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ABSTRACT

Humans continually expand their learned knowledge to new domains and learn
new concepts without any interference with past learned experiences. In contrast,
machine learning models perform poorly in a continual learning setting, where
input data distribution changes over time. Inspired by the nervous system learn-
ing mechanisms, we develop a computational model that enables a deep neural
network to learn new concepts and expand its learned knowledge to new domains
incrementally in a continual learning setting. We rely on the Parallel Distributed
Processing theory to encode abstract concepts in an embedding space in terms
of a multimodal distribution. This embedding space is modeled by internal data
representations in a hidden network layer. We also leverage the Complementary
Learning Systems theory to equip the model with a memory mechanism to over-
come catastrophic forgetting through implementing pseudo-rehearsal. Our model
can generate pseudo-data points for experience replay and accumulate new expe-
riences to past learned experiences without causing cross-task interference.

1 INTRODUCTION

Humans continually abstract concept classes from their input sensory data to build semantic descrip-
tions, and then update and expand these concepts as more experiences are accumulated Widmer &
Kubat (1996), and use them to express their ideas and communicate with each other Gennari et al.
(1989); Lake et al. (2015). For example, “cat” and “dog” are one of the first concept classes that
many children learn to identify. Most humans expand these concepts as concept drift occurs, e.g.,
incorporating many atypical dog breeds into the “dog” concept, and also incrementally learn new
concept classes, e.g. “horse” and “sheep,” as they acquire more experiences. Although this concept
learning procedure occurs continually in humans, continual and incremental learning of concept
classes remains a major challenge in artificial intelligence (AI). AI models are usually trained on a
fixed number of classes and the data distribution is assumed to be stationary during model execution.
Hence, when an AI model is trained or updated on sequentially observed tasks with diverse distri-
butions or is trained on new classes, it tends to forget what has been learned before due to cross-task
interference, known as the phenomenon of catastrophic forgetting in the literature French (1991).

Inspired by the Parallel Distributed Processing (PDP) paradigm McClelland et al. (1986); Mc-
Clelland & Rogers (2003), our goal is to enable a deep neural network to learn drifting concept
classes Gama et al. (2014) incrementally and continually in a sequential learning setting. PDP hy-
pothesizes that abstract concepts are encoded in higher layers of the nervous system McClelland &
Rogers (2003); Saxe et al. (2019). Similarly, and based on behavioral similarities between artificial
deep neural networks and the nervous system Morgenstern et al. (2014) , we can assume that the
data representations in hidden layers of a deep network encode semantic concepts with different
levels of abstractions. We model these representations as an embedding space in which semantic
similarities between input data points are encoded in terms of geometric distances Jiang & Conrath
(1997), i.e., data points that belong to the same concept class are mapped into separable clusters in
the embedding space. When a new concept is abstracted, a new distinct cluster should be formed in
the embedding space to encode that new class. Incremental concepts learning is feasible by track-
ing and remembering the representation clusters that are formed in the embedding space and by
considering their dynamics as more experiences are accumulated in new unexplored domains.

1



Under review as a conference paper at ICLR 2022

We benefit from the Complementary Learning Systems (CLS) theory McClelland et al. (1995) to
mitigate catastrophic forgetting. CLS is based on empirical evidences that suggest experience re-
play of recently observed patterns during sleeping and waking periods in the human brain helps to
accumulate the new experiences to the past learned experiences without causing interference Mc-
Clelland et al. (1995); Robins (1995). According to this theory, hippocampus plays the role of a
short-term memory buffer that stores samples of recent experiences and catastrophic forgetting is
prevented by replaying samples from the hippocampal storage to implement pseudo-rehearsal in the
neocortex during sleeping periods through enhancing past learned knowledge. Unlike AI memory
buffers that store raw input data point, e.g., samples of raw images, hippocampal storage can only
store encoded representations after some level of abstraction which suggests a generative nature.

Inspired by the above two theories, we expand a base deep neural classifier with a decoder net-
work, which is amended from a hidden layer, to form an autoencoder with the hidden layer as its
bottleneck. The bottleneck is used to model the discriminative embedding space. As a result of
supervised learning, the embedding space becomes discriminative, i.e. a data cluster is formed for
each concept class in the embedding space McClelland & Rogers (2003). These clusters can be con-
sidered analogous to neocortical representations in the brain, where the learned abstract concepts are
encoded McClelland et al. (1986). We use a multi-modal distribution to estimate this distribution.
We update this parametric distribution to accumulate new experiences to past learned experiences
consistently. Since our model is generative, we can implement the offline memory replay process in
the sleeping brain to prevent catastrophic forgetting McClelland et al. (1995); Rasch & Born (2013).
When a new task arrives, we draw random samples from the multi-modal distribution and feed them
into the decoder network to generate representative pseudo-data points. These pseudo-data points
are then used to implement pseudo-rehearsal for experience replay Robins (1995). We demonstrate
that the neural network can learn drifting conceptsincrementally while mitigating forgetting.

2 RELATED WORK

The problem of continual learning of incremental drifting concepts lies in the intersection of lifelong
learning to encode drifting concept classes and incremental learning to incorporate new concept
classes. In a lifelong learning setting, the number of classes are usually assumed to be fixed, but the
distribution of sequential tasks is non-stationary. In an incremental learning setting, concept classes
are learned sequentially while the conditional distribution for each concept class is stationary.

Continual learning: the major challenge of continual learning is tackling catastrophic forgetting.
Previous works in the literature mainly rely on experience replay Li & Hoiem (2018). The core idea
of experience replay is to implement pseudo-rehearsal by replaying representative samples of past
tasks along with the current task data to retain the learned distributions. Since storing these samples
requires a memory buffer, the challenge is selecting the representative samples to meet the buffer
size limit. For example, selecting uncommon samples that led to maximum effect in past experiences
has been found to be effective Schaul et al. (2016). However, as more tasks are learned, selecting
the effective samples becomes more complex. The alternative approach is to use generative models
that behave more similar to humans French (1999). Shin et al. (Shin et al. (2017)) use a generative
adversarial structure to mix the distributions of all tasks. It is also feasible to couple the distributions
of all tasks in the bottleneck of an autoencoder. The shared distribution then can be used to generate
pseudo-samples Rannen et al. (2017).Weight consolidation using structural plasticity Lamprecht &
LeDoux (2004); Zenke et al. (2017); Kirkpatrick et al. (2017) is another approach to approximate
experience replay. The idea is to identify important weights that retain knowledge about a task and
then consolidate them according to their relative importance for past tasks in the future.

