SpecEdge: Scalable Edge-Assisted Serving Framework
for Interactive LLMs

Jinwoo Park Seunggeun Cho Dongsu Han
KAIST KAIST KAIST
jinwoo05205280@kaist.ac.kr sgn.cho@kaist.ac.kr dhan.ee@kaist.ac.kr

Abstract

Large language models (LLMs) power many modern applications, but serving
them at scale remains costly and resource-intensive. Current server-centric systems
overlook consumer-grade GPUs at the edge. We introduce SpecEdge, an edge-
assisted inference framework that splits LLM workloads between edge and server
GPUs using a speculative decoding scheme, exchanging only token outputs over
the network. SpecEdge employs proactive edge drafting to overlap edge token
creation with server verification and pipeline-aware scheduling that interleaves
multiple user requests to increase server-side throughput. Experiments show
SpecEdge enhances overall cost efficiency by 1.91x through achieving 2.22x server
throughput, and reduces inter token latency by 11.24% compared to a server-only
baseline, introducing a scalable, cost-effective paradigm for LLM serving. The
code is available at https://github.com/kaist-ina/specedge

1 Introduction

Large language models (LLMs) have become integral to modern applications such as conversational
Al, code generation, and real-time content creation [Dubey et al., 2024, Lozhkov et al.,|2024, |Achiam
et al., 2023| [Touvron et al., 2023| Jiang et al.| 2023| Brown et al.|, 2020]. However, scaling LLM
deployments to meet growing demand remains challenging when balancing operational costs against
latency requirements.

A compelling opportunity exists to dramatically reduce LLM serving costs by leveraging consumer-
grade GPUs at the network edge. The GeForce RTX 4090 [Nvidia, [2025a] delivers up to 330.3
TFLOPS for FP16 tensor operations with FP16 accumulate [Nvidia, 2024a], exceeding the 312
TFLOPS of the data-center-class A100 [Nvidial, 2025b], at 14.43x lower cost [GCP} 2025/ |Vas, |2025].
With the widespread availability of these powerful edge devices [Valve, 2024} Nvidial 2024b]], an
edge-assisted inference approach that offloads computation to these cost-effective resources could
fundamentally transform the economics of LLM deployment.

Despite this opportunity, existing inference architectures fail to leverage these edge resources ef-
fectively. Current parallelization techniques [Shoeybi et al., [2019, Rasley et al., 2020, |/Aminabadi
et al.;|2022] that split computation within data centers break down over public internet conditions,
where high latency and limited bandwidth make frequent communication of intermediate results
impractical. Mainstream approaches like tensor and pipeline parallelism rely on high-bandwidth,
low-latency interconnects such as NVLink or InfiniBand [Nvidial 2025cld]. In wide-area networks
(WANS), transferring intermediate model states between edge and server GPUs quickly becomes
prohibitive, preventing meaningful collaboration between these heterogeneous resources.

In this paper, we present SpecEdge, the first practical edge-assisted inference framework that funda-
mentally reduces LLM serving costs by splitting computation between consumer-grade edge GPUs
and cloud servers. The core innovation of SpecEdge is its ability to effectively coordinate edge
and server resources over wide-area networks—a capability previously unattainable with traditional

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/kaist-ina/specedge

parallelization techniques. To achieve this, SpecEdge adopts a speculative decoding paradigm that
divides LLM inference into edge drafting and server verification, exchanging only token outputs
rather than full model states. This approach dramatically reduces bandwidth requirements while
minimizing communication rounds.

To make this edge-assisted paradigm practical in real-world deployment scenarios, SpecEdge im-
plements two key enabling techniques. Our Proactive Edge Drafting allows edge GPUs to continue
generating tokens while awaiting server verification, effectively masking network and verification
latency with local computation. Complementing this, our Server-side Pipeline-aware Scheduling
orchestrates verification requests from multiple users through intelligent batching to maintain high
GPU utilization. Together, these techniques ensure that the inherent cost advantages of edge-assisted
inference are not undermined by network constraints or inefficient resource utilization.

Our evaluation validates the effectiveness of this edge-assisted approach, demonstrating that SpecEdge
achieves 1.91x better cost efficiency while increasing server-side throughput by 2.22x and reducing
inter token latency by 11.24%. These improvements persist even under challenging wide-area
network conditions, outperforming server-only baselines with zero network delays. By effectively
harnessing widely available edge GPUs, SpecEdge establishes a new paradigm for scalable and
cost-effective LLM serving that addresses the growing computational demands of generative Al
applications.

2 Background and Related Work

LLM serving systems. Modern LLM frameworks address latency, throughput, and resource effi-
ciency challenges through various optimizations. DeepSpeed-Inference [Rasley et al., [2020] and
TensorRT-LLM [Nvidial 2024c] leverage low-level GPU optimizations, model parallelism, and
quantization, while vLLM [Kwon et al.| 2023] introduces PagedAttention for efficient memory man-
agement. Modern parallelization strategies [[Shoeybi et al., 2019} |/Aminabadi et al.,|2022]] enhance
the performance with multiple GPUs. However, these approaches depend on data-center GPUs
connected via specialized interconnects (InfiniBand, NVLink) with throughput exceeding hundreds
of GB/s [Nvidia, [2025c]—speeds unattainable over wide area networks (WANS).

Speculative decoding. Speculative decoding [Leviathan et al., [2023| |Chen et al., 2023]] reduces
latency by having a smaller auxiliary model generate multiple candidate tokens for parallel verification
by the main model. The process involves three phases: drafting candidates, verification, and
reconciliation for generated tokens. Recent advances have focused on more efficient drafting methods,
either using lighter auxiliary models or the target model with reduced parameters [Bhendawade et al.,
2024, |Cai et al.| 2024} [Li et al., 2024 Stewart et al., 2024] [Zhang et al.| 2023]].

Tree-based speculative decoding. Standard speculative decoding suffers from exponentially de-
clining acceptance rates as sequence length increases [[Leviathan et al., 2023 |Chen et al., 2023]].
Tree-based approaches [Miao et al., 2024, |Chen et al.,[2024] |Svirschevski et al.| 2024, |Cai et al., 2024,
Sun et al., 2024]] address this by exploring multiple paths simultaneously. Sequoia [Chen et al.l 2024]
and SpecExec [Svirschevski et al.,[2024] further optimize by pruning unpromising branches.

Distributed LLM serving. Split-inference approaches like Petals [Borzunov et al.l [2024] and
Helix [Mei et al., [2024] distribute model layers and pipeline requests across multiple devices,
improving throughput over memory offloading methods [Ren et al., 2021} [Pudipeddi et al., [2020]],
but introduce network delays that increase latency compared to data center solutions. Several
works [[Timor et al., 2025, [Liu et al.| 2025} McDanel, |2024] utilize multiple GPU devices within a
server node to overlap draft and verification tasks of speculative decoding for faster inference, yet
with an exchange of higher cost as they require additional server devices per query.

On-device LLM inference. Frameworks like MLC LLM [MLC team, [2023-2024]] and Web
LLM enable fully on-device inference with smaller or quantized models. While recent ap-
proaches [Svirschevski et al [2024] [Song et al 2024, Xue et al.l 2024] showcase the potential
of leveraging user devices, they compromise output quality and latency. In contrast, our approach
retains the high-quality verification stage on the server—achieving a hybrid solution that outperforms
purely centralized or fully local inference.

3 Problem and Motivation

Serving large language models (LLMs) presents significant computational challenges due to their
resource-intensive nature. While data centers rely on expensive H100 and A100 GPUs, abundant
computing resources exist at the edge in the form of consumer-grade GPUs. As Figure[I|demonstrates,
edge devices like the RTX 4090 and RTX 3090 generate tokens at approximately 30-50x lower cost
than server-class GPUs when running small but capable language models like Qwen2-0.5B. Despite
this cost advantage and widespread availability, current LLM serving architectures fail to incorporate
these edge resources, creating a substantial missed opportunity for distributed inference that could
reduce costs while maintaining high-quality LLM service.

