)η(X̂t,L))]/κ

2 and
C:=KDB. In particular, p = 2 yields the sum of squared error bound on prediction and p =∞ yields
entry-wise bound.

The same order of convergence holds when F in (4) is estimated by the empirical average of mini-
batches of training data. In particular, the proof of Theorem 4.5 only requires access to an unbiased
estimator of F so that the batch size can range from one to N , where N is the size of training data.
Remark 4.6 (When κ > 0). Recall that κ = λmin(∇ϕL)EX [λmin(η

⊺(X̂L)η(X̂L))]. We may assume
that the quantity EX [λmin(η

⊺(X̂L)η(X̂L))] is always lower bounded away from zero, so as to only
concern with λmin(∇ϕL). When ϕL is a point-wise function on its vector inputs, this gradient matrix
is diagonal. In the case of the sigmoid function, we know that for any y ∈ Rn

λmin[∇ϕL]|y = min
i=1,...,n

ϕL(yi)(1− ϕL(yi)),

which is bounded away from zero. In general, we only need that the point-wise activation is
continuously differentiable with positive derivatives.

5

Under review as a conference paper at ICLR 2023

4.2 CASE 2: MODULUS κ = 0

We may also encounter cases where the operator F is only monotone but not strongly monotone. For
instance, let ϕ be the softmax function, which satisfies∇ϕ(z)1 = 0 for any z ∈ Rn (Gao & Pavel,
2018, Proposition 2). Then, the minimum eigenvalue of ∇ϕ(z) is always zero, leading to κ = 0. In
this case, we use the extrapolation methoed (OE) (Kotsalis et al., 2020) to obtain a similar but weaker
ℓp prediction guarantee.
Theorem 4.7 (Prediction error bound for model recovery, monotone F). Suppose we run the OE
algorithm (Kotsalis et al., 2020) for T iterations with λt = 1, γt = [4K2]

−1, where K2 is the
Lipschitz constant of F . Let R be uniformly chosen from {2, 3, . . . , T}. Then for p ∈ [2,∞],

E“Θ(R)
L

{∥EX{σmin(η
⊺(X̂L))[Ê[Yt|Xt]− E[Yt|Xt]]}∥p} ≤ T−1/2C

′′

t ,

where σmin(·) denotes the minimum singular value of its input matrix and the constant C
′′

t :=

3σ + 12K2

»
2∥Θ∗

L∥22 + 2σ2/L2, in which σ2 := E[(Fi(ΘL) − F (ΘL))
2] is the variance of the

unbiased estimator.

The convergence rate in Theorem 4.7 is also unaffected by the batch size, which only serves to reduce
the variance. In addition, Theorem 4.7 requires R be uniformly chosen from {2, 3, . . . , T}, so that
the theoretical guarantee holds at a random training epoch. In theory, this assumption is necessary
to ensure a decrease of the norm of the monotone operator ((Kotsalis et al., 2020), Eq. (3.20)). In
practice, we observed that the epoch that leads to the highest validation accuracy might not occur at
the end of T training epochs, so this assumption is reasonable based on empirical evidence.

4.3 EQUIVALENCE BETWEEN MONOTONE OPERATOR AND GRADIENT OF PARAMETERS

In practice, neural networks, including single-layer ones, are commonly trained via empirical loss
minimization, in contrast to solving MVI. We now show that under the cross-entropy loss, when ϕ is
either the sigmoid function or the softmax function, the monotone operator F defined in (4) coincides
with the gradient of the loss with respect to parameters.
Proposition 4.8 (The equivalence between MVI and parameter gradient). Consider a generic pair of
input signal X and random realization Y in binary or multi-class classification with the sigmoid or
softmax function under cross-entropy loss. For any parameter Θ

EX,Y [∇ΘL
L(Y, ϕL(η(XL)ΘL))] = F (ΘL),

where the monotone operator F (ΘL) substitutes ηL(XL) and ΘL in (4).

4.4 IMPRECISE GRAPH KNOWLEDGE

Because graph knowledge is rarely perfectly known, the robustness of the algorithm under estimated
graph topology knowledge is important in practice. Thus, we want to analyze the difference in
prediction quality when the true graph adajacency matrix W is estimated by another W ′. For
simplicity, we focus on the GCN case and denote η(X̂L) under true or estimated graph Laplacian
as LgX or L′

gX . We show that when Lg and L′
g are close in spectral norm, there exists a solution

Θ∗
L′ bounding the prediction error between E[Y |X] under Θ∗

L and Θ∗
L′ . In particular, Θ∗

L′ is the
solution of VI[F,Θ] if ϕL is the sigmoid function so that we can guarantee a small prediction error
in expectation based on earlier results in such cases. We also experimentally verify the performance
of SVI under model mismatch in Section 5.1.
Proposition 4.9 (Quality of minimizer under model mismatch). Fix a δ > 0. Assume that ∥L′

g −
Lg∥2 ≤ δ/[KEX∥X∥2], where K is the Lipschitz continuous constant for ϕL. Then, there exists
Θ∗

L′ such that
∥E[Y |X]′ − E[Y |X]∥2 ≤ δ∥Θ∗

L∥2,
where E[Y |X]′ denotes the conditional expectation under L′

g and Θ∗
L′ .

5 EXPERIMENTS

We test and compare SVI in Algorithm 1 with widely-used stochastic gradient descent methods on
various synthetic and real-data examples. In particular, we compare SVI or SVI-Adam with SGD

6

Under review as a conference paper at ICLR 2023

or Adam, where SVI (resp. SVI-Adam) uses SVI in Algorithm 1 to provide update direction and
optimized with SGD (resp. Adam). We demonstrate the competitive or better performance by SVI,
especially in the improved efficiency in the early stage of training against the SGD baseline.

For fair experimental comparisons, all hyperparameters for SVI/SVI-Adam and SGD/Adam are
tuned to be the same. Doing so is possible as SVI only provides alternative update directions
during the network training, whereby the same optimization algorithm (e.g., SGD or Adam) can
be subsequently used. Partial results are shown due to space limitation. Appendix B.2 describes
details regarding experiment setup and comparison metrics and B.3 onward contains full results.
Notation-wise, N (resp. N1) denotes the size of training (resp. test) sample, lr denotes the learning
rate, B denotes the batch size, and E denotes training epochs.

5.1 SYNTHETIC DATA EXPERIMENTS

5.1.1 Two-layer FC network classification. We first classify the cluster label of the simulated two-
moon dataset. Figure 8a visualizes the dataset. We use a two-layer fully-connected network with
ReLU (layer 1) and softmax (layer 2) activation. We let N = N1 = 500, B = 100, E = 100,
lr=0.15, and momentum = 0.99. Table 1 shows that SVI consistently reaches smaller MSE losses and
classification errors on training and test data across different number of hidden neurons. Figure 2
shows that SVI also converges faster than SGD throughout epochs. See Appendix B.3, Figure 8 for
additional results that illustrates model intermediate convergence results.

Table 1: Two-moon data. We show average results at end of epochs,
with standard errors in brackets. SVI consistently reaches smaller
training and/or test MSE loss and/or classification errors than SGD
across different number of hidden neurons.

Two moons MSE loss Classification error

Hidden
neurons

SGD
train

SVI train SGD test SVI test SGD
train

SVI train SGD test SVI test

8 0.00062
(4.0e-05)

0.00054
(2.1e-05)

0.06709
(4.8e-03)

0.05993
(4.5e-03)

0.08333
(7.2e-03)

0.076
(3.8e-03)

0.098
(6.6e-03)

0.08933
(1.1e-02)

16 0.00053
(7.7e-05)

0.00042
(8.5e-05)

0.05852
(7.1e-03)

0.04702
(7.7e-03)

0.06533
(1.5e-02)

0.052
(1.3e-02)

0.078
(9.6e-03)

0.06333
(1.3e-02)

32 0.00022
(2.9e-05)

0.00014
(1.8e-05)

0.02375
(2.2e-03)

0.01517
(6.9e-04)

0.01867
(3.8e-03)

0.01533
(2.4e-03)

0.01733
(2.2e-03)

0.016
(9.4e-04)

64 0.00016
(1.7e-05)

8e-05
(1.4e-05)

0.01774
(1.2e-03)

0.00872
(1.0e-03)

0.01
(2.5e-03)

0.006
(1.6e-03)

0.01067
(3.0e-03)

0.00933
(2.0e-03)

0 20 40 60 80 100
Epoch

0.000

0.018

0.036

0.054

0.072

0.090

0.108

0.126

0.144

0.162

Lo
ss

0 20 40 60 80 100
Epoch

0.000

0.045

0.090

0.135

0.180

0.225

0.270

0.315

0.360

0.405

Er
ro
r

SGD Training SGD Test SVI Training SVI Test

Figure 2: Two-moon data, 64
hidden neurons, with MSE
loss (left) and classification er-
ror (right). SVI shows faster
convergence.