Incremental learning:: forgetting in incremental learningstems from updating the model when
new classes are incorporated, rather concept drifts in a fixed number of learned classes. Hence, the
goal is to learn new classes such that knowledge about the past learned classes is not overwritten. A
simple approach is to expand the base network as new classes are observed. Tree-CNN Roy et al.
(2020) proposes a hierarchical structure that grows like a tree when new classes are observed. The
idea is to group new classes into feature-driven super-classes and find the exact label by limiting
the search space. As the network grows, the new data can be used to train the expanded network.
Sarwar et al. Sarwar et al. (2019) add new convolutional filters in all layers to learn the new classes
through new parameters. The alternative approach is to retain the knowledge about old classes in
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an embedding feature space. Rebuffi et al. Rebuffi et al. (2017) proposed iCarl which maps images
into a feature space that remains discriminative as more classes are learned incrementally. A fixed
memory buffer is used to store exemplar images for each observed class. Each time a new class is
observed, these images are used to learn a class-level representative vector in the feature space such
that the testing images can be classified using nearest neighbor with respect to these vectors.

Contributions: We develop a unified framework that addresses challenges of both incremental
learning and lifelong learning for the first time. Our idea is based on tracking and consolidating
the multimodal distribution that is formed by the internal data representations of sequential tasks
in a base neural network model hidden layers. We model this distribution as a Gaussian mixture
model (GMM) with time-dependent number of components. Concept drifts are learned by updating
the corresponding GMM component for a particular class and new concepts are learned by adding
new GMM components. We also make the model generative to implement experience replay. We
provide both theoretical and experimental results to justify why our algorithm is effective.

3 PROBLEM STATEMENT

Consider a learning agent which observes a sequence of observed tasks {Z(t)}Tt=1 Chen & Liu
(2016) and after learning each task moves forward to learn the next task. Each task is a classification
problem in a particular domain and each class represents a concept. The classes for each task can
be new unobserved classes, i.e., necessitating incremental learning Rebuffi et al. (2017), or drifted
forms of the past learned classes, i.e., necessitating lifelong learning Chen & Liu (2016), or poten-
tially a mixture of both cases. Formally, a task is characterized by a dataset D(t) = 〈X(t),Y (t)〉,
where X(t) = [xt1, . . . ,x

t
n] ∈ Rd×nt and Y (t) ∈ Rkt×nt are the data points and one-hot labels,

respectively. The goal is to train a time-dependent classifier function f (t)(·) : Rd →⊂ Rkt - where
kt is the number of classes for the t-th task and is fixed for each task- such that the classifier contin-
ually generalizes on the tasks seen so far. The data points x(t)

i ∼ q(t)(x) are assumed to be drawn
i.i.d. from an unknown task distribution q(t)(x). Figure 1 visualizes a high-level block-diagram of
this continual and dynamic learning procedure. The agent needs to expand its knowledge about all
the observed concepts such that it can perform well on all the previous learned domains.

Learning each task in isolation is a standard supervised learning problem. After selecting a suitable
parameterized family of functions f (t)

θ : Rd → Rkt with learnable parameters θ, e.g. a deep
neural network with learnable weight paramters θ, we can solve for the optimal parameters using
the empirical risk minimization (ERM): θ̂(t) = arg minθ ê

(t)
θ = arg minθ

∑
i Ld(f

(t)
θ (x

(t)
i ),y

(t)
i ),

where Ld(·) is a proper loss function. If nt is large enough, the empirical risk expectation would be
a good approximation of the real expected risk function e(t)(θ) = Ex∼q(t)(x)(Ld(fθ(t)(x), f(x))).
As a result, if the base parametric family is rich and complex enough for learning the task function,
then the ERM optimal model generalizes well on unseen test samples that are drawn from q(t)(x).

For the rest of the paper, we consider the base model fθ(t) to be a deep neural network with an
increasing output size to encode incrementally observed classes. As stated, we rely on the PDP
paradigm. Hence, we decompose the deep network into an encoder sub-network φv(·) : Rd → Z ⊂
Rf with learnable parameter v, e.g., convolutional layers of a CNN, and a classifier sub-network
hw(·)kt : Rf → Rkt with learnable parameters w, e.g., fully connected layers of a CNN, where Z
denotes the embedding space in which the concepts will be be formed as separable clusters.

The concepts for each task are known a priori and hence new nodes are added to the classifier sub-
network output to incorporate the new classes at time t. We use a softmax layer as the last layer
of the classifier subnetwork. Hence, we can consider the classifier to be a a maximum a posteriori
(MAP) estimator after training. This means that the encoder network transforms the input data
distribution into an internal multi-modal distribution with kt modes in the embedding space because
the embedding space Z should be concept-discriminative for good generalization. Each concept
class is represented by a single mode of this distribution. We use a Gaussian mixture model (GMM)
to model and approximate this distribution (see Figure 1, middle panel). Catastrophic forgetting
is the result of changes in this internal distribution when changes in the input distribution leads to
updating the internal distribution heuristically. Our idea is to track changes in the data distribution
and update and consolidate the internal distribution such that the acquired knowledge from past
experiences is not overwritten when new experiences are encountered and learned in the future.
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Figure 1: Block-diagram visualization of the pro-
posed Incremental Learning System including the
learning procedure steps. (Based viewed enlarged
on screen and in color. Enlarged version is in-
cluded in the Appendix)

The main challenge is to adapt the network
f

(t)
θ (·) and the standard ERM training loss

such that we can track the internal distribution
continually and accumulate the new acquired
knowledge consistently to the past learned
knowledge with minimum interference. For
this purpose, we form a generative model by
amending the base model with a decoder ψu :
Z → Rd, with learnable parameters u. This
decoder maps back the internal representations
to reconstruct the input data point in the in-
put space such that the pair (φu, ψu) forms an
autoencoder. According to our previous dis-
cussion, a multi-modal distribution would be
formed in the bottleneck of the autoencoder
upon learning each task. This distribution en-
codes the learned knowledge about the con-
cepts that have been learned from past expe-
riences so far. If we approximate this distri-
bution with a GMM, we can generate pseudo-
data points that represent the previously learned
concepts and use them for pseudo-rehearsal.
For this purpose, we can simply draw samples

from all modes of the GMM and feed these samples into the decoder subnetwork to generate a
pseudo-dataset (see Figure 1). After learning each task, we can update the GMM estimate such
that the new knowledge acquired is accumulated to the past gained knowledge consistenly to avoid
interference. By doing this procedure continually, our model is able to learn drifting concepts incre-
mentally. Figure 1 visualizes this repetitive procedure in this lifelong learning setting.