Conventional split computing. One approach to utilizing
edge GPUs is split computation across edge and server 693
resources. Split computing has been extensively studied
in machine learning literature [Kang et al., 2017, [Zhou
et al., 2019, Wang et al.| 2020], predating transformer ar-
chitectures. Traditionally, this approach divides neural
network layers between server and edge, reducing server
computational load or minimizing network communica- 0z 014
tion by transmitting intermediate tensors rather than raw HIOOSXM A100PCle RTX4090 RTX3090
input data. However, this method is poorly suited for
LLM serving due to the unique characteristics of trans-
formers [[Vaswani, 2017]:

Token Cost ($/1M token)
S

Figure 1: Token generation cost compar-
ison with Qwen2-0.5B model.

Limitation #1: Excessive latency. While layer-wise splitting has been used in distributed peer-
to-peer systems [Borzunov et al 2024, |[Mei et al.| 2024] to enable serving large models otherwise
infeasible on consumer GPUs, these approaches prioritize feasibility over performance. This is
because, unlike earlier ML applications [He et al., 2016, |Redmon, 2016, Diwan et al., 2023]] that
typically involve only a few communication rounds, LLM applications require communication for
every generated token due to their autoregressive nature. In our distributed network setting (§5.3),
layer-wise splitting increases latency by 2.35x compared to the server-only solution.

Limitation #2: Ineffectiveness in reducing I/O. LLM inference is inherently constrained by memory
I/O [Pope et al.| [2023]], as generating a single token requires accessing the entire model’s parameters.
Transformer architectures, with operations like general matrix-vector multiplication (GEMV), have
low arithmetic intensity relative to their memory I/O demands. While layer-wise split computing
reduces computational load by offloading layers to the edge, it fails to alleviate the I/O-bound
nature of inference. A more effective approach is batch-verifying multiple candidate tokens, which
significantly reduces the I/O overhead per token and increases GPU throughput.

4 SpecEdge Design

Our goal is to combine consumer-grade edge GPUs with server resources for cost-efficient LLM
serving without compromising quality or latency.

4.1 Disaggregated LLM Decoding

To overcome conventional split computing limitations, we offload token drafting to edge GPUs while
keeping verification on servers. Unlike traditional LLM serving, where servers handle the entire
process, SpecEdge disaggregates speculative decoding into two distinct phases: edge-based drafting
and server-based verification.

In our novel design, edge GPUs generate candidate tokens and send them to the server, which verifies
them in a single forward pass. The server returns both the verified tokens and one additional token
to the edge device, which then updates its sequence, KV cache, and continues drafting. This cycle
repeats until an end-of-sequence token is generated. Critically, this approach preserves the exact
output distribution of the server model [Leviathan et al.,|2023]]—even when using different models
for drafting and verification, the final output is guaranteed to be sampled from the same distribution
as if generated by the server model alone.

|) N T 150
Server == k $ Y
= | ! >‘ : S 100
User ‘00 | I ﬁ £ 0
User ‘@0 [1 ﬂ L “‘E 0
User T | >ﬂ >f 1 ° ! 2Batch size3)
User Y l l{ >f ﬁ . . .
Figure 3: A speculative decoding
Figure 2: Abstract timeline of SpecEdge with draft (edge- cycle composed of draft and ver-
side) and verify (server-side) inference concept. ify stages.

As illustrated in Figure[2] this disaggregated approach enables the server to focus solely on verification
while edge devices handle the autoregressive drafting process. By shifting much of the drafting time
to inexpensive edge GPUs, we significantly reduce the overall serving cost while increasing server
throughput.

Figure [3] quantifies the potential advantage of this approach by showing that draft stages account
for the majority of the draft-verify cycle across different batch sizes. By offloading this dominant
component to edge devices, SpecEdge can substantially reduce server time and improve overall
system efficiency.

This disaggregated approach promises two fundamental advantages over conventional split computing:

¢ Resolving excessive latency (Limitation #1): Unlike layer-wise splitting that requires per-token
communication rounds, SpecEdge dramatically reduces network interaction by a speculative
decoding approach. This minimizes both the number of client-server round trips and the volume
of data transferred, eliminating the excessive latency inherent in traditional split approaches.

o Addressing 1/0 bottlenecks (Limitation #2): By enabling batch verification of multiple tokens in
a single server-side forward pass, SpecEdge amortizes the cost of model parameter access across
multiple token verifications. This increases the arithmetic intensity of each operation, directly
addressing the I/O-bound nature of LLM inference and substantially improving GPU throughput.

However, to fully realize these benefits, we must overcome two critical challenges that emerge when
separating drafting and verification across different devices:

o Potential latency increase: In conventional speculative decoding, drafting and verification happen
sequentially on the same device with minimal transition overhead. In our disaggregated setting,
naively implementing this sequence would add network round-trip delays to each draft-verify
cycle, potentially negating our latency advantages and deteriorating user experience.

e Risk of server underutilization: Without careful coordination, server GPUs would remain
idle while waiting for edge devices to complete drafting. This inefficiency could severely limit
throughput and undermine the cost benefits of our approach, particularly when serving multiple
concurrent users with varying workload patterns.

To unlock the full potential of disaggregated speculative decoding, SpecEdge introduces two key
innovations: Proactive edge drafting (§4.2)), which masks network latency by continuously generating
token candidates without waiting for verification results, and pipeline-aware scheduling (§4.3)), which
maximizes server GPU utilization by intelligently batching verification requests from multiple users.
Together, these techniques enable SpecEdge to achieve both low latency and high cost efficiency.

4.2 Proactive Draft Generation at the Edge

Our key insight is to eliminate the idle time by continuing draft generation during server verification.
The edge GPU performs two types of drafting: initial drafting to generate the first batch of candidate
tokens, and proactive drafting that continues during server verification. When the edge GPU sends n
candidate tokens to the server, it immediately continues drafting additional tokens without waiting
for verification results. If any token is rejected during verification, these proactively generated tokens
are discarded. However, when all n tokens are accepted and the server’s bonus token matches the
first proactively drafted token—a scenario we call “complete draft alignment”—these additional
tokens can be immediately utilized, effectively hiding network and verification latency. This approach
significantly reduces end-to-end latency by overlapping computation with communication, eliminating
waiting periods between draft-verify cycles. Simultaneously, it improves server throughput by

Expansion Head Expansion Head
» wﬁ g oo »
C—
EPer head Complete draft alignment Retained tokens

Xpansion
Draft tree submission Proactive draft tree expansion Post-verification update Next draft submission

Figure 4: Illustrative example of a proactive draft Figure 5: Post-verification update with complete
tree expansion. draft alignment and subsequent draft submission.

ensuring a continuous flow of verification requests, keeping expensive server GPUs highly utilized
rather than idle while waiting for edge devices to complete drafting.

Initial drafting. SpecEdge employs state-of-the-art tree-based drafting [Svirschevski et al.l 2024]].
However, SpecEdge is designed to be future-proof and not tied to any specific drafting technique.
It simply requires a draft phase that produces candidate tokens and is compatible with various
speculative decoding approaches, including tree-based methods [Chen et al.| 2024, Miao et al., [2024]],
lossy/lossless methods, and earlier single-sequence schemes [Leviathan et al., 2023| (Chen et al.,
2023]). As the field evolves, any advances in speculative decoding can be seamlessly integrated.

Proactive draft tree expansion. Unlike conventional speculative decoding that stops after initial
token generation, our approach continues drafting proactively to anticipate future server responses.
The expected gain from this proactive expansion can be expressed as:

E(Galn) = Palign . Pmatchlalign : (TM - 1) (1)
Hexpan
where Pyjign represents the probability of alignment between verified and drafted sequences,
Prawch 1 align 18 the probability that the server’s extra token matches an expansion head given alignment,
Tiraft 1s the total number of proactively drafted tokens, and Hexpan is the number of expansion heads
(leaf nodes from which drafting continues).

This formulation reveals a fundamental trade-off: increasing Heypa, improves alignment probability
(Paiign) but decreases the token preservation ratio (% — 1), while fewer heads reduce alignment
expan

probability but significantly increase preservation when alignment succeeds. Naively applying the
initial drafting strategy—treating every leaf node as an expansion head—yields negligible gains
despite maximizing Pig,. Our empirical results demonstrate a counterintuitive but optimal approach:
after generating the initial draft tree, SpecEdge identifies the single path with the highest cumulative
log probability and continues drafting exclusively from that node (Figure d). This focused strategy
maximizes expected gain by producing significantly higher returns when alignment occurs, despite
the reduced alignment probability.