5.1.2 Two-layer GCN model recovery. The underlying graphs and data-generating process are
described in Appendix B.3. We aim to compare the model recovery performances measured by
Eq. (16) for p = 2,∞, when the true graph is known (i.e., edge sets fully known) or perturbed.
We generate large random graphs and let N = N1 = 2000, B = 100, E = 200, lr=0.001, and
momemtum = 0.99. We also use the Nesterov momentum (Sutskever et al., 2013) when training the
two-layer GCN model with ReLU activation. Table 2 shows that SVI consistently reaches smaller ℓ2
or ℓ∞ model recovery error and MSE error. The pattern is consistent even if the graph information is
perturbed. Figure 3 shows that SVI consistently converges faster than SGD.

Table 2: Two-layer GCN model recovery on the large random graph. We
observe consistently better model recovery performance by SVI, regardless
of the number of hidden neurons for estimation, comparison metrics, and
whether graph is perturbed. Metrics are defined in (16) and (12) respectively.

Large
Graph

ℓ2 model recovery test error MSE test loss ℓ∞ model recovery test error

Hidden
neurons

SGD
(Known)

SGD (Per-
turbed)

SVI
(Known)

SVI (Per-
turbed)

SGD
(Known)

SGD (Per-
turbed)

SVI
(Known)

SVI (Per-
turbed)

SGD
(Known)

SGD (Per-
turbed)

SVI
(Known)

SVI (Per-
turbed)

2 0.116
(3.4e-03)

0.117
(3.6e-03)

0.091
(8.4e-03)

0.092
(7.5e-03)

0.25
(1.9e-04)

0.25
(2.0e-04)

0.249
(4.2e-04)

0.249
(3.6e-04)

0.129
(4.3e-03)

0.13
(4.5e-03)

0.1
(8.6e-03)

0.102
(7.3e-03)

4 0.1
(8.1e-03)

0.101
(7.6e-03)

0.078
(6.2e-03)

0.081
(5.6e-03)

0.25
(4.0e-04)

0.25
(3.7e-04)

0.248
(3.0e-04)

0.249
(2.8e-04)

0.109
(8.4e-03)

0.11
(7.8e-03)

0.087
(4.8e-03)

0.091
(3.8e-03)

8 0.084
(7.7e-03)

0.086
(7.0e-03)

0.067
(5.5e-04)

0.07
(4.4e-04)

0.249
(3.4e-04)

0.249
(3.2e-04)

0.248
(4.0e-06)

0.248
(1.0e-06)

0.088
(7.2e-03)

0.091
(6.5e-03)

0.076
(8.2e-04)

0.083
(5.2e-04)

16 0.08
(7.3e-03)

0.081
(6.5e-03)

0.066
(3.3e-04)

0.07
(2.1e-04)

0.249
(2.8e-04)

0.249
(2.5e-04)

0.248
(6.0e-06)

0.248
(1.0e-05)

0.087
(7.8e-03)

0.089
(6.6e-03)

0.075
(4.6e-04)

0.082
(1.4e-04)

32 0.082
(8.1e-03)

0.084
(7.5e-03)

0.066
(5.6e-05)

0.07
(6.2e-05)

0.249
(3.6e-04)

0.249
(3.4e-04)

0.248
(1.1e-05)

0.248
(1.2e-05)

0.089
(8.8e-03)

0.091
(7.9e-03)

0.075
(1.7e-04)

0.082
(1.0e-04)

0 25 50 75 100 125 150 175 200

Epoch
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

l ∞
er
ro
r

SGD (Graph Known)
SGD (Graph Est)

SVI (Graph Known)
SVI (Graph Est)

Figure 3: ℓ∞ model
recovery error on the
large random graph.
SVI reaches smaller er-
ror under faster initial
convergence.

7

Under review as a conference paper at ICLR 2023

0 50 100 150 200
Epoch

0.06

0.08

0.10

0.12

0.14

l ∞
Er
ro
r

SGD training
SGD test

SVI training
SVI test

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
ai

0.25

0.50

w
∥ i

Epoch = 0 Epoch = 200

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
ai

0.25

0.50

w
∥ i

(a) Two-layer GCN

0 50 100 150 200
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

l ∞
Er
ro
r

SGD training
SGD test

SVI training
SVI test

−2 −1 0 1 2 3 4
ai

0.75

1.00

1.25

w
∥ i

Epoch = 0 Epoch = 200

−2 −1 0 1 2 3 4
ai

0.75

1.00

1.25

w
∥ i

(b) Three-layer GCN

Figure 4: ℓ∞ model recovery error with 16 neurons. Left: relative l∞ error assuming the true graph
is known. Right: visualization of the training dynamics by SGD (top) and SVI (bottom). After 200
epochs, SVI displaces the neurons from their initial position further and leads to faster convergence.

5.2 REAL-DATA EXPERIMENTS

5.2.1 Multi-class traffic flow anomaly detection. The data collection and description are described in
Appendix B.4. The goal is identify anomalous bi-hourly traffic flow observations. We train three-layer
GCN models with lr = 0.001, momemtum = 0.99, and the Nesterov momentum. Table 3 shows
that SVI reaches smaller training and test classification error for large hidden neurons and remains
competitive when fewer neurons are used. In terms of weighted F1 scores, SVI also reaches higher
training and test scores in nearly all cases. Figure 5 shows that SVI converges faster than SGD, which
aligns with simulation results. See Appendix B.4, Figure 12 for intermediate convergence results.

Table 3: Traffic data multi-class anomaly detection. We note that SVI
remains competitive or outperforms SGD in terms of classification error and
weighted F1 scores, with clear improvement when hidden neurons increase.

Traffic
data

Cross-Entropy loss Classification error Weighted F1 score

Hidden
neurons

SGD
Training

SGD Test SVI
Training

SVI Test SGD
Training

SGD Test SVI
Training

SVI Test SGD
Training

SGD Test SVI
Training

SVI Test

8 0.837
(7.0e-03)

0.834
(1.1e-02)

0.967
(6.2e-03)

0.969
(5.5e-03)

0.397
(1.3e-02)

0.414
(1.5e-02)

0.412
(1.6e-02)

0.427
(1.6e-02)

0.572
(2.9e-02)

0.554
(2.9e-02)

0.572
(2.4e-02)

0.558
(2.3e-02)

16 0.808
(5.6e-03)

0.804
(4.1e-03)

0.955
(3.3e-03)

0.956
(4.0e-03)

0.391
(1.3e-02)

0.411
(1.2e-02)

0.37
(3.8e-03)

0.384
(7.0e-03)

0.576
(3.1e-02)

0.556
(3.0e-02)

0.624
(7.3e-03)

0.61
(1.0e-02)

32 0.791
(5.7e-03)

0.787
(6.5e-03)

0.939
(3.4e-03)

0.941
(3.6e-03)

0.366
(5.9e-03)

0.383
(7.9e-03)

0.358
(4.5e-03)

0.37
(4.9e-03)

0.628
(6.7e-03)

0.611
(9.0e-03)

0.641
(4.6e-03)

0.629
(5.0e-03)

64 0.791
(2.0e-03)

0.787
(2.2e-03)

0.933
(2.1e-03)

0.935
(2.1e-03)

0.36
(2.7e-03)

0.375
(4.4e-03)

0.346
(1.7e-03)

0.358
(1.6e-03)

0.637
(2.8e-03)

0.622
(4.7e-03)

0.652
(2.0e-03)

0.641
(1.8e-03)

0 20 40 60 80 100
Epoch

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

Er
ro
r

SGD Training
SGD Test

SVI Training
SVI Test

Figure 5: Classification
error under 64 neurons.
SVI converges faster
than SGD.

5.2.2 Vision datasets. We compare SVI with gradient-based method on training FC networks (FCNet)
and LeNet (LeCun et al., 1998). The FCNet has four layers with 512 hidden nodes in each hidden
layer. We examine performance on the MNIST dataset (LeCun, 1998) and the CIFAR-10 dataset
(Krizhevsky et al., 2009), where the lr is fixed as 0.001 throughout training. We train the network
for 10 epochs and fix batch size as 64, so each epoch contains 938 (resp. 782) effective iterations
(i.e., mini-batches) on MNIST (resp. CIFAR-10). To stabilize the performance of SVI in later
iterations, we sometimes use a warm-start technique—the estimates by SVI after the initial 20%
iterations initialize parameters for gradient-based methods in the rest 80% iterations. We do so
because SVI shows faster initial convergence but due to the skipping step, may lowers final accuracy.
Table 4 shows results under both networks, where SVI-SGD outperforms SGD on both data and
networks. SVI-Adam is competitive against Adam but the benefits are unclear; we expect this
situation due to a lack of theoretical analyses (even for the last layer) under Adam, which belong to
future work. Nevertheless, the highest test accuracy by SVI upon fixing the dataset and network is
competitive/higher than that by gradient-based methods. Figure 6 further visualizes training and test
accuracies along the entire training iterations and shows faster initial convergence by SVI.