4 PROPOSED ALGORITHM

When the first task is learned, there is no prior experience and hence learning reduces the following:

min
v,w,u

Lc(X(1),Y (1)) = min
v,w,u

1

n1

n1∑
i=1

(
Ld
(
hw(φv

(
x

(1)
i )
)
,y

(1)
i

)
+ γLr

(
ψu

(
φv(x

(1)
i )
)
,x

(1)
i

))
,

(1)
where Ld is the discrimination loss, e.g., cross-entropy loss, Lr is the reconstruction loss for the
autoencoder, e.g., `2-norm, Lc is the combined loss, and γ is a trade-off parameter between the two
loss terms. When the first task is learned, also any future task, according to the PDP hypothesis,
a multi-modal distribution p(1)(z) =

∑k1
j=1 αjN (Z|µj ,Σj) with k1 components is formed in the

embedding space. We assume that this distribution can be modeled with a GMM. Since the labels
for the input task data samples are known, we use MAP estimation to recover the GMM parameters
(see Appendix for details of this process). Let p̂(1)(z) denotes the estimated distribution.

As subsequent tasks are learned, the internal distribution should be updated continually to accumu-
late the new acquired knowledge. Let kt = ktold + ktnew, where ktold denotes the number of the
previously learned concepts that exist in the current task and ktnew denotes the number of the new
observed classes. Hence, the total number of learned concepts until t = T is kTTot =

∑T
t=1 k

t
new.

Also, let the index set NTTot = {1, . . . , kTTot} denotes an order on the classes Cj , with j ∈ NTTot,
that are observed until t = T . Let NT = NTold ∪ NTnew = {i1, . . . , ikT } ⊂ NTTot contains the kT
indices of the existing concepts in Z(T ). To update the internal distribution after learning Z(T ),
the number of distribution modes should be updated to kTTot. Additionally, catastrophic forgetting
must be mitigated using experience replay. We can draw random samples from the GMM distribu-
tion zi ∼ p̂(T−1)(z) and then pass each sample through the decoder ψ(zi) to generate pseudo-data
points for pseudo-rehearsal. Since each particular concept is represented by exactly one mode of the
internal GMM distribution, the corresponding pseudo-labels for the generated pseudo-data points are
known. Moreover, the confidence levels for these labels are also known from the classifier softmax
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layer. To generate a clean pseudo-dataset, we can set a threshold τ and only pick the pseudo-data
points for which the model confidence level is more than τ . We also generate a balanced pseudo-
dataset with respect to the learned classes. Doing so, we ensure suitability of a GMM with kTTot
components to estimate the empirical distribution accurately after learning the subsequent tasks.

Let D̃(t) = 〈ψ(Z̃(t)), Ỹ (t)〉 denotes the pseudo-dataset, generated at time t after learning the tasks
{Z(s)}t−1

s=1. We form the following objective to learn the task Z(t), ∀t ≥ 2:

min
v,w,u

Lc(X(t),Y (t)) + Lc(X̃(t), Ỹ (t)) + λ
∑
j∈Nt

old

D
(
φv(q

(t)(X(t))|Cj), p̂(t−1)(Z̃(t))|Cj)
)
, (2)

where D(·, ·) is a probability distribution metric and λ is a trade-off parameter.

Algorithm 1 ICLA (λ, γ, τ)

1: Input: labeled training datasets in a sequence
2: D(t) = ({X(t),X(t))} for t =≥ 1
3: Initial Learning: learn the first task via Eq. equa-

tion 1
4: Fitting GMM:
5: estimate p̂(1)J (·) using {φv(x

(1)
i ),y

(1)
i }

nt
i=1

6: For t ≥ 2
7: Generate the pseudo dataset:
8: D̃(t) = {(x̃(t)

i = ψ(z̃
(t)
i ), ỹ

(t)
i )}

9: (z̃
(t)
i , ỹ

(t)
i ) ∼ p̂(t−1)(·)

10: Task learning:
11: learnable parameters are updated via

Eq. equation 2
12: Estimating the internal distribution:
13: update p̂(t)(·) with k(t)Tot components via the

14: combined samples {φv(x
(t)
i ), φv(x̃

(t)
i )}nt

i=1

15: EndFor

The first and the second terms in Eq. equa-
tion 2 are combined loss terms for the current
task training dataset and the generated pseudo-
dataset that represent the past tasks, defined
similar to Eq. equation 1. The second term
in Eq. equation 2 mitigates catastrophic for-
getting through pseudo-rehearsal process. The
third term is a crucial term to guarantee that our
method will work in a lifelong learning setting.
This term enforces that each concept is encoded
in one mode of the internal distribution across
all tasks. This term is computed on the sub-
set of the concept classes that are shared be-
tween the current task and the pseudo-dataset,
i.e, Ntold, to enforce consistent knowledge ac-
cumulation. Minimizing the probability met-
ric D(·, ·) enforces that the internal conditional
distribution for the current task φv(q(t)(·|Cj)),
conditioned on a particular shared concept Cj ,
to be close to the conditional shared distribution
p(t−1)(·|Cj). Hence, both form a single mode

of the internal distribution and concept drifting is mitigated. Conditional matching of the two dis-
tributions is feasible as we have access to pseudo-labels. Adding this term guarantees that we can
continually use a GMM with exactly k(t)

Tot components to capture the internal distribution in this life-
long learning setting. The remaining task is to select a suitable probability distance metric D(·, ·)
for solving Eq. equation 2. Wasserstein Distance (WD) metric has been found to be an effective
choice for deep learning due to its applicability for gradient-based optimization Courty et al. (2017).
To reduce the computational burden of computing WD, we use the Sliced Wasserstein Distance
(SWD) Bonneel et al. (2015). (for details on the SWD loss, please refer to the Appendix). Our
Incremental Concept Learning Algorithm (ICLA) is summarized in Algorithm 1.

5 THEORETICAL ANALYSIS

We demonstrate that ICLA minimizes an upperbound for the expected risk of the learned concept
classes across all the previous tasks for all t. We perform our analysis in the embedding space as an
input space and consider the hypothesis class H = {hw(·)|hw(·) : Z → Rkt ,w ∈ RH}. Let et(w)
denote the real risk for a given function hw(t)(·) ∈ H when used on task Z(t) data representations
in the embedding space. Similarly, ẽt(w) denotes the observed risk for the function hw(t)(·) when
used on the pseudo-task, generated by sampling the learned GMM distribution p̂(t−1). Finally, let
et,s(w) denote the risk of the model hbmw(t)(·) when used only on the concept classes in the set
Ns ⊂ NtTot, for ∀s ≤ t, i.e., task specific classes, after learning the task Z(t).