Post-verification update. When server verification completes, the edge GPU receives both the
accepted tokens and one additional token generated during the server’s forward pass. At this point,
SpecEdge compares the server’s output with its proactively drafted tokens. Also, the edge updates its
draft model KV cache according to the accepted tokens.

If the server’s accepted tokens and additional token perfectly match a path in the proactively drafted
tree—a complete draft alignment—SpecEdge retains that branch and allows the edge to continue
drafting from this advanced position (Figure [5). This approach eliminates the need to regenerate
already-drafted tokens, generating a deeper draft for the next drafting round by efficiently reusing
prior computations.

If complete alignment fails—either because the verified path diverges from the proactive tree or
doesn’t reach a leaf node—SpecEdge discards the proactive work and reverts to initial drafting,
rebuilding the tree from the end of the verified sequence. While this scenario doesn’t benefit from
proactive drafting, the strategy still improves average performance by exploiting the successful
alignments when they occur.

4.3 Server-side Pipeline-aware Scheduling

Unlike conventional speculative decoding, where servers perform both drafting and verification,
SpecEdge dedicates server GPUs exclusively to verification. This separation allows the server to
focus on batch-based verification rather than token-by-token generation, significantly improving

resource utilization. However, this disaggregated approach creates a new scheduling challenge: while
the edge is busy drafting the next set of tokens, the server would idle if it only awaited verification
tasks from that same request. This pattern creates "bubbles" of unutilized compute capacity whenever
one part of the system is waiting on the other.

Pipeline-aware verification scheduling. SpecEdge eliminates computational inefficiencies by
interleaving verification tasks across multiple requests processed on separate edge devices. The
server continuously verifies completed draft batches from one set of requests while other requests
simultaneously generate new drafts on their respective edge devices. This pipelined approach ensures
immediate processing of incoming drafts, with verified requests promptly returning to their edge
devices for additional drafting, thereby freeing server resources for the next verification batch. By
aligning edge device count with server verification capacity, this orchestration effectively doubles
server throughput compared to conventional server-only configurations of equivalent batch size,
substantially enhancing both cost efficiency and GPU utilization.

For optimal pipeline efficiency, SpecEdge dynamically calibrates the relationship between server
verification time and edge operations using real-time performance measurements. The system
adjusts draft depth—the number of forward passes through the draft model—to satisfy the equation:
server verification time ~ edge drafting time + network round-trip time. This calibration ensures
token batches arrive at the server precisely as it completes verifying previous batches, eliminating
computational bubbles and minimizing end-to-end latency while maintaining maximum resource
utilization across the distributed system.

Processing heterogeneous requests. Server-side verification must efficiently handle batches contain-
ing requests with varying sequence lengths—a common scenario when multiple users are at different
stages in their generation process. SpecEdge addresses this challenge through two complementary
techniques. First, it employs custom attention masking for each token sequence in the batch, ensur-
ing the model attends only to valid tokens within that sequence while enabling parallel processing
without cross-sequence interference. Second, it implements KV cache padding to match the longest
sequence in the batch, avoiding the substantial computational cost of reconfiguring tensor shapes
during inference despite minimal overhead for shorter sequences.

This dual approach allows SpecEdge to process diverse verification requests in unified batches,
fully leveraging GPU parallelism while accommodating the asynchronous nature of edge-to-server
communication. The result is maximized server throughput without sacrificing the responsiveness
essential for interactive applications.

5 Evaluation

We evaluate SpecEdge in an edge-assisted server configuration against a server-only configuration
across various LLMs and datasets. Our findings are summarized as follows:

e SpecEdge enhances cost efficiency by an average of 1.91x compared to the server-only environment
through increasing server throughput by 2.22x on average.

e It reduces the inter token latency by an average of 11.24%, even with a 14.07 ms round-trip time
between the server and edge, outperforming the server-only configuration with no network delay.

Implementation and Setup. Our system’s edge-assisted configuration utilizes a server-side NVIDIA
A100 GPU connected to multiple edge-side NVIDIA RTX4090 GPUs over a wide-area network.
The number of RTX4090 GPUs scales with the number of concurrent requests (batch size x 2). In
our experiments, we measured an average round-trip time (RTT) of 14.07ms between the local edge
node and our Google Cloud instance. We conducted evaluations across various models and datasets
under diverse operating conditions. The code is available at https://github.com/kaist-ina/
specedge

Baseline and metrics. Our primary baseline is a server-only configuration employing tree-based
speculative decoding, supplemented by autoregressive decoding and a layer-split approach that
offloads part of the LLM’s layers to an edge device. SpecEdge can leverage either client-side or
edge GPUs; in this evaluation, we assume it uses consumer-grade GPUs from edge cloud providers.
Based on provider pricing [GCP, [2025| [Vas|, [2025], the server-side A100 40GB GPU costs $4.05
per hour, while running the 32B model requires an A100 80GB at $5.05 per hour. In comparison,
SpecEdge adds $0.35 per hour for each RTX 4090 used. Our key metrics include cost efficiency

https://github.com/kaist-ina/specedge
https://github.com/kaist-ina/specedge

Table 1: Throughput and cost efficiency comparison between SpecEdge and server-only method.

Gen. tokens per verify ~ Server Throughput (tok/s) Cost Efficiency (1k toks/$)

Target/Draft Task Server-only SpecEdge Server-only SpecEdge Server-only SpecEdge
Multi-turn bench 3.924+1.51 3.98+1.57 31.78 66.54 (2.09x) 28.25 50.60 (1.79x)
Translation 3.95+1.47 4.25+1.45 32.24 65.25 (2.02x) 28.66 49.47 (1.73x)

Qwen3 Summarization 3.73+1.60 3.95+1.61 29.70 67.53 (2.27x) 26.40 51.22 (1.94x)
14B/1.7B

QA 3.42+1.57 3.59+1.56 27.30 62.04 (2.27x) 24.26 47.09 (1.94x)
Math. 4.10+1.48 4.2541.49 32.84 72.93 (2.22x) 29.19 55.28 (1.89x)
RAG 3.73+1.53 3.83+£1.56 29.89 64.04 (2.14x) 26.57 48.78 (1.84x)

Multi-turn bench 3.87+1.41 4.41+2.25 33.45 69.58 (2.08x) 29.73 52.97 (1.78x)
Translation 3.79+1.48 4.67+2.34 32.88 69.00 (2.10x) 29.22 52.23 (1.79x)
Qwen3 Summarization 3.68+1.49 4.21+2.16 31.17 68.60 (2.20x) 27.71 52.16 (1.88x)

14B/0.6B QA 3.33+1.41 3.79+1.94 28.89 61.90 (2.14x) 25.68 46.98 (1.83x)
Math 3.90+1.57 5.27+2.27 33.53 83.88 (2.50x) 29.80 63.56 (2.13x)
RAG 3.53+1.52 4.29+2.16 30.07 69.51 (2.31x) 26.73 52.76 (1.97x)

Multi-turn bench 4.22+1.93 4.71+2.66 2496 5647 (2.26x) 17.80 35.38 (1.99x)
Translation ~ 4.08+1.97 5244281 2433 5879 (242x) 17.34 36.83 (2.12x)

Qwen3 Summarization 4.19+2.01 4.52+2.68 2433 5407 (242x) 17.65 33.90 (2.12x)
32B/1.78 QA 3.6241.05 3934249 2159 46.14 (2.14x) 1539 28.99 (1.88x)
Math. 460+1.93 540+2.78 27.52 64.01 (2.33x) 19.62 40.18 (2.05%)

RAG 3.89+2.05 4.19+2.60 22.67 4946 (2.18x) 16.16 31.05(1.92x)

o]
o
-
N
o

Autoregressive
60 Speculative Decoding
+SpecEdge

Autoregressive
Speculative Decoding
+SpecEdge

Autoregressive
Speculative Decoding
+SpecEdge

o))

o
o]
o

BS:1

N
o

85:1
X
“

£ BS:4
BS:4 s

N
o
&
S

o
w
o

2

o

10

-
o

5 90
Inter Token Latency (ms)

Token Cost ($/1M token)

Token Cost ($/1M token)
8

Token Cost ($/1M token)

50
Inter Token Latency (ms)

(a) 14B-1.7B (b) 14B-0.6B (c) 32B-1.7B

30 50
Inter Token Latency (ms)

Figure 6: Per token cost and inter token latency comparison between server-only baselines and
SpecEdge with varying batch size (BS) and model pairs.