102 103 104

50

100

MNIST FCNet
SVI-SGD:98.13±0.07, SGD:98.2±0.04

SVI-SGD SGD
102 103 104

50

100

MNIST LeNet
SVI-SGD:98.99±0.08, SGD:99.11±0.04

SVI-SGD SGD
102 103 104

20

40

CIFAR10 FCNet
SVI-SGD:50.01±0.04, SGD:49.79±0.17

SVI-SGD SGD
102 103 104

25

50

CIFAR10 LeNet
SVI-SGD:64.84±0.82, SGD:62.23±0.5

SVI-SGD SGD

Figure 6: Classification test accuracies on both datasets under two network architecture. SVI-SGD
improves initial convergence over SGD and yields competitive/better final performance.

8

Under review as a conference paper at ICLR 2023

Table 4: Classification accuracy of SVI against gradient-based method on two vision datasets under
two separate networks. full indicates results after all training iterations, and initial indicates results
after 5% of the total iterations. Entries in brackets indicates standard deviation over 3 independent
initialization of model parameters.

SVI-SGD SGD SVI-Adam Adam
FCNet Train Test Train Test Train Test Train Test

MNIST full 99.1 (0.1) 98.1 (0.1) 99.1 (0.1) 98.2 (0.0) 97.7 (0.1) 97.5 (0.1) 97.9 (0.1) 97.5 (0.0)
MNIST initial 93.5 (0.1) 93.7 (0.1) 92.3 (0.2) 92.6 (0.2) 92.6 (0.3) 93.0 (0.2) 92.6 (0.3) 92.9 (0.2)
CIFAR-10 full 55.8 (0.8) 50.0 (0.0) 55.5 (0.7) 49.8 (0.2) 48.8 (1.2) 46.5 (0.6) 48.4 (0.6) 45.8 (0.2)

CIFAR-10 initial 36.9 (0.6) 37.7 (0.1) 34.6 (0.4) 35.5 (0.6) 34.5 (0.9) 34.6 (0.7) 33.2 (1.2) 33.5 (1.8)

SVI-SGD SGD SVI-Adam Adam
LeNet Train Test Train Test Train Test Train Test

MNIST full 99.0 (0.1) 99.0 (0.1) 99.0 (0.1) 99.1 (0.0) 99.6 (0.1) 99.2 (0.0) 99.7 (0.0) 99.3 (0.0)
MNIST initial 90.2 (1.1) 90.4 (1.1) 86.0 (2.0) 86.6 (1.8) 96.3 (0.5) 96.7 (0.4) 96.8 (0.6) 97.3 (0.4)
CIFAR-10 full 71.7 (0.8) 64.8 (0.8) 63.9 (0.4) 62.2 (0.5) 70.3 (0.8) 63.7 (0.8) 71.8 (0.5) 64.8 (0.6)

CIFAR-10 initial 23.7 (1.1) 24.6 (1.1) 22.8 (0.7) 23.4 (0.5) 41.3 (0.6) 41.7 (0.7) 43.1 (0.5) 43.5 (0.2)

5.2.3 Multi-class large-scale OGB node classification. We lastly demonstrate the applicability of
SVI on the large ogbn-arxiv graph provided by the Open Graph Benchmark (Hu et al., 2020;
2021). The graph is much larger than earlier examples, and we also use wider and deeper models;
more details are in Appendix B.5. We optimize with SVI, SVI-Adam, SGD, and Adam, and train for
a fixed E = 500 epochs. Figure 7 shows that SVI or SVI-Adam yield comparable results to SGD or
Adam. In addition, the bottom row shows clearly that SVI and SVI-Adam converge much faster than
SGD and Adam during initial epochs. We believe this faster initial convergence is particularly useful
on large-scale experiments, where it is computationally demanding to train networks. See Appendix
B.5 for results under different number of hidden neurons (cf. Figure 13) and under different choices
of learning rate (cf. Table 6).

100 101 102
0

50

SVI-SGD Final Train 68.64±1.07,
 Val: 65.88±0.49, Test: 65.36±1.21

Train
Val

Test

100 101 102

SGD Final Train 66.1±0.12,
 Val: 67.03±0.28, Test: 65.76±0.59

Train
Val

Test

100 101 102

SVI-Adam Final Train 76.2±0.3,
 Val: 71.64±0.06, Test: 70.6±0.02

Train
Val

Test

100 101 102

Adam Final Train 78.9±0.31,
 Val: 71.78±0.16, Test: 70.54±0.23

Train
Val

Test

100 101
0

50

SVI-SGD Final Train 66.94±0.29,
 Val: 64.74±0.42, Test: 65.43±0.45

Train
Val

Test

100 101

SGD Final Train 53.39±1.55,
 Val: 55.16±2.26, Test: 57.32±1.9

Train
Val

Test

100 101

SVI-Adam Final Train 72.02±0.18,
 Val: 70.85±0.16, Test: 69.82±0.16

Train
Val

Test

100 101

Adam Final Train 65.13±0.75,
 Val: 64.07±0.12, Test: 63.23±0.91

Train
Val

Test

Figure 7: Classification accuracies on the large-scale ogbn-arxiv dataset. The top (resp. bottom)
row shows accuracies over all (resp. initial 50) epochs, where “final” indicates results at highest vali-
dation accuracies. SVI-based methods improve initial convergence with competitive final accuracies.

6 CONCLUSION

We have investigated how a new MVI approach can be useful in training neural networks, with strong
prediction guarantees in special cases and competitive performance as SGD or Adam. In essence, the
algorithm SVI “skips” computing derivative of the point-wise non-linearities. Although this skipping
seems counter-intuitive at first glance, the theoretical justifications in the idealized theoretical settings
of training the last-layer, assuming previous layers are fully known, provides partial justifications to
the procedure. On various synthetic and real-data examples, our SVI seems to improve efficiency in
the early stage of training, which is useful when computational resources are constrained.

At present, the following tasks remain open. Practically, testing the performance of SVI on training
large models for more complex problems is worth studying. Theoretically, the guarantees only hold
when all except the last layers of the network are known. Instead, it is important to relax and quantify
the level of knowledge we need for these layers to better explain the previous-layer heuristics of SVI.
Application-wise, it is useful to address a wider range of problems in GNN, including edge and graph
classification (Zhou et al., 2020). We will explore them in the future.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Ehsan Amid, Rohan Anil, and Manfred Warmuth. Locoprop: Enhancing backprop via local loss
optimization. In International Conference on Artificial Intelligence and Statistics, pp. 9626–9642.
PMLR, 2022.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. In Advances in Neural Information Processing
Systems, pp. 8139–8148, 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. arXiv preprint
arXiv:1901.08584, 2019b.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29:3844–3852, 2016.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pp. 1675–1685.
PMLR, 2019.

Francisco Facchinei and J. S. Pang. Finite-dimensional variational inequalities and complementarity
problems. 2003.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Bolin Gao and Lacra Pavel. On the properties of the softmax function with application in game theory
and reinforcement learning, 2018.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Proceedings of the 31st International Conference on Neural Information Processing Systems,
pp. 1025–1035, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc: A
large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. ArXiv, abs/1502.03167, 2015.

Anatoli B. Juditsky and Arkadi S. Nemirovsky. Signal recovery by stochastic optimization. Autom.
Remote. Control., 80:1878–1893, 2019.

David Kinderlehrer and Guido Stampacchia. An introduction to variational inequalities and their
applications. 1980.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Georgios Kotsalis, Guanghui Lan, and Tianjiao Li. Simple and optimal methods for stochastic
variational inequalities, i: operator extrapolation. arXiv preprint arXiv:2011.02987, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

10

Under review as a conference paper at ICLR 2023

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Qihang Lin, Mingrui Liu, Hassan Rafique, and Tianbao Yang. Solving weakly-convex-weakly-
concave saddle-point problems as weakly-monotone variational inequality. 2018.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Jiri Outrata, Michal Kocvara, and Jochem Zowe. Nonsmooth approach to optimization problems with
equilibrium constraints: theory, applications and numerical results, volume 28. Springer Science
& Business Media, 2013.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time
convex optimization formulations for two-layer networks. In ICML, 2020.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of
the 30th International Conference on Machine Learning, volume 28 of Proceedings of Machine
Learning Research, pp. 1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32:4–24, 2019.

Gilad Yehudai and Ohad Shamir. On the power and limitations of random features for understanding
neural networks. Advances in Neural Information Processing Systems, 32, 2019.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural
networks: A review of methods and applications. ArXiv, abs/1812.08434, 2020.