Theorem 1 : Consider two tasks Z(t) and Z(s) in our framework, where s ≤ t. Let hw(t) be an
optimal classifier trained for the Z(t) using the ICLA algorithm. Then for any d′ > d and ζ <

√
2,

there exists a constant number N0 depending on d′ such that for any ξ > 0 and min(ñt|Ns
, ns) ≥
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max(ξ−(d′+2),1) with probability at least 1− ξ for hw(t) ∈ H, the following holds:

es(w) ≤et−1,s(w) +W (p̂(t−1)
s , φ(q̂(s))) + eC(w

∗) +

√(
2 log(

1

ξ
)/ζ
)(√ 1

ñt|Ns

+

√
1

ns

)
, (3)

where W (·, ·) denotes the WD metric, ñt|Ns
denotes the pseudo-task samples that belong to the

classes in Ns, φ(q̂(s)(·)) denotes the empirical marginal distribution for Z(s) in the embedding,
p̂

(t−1)
s is the conditional empirical shared distribution when the distribution p̂(t−1)(·) is conditioned

to the classes in Ns, and eC(w∗) denotes the optimal model learned for the combined risk of the
tasks on the shared classes in Ns, i.e.,w∗ = arg minw eC(θ) = arg minw{et,s(w) + es(w)}. This
is a model with the best performance if the tasks could be learned simultaneously.

Proof : included in the Appendix due to page limit.

We then use Theorem 1 to conclude the following lemma:

Lemma 1 : Consider the ICLA algorithm after learning Z(T ). Then all tasks t < T and under the
conditions of Theorem 1, we can conclude the following inequality:

et(w) ≤ eT−1,t(w) +W (φ(q̂(t)), p̂
(t)
t ) + eC(w

∗) +

T−2∑
s=t

W (p̂
(s)
t , p̂

(s+1)
t ) +

√(
2 log(

1

ξ
)/ζ
)(√ 1

nt
+

√
1

ñt|Nt

)
,

(4)

Proof : included in the Appendix due to page limit.

Lemma 1 concludes that when a new task is learned at time t = T , ICLA updates the model
parameters conditioned on minimizing the upper bound of et for all t < T in Eq. 4. The last
term in Eq. 4 is a small constant term when the number of training data points is large. If the
network is complex enough so that the PDP hypothesis holds, then the classes would be separable
in the embedding space and in the presence of enough labeled samples, the terms eT−1,t(w) would
be small because eT−1(w) is minimized using ERM. The term W (φ(q̂(t)), p̂

(t)
t ) would be small

because we deliberately fit the GMM distribution p̂(t) to the distribution φ(q̂(t)) in the embedding
space when learning the task Z(t). Existence of this term indicates that our algorithm requires
that internal distribution can be fit with a GMM distribution with high accuracy and this limits
applicability of our algorithm. Note however, all parametric learning algorithms face this limitation.
The term eC(w

∗) is small because we continually match the distributions in the embedding space
class-conditionally. Hence, if the model is trained on task Z(t) and the pseudo-task at t− T , it will
perform well on both tasks. Note that this is not trivial because if the wrong classes are matched
across the domains in the embedding space, the term eC(w

∗) will not be minimal. Finally, the
sum term in Eq. 4 indicates the effect of experience replay. Each term in this sum is minimized at
s = t+1 because we draw random samples from p̂

(t)
t and then train the autoencoder to enforce p̂(t)

t ≈
ψ(φ(p̂

(t)
t )). Since all the terms in the upperbound of et(w) in Eq. 4 are minimized when a new task is

learned, catastrophic forgetting of the previous tasks will be mitigated. Another important intuition
from Eq. 4 is that as more tasks are learned after learning a task, the upperbound becomes looser as
more terms are accumulated in the sum which enhances forgetting. This observation accords with
our intuition about forgetting as more time passes after initial learning time of a task or concept.

6 EXPERIMENTAL VALIDATION

To the best of knowledge, no prior method has been developed to address challenges of both con-
tinual and incremental learning setting at the same time. For this reason, we validate our method
on two sequential task learning settings: incremental learning and continual incremental learning.
Incremental learning is a special case of our learning setting when each concept class is observed
only in one task and concept drift does not exist. We use this special case to compare our method
against existing incremental learning approaches in the literature to demonstrate that our method is
comparably effective.Our implementation is available as a supplementary.

Evaluation Methodology: We use the same network structure for all the methods for fair compar-
ison. To visualize the results, we generate learning curves by plotting the model performance on
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the testing split of datasets versus the training epochs, i.e, to model time. We report the average
performance of five runs. Visualizing learning curves allows studying temporal aspects of learning.
For comparison, we provide learning curves for: (a) full experience replay (FR) which stores the
whole training data for all the previous tasks and (b) experience replay using a memory buffer (MB)
with a fixed size, similar to Li et. al (Li & Hoiem (2018)). At each time-step, the buffer stores an
equal number of samples per concept from the previous tasks. When a new task is learned, a portion
of old stored samples are discarded and replaced with samples from the new task to keep the buffer
size fixed. FR serves as a best achievable upperbound to measure the effectiveness of our method
against the upperbound. For details about the experimental setup, please refer to the Appendix.

6.1 INCREMENTAL LEARNING

The concept classes are encountered only at one task in incremental learning. We design two incre-
mental learning experiments using the MNIST and the Fashion-MNIST datasets. Both datasets are
classification datasets with ten classes. MNIST dataset consists of gray scale images of handwritten
digits and Fashion-MNIST consists of images of common fashion products. We consider an incre-
mental learning setting with nine tasks for the MNIST dataset. The first task is a binary classification
of digits 0 and 1 and each subsequent task involves learning a new digit. The experimental setup for
Fashion-MNIST dataset is similar, but we considered four tasks and each task involves learning two
fashion classes. We use a memory buffer with the fixed size of 100 for MB. We build an autoencoder
by expanding a VGG-based classifier by mirroring the layers.

Figure 2 presents results for the designed experiments. For simplicity, we have provided condensed
results for all tasks in a single curve. Each task is learned in 100 epochs and at each epoch, the model
performance is computed as the average classification rate over all the classes, observed before. We
report performance on the standard testing split of each dataset for the observed classes. Figure 2a
and present the learning curves for the MNIST experiments. Similarly, Figure 2b present learning
curves for the Fashion-MNIST experiments. We can see in both figures that FR (dashed blue curves)
leads to superior performance. This is according to expectation but as we discussed, the challenge
is the requirement for a memory buffer with an unlimited size. The buffer cannot have a fixed
size as the number of data points grows when more tasks are learned. MB (solid yellow curves) is
initially somewhat effective and comparable with ICLA, but as more tasks are learned, forgetting
effect becomes more severe. This is because fewer data points per task can be stored in the buffer
with fixed size as more tasks are learned. As a result, the stored samples would not be sufficiently
representative of the past learned tasks. In comparison, we can generate many pseudo-data points.