(generated tokens per dollar), server throughput (generated tokens per unit time) and inter token
latency (user-perceived output latency). All configurations produce identical output distributions as
they use the same underlying models.

Models and data sets. We use four different LLMs: Qwen3-32B/14B [Teaml [2025]], Vicuna-
33B [Chiang et al., |2023]] and Llama2-13B-chat-hf [Touvron et al., 2023]]. Unless specifically noted,
all models are configured with a temperature setting of 0.7. For the draft models, we use five different
models: Qwen3-1.7B/0.6B [Team, [2025]], Sheared Llama-1.3B [Xia et al.| [2023]], Tiny Llama-
1.1B [Zhang et al.| 2024, and JackFram-160M [Miao et al., 2024]. Finally, we use SpecBench [Xia
et al.,[2024], C4 (en) [Raffel et al., |2020]], OpenAssistant conversations datasets [Kopf et al.l 2024]],
WikiText-2 [Merity et al.,|2016]], and MTBench [Zheng et al.| [2023]).

5.1 End-to-end Performance and Cost-efficiency

Table [T] presents a comparison of server-side throughput and cost efficiency between SpecEdge
and a server-only speculative decoding baseline on six SpecBench tasks. We use a batch size
of 1, which shows the lowest inter token latency for both SpecEdge and server-only baseline,
appropriate for the latency-sensitive interactive LLM serving. Throughout the end-to-end evaluation,
SpecEdge achieves 1.91x better cost efficiency on average through 2.22x throughput gain compared
to the server-only setup. Despite the slight cost increase of employing consumer-grade edge GPUs,

N
o
o

80 BThroughput -Latency

w
ey

O Server-only @ Server with Edge 8 O Server-only B SpecEdge

-
1%
o

D

o

w
o

w1

o
NN
o ©

Gen. tokens per verify

o N B~ O

Server run time (ms)
=
o
o

N
o o
NN
[RN

Server Throughput (tok/s)
8
Inter Token Latency (ms)

Disagg. w/ Pro. SpecEdge 14B-1.7B 14B-0.6B 32B-1.7B

14B-1.7B 14B-0.6B 32B-1.7B

Figure 7: Server run time be- Figure 8: Performance compari- Figure 9: Generated tokens per
tween server-only and server son with SpecEdge components verification between server-only
with edge drafting. ablation. and SpecEdge.

260 ([-15ms ~40ms -50ms 'gZOO Layer-split-Server-only—SpecEdge| 3 4090 @ 4070 Ti Super]
3 = @3090 02080 Ti

55 |[X SpecEdge| . X% §150 o)

5 9] 1 S

£ 50 7 100 i 2

3 X < i Q]

Zas £ 50 : &

= = 36.47 40.261

o 40 g 0 + 0

g 2 7 € 15 35 50 55 33B-1.3B 13B-1.1B 13B-160M
) Draft tree depth Network RTT (ms) Target-Draft Models

Figure 10: Server throughput ac- Figure 11: Inter token latency Figure 12: SpecEdge speedup
cording to draft depth under var- according to network round-trip gain with various edge devices
ious network latencies. time. upon autoregressive decoding.

SpecEdge’s significant increase in server-side throughput ultimately leads to greater cost efficiency.
This throughput gain is driven by server-side pipeline-aware scheduling (§4.3)), which interleaves
multiple requests that effectively increase server utilization, and by proactive edge drafting (§5.2),
which increases the average number of generated tokens per verification. We also report the mean
and standard deviation of tokens produced per verification cycle.

Beyond throughput improvements, Figure [6| demonstrates that SpecEdge also reduces inter token
latency by an average of 11.24% compared to server-only speculative decoding across various
batch sizes. This dual benefit—higher throughput with lower latency—is particularly valuable for
interactive LLM applications where both resource efficiency and user experience are critical.

We extend our evaluation to other models, using Vicuna-33B and Llama2-13B-Chat as target LLMs
across diverse datasets including C4, OAsst, WikiText-2, and MTBench. The results show that
proactive edge drafting SpecEdge consistently improves performance, with greater benefits observed
when the drafting models generate deeper drafts with better alignment toward the target LLMs.
This alignment quality directly correlates with improvements in server throughput and reduced inter
token latency. The complete results for all combinations of models and sets are provided in the

Appendix [B-T]

5.2 Component-wise Benefit

As illustrated in Figure[7] the server-only baseline devotes resources to both drafting and verification,
causing prolonged server occupancy with each draft-verify cycle. In contrast, SpecEdge dedicates the
server to verification alone while offloading drafting to more cost-effective edge devices, reducing
server runtime by approximately 40-50% in all model configurations.

However, simple disaggregation alone can increase latency and leave the server underutilized (§4.1).
Figure [8|compares three progressive implementations with a 14B/1.7B model pair: basic disaggrega-
tion, disaggregation with proactive edge drafting (§4.2), and complete SpecEdge with pipeline-aware
scheduling (§4.3). Basic disaggregation achieves only 32.76 tokens/s throughput with higher latency,
while adding proactive drafting reduces inter token latency to 28 ms. The complete SpecEdge with
pipeline-aware scheduling dramatically increases server throughput to 67.89 tok/s (2.07x improve-
ment) while maintaining latency, demonstrating the complementary benefits of each component.

Generated tokens per verification. Figure 0] compares the number of generated tokens per verifica-
tion cycle between server-only speculative decoding and SpecEdge across three target—draft model
pairs. On average, SpecEdge achieves 13.21% higher tokens per verification round. For the 32B-1.7B
configuration, SpecEdge produces 4.5 tokens per verification compared to 4.02 with the server-only
approach, while the 14B—0.6B pair sees similar gains (4.45 vs. 3.66). This efficiency gain stems from

proactive draft tree expansion, where each complete draft alignment allows for deeper draft trees in
subsequent rounds, significantly enhancing verification efficiency and overall system performance.

Pipeline-aware draft depth adjustment. We demonstrate that dynamically adjusting the number
of forward passes for edge drafting, as outlined in (§4.3)), aligns the drafting phase with both server
verification and network round-trip times, achieving optimal throughput in practice. Figure|10|shows
how server-side throughput varies with draft tree depth under different RTTs using a 32B/1.7B model
pair. On average, verification takes 94.2 ms, while each draft model forward pass needs about 11 ms.
When RTT is 15 ms, SpecEdge sets the draft depth to seven; at 40 ms RTT, it sets the depth to five;
and at 50 ms RTT, it decreases further to four. These results show that SpecEdge adapts draft depth
for peak throughput across a range of network conditions.

5.3 System Sensitivity Analysis

Network RTT sensitivity. We evaluate the average inter token latency of SpecEdge against layer-split
and server-only configurations across varying network round-trip times (RTTs), using Qwen32B on
SpecBench. Layer-split configuration runs autoregressive decoding, where one-quarter of model
layers run on an edge RTX4090, with the remainder on a server-side A100. The server-only
configuration, unaffected by network RTT, runs tree-based speculative decoding entirely on an A100.
Figure[11|shows that SpecEdge provides lower inter token latency than the server-only baseline below
50 ms RTT, with a 13.90% gain at 15 ms RTT (36.47 ms vs. 42.36 ms). Even at 65 ms, SpecEdge ’s
latency rises by only 22.00% over its 15 ms RTT performance (to 44.47 ms), remaining competitive.
By contrast, layer-split is much slower: at 15 ms RTT, it is 2.73x slower than SpecEdge (99.63 ms
vs. 36.47 ms), increasing to 3.35x slower performance at 50 ms RTT (134.90 ms vs. 40.26 ms). This
resilience stems from SpecEdge ’s less frequent communication rounds and proactive edge drafting,
which offset network latency more effectively than layer-split approaches.