A PROOFS

Proof of Lemma 4.1. We first verify the monotonicity of F by considering vectorized parameters,
where for a matrix A ∈ Rm×n, vec(A) ∈ Rmn by stacking vertically columns of A. Note that
this vectorization is simply used to make sure the Euclidean inner product between F and ΘL is
well-defined; the fundamental meaning of ΘL (e.g., as the channel-mixing coefficient) remains
unchanged. With an abuse of notation, we use the same ΘL and Θ to denote the vectorized parameter

11

Under review as a conference paper at ICLR 2023

and the corresponding parameter space. For any Θ1,L,Θ2,L ∈ Θ,

⟨F (Θ1,L)− F (Θ1,L),Θ1,L −Θ2,L⟩
= ⟨EX{η⊺(X̂L)(ϕL(η(X̂L)Θ1,L)− ϕL(η(X̂L)Θ2,L)},Θ1,L −Θ2,L⟩
= EX{(ϕL(η(X̂L)Θ1,L)− ϕL(η(X̂L)Θ2,L))

T (η(X̂L)Θ1,L − η(X̂L)Θ2,L)}
≥ λmin(∇ϕL)EX{∥η(X̂L)Θ1,L − η(X̂L)Θ2,L∥22} (If∇ϕL exists.)

≥ λmin(∇ϕL)EX{λmin(η
⊺(X̂L)η(X̂L))︸ ︷︷ ︸

κ:=

∥Θ1,L −Θ2,L∥22},

where κ is defined in (2). The first equality uses the fact that the Y part is cancelled and the first
inequality holds when ϕL is continuously differentiable on its domain. If ϕL is only monotone on its
domain, the the first inequality will only be greater than 0.

We then verify the K2-Lipschitz continuity of F . For any Θ1,L,Θ2,L ∈ Θ,

∥F (Θ1,L)− F (Θ2,L)∥2 = EX{∥η⊺(X̂L)(ϕL(η(X̂L)Θ1,L)− ϕL(η(X̂L)Θ2,L)∥2}
≤ EX{∥η⊺(X̂L)∥2∥ϕL(η(X̂L)Θ1,L)− ϕL(η(X̂L)Θ2,L)∥2}
≤ KEX{∥η(X̂L)∥2∥η(X̂L)Θ1,L − η(X̂L)Θ2,L∥2}
≤ KEX{∥η(X̂L)∥22}︸ ︷︷ ︸

K2:=

∥Θ1,L −Θ2,L∥22,

where K2 has been defined. We repeated used the Cauchy–Schwarz inequality and the last inequality
relies on the assumption that ϕL is K-Lipschitz continuous.

Note that given random samples {X1, . . . , XN}, the quantities EX{λmin(η
⊺(X̂L)η(X̂L))} and

EX{∥η(X̂L)∥22} can be empirically approximated by sample averages.

Remark A.1 (Remark for Lemma 4.1). For simplicity, we assume from now on the stronger condition
that λmin(η

⊺(X̂L)η(X̂L)) > 0 for any generic nonlinear feature X̂L. In addition, because we are
considering the last layer in classification, ϕL is typically chosen as sigmoid or softmax, both of
which are differentiable so λmin(∇ϕL) exits.

Proof of Lemma 4.4. The proof employs classical techniques when analyzing the convergence of
projection descent in stochastic optimization, which appear in (Juditsky & Nemirovsky, 2019,
Proposition 3.2).

First, for any ΘL ∈ Θ,

E(X,Y ΘL){∥η⊺(X̂L)ϕ(η(X̂L)ΘL)∥2} = EX{∥EY ΘL{η(X̂L)Y
ΘL}∥2}

≤ EXEY ΘL{∥η(X̂L)Y
ΘL}∥2} [Jensen’s Inequality]

= E(X,Y ΘL){∥η(X̂L)Y
ΘL}∥2} ≤M.

By the form of F , we then have that EX,Y {∥F (ΘL)∥22} ≤ 4M2 for any ΘL.

Next, note that each Θ̂
(t)
L is a deterministic function of ZN := {(Xi, Yi)}Ni=1. Define the difference

of estimation and its expected value as

Dt(Z
N) :=

1

2
∥Θ̂(t)

L −Θ∗
L∥22, dt := EZN {Dt(Z

N)}.

As a result,

Dt(Z
N) =

1

2
∥ProjΘ

î
Θ̂

(t−1)
L − γtF

T
1:N (Θ̂

(t−1)
L)−Θ∗

L

ó
∥22

≤ 1

2
∥Θ̂(t−1)

L − γtF
T
1:N (Θ̂

(t−1)
L)−Θ∗

L∥22 [The projection is a contraction]

=
1

2
∥Θ̂(t−1)

L −Θ∗
L∥22 − γtF

T
1:N (Θ̂

(t−1)
L)(Θ̂

(t−1)
L −Θ∗

L) +
1

2
γ2
t ∥FT

1:N (Θ̂
(t−1)
L)∥22.

12

Under review as a conference paper at ICLR 2023

Taking expectation of both sides with respect to ZN yields

dt ≤
1

2
dt−1 − γtEZN

î
FT
1:N (Θ̂

(t−1)
L)(Θ̂

(t−1)
L −Θ∗

L)
ó
+ 2γ2

tM
2

≤ (1− 2κγt)dt−1 + 2γ2
tM

2,

where the last inequality follows by noting that F1:N is an unbiased estimator of F , which satisfies

F (ΘL)
T (ΘL −Θ∗

L) ≥ κ∥ΘL −Θ∗
L∥2,

due to Assumption 4.3 on F (Θ∗
L). Then, using triangle inequality yields the result.

Lastly, we prove by induction that if we define R := (2M2)/κ2, γt := 1/κ(t+ 1), we have

dt ≤
R

t+ 1
.

(Base case when t = 0.) Let B be the ∥ · ∥2 diameter of Θ (e.g., ∥Θ1−Θ2∥22 ≤ B2 ∀(Θ1,Θ2) ∈ Θ.
Denote Θ+

L ,Θ
−
L ∈ B to satisfy ∥Θ+

L −Θ−
L∥22 = B2. By the definition of κ,

⟨F (Θ+
L)− F (Θ−

L),Θ
+
L −Θ−

L ⟩ ≥ κ∥Θ+
L −Θ−

L∥22 = κB2.

Meanwhile, the Cauchy-Schwarz inequality yields

⟨F (Θ+
L)−F (Θ−

L),Θ
+
L−Θ−

L ⟩ = ⟨η(X̂L)(ϕ(η(X̂L))Θ
+
L)−η(X̂L)(ϕ(η(X̂L))Θ

−
L),Θ

+
L−Θ−

L ⟩ ≤ 2MB.

Thus, B ≤ 2M/κ. As a result, B2/2 ≤ 2M2/κ2 = R. Because d0 := ∥Θ̂(0)
L −Θ∗

L∥22 ≤ B2,

d0 ≤ 2R =
4M2

κ2
.

(The inductive step from t− 1 to t.) Note that by the definition of γt, κγt = 1/(t+ 1) ≤ 1/2. Thus,

dt ≤ (1− 2κγt)dt−1 + 2γ2
tM

2

=
R

t
(1− 2

t+ 1
) +

R

(t+ 1)2
≤ R

t+ 1
,

whereby the proof is complete by the definition of dt and R.

Proof of Theorem 4.5. Define

Ẽ[Yt|Xt] := ϕ(η⊺(X̂t,L)Θ
∗
L), (9)

which uses the true parameter Θ∗
L. Note that when p = 2,

E“Θ(T)
L ,X

{∥Ê[Yt|Xt]− E[Yt|Xt]∥2}

≤E“Θ(T)
L ,X

{∥Ê[Yt|Xt]− Ẽ[Yt|Xt]∥2︸ ︷︷ ︸
(a)

+ ∥Ẽ[Yt|Xt]− E[Yt|Xt]∥2︸ ︷︷ ︸
(b)

}.

We now bound (a) and (b) separately.

Bound of (a). We have that

E“Θ(T)
L ,X

{∥Ê[Yt|Xt]− Ẽ[Yt|Xt]∥2} = E“Θ(T)
L ,X

{∥ϕ(η⊺(X̂t,L)“Θ(T)
L)− ϕ(η⊺(X̂t,L)Θ

∗
L)∥2}

≤ E“Θ(T)
L ,X

{K∥η⊺(X̂t,L)[“Θ(T)
L −Θ∗

L]∥2}

≤ Kλmax(η(X̂t,L)η
⊺(X̂t,L))E“Θ(T)

L ,X
{∥“Θ(T)

L −Θ∗
L∥2}.

We can then use the bound on EΘ̂(T){∥Θ̂(T) −Θ∥2} from the previous lemma to complete the proof.
In addition, because p-norm is decreasing in p, we have that the bound holds for any p ∈ [2,∞].