We can also see in Figure 2a and Figure 2b that ICLA (dotted green curves) is able to mitigate
catastrophic forgetting considerably better than MB and the performance difference between ICLA
and MB increases as more tasks are learned. We also observe that ICLA is more effective for
MNIST dataset. This is because FMNIST data points are more diverse. As a result, generating
pseudo-data points that look more similar to the original data points is easier for the MNIST dataset
given that we are using the same network structure for both tasks. Another observation is that the
major performance degradation for ICLA occurs each time the network starts to learn a new concept
class as initial sudden drops. This degradation occurs due to the existing distance between the
distributions p̂(T−1)

J,k and φ(q(s)) at t = T for s < T . Although ICLA minimizes this distance, the
autoencoder is not ideal and this distance is non-zero in practice, leading to forgetting effects.

For comparison against existing works, we have listed our performance and a number of methods
for incremental learning on MNIST in Table 3. Two sets of tasks for incremental learning setting
have been designed using MNIST in the literature: 5 tasks (5T) setting and 2 tasks (2T) setting. In
the 2T setting, two tasks are define involving digits (0−4) and (5−9). In the 5T setting, five binary
classification tasks are defined involving digits (0, 1) to (8, 9). We have compared our performance
against several methods, representative of prior works: CAB He & Jaeger (2018), IMM Lee et al.
(2017), OWM Zeng et al. (2019), GEM Lopez-Paz & Ranzato (2017), iCarl Rebuffi et al. (2017),
GSS Aljundi et al. (2019), DGR Shin et al. (2017), and MeRGAN Wu et al. (2018). The CAB,
IMM, and OWM methods are based on regularizing the network weights. The GEM, iCarl, and
GSS methods use a memory buffer to store selected samples. Finally, DGR and MeRGAN methods
are based on generative replay similar to ICLA but use adversarial learning. We have reported the
classification accuracy on the ten digit classes after learning the last task in Table 3. A memory
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(a) FR vs. MB (b) FR vs. ICLA (c) FR (d) ICLA

Figure 4: Learning curves for the five continual incremental learning tasks, designed using the
permuted MNIST tasks (a) FR (solid) vs. MB (dotted), (b) FR (solid) vs. ICLA (dotted); UMAP
visualization of (c) FR and (d) ICLA in the embedding space. (Best viewed in color on screen. See
Appendix for enlarged versions.)

buffer with a fixed size of 100 is used for GEM, iCarl, and GSS. Following these works, an MLP
with two layers is used as the base model for fair comparison.

(a) MNIST (b) FMNIST

Figure 2: Learning curves for the incremental
learning experiments (a) MNIST and (b) Fashion-
MNIST (FMNIST) datasets; (c) MNIST per-
formance comparison (Best viewed in color on
screen. See Appendix for enlarged versions.)

We observe in Table 3 that when the buffer size
is small, buffer-based methods perform poorly.
Methods based on weight regularization per-
form quite well but note that these methods
limit the network learning capacity. As a result,
when the number of tasks grow, the network
cannot be used to learn new tasks. Generative
methods, including ICLA, perform better com-
pared to buffer-based methods and at the same
time do not limit the network learning capacity
because the network weights can change after
generating the pseudo-dataset. Although ICLA
has the state-of-the-art performance for these
tasks, there is no superior method for all con-
ditions, because by changing the experimental
setup, e.g., network structure, dataset, hyper-
parameters such as memory buffer, etc, a dif-

ferent method may have the best performance result. However, we can conclude that ICLA has a
superior performance when the network size is small and using a memory buffer is not possible.

6.2 CONTINUAL INCREMENTAL LEARNING

Method 2T 5T
CAB He & Jaeger (2018) 94.9±0.3 -

IMM Lee et al. (2017) 94.1±0.3 -
OWM Zeng et al. (2019) 96.3±0.1 -

GEM Lopez-Paz & Ranzato (2017) - 78.0
iCarl Rebuffi et al. (2017) - 81.0
GSS Aljundi et al. (2019) - 61.0
DGR Shin et al. (2017) 88.7±2.6 -

MeRGAN Wu et al. (2018) 97.0 -

ICLA 97.2±0.2 91.6±0.4

Figure 3: Classification accuracy for MNIST.

Permuted MNIST task is a common supervised
learning benchmark for sequential task learn-
ing Kirkpatrick et al. (2017). The sequential
tasks are generated using the MNIST dataset.
Each task Z(t) is generated by rearranging the
pixels of all images in the dataset using a fixed
random predetermined permutation transform
and keeping the labels as their original value.
As a result, we can generate many tasks that are
diverse, yet equally difficult. As a result, these
tasks are suitable for performing controlled ex-
periments. Since no prior work has addressed

incremental learning of drifting concepts, we should design a suitable set of tasks.

We design continual incremental learning tasks that share common concepts using five permuted
MNSIT tasks. The first task is a binary classification of digits 0 and 1 for the MNIST dataset.
For each subsequent task, we generate a permuted MNIST task but include only the previously seen
digits plus two new digits in the natural number order, e.g., the third task includes permuted versions
of digit 0 − 5. This means that at each task, new forms of all the previously learned concepts are
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encountered, i.e, we need to learn drifting concepts, in additional to new tasks. Hence, the model
needs to expand its knowledge about the previously learned concepts while learning new concepts.
We use a memory buffer with size of 30000 for MB. Due to the nature of these tasks, we use a multi-
layer perceptron (MLP) network.Figure 4 presents learning curves for the five designed permuted
MNIST tasks. In this figure, the learning curve for each task is illustrated with a different color
and different line styles are used to distinguish the different methods (for enlarged versions, please
refer to the Appendix). At each epoch time-step, model performance is computed as the average
classification rate on the standard testing split of the current and all the past learned tasks.