Performance with varying edge devices. Figure [I2] presents the speedup achieved by SpecEdge
when the server is assisted by different edge devices (RTX 4090, 4070 Ti Super, 3090, and 2080
Ti) across three target-draft model combinations. The speedup is measured relative to default
autoregressive decoding using only the A100 server GPU. The consistent speedup across all model
combinations confirms the architecture’s robustness to different hardware configurations. As expected,
more powerful edge GPUs like the RTX 4090 deliver greater speedups, while even more affordable
options like the RTX 2080 Ti still provide significant acceleration. This demonstrates that SpecEdge’s
approach remains effective across a spectrum of edge hardware capabilities, allowing deployment
flexibility. Additional results with lighter GPUs (3060 Ti, and 2080 Ti) are available in Appendix[B.2]

Performance with alternative drafting approaches. We also evaluated SpecEdge with a non-
tree speculative decoding approach [Leviathan et al.,[2023]] to demonstrate versatility beyond tree-
structured methods. Using this alternative architecture, SpecEdge achieved up to 1.96x higher server
throughput (Llama2 13B/TL 1.1B pairing) and 1.67x better cost efficiency compared to server-only
deployments. Performance gains remained consistent across different model combinations, with even
the smallest draft model (JF 160M) delivering a 1.52x throughput improvement while preserving
end-user speedup. Complete results are available in Appendix [B.3]

Performance with batch drafting method. We explore an alternative drafting configuration where
a single edge GPU serves concurrent requests through batching. This approach enables operators to
reduce the number of edge GPUs. Experiment with various batch sizes revealed a trade-off between
better cost efficiency and increased latency. This configuration could be advantageous in budget-
constrained deployments where latency tolerance is higher. Full results across model combinations
are available in Appendix [B.4]

Performance under reasoning mode. Modern LLMs provide reasoning mode for enhancing output
quality, where reasoning tokens might influence speculative decoding efficiency [Wel et al., 2023,
Team)| 2025]]. To explore SpecEdge performance under reasoning mode, we measured accepted tokens,
server throughput, and cost efficiency with and without reasoning enabled. Results in Appendix B.5]
show consistent improvements across all three metrics when reasoning is active, implying that our
system inherently benefits from the redundancy in reasoning processes, which enhances speculative
decoding performance.

Cost analysis with various GPU Providers. To ensure SpecEdge’s cost-efficiency findings general-
ize beyond a single provider, we validated SpecEdge’s performance across diverse cloud environments.

We compared results using GPUs from multiple GPU providers (Vast.ai [[Vas,|2025]], Runpod [run,
2025]], and TensorDock [Ten,|2025]]) and Cloud Service Providers (Google Cloud Platform [GCP,
2025]], Amazon Web Services [AWS| 2025], and Microsoft Azure [[Azu, [2025])), accounting for the
pricing variations. Across all tested configurations, SpecEdge consistently delivered cost efficiency
improvements, confirming that our architectural benefits persist regardless of the specific cloud
infrastructure. Detailed cross-provider comparisons are presented in Appendix [C]

Detailed Case Study. Complementing our quantitative evaluation, Appendix [D|offers a visualization
of SpecEdge in action. Using Llama models responding to a query about Dyson Spheres, we trace
the complete token generation lifecycle—from initial drafting through verification and subsequent
accelerated generation. The case study specifically highlights two key operational advantages: (1)
how edge GPUs remain productive during server verification phases through proactive expansion,
and (2) how successful draft alignments lead to deeper draft candidates in subsequent rounds.

6 Conclusion

We have presented SpecEdge, an edge-assisted LLM inference framework that leverages user-side
consumer-grade GPUs for drafting candidate tokens, while the server focuses on final verification. By
transmitting only finalized outputs, SpecEdge efficiently operates under typical wide-area network
conditions. Proactive edge drafting on the user side maximizes the utilization of edge GPUs and
reduces end-to-end latency, while pipeline-aware verification scheduling at the server ensures high
throughput by efficiently aggregating and processing verification requests. Our experimental results
demonstrate that SpecEdge significantly reduces operational costs by 1.91x through delivering
2.22x higher server throughput, and achieves a modest reduction in latency compared to server-only
baselines. Overall, SpecEdge unlocks the untapped potential of powerful consumer GPUs at the edge,
offering a scalable and cost-effective approach for future LLM serving deployments.

Broader Impact

This work redefines the division of labor in large language model (LLM) serving by integrating edge-
side draft token generation with server-side verification, moving beyond the conventional centralized
paradigm. This paradigm shift not only boosts server throughput without requiring additional data
center infrastructure but also enables a novel business model for LLM services. By harnessing edge
GPUs—whether through user-owned devices or edge cloud providers—our approach reduces reliance
on expensive centralized servers, allowing service providers to deliver scalable, high-performance
inference at a fraction of the cost. This decentralized architecture empowers businesses to adapt their
infrastructure to edge resources, unlocking more flexible and cost-effective deployment strategies.
Furthermore, SpecEdge alleviates the cost constraints associated with drafting, opening new avenues
for speculative decoding research. By enabling the development of richer and more precise draft
token generation methods, it advances the performance and capabilities of LLM services.

Limitation and Future Work

SpecEdge is designed with flexibility in mind, supporting scenarios where users may contribute their
own GPUs for the edge drafting phase. Our cost-efficiency analysis focuses on deployments using
consumer-grade GPUs rented from edge cloud providers, but user-owned GPUs could further enhance
cost savings and scalability. Extending SpecEdge to fully leverage user-operated hardware opens up
exciting opportunities for decentralized and community-driven inference. At the same time, such
scenarios raise new challenges in areas such as fault tolerance and security when untrusted devices
participate in computation. While SpecEdge already supports a distributed multi-user environment,
exploring these broader system and security aspects is an important direction for future work.

Acknowledgment

We thank the anonymous reviewers for providing helpful feedback and suggestions to improve our
work. This work was supported by Institute of Information & Communications Technology Planning
& Evaluation (IITP) of the Korea government (MSIT) (No. RS-2024-00398157).

10

References

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173,2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Nvidia. GeForce RTX 4090, 2025a. https://www.nvidia.com/en-us/geforce/
graphics-cards/40-series/rtx-4090/.

Nvidia. NVIDIA ADA GPU ARCHITECTURE, 2024a. https://images.nvidia.com/
aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf.

Nvidia. NVIDIA A100, 2025b. https://www.nvidia.com/en-us/data-center/al100/.
Google Cloud. https://cloud.google.com/, 2025.
Vast.ai, Global GPU Market. https://vast.ai/, 2025.

Valve. Steam Hardware & Software Survey, 2024. https://store.steampowered.com/
hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam.

Nvidia. NVIDIA Financial Reports, 2024b. https://investor.nvidia.com/financial-info/
financial-reports/default.aspx.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimiza-
tions enable training deep learning models with over 100 billion parameters. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
3505-3506, 2020.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-inference:
enabling efficient inference of transformer models at unprecedented scale. In SC22: International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 1-15.
IEEE, 2022.

Nvidia. NVLink and NVLink Switch, 2025¢c. https://www.nvidia.com/en-us/data-center/
nvlink/.

Nvidia. The NVIDIA Quantum InfiniBand Platform, 2025d. https://www.nvidia.com/en-us/
networking/products/infiniband/.

11

https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://www.nvidia.com/en-us/data-center/a100/
https://cloud.google.com/
https://vast.ai/
https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam
https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam
https://investor.nvidia.com/financial-info/financial-reports/default.aspx
https://investor.nvidia.com/financial-info/financial-reports/default.aspx
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/networking/products/infiniband/
https://www.nvidia.com/en-us/networking/products/infiniband/

Nvidia. TensorRT-LLM, 2024c. https://github.com/NVIDIA/TensorRT-LLM.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611-626, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pages 19274-19286. PMLR, 2023.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Nikhil Bhendawade, Irina Belousova, Qichen Fu, Henry Mason, Mohammad Rastegari, and Mahyar
Najibi. Speculative streaming: Fast llm inference without auxiliary models. arXiv preprint
arXiv:2402.11131,2024.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

Lawrence Stewart, Matthew Trager, Sujan Kumar Gonugondla, and Stefano Soatto. The n-grammys:
Accelerating autoregressive inference with learning-free batched speculation. arXiv preprint
arXiv:2411.03786, 2024.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
verify: Lossless large language model acceleration via self-speculative decoding. arXiv preprint
arXiv:2309.08168, 2023.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pages 932-949, 2024.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374, 2024.