13

Under review as a conference paper at ICLR 2023

Bound of (b). We have by Assumptions 4.2 and 4.3 that

E“Θ(T)
L ,X

{∥Ẽ[Yt|Xt]− E[Yt|Xt]∥2} = E“Θ(T)
L ,X

{ϕ(η⊺(X̂t,L)Θ
∗
L)− ϕ(η⊺(X∗

t,L)Θ
∗
L)}

≤ E“Θ(T)
L ,X

{K∥η⊺(X̂t,L)Θ
∗
L − η⊺(X∗

t,L)Θ
∗
L∥2}

≤ EX{KDB∥X̂t,L −X∗
t,L∥2}

≤ KDBϵ.

Proof of Theorem 4.7. The crux is to bound the expected value of the norm of F evaluated at the
stochastic OE estimate. This bound results from (Kotsalis et al., 2020, Theorem 3.8), where in
general, for any ΘL ∈ Θ, the authors use the residual

E[res(ΘL)] ≤ δ, res(ΘL) := min
y∈−NΘ(ΘL)

∥y − F (ΘL)∥2

as the termination criteria for the recurrence under a certain choice of the Bregman’s distance V (a, b);
we let V (a, b) = ∥a−b∥22/2 in our case. The quantity NΘ(ΘL) := {y ∈ Rp|⟨y,Θ′−ΘL⟩,∀Θ′ ∈ Θ}
denotes the normal cone of Θ at ΘL. Then, under the assumptions on F and choices of step sizes,
we can restate (Kotsalis et al., 2020, Theorem 3.8) in our special case as

E
Θ̂

(R)
L

[res(Θ̂(R)
L)] ≤ 3σ√

T
+

12K2

»
2∥Θ∗

L∥22 + 2σ2

L2√
T

.

When we assume Θ is the entire space, NΘ(ΘL) = {0} whereby res(Θ̂(R)
L) = ∥F (Θ̂

(R)
L)∥2. Thus,

the result follows.

Furthermore, recall the fact that for any matrix A ∈ Rm×n and vectors x, x′ ∈ Rn, we have

∥x− x′∥2 ≤ ∥A(x− x′)∥2/σmin(A),

where σmin(A) denotes the smallest singular value of A. As a result, by letting A = η(X̂L), x =

Ê[Yt|Xt], x
′ = E[Yt|Xt] we have in expectation that

E
Θ̂

(R)
L

{∥EX{σmin(η(X̂L))[Ê[Yt|Xt]− E[Yt|Xt]}∥p} ≤ E
Θ̂

(R)
L

∥F (Θ̂
(R)
L)∥2,

where we used the fact F (Θ̂
(R)
L) := EX,Y {η⊺(X̂L)[ϕL(η(X̂L)Θ̂

(R)
L) − Y]} =

EX{η⊺(X̂L)[Ê[Yt|Xt]− E[Yt|Xt]]]}.

Proof of Proposition 4.8. For notation simplicity, denote η := ηL(XL) and θ := ΘL. Meanwhile,
for two vectors a, b ∈ Rn, the notation a/b denotes the point-wise division. 1 denotes a vector of all
1. In addition, the binary and categorical cross-entropy losses are defined as:

L(Y, ϕL(η(XL)ΘL)) := −Y ln(ϕ(ηL(XL)ΘL))− (1− Y) ln(1− ϕ(ηL(XL)ΘL)) Y ∈ {0, 1}.
(10)

L(Y, ϕL(η(XL)ΘL)) := −eTY ln(ϕ(ηL(XL)ΘL)) Y ∈ {0, . . . , F}, F > 1. (11)

In (10), ϕ(x) = exp(x)/(1 + exp{x}) is the sigmoid function applied point-wise. In (11), ek is
the kth standard basis vector in RF+1 and ϕ(x) = exp(xi)/

∑
j exp(xj) is the softmax function

applied row-wise.

We first consider the binary cross-entropy loss L(Y, ϕL(η(XL)ΘL)) defined in (10). Note that we
have

L(Y, ϕL(η(XL)ΘL)) = −Y ln(ϕ(ηL(XL)ΘL))− (1− Y) ln(1− ϕ(ηL(XL)ΘL))

= −Y T ln(exp(ηθ)/(1+ exp(ηθ)))− (1− Y)T ln(1/(1+ exp(ηθ)))

= −Y T ηθ + Y T ln(1+ exp(ηθ)) + (1− Y)T ln(1+ exp(ηθ))

= 1T ln(1+ exp(ηθ))− Y T ηθ.

14

Under review as a conference paper at ICLR 2023

Thus, the gradient with respect to θ (which is ΘL) can be written as

∇θL(Y, ϕL(η(XL)ΘL)) = ηT
exp(ηθ)

1+ exp(ηθ)
− ηTY = η⊺L(XL)[ϕ(ηL(XL)ΘL)− Y].

Taking expectation thus yields the result.

We next consider the categorical cross-entropy loss L(Y, ϕL(η(XL)ΘL)) defined in (11). Note that
we have

L(Y, ϕL(η(XL)ΘL)) = −eTY ln(ϕ(ηL(XL)ΘL))

=

ï
−eTY ln

Å
exp(ηθ)

1T exp(ηθ)

ãò
= −eTY (ηθ) + ln

(
1T exp(ηθ)

)
.

Thus, the gradient with respect to θ can be written as

∇θL(Y, ϕL(η(XL)ΘL)) = −ηT eY + ηT
exp(ηθ)

1T exp(ηθ)

= ηT [ϕ(ηθ)− eY] = η⊺L(XL)[ϕ(ηL(XL)ΘL)− Y],

where in the definition of F (Θ) in (4), Y = eY ∈ RF+1 if Y belongs to more than 2 classes. Taking
expectation thus yields the result.

Proof of Proposition 4.9. Note that we are equivalently showing that there exists Θ∗
L′ such that

∥EX [ϕ(L′
gXΘ∗

L′)− ϕ(LgXΘ∗
L)]∥2 ≤ δ∥Θ∗

L∥2.
Because Θ∗

L′ is the minimizer of ℓ2 error, it is clear that

EX [ϕ(L′
gXΘ∗

L′)− ϕ(LgXΘ∗
L)]∥2 ≤ EX [ϕ(L′

gXΘ∗
L)− ϕ(LgXΘ∗

L)]∥2.
Now,

∥EX [ϕ(L′
gXΘ∗

L)− ϕ(LgXΘ∗
L)]∥2 ≤ EX∥[ϕ(L′

gXΘ∗
L)− ϕ(LgXΘ∗

L)]∥2
≤ KEX∥[L′

gXΘ∗
L − LgXΘ∗

L]∥2
≤ KEX∥(L′

g − Lg)X∥2∥Θ∗
L∥2.

≤ K∥Lg − L
′

g∥2EX∥X∥2∥Θ∗
L∥2

≤ δ∥Θ∗
L∥2.

Therefore, the loss under the true parameter Θ∗
L is bounded above by δ∥Θ∗

L∥2, so there exists a Θ∗
L′

that achieves no larger error.

B ADDITIONAL DETAILS

Setup and comparison metrics are described in Appendix B.2. We describe dataset details and show
additional results in Appendices B.3 onward, which illustrate the behavior of SVI and SGD during
the entire training epoch.

B.1 GNN NOTATION

Our notation of GNN models (i.e., graph filtering) is standard. Suppose we have an undirected
and connected graph G = (V, E ,W), where V is a finite set of n vertices, E is a set of edges, and
W ∈ Rn×n is a weighted adjacency matrix that encodes node connections. Let In denote an identity
matrix of size n. Let D be the degree matrix of W and Lg = In−D−1/2WD−1/2 be the normalized
graph Laplacian, which has the eigen-decomposition Lg = UΛUT . For a graph signal X ∈ Rn×C

with C input channels, it is then filtered via a function gΘ(Lg) which acts on Lg with channel-mixing
parameters Θ ∈ RC×F for F output channels. Thus, the filtered signal X ′ = gΘ(Lg)X .

15

Under review as a conference paper at ICLR 2023

B.2 SETUP AND COMPARISON METRICS

Setup. All implementation are done using PyTorch (Paszke et al., 2019) and
PyTorch Geometric (Fey & Lenssen, 2019) (for GNN). Models are trained with one Tesla
P100-PCIE-16GB. Total amount of computing time is not reported, as SVI only alters the update
direction, which is identical to gradient-descent methods in special cases (see Proposition 4.8), so that
SVI requires nearly identical computing resources as SGD. To ensure fair comparison, we carefully
describe the experiment setup. In particular, the following inputs are identical to both SVI and SGD
in each experiment.

Data: (a) the size of training and test data (b) batch (batch size and samples in mini-batches).