Figure 4a presents learning curves for MB (dotted curves) and FR (solid curves). Unsurprisingly,
FR leads to almost perfect performance. We also observe MB is less effective in this setting and
catastrophic forgetting is severe for MB beyond the second task. The reason is that the concepts are
more diverse in these tasks. As a result, it is more challenging to estimate the input distribution using
a fixed number of stored samples that also decrease due to a fixed buffer size. We can conclude that
as tasks become more complex, a larger memory buffer will be necessary which poses a challenge
for MB. Figure 4b presents learning curves for FR (solid curves) and MB (dotted curve). As can
be seen, ICLA is able to learn drifting concepts incrementally. Again, major forgetting effect for
ICLA occurs as a sudden performance drop when learning a new task starts. This observation
demonstrates that an important vulnerability for ICLA is the structure of the autoencoder that we
build. This can be deduced from our theoretical result because an important condition for tightness
of the provided bound in Lemma 1 is that we have: ψ ≈ φ−1. Both our theoretical and experimental
results suggest that if can build auto-encoders that can generate pseudo-data points with high quality,
incremental learning can be performed using ICLA. In other words, learning quality depends on the
generative power the base network structure. Finally, we also observe that as more tasks are learned
after learning a particular task, model performance on that particular task degrades more. This
observation is compatible with the nervous system as memories fade out when time passes.

In addition to requiring a memory buffer with an unlimited size, we also demonstrate that an is-
sue for FR is inability to identify concepts across the tasks in the embedding space. We use the
UMAP McInnes et al. (2018) tool to reduce the dimensionality of the data representations in the
embedding space to two for 2D data visualization. We illustrated the testing split of data for all the
tasks in the embedding space Z in Figure 4c for FR and Figure 4d for ICLA when the final task
is learned. In these figures, each color corresponds to one of the digits {0, 1, . . . , 9}. As expected
from the learning curves, data points for digits form separable clusters for both methods. This result
verifies that the PDP hypothesis holds in these experiments and hence the internal distribution can
be modeled using a GMM. The important distinction between FR and ICLA is that FR has led to the
generation of distinct clusters for each concept class per task. This means that each concept class
has not been learned internally as one concept and FR learns each concepts as several distinct con-
cepts across the domains. This observation also serves as an ablative study for our method because
it demonstrates that matching distributions class-conditionally in the embedding space is necessary
for our method to work, as justified by the theoretical analysis.

In figure 4d, we observe that ten clusters for the ten observed concepts are formed when ICLA is
used. This observation demonstrates that ICLA is able to track modes of the GMM successfully as
more tasks are learned. ICLA is also able to build concept classes that are semantically meaningful
across all tasks based on the labels. This is the reason that we can learn new classes incrementally
in a continual lifelong learning scenario. In other words, as opposed to FR, ICLA encodes each
cross-task concept in a single mode of the internal GMM distribution. This allows for expanding
concepts for cross-domain abstraction similar to humans when new forms of concepts are observed.

7 CONCLUSIONS

Inspired by the CLS theory within the PDP paradigm, we developed an algorithm for continual
incremental learning of concepts. Our algorithm is based on modeling the internal distribution of
input data as a GMM and then updating the GMM as new experiences are acquired. We track this
distribution to accumulate the new learned knowledge to the past learned knowledge consistently.
We expand the base classifier model to make a generative model to allow for generating a pseudo-
dataset to represent past learned tasks. The pseudo-dataset is used for pseudo-rehearsal to implement
experience replay. We provided theoretical and empirical result on three benchmark datasets to
validate our algorithm. Future works includes extension to domains with unlabeled data.
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A APPENDIX

A.1 COGNITIVE MODELING BACKGROUND

Our work is inspired by the “complementary learning systems” (CLS) theory within the “parallel
distributed processing’ (PDP) paradigm.

A.2 PARALLEL DISTRIBUTED PROCESSING

Parallel distributed processing (PDP) approach in cognitive science tries to explain mental phenom-
ena using structures similar to artificial neural networks McClelland et al. (1986) which were his-
torically inspired by biological neurons and their parallel processing ability in low-level structures
of the nervous system. Within this framework, learning process is modeled as adjusting weights in
a network according to various rules such as Hebbian learning Song et al. (2000). PDP models data
representations in the nervous system as distributed representations that are encoded in the neural
activation functions Hinton et al. (1984) which is analogous to representing data in a semantically
meaningful embedding space. Hasson et al. Hasson et al. (2020) argue that although evolution trains
the biological neural networks blindly based on behavioral advantage, but the emerging behaviors
are similar to behaviors that are observed in the artificial neural networks. They argue that both
biological and artificial neural networks learn a meaningful embedding space by optimizing an ob-
jective function on densely sampled training data, i.e., empirical risk minimization. As a result,
the dimensions of the embedding space capture features that help to encode informative variations
across the input data points. We have based our work on this hypothesis. This means that when
we train an artificial neural networks for classification, data representations encode input data sim-
ilarity in terms of belonging to the same class. This means that we model the data representation
distribution using a multi-modal distribution.

A.3 COMPLEMENTARY LEARNING SYSTEMS

We rely on the Complementary Learning Systems (CLS) theory McClelland et al. (1995) to prevent
catastrophic forgetting both when concepts drift or when new concepts are observed. CLS theory is
proposed within the PDP paradigm and hypothesizes that continual lifelong learning ability of the
nervous system is a result of a dual long- and short-term memory system. The hippocampus acts
as short-term memory and encodes recent experiences that are used to consolidate the knowledge
in the neocortex as long-term memory through offline experience replays during sleep Diekelmann
& Born (2010). The hippocampal experience replay is more of a generative process because the
input stimuli is absent during these replays. In our work the internal multimodal distribution mod-
els the neocortical consolidated knowledge. When a task is learned, this distribution is updated to
incorporate the new learned knowledge to update the long-term memory. The hippocampal experi-
ence replay is modeled when the pseudo-dataset is generated to prevent catastrophic forgetting using
pseudo-rehearsal. This pseudo-dataset is more representative of the recent memory, as demonstrated
by both our theoretical and empirical results.

A.4 BLOCK DIAGRAM OF THE PROPOSED METHOD

Figure 5 presents an enlarged version of the system block-diagram for more clarity on how the
PDP and the CLS theories are reflected in our model. Visualization of the data representation in
the embedding space in Figure 5 highlights the PDP hypothesis. An important condition for the
proposed method to work is that the PDP hypothesis holds. This means that the concepts are formed
as clusters in the embedding. As a result, the task data in the embedding would follow a GMM
distribution and the number of components of this GMM is equal to the number of observed classes.
As a result, the second term in Eq. (3) is the distance between the empirical and the real distributions
for a GMM. Hence, the second term is minimized by fitting a GMM on the drawn distribution
samples. Similar to all the parametric algorithms, our method works only if the assumption about
the data distribution is correct. All parametric algorithms are limited in this sense.