Ruslan Svirschevski, Avner May, Zhuoming Chen, Beidi Chen, Zhihao Jia, and Max Ryabinin.
Specexec: Massively parallel speculative decoding for interactive llm inference on consumer
devices. arXiv preprint arXiv:2406.02532, 2024.

Ziteng Sun, Ananda Theertha Suresh, Jaec Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36, 2024.

Alexander Borzunov, Max Ryabinin, Artem Chumachenko, Dmitry Baranchuk, Tim Dettmers,
Younes Belkada, Pavel Samygin, and Colin A Raffel. Distributed inference and fine-tuning of large
language models over the internet. Advances in Neural Information Processing Systems, 36, 2024.

Yixuan Mei, Yonghao Zhuang, Xupeng Miao, Juncheng Yang, Zhihao Jia, and Rashmi Vinayak.
Helix: Distributed serving of large language models via max-flow on heterogeneous gpus. arXiv
preprint arXiv:2406.01566, 2024.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia

Zhang, Dong Li, and Yuxiong He. {Zero-offload}: Democratizing {billion-scale} model training.
In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages 551-564, 2021.

12

https://github.com/NVIDIA/TensorRT-LLM

Bharadwaj Pudipeddi, Maral Mesmakhosroshahi, Jinwen Xi, and Sujeeth Bharadwaj. Training
large neural networks with constant memory using a new execution algorithm. arXiv preprint
arXiv:2002.05645, 2020.

Nadav Timor, Jonathan Mamou, Daniel Korat, Moshe Berchansky, Oren Pereg, Moshe Wasserblat,
Tomer Galanti, Michal Gordon-Kiwkowitz, and David Harel. Distributed speculative inference
(dsi): Speculation parallelism for provably faster lossless language model inference. In The
Thirteenth International Conference on Learning Representations, 2025.

Tianyu Liu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, Winston Hu, and Xiao Sun. Pearl: Parallel
speculative decoding with adaptive draft length. In The Thirteenth International Conference on
Learning Representations, 2025.

Bradley McDanel. Amusd: Asynchronous multi-device speculative decoding for llm acceleration.
arXiv preprint arXiv:2410.17375, 2024.

MLC team. MLC-LLM, 2023-2024. URL https://github.com/mlc-ai/mlc-11m

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. Powerinfer: Fast large language model serving
with a consumer-grade gpu. In Proceedings of the ACM SIGOPS 30th Symposium on Operating
Systems Principles, pages 590-606, 2024.

Zhenliang Xue, Yixin Song, Zeyu Mi, Le Chen, Yubin Xia, and Haibo Chen. Powerinfer-2: Fast
large language model inference on a smartphone. arXiv preprint arXiv:2406.06282, 2024.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia
Tang. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM
SIGARCH Computer Architecture News, 45(1):615-629, 2017.

Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. Edge intelligence: Paving
the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8):
1738-1762, 2019.

Xiaofei Wang, Yiwen Han, Victor CM Leung, Dusit Niyato, Xueqiang Yan, and Xu Chen. Conver-
gence of edge computing and deep learning: A comprehensive survey. IEEE Communications
Surveys & Tutorials, 22(2):869-904, 2020.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

J Redmon. You only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016.

Tausif Diwan, G Anirudh, and Jitendra V Tembhurne. Object detection using yolo: Challenges,
architectural successors, datasets and applications. multimedia Tools and Applications, 82(6):
9243-9275, 2023.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5:606-624, 2023.

Qwen Team. Qwen3, April 2025. URL https://qwenlm.github.io/blog/qwen3/,

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality, march 2023. URL https://Imsys. org/blog/2023-03-30-vicuna, 3
(5), 2023.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Dangi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

13

https://github.com/mlc-ai/mlc-llm
https://qwenlm.github.io/blog/qwen3/

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of
speculative decoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of
the Association for Computational Linguistics ACL 2024, pages 7655-7671, Bangkok, Thailand
and virtual meeting, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.findings-acl.456. URL https://aclanthology.org/2024.findings-acl.456.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Andreas Kopf, Yannic Kilcher, Dimitri von Riitte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richard Nagyfi, et al. Openassistant
conversations-democratizing large language model alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595-46623, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903,

Runpod. https://runpod.io/, 2025.

TensorDock — Easy & Affordable Cloud GPUs. https://tensordock. com, 2025.
Amazon Web Services(AWS). https://aws.amazon. com, 2025.

Microsoft Azure. https://azure.microsoft.com, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

14

https://aclanthology.org/2024.findings-acl.456
https://arxiv.org/abs/2201.11903
https://runpod.io/
https://tensordock.com
https://aws.amazon.com
https://azure.microsoft.com

A Additional Details on Evaluation Setup

For both SpecEdge and the server-only speculative decoding baseline, we adopt a tree construction
algorithm from recent tree-based speculative decoding [[Chen et al.,|2024, Svirschevski et al., [2024]).
Given a specified tree size, each forward pass of the draft model generates multiple parallel candidate
tokens, which are then pruned based on cumulative log probabilities so that the total number of tokens
remains within the tree budget. The total number of forward passes (the draft tree depth) is set as
a hyperparameter. In our main experiments, we use the draft tree size to 32 for each request. For
the server-only baseline, we find and select the optimal draft tree depth through exhaustive search,
while SpecEdge determines its draft depth based on verification and network latencies as described in
Section

Throughout our evaluation, we use off-the-shelf target LLMs and draft models without any additional
fine-tuning. For the main experiments, we employ Qwen3 32B/14B as the target LLM and Qwen3
1.7B/0.6B as the draft models, using the SpecBench dataset. To demonstrate broader applicability, the
appendix includes experiments with Vicuna 33B and Llama2-13B-Chat-hf as target LLMs, alongside
Sheared Llama 1.3B, Tiny Llama 1.1B, and JackFram 160M as draft models, evaluated on C4,
OAsst, WikiText-2, and MTBench. For each query, we generate up to 256 output tokens. Since
the prefill stage in SpecEdge can involve parallel processing on both server and edge, the prefill
latency is determined by max(server_time, edge_time) which makes metrics such as time to first
token comparable to the baseline; therefore, our reported metrics focus on the output tokens after
prefill. Unless otherwise specified, SpecBench (spanning six different tasks) is used throughout the
experiments.

B Comprehensive Performance Analysis

B.1 Performance with Diverse Models and Datasets

In Table [2] we showcase SpecEdge ’s adaptability across different target—draft model pairs and
datasets, using a batch size of 1. We measure server throughput and cost efficiency gains, as well as
the speedup achieved in inter token latency. Table [3|compares these speedups for both SpecEdge and
a server-only speculative decoding baseline against an autoregressive decoding reference.

Our evaluation demonstrates the effectiveness of SpecEdge across several models including Qwen,
Vicuna, and Llama with parameters up to 33B. While exploration with even larger models is planned
as future work, we anticipate that no fundamental design changes will be needed for scaling. The

Table 2: Throughput and cost efficiency comparison between SpecEdge and server-only method.

Gen. tokens per verify ~ Server Throughput (tok/s) Cost Efficiency (1k toks/$)

Target/Draft Dataset Server-only SpecEdge Server-only SpecEdge Server-only SpecEdge
c4 347+1.41 4.41+2.03 28.12 49.96 (1.78x) 24.99 38.23 (1.53x)
Vicuna 33B OAsst 3.55+1.37 4.35+2.06 28.72 49.94 (1.74x) 25.53 37.89 (1.48x)
/SL1.3B WikiText-2 3.42+1.45 4.194+1.98 27.26 47.94 (1.76x) 2423 36.42 (1.50x)
MTBench 3.62+1.72 4.57+2.13 29.62 52.70 (1.78x) 26.33 40.21 (1.53x)
Cc4 3.40+1.35 3.48+1.34 36.80 70.76 (1.92x) 32.72 53.72 (1.64x)
Llama2 13B OAsst 3.57+£1.40 3.67+£1.39 38.55 69.49 (1.80x) 34.27 52.75 (1.54x)
/TL1.1B WikiText-2 3.52+1.37 3.61+1.40 37.69 70.21 (1.86x) 33.50 53.30 (1.59x)
MTBench 3.67+£1.43 3.75+1.46 40.96 76.69 (1.87x) 36.41 58.21 (1.60x)
Cc4 3.03+1.34 3.13£1.37 42.72 66.20 (1.55x) 37.98 50.36 (1.33x)
Llama2 13B OAsst 2.79+1.37 2.8541.37 39.19 56.52 (1.44x) 34.84 4295 (1.23x)
/I 160M WikiText-2 2.72+1.37 2.724+1.39 37.87 55.39 (1.46x) 33.66 42.08 (1.25x)
MTBench 2.80+1.39 2.80+1.43 40.80 60.42 (1.48x) 3642 4592 (1.26x)

15

Table 3: Speedup of server-only, SpecEdge compared to autoregressive.