Model: (a) architecture (e.g., layer choice, activation function, hidden neurons) (b) loss function.

Training regime: (a) parameter initialization (b) hyperparameters for optimizers (e.g., learning rate,
momemtum factor, acceleration) (c) total number of epochs

In short, all except the way gradients are defined are kept the same for each comparison—our
proposed SVI backpropagates gradients with respect to hidden input and transform the gradient back
to parameter domain, whereas SGD do so with respect to parameters in each hidden layer.

Comparison metrics. For a random feature X ∈ Rn×C , where n is the number of graph nodes and
C is the input dimension, let the true (or predicted) model be E[Y |X,Θ] ∈ Rn×F (or E[Y |X,“Θ]),
where F is the output dimension. Given N realized pairs {(Xi, Yi)}Ni=1 where N denotes either the
training or test sample size, we employ the following metrics for various tasks.3

MSE loss := N−1
N∑
i=1

n∑
j=1

∥E[Yi|Xi,“Θ]j − Yi,j∥2 (12)

Cross-entropy loss := N−1
N∑
i=1

n∑
j=1

Y T
i,jE[Yi|Xi,“Θ]j (13)

Classification error := (n ·N)−1
N∑
i=1

n∑
j=1

F∑
f=1

1(Yi,j,f ̸= Ŷi,j,f) (14)

ℓp parameter recovery error := ∥Θ̂−Θ∥p (15)

ℓp model recovery error := N−1
N∑
i=1

n∑
j=1

∥E[Yi|Xi,“Θ]j − E[Yi|Xi,Θ]j∥p. (16)

For GCN model recovery We let p = 2 or∞ in (15) and (16) and when p = 2, compute the relative
error using ∥Θ∥p or N−1

∑N
i=1

∑n
j=1 ∥E[Yi|Xi,Θ]j∥p on the denominator. In addition, all results

are averaged over three random trials, in which features Xi are redrawn for simulated example and
networks re-initialized. We show standard errors in tables as brackets and in plots as error bars.
Partial results are shown due to space limitation, where Appendix B contains the extensive results.

B.3 TWO-LAYER FC NETWORKS AND GCN

1. Graph data generation. Given a graph G = (V, E), |V| = n and a signal Xi ∈ Rn×C , we generate
Yi ∈ Rn×F , where E[Yi|Xi] is a two/three-layer GCN model with ReLU (layer 1/layer 1 and 2) and
sigmoid (layer 2/layer 3) activation. We let C = 2 and F = 1 and let the true number of hidden
nodes in each hidden layer always be 2. Entries of all true weight and bias parameters (resp. features
Xi) are i.i.d. samples from N(1, 1) (resp. N(0, 1)) under a fixed seed (resp. fixed seeds per random
trial). We consider both small (n = 15) and large (n = 40) graphs, where P[(i, j) ∈ E] = 0.15;
Figure 9 visualizes the graphs. The true parameters are identical in both graphs.

To perturb the true graph, we perturb the edge set—a p fraction of edges in E and in EC are randomly
discarded and inserted, where EC denotes edges in a fully-connected graph that does not exist in E .
We set p = 0.2 (resp. 0.05) for small (resp. large) graphs.

3 We one-hot encode Yi in multi-class classification to make sure certain operations are well-defined.

16

Under review as a conference paper at ICLR 2023

2. Summary. We briefly explain what each figure or table in this section contains. Figure 8 shows
model intermediate convergence results for the FC networks. Figure 9 visualizes the small and large
random graphs. Table 5 and Figure 10 shows additional results regarding model recovery on the small
random graph. Figure 11 shows intermediate convergence results on both small and large random
graphs.

−2 0 2

−2

−1

0

1

2

−2 0 2

−2

−1

0

1

2

(a) Top (bottom)
shows training (test)

data.

0 20 40 60 80 100
Epoch

0.000

0.018

0.036

0.054

0.072

0.090

0.108

0.126

0.144

0.162

Lo
ss

0 20 40 60 80 100
Epoch

0.000

0.045

0.090

0.135

0.180

0.225

0.270

0.315

0.360

0.405

Er
ro
r

SGD Training SGD Test SVI Training SVI Test

(b) 8 Hidden neurons. Left to right: MSE
loss and classification error.

0 20 40 60 80 100
Epoch

0.000

0.018

0.036

0.054

0.072

0.090

0.108

0.126

0.144

0.162

Lo
ss

0 20 40 60 80 100
Epoch

0.000

0.045

0.090

0.135

0.180

0.225

0.270

0.315

0.360

0.405

Er
ro
r

SGD Training SGD Test SVI Training SVI Test

(c) 16 Hidden neurons. Left to right: MSE
loss and classification error.

0 20 40 60 80 100
Epoch

0.000

0.018

0.036

0.054

0.072

0.090

0.108

0.126

0.144

0.162

Lo
ss

0 20 40 60 80 100
Epoch

0.000

0.045

0.090

0.135

0.180

0.225

0.270

0.315

0.360

0.405

Er
ro
r

SGD Training SGD Test SVI Training SVI Test

(d) 32 Hidden neurons. Left to right: MSE
loss and classification error.

0 20 40 60 80 100
Epoch

0.000

0.018

0.036

0.054

0.072

0.090

0.108

0.126

0.144

0.162

Lo
ss

0 20 40 60 80 100
Epoch

0.000

0.045

0.090

0.135

0.180

0.225

0.270

0.315

0.360

0.405

Er
ro
r

SGD Training SGD Test SVI Training SVI Test

(e) 64 Hidden neurons. Left to right: MSE
loss and classification error.

Figure 8: Two-moon FC network. Results are plotted with one standard error bars. In particular, SVI
exhibits faster convergence than SGD and shows smaller errors. Metrics are defined in (12) and (14)
respectively.

0

3

11
121

4

5

2

9

8

13
10 6

7

14

0

3

11
121

5

13

8

4

9
10 6

7

14

(a) Small graph, ground truth (left) and estimated
graph (right)

0
3

11
12

21
27

36145181926382
9

15
17
24
30
33
35
37
8
13
10
2261632 7 2034

2914
23
25
28
31
39

0
3

12
21

27
36

4151819263829
15

17
24
30
33
35
37
8
13
10
22

61632 7 203428
1129

14
23
25
31
39

(b) Large graph, ground truth (left) and estimated
graph (right)

Figure 9: Illustration of small and random graphs.Table 5: Two-layer GCN model recovery on the small random graph, with
identical learning rate and ReLU activation for both SVI and SGD under
B = 100. We measure recovery performance according to relative errors
in predicting the posterior probability E[Yi|Xi] on test data. The middle
column shows the MSE loss on test data. We observe consistently better
model recovery performance by SVI, regardless of the number of hidden
neurons for estimation, comparison metrics, and whether graph is perturbed.
Metrics are defined in (16) and (12) respectively.

Small Graph ℓ2 model recovery test error MSE test loss ℓ∞ model recovery test error

Hidden neurons SGD (Known) SGD
(Perturbed)

SVI (Known) SVI
(Perturbed)

SGD (Known) SGD
(Perturbed)

SVI (Known) SVI
(Perturbed)

SGD (Known) SGD
(Perturbed)

SVI (Known) SVI
(Perturbed)

2 0.123 (3.3e-03) 0.125
(4.9e-03)

0.094 (9.7e-03) 0.103
(5.4e-03)

0.25 (2.3e-04) 0.25 (3.0e-04) 0.249 (4.4e-04) 0.249
(3.0e-04)

0.115 (2.9e-03) 0.12 (4.9e-03) 0.089 (8.9e-03) 0.1 (3.9e-03)

4 0.105 (8.7e-03) 0.113
(5.5e-03)

0.081 (5.8e-03) 0.096
(2.8e-03)

0.249 (3.9e-04) 0.25 (2.8e-04) 0.248 (2.1e-04) 0.249
(1.4e-04)

0.099 (7.9e-03) 0.107
(4.4e-03)

0.077 (5.3e-03) 0.095
(1.8e-03)

8 0.087 (8.0e-03) 0.102
(5.8e-03)

0.067 (5.6e-04) 0.088
(1.3e-04)

0.248 (3.2e-04) 0.249
(2.6e-04)

0.248 (2.1e-05) 0.249
(2.3e-05)

0.081 (7.2e-03) 0.097
(4.7e-03)

0.064 (6.4e-04) 0.09 (1.6e-04)

16 0.084 (7.7e-03) 0.098
(4.6e-03)

0.065 (4.0e-04) 0.088
(1.5e-04)

0.248 (2.9e-04) 0.249
(2.1e-04)

0.248 (7.0e-06) 0.248
(2.5e-05)

0.079 (7.1e-03) 0.094
(3.4e-03)

0.062 (3.3e-04) 0.09 (1.3e-04)

32 0.085 (9.2e-03) 0.1 (6.2e-03) 0.065 (4.3e-04) 0.088
(3.6e-04)

0.248 (4.1e-04) 0.249
(3.3e-04)

0.248 (2.3e-05) 0.248
(3.8e-05)

0.081 (8.4e-03) 0.096
(4.8e-03)

0.062 (5.0e-04) 0.09 (1.3e-04)

0 25 50 75 100 125 150 175 200

Epoch
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

l ∞
er
ro
r

SGD (Graph Known)
SGD (Graph Est)

SVI (Graph Known)
SVI (Graph Est)

Figure 10: ℓ∞ model
recovery error on the
small random graph.
SVI consistently
reaches smaller error
under faster conver-
gence, even just after
the first training epoch.