After learning each task, we need to update the estimate of the internal GMM distribution in two
aspects for generating representative pseudo-dataset in the future. First, the number of components
should be updated to kt because new classes may be observed. Second, estimates for parameters
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Figure 5: Block-diagram Architecture of the proposed Incremental Learning System.

of each concept cluster, i.e., the mean and the variance of the corresponding Gaussian component,
should be updated to incorporate potential concept drifts. Updating this distribution models the
process of knowledge consolidation in the nervous system using recent experiences.

A.5 GMM ESTIMATION

Upon learning a task, the internal distribution will be updated according to the input distribu-
tion. The empirical version of the internal distribution is encoded by the training data samples
{(φv(x

(t)
i ),y

(t)
i )}nt

i=1, where with a slight abuse of notation, we use the same notation to denote the
pseudo-samples. We consider the distribution p(t)(z) to be a GMM with kt components:

p(t)(z) =

kt∑
j=1

αjN (z|µj ,Σj), (5)

where αj denotes the mixture weights, i.e., prior probability for each class, µj and Σj denote the
mean and co-variance for each component. Since we have labeled data points, we can compute
the GMM parameters using MAP estimates. Let Sj denote the support set for class j in the train-
ing dataset, i.e., Sj = {(x(t)

i ,y
(t)
i ) ∈ DS | arg maxy

(t)
i = j}. Then, the MAP estimate for the
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parameters would be:

α̂j =
|Sj |
nt

,

µ̂j =
∑

(x
(t)
i ,y

(t)
i )∈Sj

1

|Sj |
φv(x

(t)
i ), Σ̂j =

∑
(x

(t)
i ,y

(t)
i )∈Sj

1

|Sj |
(
φv(x

(t)
i )− µ̂j

)>(
φv(x

(t)
i )− µ̂j

)
.

(6)

We can use these estimates to draw samples from p̂(t)(·) to generate a representative pseudo-dataset
before learning the subsequent task.

A.6 PROOF OF THEOREM 1 AND LEMMA 1

Our proof is modeled after Redko et al. Redko et al. (2017). The proof by Redko et al. Redko et al.
(2017) is limited to the problem of domain adaptation in which the same classes exist across two
domains. We adapt the proof to work in our learning setting, where the two distributions share only
a subset the classes.

We first review the definition of the optimal transport. Let Ω ⊂ Rd be a measurable space and
P(Ω) denote the set of probability distributions that are defined over Ω. Given two distributions
p(·), q(·) ∈ P(Ω) and the cost function c : Ω2 → R+, the optimal transport distance between p(·)
and q(·) is defined as:

W (p, q) = inf
γ∈Π(p,q)

∫
Ω2

c(x,y)dγ(x,y), (7)

where Π(·, ·) denotes the set of all joint distributions over Ω2 that have marginal distributions p and
q. Optimal transport is well-defined for any proper selection of the cost function. In our proof, we
consider that the cost function has the specif form: c(x,y) = ‖η(x)−η(y)‖G , where η : Rd → Rd′

is an embedding function and ‖ · ‖G denotes the norm function in this space.

We will need the following lemma in our proof.

Lemma 2: Consider two distribution p, q ∈ P(Ω) and two functions hw, hw′ ∈ H, and the cost
function c(x,y) = ‖η(x)− η(y)‖G . Assume that the hypothesis space H is a Reproducing Kernel
Hilbert Space (RKHS) equipped with a kernel, induced by by the feature map η : Ω→ Rd′ . Let the
loss functionL(·, ·) to be a mathematical metric which is convex and bounded by 1. Additionally, we
assume that the loss function para metrically depends on ‖hw(x)− hw′(x)‖H. Then the following
inequality holds:

Ex∼p(Ld(hw′(x), hw(x)))− Ex∼q(Ld(hw′(x), hw(x))) ≤W (p, q) (8)

Proof: First note that since the difference hw(x) − hw′(x) lies in the hypothesis space, then the
loss function is nonlinear function that maps a member of the H to positive numbers. Using re-
sults from Saitoh (1997), we can deduce a scalar RKHS space G is formed. Following the above
assumptions, we can deduce:

Ex∼p(Ld(hw′(x), hw(x)))− Ex∼q(Ld(hw′(x), hw(x))) =

Ex∼p(〈L, η(x)− Ex∼q(〈L, η(x)〉G) =

〈Ex∼p(η(x))− Ex∼q(η(x)),L〉G ≤

‖L‖G‖Ex∼p(η(x))− Ex∼q(η(x))‖ = ‖
∫

Ω

ηd(p− q)‖G =∫
Ω2

‖(η(x)− η(y))dγ(x,y)‖G ≤∫
Ω2

‖η(x)− η(y)‖Gdγ(x,y) ≤

inf
γ∈Π(p,q)

∫
Ω2

‖η(x)− η(y)‖Gdγ(x,y) = W (p, q)

(9)

In the first and the second lines, we have used the reproducing property in G space. In the third and
fourth lines, we first used the property of the expectation and then inner-product property. In the
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fifth and sixth lines, we have used the property of the joint distribution and then the definition of the
optimal transport. We note that this proof is specific to a particular form of cost functions.

We also need the following result on convergence of the empirical distribution to the real distribution
in the optimal transport norm in our proof.

Theorem 2 (Theorem 1.1 Bolley et al. (2007)): consider that p(·) ∈ P(Ω) and∫
Ω

exp (α‖x‖22)dp(x) < ∞ for some α > 0. Let p̂(x) = 1
N

∑
i δ(xi) denote the empirical dis-

tribution that is built from the samples {xi}Ni=1 that are drawn i.i.d from xi ∼ p(x). Then for any
d′ > d and ξ <

√
2, there exists N0 such that for any ε > 0 and N ≥ No max(1, ε−(d′+2)), we

have:

P (W (p, p̂) > ε) ≤ exp(−−ξ
2
Nε2) (10)

We combine the above result and the previous lemma to prove Theorem 1.