ITL (ms) Speedup
Target/Draft Model Dataset Server-only SpecEdge Server-only SpecEdge
c4 33229 30.612 1.86x 2.02x
OAsst 34496 30.460 1.76x 2.00x
Vicuna 33BSL 3B yuirexio 3477 30631 1.69x 1.92x
MTBench 33.948 31.168 1.82x 1.98x
c4 23.687 21.851 1.63x 1.76x
OAsst 24.661 22.377 1.54x 1.70x
Llama2 I3B/TL LIB yimerio 23883 21338 1.59x 1.78x
MTBench 23.136 21.463 1.66x 1.79x
c4 20.6 19.007 1.87x 2.03x
OAsst 23.711 22.378 1.60x 1.70x
Llama2 I3BAF160M \iimexin ™ 26222 24.579 1.45x 1.54x
MTBench 23458 22.199 1.64x 1.73x

core principles of our split computing paradigm—offloading partial decoding workloads from server
to edge—naturally extend to models of any size through the draft-verify speculative decoding scheme.
Our upcoming research will quantify these benefits across the full spectrum of model scales.

B.2 Performance with Lighter GPUs

We use the RTX 4090 as representative of consumer-grade GPUs, now widespread in both edge-
cloud providers and user devices. However, to demonstrate broader generalizability, we conducted
additional experiments with lighter consumer-grade GPUs. We measured SpecEdge performance
using the RTX 3060 Ti and the RTX 2080 Ti. Table[dshows the inter token latency and throughput
with target/draft model pairs configured as Qwen3-14B/1.7B and Qwen3-14B/0.6B. Compared to the
server-only approach, SpecEdge still attains meaningful throughput improvements even with less
powerful GPUs.

Table 4: Performance comparison of lighter edge GPUs.

Peak FP16 Memory Inter token Server

Target/Draft Model Edge GPU TFLOPS Bandwidth (GB/s) Latency (ms) Throughput (tok/s)
RTX 3060 Ti 16.20 448.0 36.818 50.297
Qwen3-14B/1.7B RTX 2080 Ti 26.90 616.0 34.409 54.657
Server-only (A100 40GB) 312 1555 32.451 30.816
RTX 3060 Ti 16.20 448.0 36.818 56.135
Qwen3-14B/0.6B RTX 2080 Ti 26.90 616.0 34.409 54.657
Server-only (A100 40GB) 312 1555 32.326 30.935

B.3 Performance with Non-Tree-based Speculative Decoding Method

To demonstrate the versatility of our approach beyond tree-structured methods, we implemented
the speculative decoding technique from [Leviathan et al.l 2023]], which uses a linear candidate
sequence rather than exploring multiple branching paths. This implementation allows us to evaluate
whether SpecEdge’s core innovation—disaggregating drafting and verification between edge and
server—generalizes effectively across different speculative decoding paradigms.

Tables [5]and [6] present the results of this evaluation, comparing SpecEdge against the conventional
server-only deployment. The throughput measurements in Table [5|demonstrate SpecEdge’s efficiency

16

Table 5: Server throughput and cost analysis on SpecEdge with non-tree based speculative decoding
method.

Server Throughput (tokens/s) Cost Efficiency (1k tokens/$)

Target/Draft Model ~ Server-only SpecEdge Server-only SpecEdge
Vicuna 33B/SL 1.3B 24.527 39.370 (1.61x) 17.484 24.649 (1.41x)
Llama2 13B/TL 1.1B 33.044 64.851 (1.96x) 29372 49.150 (1.67x)
Llama2 13B/JF 160M 32.755 49.639 (1.52x) 29.116 37.621 (1.29x)

Table 6: Inter token latency (ITL) comparison on SpecEdge with non-tree based speculative decoding
method.

ITL (ms) Speedup
Target/Draft Model Server-only SpecEdge Server-only SpecEdge
Vicuna 33B/SL 1.3B 40.771 38.067 1.61x 1.72x
Llama2 13B/TL 1.1B 30.263 26.085 1.40x 1.62x
Llama2 13B/JF 160M 30.530 30.818 1.38x 1.37x

advantages, while Table 6] quantifies the relative speedup over server-only autoregressive decoding.
These results confirm that our disaggregated architecture delivers consistent improvements regardless
of the underlying speculative decoding strategy, reinforcing the broad applicability of our approach.

B.4 Performance with Batch Drafting Method

While our main deployment architecture assumes that each concurrent request utilizes a dedicated
edge GPU, we investigate an alternative architecture where a single edge GPU generates draft
tokens for multiple concurrent requests. This alternative method offers trade-off for scenarios where
operators want to utilize fewer consumer-grade edge GPUs. We evaluate this configuration by
batching multiple requests on the RTX 4090 drafter with batch sizes from 2 to 4, measuring both
inter token latency and cost efficiency across different target/draft model pairs.

The results show a trade-off between cost efficiency and latency. As shown in Table [/} cost effi-
ciency improves with the alternative method, ranging from 4.4% to 29.5% better across different
configurations due to better edge GPU utilization. However, this comes at the expense of increased
inter token latency (5.9% to 19.0% slower), primarily caused by contention from batching multiple
requests and longer draft-to-verify cycles. This alternative deployment method could be preferable in
cost-sensitive scenarios where higher latency is acceptable.

Table 7: Performance comparison of alternative deployment method.

Target/Draft Model Batch Size Inter Token Latency (ms) Cost Efficiency (1k toks/$)

2 31.777 (6.8% slower)

67.299 (14.7% better)

Qwen3-14B/1.7B 36.617 (13.0% slower)

71.369 (29.5% better)

40.099 (16.7% slower)

85.662 (24.5% better)

30.494 (8.5% slower)

67.680 (5.8% better)

Qwen3-14B/0.6B 34.028 (15.2% slower)

80.252 (12.0% better)

82.376 (20.0% better)

43.539 (5.9% slower)

51.245 (4.4% better)

Qwen3-32B/1.7B 48.889 (3.9% slower)

59.635 (21.3% better)

3
4
2
3
4 39.035 (19.0% slower)
2
3
4

58.402 (9.5% slower)

57.857 (25.1% better)

17

B.5 Performance under Reasoning Mode

Many modern LLMs support reasoning capabilities to enhance their inference performance. Reason-
ing tokens often exhibit highly repetitive patterns, which can impact the acceptance rate in speculative
decoding. To investigate the inference performance with reasoning capabilities, we measured the
accepted tokens, server throughput, and cost efficiency with and without reasoning mode enabled.

Table [§] presents the accepted tokens, server throughput, and cost efficiency for each target-draft
model pair. When generating reasoning tokens, we observe consistent improvements across all three
metrics: accepted tokens, server throughput, and cost efficiency. These results indicate that SpecEdge
can inherently benefit from improved speculative decoding performance coming from redundancy in
reasoning processes.

Table 8: Performance comparison of SpecEdge with and without reasoning mode.