17

Under review as a conference paper at ICLR 2023

0 25 50 75 100 125 150 175 200

Epoch
0.060

0.074

0.088

0.102

0.116

0.130

0.144

0.158

0.172

0.186

l 2
er
ro
r

0 25 50 75 100 125 150 175 200

Epoch
0.2470

0.2493

0.2516

0.2539

0.2562

0.2585

0.2608

0.2631

0.2654

0.2677

Lo
ss

0 25 50 75 100 125 150 175 200

Epoch
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

l ∞
er
ro
r

SGD (Graph Known) SGD (Graph Est) SVI (Graph Known) SVI (Graph Est)

(a) Small graph, 2 hidden neurons. Left to right: ℓ2
model recovery test error, MSE test loss, ℓ∞ model

recovery test error.

0 25 50 75 100 125 150 175 200

Epoch
0.060

0.074

0.088

0.102

0.116

0.130

0.144

0.158

0.172

0.186

l 2
er
ro
r

0 25 50 75 100 125 150 175 200

Epoch
0.2470

0.2493

0.2516

0.2539

0.2562

0.2585

0.2608

0.2631

0.2654

0.2677

Lo
ss

0 25 50 75 100 125 150 175 200

Epoch
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

l ∞
er
ro
r

SGD (Graph Known) SGD (Graph Est) SVI (Graph Known) SVI (Graph Est)

(b) Large graph, 2 hidden neurons. Left to right: ℓ2
model recovery test error, MSE test loss, ℓ∞ model

recovery test error.

0 25 50 75 100 125 150 175 200

Epoch
0.060

0.074

0.088

0.102

0.116

0.130

0.144

0.158

0.172

0.186

l 2
er
ro
r

0 25 50 75 100 125 150 175 200

Epoch
0.2470

0.2493

0.2516

0.2539

0.2562

0.2585

0.2608

0.2631

0.2654

0.2677

Lo
ss

0 25 50 75 100 125 150 175 200

Epoch
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

l ∞
er
ro
r

SGD (Graph Known) SGD (Graph Est) SVI (Graph Known) SVI (Graph Est)

(c) Small graph, 4 hidden neurons. Left to right: ℓ2
model recovery test error, MSE test loss, ℓ∞ model

recovery test error.

0 25 50 75 100 125 150 175 200

Epoch
0.060

0.074

0.088

0.102

0.116

0.130

0.144

0.158

0.172

0.186

l 2
er
ro
r

0 25 50 75 100 125 150 175 200

Epoch
0.2470

0.2493

0.2516

0.2539

0.2562

0.2585

0.2608

0.2631

0.2654

0.2677

Lo
ss

0 25 50 75 100 125 150 175 200

Epoch
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

l ∞
er
ro
r

SGD (Graph Known) SGD (Graph Est) SVI (Graph Known) SVI (Graph Est)

(d) Large graph, 4 hidden neurons. Left to right: ℓ2
model recovery test error, MSE test loss, ℓ∞ model

recovery test error.

0 25 50 75 100 125 150 175 200

Epoch
0.060

0.074

0.088

0.102

0.116

0.130

0.144

0.158

0.172

0.186

l 2
er
ro
r

0 25 50 75 100 125 150 175 200

Epoch
0.2470

0.2493

0.2516

0.2539

0.2562

0.2585

0.2608

0.2631

0.2654

0.2677

Lo
ss

0 25 50 75 100 125 150 175 200

Epoch
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

l ∞
er
ro
r

SGD (Graph Known) SGD (Graph Est) SVI (Graph Known) SVI (Graph Est)

(e) Small graph, 8 hidden neurons. Left to right: ℓ2
model recovery test error, MSE test loss, ℓ∞ model

recovery test error.

0 25 50 75 100 125 150 175 200

Epoch
0.060

0.074

0.088

0.102

0.116

0.130

0.144

0.158

0.172

0.186

l 2
er
ro
r

0 25 50 75 100 125 150 175 200

Epoch
0.2470

0.2493

0.2516

0.2539

0.2562

0.2585

0.2608

0.2631

0.2654

0.2677

Lo
ss

0 25 50 75 100 125 150 175 200

Epoch
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

l ∞
er
ro
r

SGD (Graph Known) SGD (Graph Est) SVI (Graph Known) SVI (Graph Est)

(f) Large graph, 8 hidden neurons. Left to right: ℓ2
model recovery test error, MSE test loss, ℓ∞ model

recovery test error.

0 25 50 75 100 125 150 175 200

Epoch
0.060

0.074

0.088

0.102

0.116

0.130

0.144

0.158

0.172

0.186

l 2
er
ro
r

0 25 50 75 100 125 150 175 200

Epoch
0.2470

0.2493

0.2516

0.2539

0.2562

0.2585

0.2608

0.2631

0.2654

0.2677

Lo
ss

0 25 50 75 100 125 150 175 200

Epoch
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

l ∞
er
ro
r

SGD (Graph Known) SGD (Graph Est) SVI (Graph Known) SVI (Graph Est)

(g) Small graph, 16 hidden neurons. Left to right: ℓ2
model recovery test error, MSE test loss, ℓ∞ model

recovery test error.

0 25 50 75 100 125 150 175 200

Epoch
0.060

0.074

0.088

0.102

0.116

0.130

0.144

0.158

0.172

0.186

l 2
er
ro
r

0 25 50 75 100 125 150 175 200

Epoch
0.2470

0.2493

0.2516

0.2539

0.2562

0.2585

0.2608

0.2631

0.2654

0.2677

Lo
ss

0 25 50 75 100 125 150 175 200

Epoch
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

l ∞
er
ro
r

SGD (Graph Known) SGD (Graph Est) SVI (Graph Known) SVI (Graph Est)

(h) Large graph, 16 hidden neurons. Left to right: ℓ2
model recovery test error, MSE test loss, ℓ∞ model

recovery test error.

0 25 50 75 100 125 150 175 200

Epoch
0.060

0.074

0.088

0.102

0.116

0.130

0.144

0.158

0.172

0.186

l 2
er
ro
r

0 25 50 75 100 125 150 175 200

Epoch
0.2470

0.2493

0.2516

0.2539

0.2562

0.2585

0.2608

0.2631

0.2654

0.2677

Lo
ss

0 25 50 75 100 125 150 175 200

Epoch
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

l ∞
er
ro
r

SGD (Graph Known) SGD (Graph Est) SVI (Graph Known) SVI (Graph Est)

(i) Small graph, 32 hidden neurons. Left to right: ℓ2
model recovery test error, MSE test loss, ℓ∞ model

recovery test error.

0 25 50 75 100 125 150 175 200

Epoch
0.060

0.074

0.088

0.102

0.116

0.130

0.144

0.158

0.172

0.186

l 2
er
ro
r

0 25 50 75 100 125 150 175 200

Epoch
0.2470

0.2493

0.2516

0.2539

0.2562

0.2585

0.2608

0.2631

0.2654

0.2677

Lo
ss

0 25 50 75 100 125 150 175 200

Epoch
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

l ∞
er
ro
r

SGD (Graph Known) SGD (Graph Est) SVI (Graph Known) SVI (Graph Est)

(j) Large graph, 32 hidden neurons. Left to right: ℓ2
model recovery test error, MSE test loss, ℓ∞ model

recovery test error.

Figure 11: Two-layer GCN model recovery and prediction on small (left column) or large (left
column) graphs. We compare SGD vs. SVI under different numbers of hidden neurons with
B = 100. SVI consistently reaches smaller error with faster convergence. Metrics are defined in
(12) and (16) respectively.

18

Under review as a conference paper at ICLR 2023

B.4 THREE-LAYER REAL TRAFFIC DATA

Traffic data. The raw bi-hourly traffic flow data are from the California Department of Transportation,
where we collected data from 20 non-uniformly spaced traffic sensors in 2020https://pems.
dot.ca.gov/. Data are available hourly, with Yt,i = 1 (resp. 2) if the current traffic flow lies
outside the upper (resp. lower) 90% quantile over the past four days of traffic flow of its nearest four
neighbors based on sensor proximity. As before, we define feature Xt as the collection of past d days
of observation and set d = 4, where the edges include the nearest five neighbors based on location.
Data in the first nine months are training data (e.g., N = 6138) and the rest for testing (N1 = 2617).
We let B = 600 and E = 100 and use the cross-entropy loss to test the performance of SVI under
alternative loss functions.