Theorem 1: Consider two tasks Z(t) and Z(s) in our framework, where s ≤ t. Let hw(t) be an
optimal classifier trained for the Z(t) using the ICLA algorithm. Then for any d′ > d and ζ <

√
2,

there exists a constant number N0 depending on d′ such that for any ξ > 0 and min(ner,t|Ns
, ns) ≥

max(ξ−(d′+2), 1) with probability at least 1− ξ for hw(t) ∈ H, the following holds:

es(w) ≤et−1,s(w) +W (p̂(t−1)
s , φ(q̂(s))) + eC(w

∗)+√(
2 log(

1

ξ
)/ζ
)(√ 1

ner,t|Ns

+

√
1

ns

)
,

(11)

where W (·, ·) denotes the optimal transport distance, ner,t|Ns
denotes the subset of samples of the

pseudo-task that belong to the classes in Ns, φ(q̂(s)(·)) denotes the empirical marginal distribution
for Z(s) in the embedding space, p̂(t−1)

s denotes the conditional empirical shared distribution when
the distribution p̂(t−1)(·) is conditioned to the classes in Ns, and eC(w∗) denotes the optimal model
for the combined risk of the two tasks on the shared classes in Ns, i.e., w∗ = arg minw eC(θ) =
arg minw{et,s(w) + es(w)}.
Proof:

es(w) ≤ es(w∗) + Ex∼φ(q(s))(Ld(hw∗(x), hw(x))) ={
es(w

∗) + Ex∼φ(q(s))(Ld(hw∗(x), hw(x)))+

E
x∼p̂(t−1)

s
(Ld(hw∗(x), hw(x)))

− E
x∼p̂(t−1)

s
(Ld(hw∗(x), hw(x)))

}
≤

es(w
∗) + E

x∼p̂(t−1)
s

(Ld(hw∗(x), hw(x))) +W (p(t−1)
s , φ(q(s))) ≤

es(w
∗) + et−1,s(w) + et−1,s(w

∗) +W (p(t−1)
s , φ(q(s))) =

et−1,s(w) + eC(w
∗) +W (p(t−1)

s , φ(q(s))) ≤

et−1,s(w) + eC(w
∗) +W (p(t−1)

s , p̂(t−1)
s ) +W (p̂(t−1)

s , φ(q(s))) ≤

et−1,s(w) +W (p̂(t−1)
s , φ(q̂(s))) + eC(w

∗)+

W (p(t−1)
s , p̂(t−1)

s ) +W (φ(q̂(s)), φ(q(s))) ≤

et−1,s(w) +W (p̂(t−1)
s , φ(q̂(s))) + eC(w

∗)

+

√(
2 log(

1

ξ
)/ζ
)(√ 1

ñt|Ns

+

√
1

ns

)

(12)

In the above proof, fifth line is deduced from Lemma 1. In the sixth, we have used the triangular
inequality on the loss function. In the seventh line, we have used the definition of the joint optimal
model. In the lines eighth to tenth, we have used the triangular inequality on the optimal transport.
In the last two lines, we have used Theorem 2.

We can now use Theorem 1 to deduce Lemma 1.
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Lemma 1 : Consider the ICLA algorithm after learning Z(T ). Then all tasks t < T and under the
conditions of Theorem 1, we can conclude the following inequality:

et(w) ≤ eT−1,t(w) +W (φ(q̂(t)), p̂
(t)
t ) + eC(w

∗)+

T−2∑
s=t

W (p̂
(s)
t , p̂

(s+1)
t ) +

√(
2 log(

1

ξ
)/ζ
)(√ 1

nt
+

√
1

ñt|Nt

)
,

(13)

Proof : We consider Z(t) with empirical the distribution φ(q̂(t)) in the embedding space and
the pseudo-task with the distribution p̂(T−1) in Theorem 1. Applying the triangular inequality
on the term W (φ(q̂(t)), p̂

(T−1)
t ) recursively, i.e., W (φ(q̂(t)), p̂

(T−1)
t ) ≤ W (φ(p̂(t)), p̂

(T−2)
t ) +

W (p̂
(T−2)
t , p̂

(T−1)
t ) for all t ≤ s < T concludes Lemma 1.

A.7 DETAILS OF EXPERIMENTAL IMPLEMENTATION

A.7.1 DATASETS

We investigate the empirical performance of our proposed method using two commonly used bench-
mark datasets: MNIST (M) and Fashion-MNIST (U). MNIST is a collection of hand written digits
in 28 × 28 pixels with 60000 and 10000 training and testing data points, respectively. Fashion-
MNIST has similar properties but the images are more realistic. To generate permuted MNIST
tasks, we followed the literature and applied a fixed random permutation to all the MNIST data
points for generating each sequential task. We used cross entropy loss as the discrimination loss
and the Euclidean norm as the Reconstruction loss. We used Keras for implementation and ADAM
optimizer. We run our code on a cluster node equipped with 2 Nvidia Tesla P100-SXM2 GPU’s.

A.7.2 EVALUATION METHODOLOGY

All these datasets have their own standard testing splits. For each experiment, we used these testing
splits to measure performance of the methods that we report in terms of classification accuracy.
We used classification rate on the testing set of all the learned tasks to measure performance of the
algorithms. At each training epoch, we compute the performance on the testing split of these tasks
to generate the learning curves. We performed 5 learning trials on the training sets and reported the
average performance on the testing sets for these trials. We used brute force search to cross-validate
the parameters for each sequential task.

A.7.3 NETWORK STRUCTURE

For visual recognition experiments, we used a convolutional structure as spatial visual similarity can
be captured by convolutional structures. We used a VGG16-based encoder. The decoder subnetwork
is generated by mirroring this structure. We flatten the last convolutional layer response and used a
dense layer to form the embedding space with dimension 64. The classifier subnetwork is a single
layer with sigmoid.

Following the literature, we have used an MLP with two layers for tasks of Table 1. The first layers
has 100 nodes and the second layer has nodes equal to the number of learned concepts.

For permuted MNIST experiments, we used an MLP network. This selection is natural as the con-
cepts are related through permutations which can be learned with an MLP structure better. For this
reason, the images were normalized and converted to 784×1 vectors. The network had three hidden
layers with 512, 256, and 32 nodes, respectively. We used ReLu activation between the hidden lay-
ers and selected the third hidden layer as the embedding space. This selection is natural because the
last hidden layer, supposedly should respond to more abstract concepts. The decoder subnetwork is
generated by mirroring the encoder subnetwork and the classifier subnetwork is a one layer with 10
nodes and sigmoid activation.

A.8 ENLARGED FIGURES

For possibility of better inspection by readers, enlarged versions of Figure 2 and Figure 3 in the main
body of the paper are provided in this section.
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(a) MNIST (b) FMNIST

Figure 6: Learning curves for the incremental learning experiments (a) MNIST and (b) Fashion-
MNIST (FMNIST) datasets; (c) MNIST performance comparison (Best viewed in color on screen.
Enalarged version are included in the Appendix.)
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(a) FR vs. MB (b) FR vs. ICLA

(c) FR (d) ICLA

Figure 7: Learning curves for the five continual incremental learning tasks, designed using the
permuted MNIST tasks (a) FR (solid) vs. MB (dotted), (b) FR (solid) vs. ICLA (dotted); UMAP
visualization of (c) FR and (d) ICLA in the embedding space. (Best viewed in color on screen)
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