Accepted Tokens Server Throughput (tok/s) Cost Efficiency (1k toks/$)
Target/Draft Model Non-Reasoning Reasoning Non-Reasoning Reasoning Non-Reasoning Reasoning
Qwen3-14B/1.7B 3.80£1.54 4.174+1.39 64.343 72.249 48.883 54.898
Qwen3-14B/0.6B 3.68+1.50 4.10+1.36 70.703 81.890 53.693 62.157
Qwen3-32B/1.7B 4.09+£1.95 4.624+1.90 24.880 27.617 39.430 43.373

C Cost Efficiency with Various GPU Providers and Cloud Service Providers

We anchored our cost estimates to widely available public pricing: A100 GPUs from Google Cloud
Platform and RTX 4090 GPUs from Vast.ai [Vas, [2025]. To validate the robustness of our cost-
efficiency claims, we conducted additional experiments across multiple cloud environments, including
various GPU providers (Vast.ai, Runpod [run} |[2025]], and TensorDock [Ten, [2025]]) and major cloud
service providers (Google Cloud Platform [[GCP| 2025|], Amazon Web Services [AWS| |2025]], and
Microsoft Azure [[Azul [2025]]). Table 0] and [10| show the GPU pricing from different providers.
Table [TT)demonstrates that SpecEdge maintains cost efficiency improvements consistently across all
tested configurations.

Table 9: Edge GPU Pricing. Table 10: Server GPU Pricing.
GPU GPU Provider Cost ($/hr) GPU Cloud Service Provider Cost ($/hr)
RunPod 0.69 Google Cloud Platform 4.05
A100 40GB
RTX 4090 Vast.ai 0.35 Amazon Web Services 4.10
TensorDock 0.359 Google Cloud Platform 5.05
Vast.ai 1.08 A100 80GB Amazon Web Services 5.12
RTX Pro 6000 3
TensorDock 1.15 Microsoft Azure 3.673

D Case Study: Proactive Edge Drafting in Action

This section illustrates SpecEdge’s proactive drafting mechanism through an illustrative example
with a sample query. We demonstrate how the system handles the complete drafting lifecycle: initial

Server [User B Verification Y| User A Verification >[User B Verification »[User A Verification
WAN PP BB, DR

User A | | P P

User B | P I

Figure 13: Timeline view showing parallel operations at edge and server, with proactive drafting
occurring during server verification.

18

Table 11: Cost efficiency comparison of GPU Providers and Cloud Service Providers.

Cost Efficiency (1k toks/$)
GPU Provider Google Cloud Platform Amazon Web Service Microsoft Azure

Target/Draft Model Server/Edge GPU

Vast.ai 51.018 (1.87x) 50.485 (1.87x) -
Qwen3-14B/1.7B A&%g(4f(%]3 / RunPod 44.721 (1.64x) 44.311 (1.65x) -
TensorDock 50.829 (1.87x) 50.30(1.87x) -
Baseline (Server-only) 27.222 26.890 -
Vast.ai 47.68 (1.75%) 47.30 (1.76x) -
Qwen3-14B/1.7B l?’l})(()OP?(?g(l)goé) TensorDock 46.64 (1.71x) 46.27 (1.72x) -
Baseline (Server-only) 27.222 26.890 -
Vast.ai 52.938 (1.86%) 52.386 (1.88x%) -
Qwen3-14B/0.6B Aﬁg(;(4f(%]8 / RunPod 46.382 (1.63x) 45.957 (1.65x) -
TensorDock 52.741 (1.86x) 52.192 (1.88x) -
Baseline (Server-only) 28.415 27.802 -
Vast.ai 31.619 (1.82x) 31.332(1.83%) 41.757 (1.75%)
Qwen3-32B/1.7B Aég(;(Sf()Gglg / RunPod 28.453 (1.64x) 28.144 (1.6?><) 36.280 (1.52x)
TensorDock 31.619 (1.82x) 31.239 (1.83x) 41.591 (1.75x)

Baseline (Server-only)

17.330

17.090

23.822

draft generation, proactive expansion, server verification, and subsequent drafting. Figure [I3]shows
the timeline view of each operation.

o Initial Proactive O O
oDt Drafting Drafting /(0 O
/4.974 O O
&)
036 ,45 O O
504 O O
O, de O
4.856 3163 4681 O
4.447
pEa)e 0, des O O
-4.52 2504 ¢ 3379 O
3715 O
533 (4323 3103 -0.0 O |
00 -3.009 /
® o/lf O
EREY 4667 b -4.855 9 O
y -4.773
) @e O|lF O
(2786 -4.605 @) 2667, /
& 4783 @ OF O
1.989 4542 -0.579 O O
0737
O O
0599 N5
O O
& O

S
o
)
&

Figure 14: Example of proactive draft tree expansion after initial drafting. After creating the initial
draft tree (left), the edge device identifies the most probable leaf token and proactively generates
additional tokens (right) while awaiting server verification.

Experimental Setup. For this demonstration, we use a sample from the OAsst dataset with the query
"What is a Dyson Sphere?". We employ Llama-3.2-3B [Grattafiori et al.,[2024] as the target model
and Llama-3.2-1B as the draft model.

Initial Draft and Proactive Expansion. Figure |14]illustrates the transition from initial drafting
to proactive expansion. Once the edge device constructs the initial draft tree, it submits this tree
to the server for verification. Simultaneously—rather than remaining idle—the edge identifies the
expansion head with the highest cumulative log probability and begins generating additional tokens
proactively.

Server Verification and Alignment. When the verification results arrive from the server, the edge
device compares its locally expanded tree with these results. Figure |15 demonstrates a case of
complete draft alignment, where the server’s verified tokens ("A Dyson Sphere is") match both the
initial draft tree path and the selected expansion head.

19

Proactively Additional
Drafted Tokens Tokens

@ o)/
ko 0579 O
-0.737 .
0599 / Ol
Initial Drafting ~ Extra O y/
75 Verified Tokens Token O ‘.
i L L |
Server Verification: A Dyson Sphere is \.

Figure 16: Deeper token drafting with proac-
Figure 15: Server verification and complete draft align- tively drafted tokens. The previously gener-
ment. The server verification results (showing "A Dyson ated proactive tokens tree following the extra
Sphere is") perfectly align with a path in the draft tree, token ("is") can be immediately used in the
validating both the initial draft and the chosen expan- next drafting cycle without additional com-
sion head. putation.

Accelerated Token Drafting. Following successful verification, SpecEdge leverages the proactively
drafted tokens to benefit the next drafting cycle. Figure|l16|shows how these pre-generated tokens
contribute to the next draft submission, eliminating the need to regenerate these tokens and thus
building deeper draft candidates.

Performance Implications. This example demonstrates how SpecEdge’s proactive drafting strategy
provides tangible performance benefits:

e Reduced idle time: The edge GPU remains productive during server verification periods.

e Deeper subsequent drafting: Pre-generated tokens allow additional draft forward passes for the
next drafting cycle.

o Effective resource utilization: Computational resources on both edge and server are maximized.

The complete alignment case shown here represents the optimal scenario, though SpecEdge handles
partial or misaligned drafts as well (Section[4.2)).

20

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction include the paper’s main claims and contribu-
tions.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the appendix, limitations section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

21

Answer: [NA]

Justification: The paper does not include Theorems or Lemmas that need formal proofs. The
formulas are well-numbered and clearly state their notations.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The end-to-end system and methods are thoroughly described. The models,
dataset, and hyperparameters used for the evaluation are provided in detail.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit our code as supplementary material, which is fully reproducible.
We will publicly open the submitted code after the review.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All the experiment settings and methods are specified in detail.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The error bars are provided in the evaluation figures and tables.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We specify the type of compute resources used for each experiment setting.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential societal impacts are discussed in the appendix, broader impacts
section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

24

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper suggests a new serving system paradigm that is orthogonal to the
release of data or models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The models, data, and code we used or reproduced are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

25

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code for the end-to-end system in the paper is submitted as an anonymized
zip file through the supplementary material. The code is provided with documentation with
instructions to run the code.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

26

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background and Related Work
	Problem and Motivation
	SpecEdge Design
	Disaggregated LLM Decoding
	Proactive Draft Generation at the Edge
	Server-side Pipeline-aware Scheduling

	Evaluation
	End-to-end Performance and Cost-efficiency
	Component-wise Benefit
	System Sensitivity Analysis

	Conclusion
	Additional Details on Evaluation Setup
	Comprehensive Performance Analysis
	Performance with Diverse Models and Datasets
	Performance with Lighter GPUs
	Performance with Non-Tree-based Speculative Decoding Method
	Performance with Batch Drafting Method
	Performance under Reasoning Mode

	Cost Efficiency with Various GPU Providers and Cloud Service Providers
	Case Study: Proactive Edge Drafting in Action