0 20 40 60 80 100
Epoch

0.750

0.785

0.820

0.855

0.890

0.925

0.960

0.995

1.030

1.065

Lo
ss

0 20 40 60 80 100
Epoch

0.320

0.345

0.370

0.395

0.420

0.445

0.470

0.495

0.520

0.545

Er
ro
r

0 20 40 60 80 100
Epoch

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

W
ei
gh

te
d
F
1
sc
or
e

SGD Training SGD Test SVI Training SVI Test

(a) 8 Hidden neurons for both hidden layers. Left to right: cross-entropy loss, classification error, and weighted
F1 score.

0 20 40 60 80 100
Epoch

0.750

0.785

0.820

0.855

0.890

0.925

0.960

0.995

1.030

1.065

Lo
ss

0 20 40 60 80 100
Epoch

0.320

0.345

0.370

0.395

0.420

0.445

0.470

0.495

0.520

0.545

Er
ro
r

0 20 40 60 80 100
Epoch

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

W
ei
gh

te
d
F
1
sc
or
e

SGD Training SGD Test SVI Training SVI Test

(b) 16 Hidden neurons for both hidden layers. Left to right: cross-entropy loss, classification error, and weighted
F1 score.

0 20 40 60 80 100
Epoch

0.750

0.785

0.820

0.855

0.890

0.925

0.960

0.995

1.030

1.065

Lo
ss

0 20 40 60 80 100
Epoch

0.320

0.345

0.370

0.395

0.420

0.445

0.470

0.495

0.520

0.545

Er
ro
r

0 20 40 60 80 100
Epoch

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

W
ei
gh

te
d
F
1
sc
or
e

SGD Training SGD Test SVI Training SVI Test

(c) 32 Hidden neurons for both hidden layers. Left to right: cross-entropy loss, classification error, and weighted
F1 score.

0 20 40 60 80 100
Epoch

0.750

0.785

0.820

0.855

0.890

0.925

0.960

0.995

1.030

1.065

Lo
ss

0 20 40 60 80 100
Epoch

0.320

0.345

0.370

0.395

0.420

0.445

0.470

0.495

0.520

0.545

Er
ro
r

0 20 40 60 80 100
Epoch

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

W
ei
gh

te
d
F
1
sc
or
e

SGD Training SGD Test SVI Training SVI Test

(d) 64 Hidden neurons for both hidden layers. Left to right: cross-entropy loss, classification error, and weighted
F1 score.

Figure 12: Traffic data multi-class anomaly detection under a three-layer GCN model. SVI shows
faster convergence in terms of classification error and weighted F1 scores. It reaches larger cross-
entropy losses, which we think are benign (see Section 5.2 for justification).

B.5 FOUR-LAYER OGB REAL-DATA

Data and model description. The graph nodes are papers to be classified into categories and edges
denote citation among papers; it has ∼170 thousand nodes, 1.16 million edges, 128-dimensional
node features, and 40 node classes. This graph is significantly larger than earlier examples. We train
four-layer GCN models with hidden nodes kept at 512, which are both wider and deeper than earlier
models.

Additional results. We conduct further experiments when the number of hidden neurons in each
hidden layer is reduced to 128 or 256. Figure 13 shows improved initial convergence by SVI or
SVI-Adam over the competitors, a pattern consistently observed earlier, and competitive overall

19

https://pems.dot.ca.gov/
https://pems.dot.ca.gov/

Under review as a conference paper at ICLR 2023

accuracies. In particular, SVI is consistent under different number of hidden neurons whereas SGD
performs clearly worse under 128 hidden neurons. We also show in Table 6 that the performance of
SVI is stable under different learning rates.

100 101 102
0

50

SVI-SGD Final Train 63.0±0.46,
 Val: 64.22±0.66, Test: 63.52±0.49

Train
Val

Test

100 101 102

SGD Final Train 57.39±0.39,
 Val: 60.52±0.5, Test: 60.27±0.66

Train
Val

Test

100 101 102

SVI-Adam Final Train 69.54±0.15,
 Val: 69.57±0.19, Test: 68.25±0.3

Train
Val

Test

100 101 102

Adam Final Train 71.18±0.13,
 Val: 70.4±0.1, Test: 69.11±0.13

Train
Val

Test

(a) 128 Hidden neurons for all hidden layers. Results over all training epochs

100 101
0

25

50

SVI-SGD Final Train 56.64±1.85,
 Val: 59.19±0.56, Test: 60.14±1.3

Train
Val

Test

100 101

SGD Final Train 41.06±0.88,
 Val: 44.65±3.26, Test: 43.83±5.06

Train
Val

Test

100 101

SVI-Adam Final Train 61.51±0.57,
 Val: 63.69±0.84, Test: 62.86±1.53

Train
Val

Test

100 101

Adam Final Train 64.25±0.19,
 Val: 65.48±0.1, Test: 65.49±0.34

Train
Val

Test

(b) 128 Hidden neurons for all hidden layers. Results over initial 50 training epochs

100 101 102
0

50

SVI-SGD Final Train 66.03±0.15,
 Val: 64.06±0.54, Test: 63.55±0.37

Train
Val

Test

100 101 102

SGD Final Train 62.44±0.25,
 Val: 64.58±0.37, Test: 63.92±0.63

Train
Val

Test

100 101 102

SVI-Adam Final Train 72.62±0.48,
 Val: 70.88±0.19, Test: 69.53±0.14

Train
Val

Test

100 101 102

Adam Final Train 75.6±0.37,
 Val: 71.55±0.15, Test: 70.13±0.15

Train
Val

Test

(c) 256 Hidden neurons for all hidden layers. Results over all training epochs

100 101
0

50

SVI-SGD Final Train 62.23±0.6,
 Val: 62.51±0.49, Test: 62.14±0.81

Train
Val

Test

100 101

SGD Final Train 49.1±1.35,
 Val: 51.36±2.93, Test: 50.25±4.82

Train
Val

Test

100 101

SVI-Adam Final Train 67.81±0.23,
 Val: 68.3±0.14, Test: 67.5±0.47

Train
Val

Test

100 101

Adam Final Train 67.07±0.18,
 Val: 66.11±0.42, Test: 65.03±1.59

Train
Val

Test

(d) 256 Hidden neurons for all hidden layers. Results over initial 50 training epochs

Figure 13: OGB large-scale real-data example under either 128 or 256 hidden neurons for all hidden
layers. The setup is identical to Figure 7. It is clear that SVI or SVI-Adam still exhibits comparable
final accuracy and improved convergence at initial training stages under such variants. In particular,
SGD is sensitive to the number of hidden neurons, as its final accuracies under 128 hidden neurons
are clearly poorer than those by SVI and very different from SGD performance under 256 hidden
neurons. In contrast, SVI or SVI-Adam performs more consistently.

Final SVI-SGD SGD SVI-Adam Adam
Train Valid Test Train Valid Test Train Valid Test Train Valid Test

0.005 75.85 (0.07) 71.73 (0.1) 70.41 (0.16) 75.01 (0.02) 71.3 (0.05) 69.91 (0.08) 77.31 (1.02) 71.53 (0.17) 70.65 (0.53) 78.28 (1.12) 71.26 (0.11) 70.5 (0.23)
0.01 77.17 (0.37) 71.87 (0.06) 70.58 (0.14) 76.83 (0.32) 71.74 (0.07) 70.33 (0.14) 76.04 (0.35) 71.21 (0.17) 70.69 (0.29) 76.04 (1.15) 71.35 (0.12) 70.23 (0.06)

Initial SVI-SGD SGD SVI-Adam Adam
Train Valid Test Train Valid Test Train Valid Test Train Valid Test

0.005 63.76 (0.91) 63.48 (1.5) 63.91 (1.43) 62.05 (0.52) 62.7 (1.55) 62.45 (2.59) 66.26 (0.45) 65.64 (0.06) 65.58 (0.12) 67.58 (0.21) 66.67 (0.63) 66.2 (0.8)
0.01 64.76 (0.99) 64.06 (1.39) 64.22 (1.58) 63.46 (0.43) 63.2 (1.36) 63.64 (1.83) 67.41 (0.25) 67.49 (0.68) 67.17 (0.77) 67.56 (0.59) 67.28 (0.66) 67.12 (1.09)

Table 6: Classification accuracies on the large ogbn-arxiv dataset with larger learning rates by
SVI and SGD. The set up is identical to Figure 7. The performance of SVI is stable under larger
learning rate, with the same observed improvement over gradient-based method.

20

