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ABSTRACT

Imitation learning (IL) aims to recover an expert’s strategy by performing super-
vised learning on the demonstration datasets. Incorporating IL in safety-crucial
tasks like autonomous driving is promising as it requires less interaction with the
actual environment than reinforcement learning approaches. However, the ro-
bustness of IL methods is often questioned, as phenomena like causal confusion
occur frequently and hinder it from practical use. In this paper, we conduct causal
reasoning to investigate the crucial requirements for the ideal imitation general-
ization performance. With insights derived from modeled causalities, we propose
causality-inspired contrastive conditional imitation learning (3CIL), a conditional
imitation learning method equipped with contrastive learning and action residual
prediction tasks, regularizing the imitator in causal and anti-causal directions. To
mitigate the divergence with experts in unfamiliar scenarios, 3CIL introduces a
sample-weighting term that transforms the prediction error into an emphasis on
critical samples. Extensive experiments in the CARLA simulator show the pro-
posed method significantly improves the driving capabilities of models.

1 INTRODUCTION

Known as learning from demonstrations, imitation learning (IL) has attracted attention for its ca-
pability of replicating the behavior of experts in some tasks given only experts’ demonstrations
available. In many real-world applications, IL is widely used, because the desired behavior patterns
are hard to construct, and the requirements for a competent model are difficult to summarize into
a reward function or optimize objective. IL approaches can be divided into two categories, namely
behavior cloning (BC) and inverse reinforcement learning (IRL). BC is one of the most prominent IL
algorithms, which transforms the procedure of imitating experts’ strategy into a simple supervised
learning problem. For those tasks with strict safety concerns or expensive trial costs like autonomous
driving, BC is preferred as provides an effective solution with no requirement on interactions with
the real environment during training.

However, the performance of BC methods is often questionable, especially in complex environ-
ments. Many approaches (de Haan et al., 2019; Wen et al., 2020; Codevilla et al., 2019; Wen et al.,
2022; Ortega et al., 2021) have investigated the factors that led to the problematic decision-making
pattern of the imitator. What is common in these analyses is that they attribute the train-test per-
formance gap to causal confusion: the reliance of the imitator on spurious correlations or shortcuts,
instead of causal relations. Due to the lack of causal principles, models are prone to use features
that are spurious correlated to the expert’s actions, as relying on these correlations only needs fewer
parameter updates to obtain a stable and low loss in the training phase. Moreover, the potential per-
ception mismatch between the expert and the imitator may further impose the imitator’s reliance on
spurious correlations. Nevertheless, these correlations or shortcuts may hold only when the target
environment has the same distribution as the distribution demonstrations sampled from. Therefore,
imitators that are tempted by these shortcuts, perform poorly when testing them in new environ-
ments.

To alleviate the above problems of BC in visually complex tasks like autonomous driving, we incor-
porate the idea of causal reasoning to assist imitation. While typical techniques of causal reasoning
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can not directly be deployed in these tasks with high-dimensional observations and partial visibil-
ity, modeling causal relations among concepts in the driving task can still provide indications for
learning a robust imitator. By investigating the correspondence between causal relations and the
imitator’s behaviors, we identify crucial traits that a robust imitator must have. With supervisions
from both causal direction and anti-causal direction, the latent state inferred by the imitator is urged
to produce stable causal effects on its descendant node.

In this paper, we consider imitating experts’ behavior to achieve autonomous driving, under the
setting of conditional imitation learning (CIL) (Codevilla et al., 2018). Equipped with causality, we
propose Causality-inspired Contrastive Conditional Imitation Learning (3CIL), an imitation learning
method that incorporates contrastive learning and residual prediction tasks for better generalization.
Our contributions are:

• Based on causal reasoning about the behavior cloning process in the driving task, we iden-
tify crucial traits that a robust imitator must have. By incorporating contrastive learning
and action residual prediction objectives into imitation learning, we enhance the imitator’s
representation’s robustness through influence from causal and anti-causal directions.

• We propose a sample-weighting process to emphasize scenarios that cause high divergences
between the expert and imitator, guide the imitator to adapt to diverse situations.

• We conduct extensive experiments on the CARLA simulator (Dosovitskiy et al., 2017) to
demonstrate the effectiveness of the proposed 3CIL approach and the relations between
causal insights and actual performance.

2 PRELIMINARIES AND DEFINITIONS

2.1 SPURIOUS CORRELATIONS IN BEHAVIOR CLONING

Compared to online reinforcement learning (RL) or IRL methods, agents trained with BC are more
vulnerable to spurious correlations in data. As the imitator cannot interact with the target environ-
ment in the training phase, it can not test or validate its learned pattern but only count on offline eval-
uation metrics (e.g. frame-wise Mean Squared Error in steer angle prediction). Such phenomenon
is known in the literature as causal confusion (de Haan et al., 2019): BC agents lack explicit causal
understanding of their tasks.

Causal confusion becomes more evident in complex tasks like autonomous driving. As special cases
of causal confusion, inertia problem (Codevilla et al., 2019) and copycat problem (Wen et al., 2020)
are proposed to describe the strong reliance of an imitator’s policy on the expert’s previous actions,
even when such actions are no explicitly provided as input.

Figure 1a illustrates the decision process of imitators suffering from inertia and copycat problems.
ot−3∶t and oj∶j+1 denote the observations recorded in successive frames, aacc,i is the expert’s ac-
celeration command in current frame i (i.e., aacc,i > 0 means speed up, aacc,i < 0 represents slow
down), vspeed,i is the speed in current frame. As discussed by (Codevilla et al., 2019), low speed
often comes with negative acceleration in demonstrations, such a strong correlation tempts the in-
ertia imitator to build a pattern: low speed causes braking. However, such a correlation exists only
because the expert braked in previous frames. Moving a step forward, a copycat imitator seized
that the variation in speed in previous frames provides clues of the expert’s former action, and it
turns to replicate the previous action to achieve low prediction error. However, this shortcut is also
misleading, as in deployment time, the copycat imitator repeats its previous prediction.

Researchers (Cultrera et al., 2023; Guo et al., 2024; Seo et al., 2023; Wen et al., 2021; Samsami et al.,
2021; Tien et al., 2022) have attributed such reliance on spurious correlations as (1) The complexity
of the task itself: tasks like driving have sophisticated kinematics, diverse scenarios, continuous ac-
tion space and numerous environmental parameters. (2) The partial observability of state: typical
IL approaches to achieve driving (Hu et al., 2022a; Chuang et al., 2022) often design the expert to
have access to the ground truth state (i.e., pre-trained RL agent with BEV observation or scripted
expert with ground truth information), while the imitator can only receive the visual observation and
measurement vector of ego vehicle. (3) The lack of explicit causal model: an imitator can not
distinguish the causal and non-causal policies with similar offline evaluation performance, without
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Figure 1: (a): An illustration of different decision-making patterns. In timestep t, a 3-tuple
(ot,vt,at) is recorded as expert demonstration. ot denotes the image captured by the front camera,
vspeed,t is measured speed of ego vehicle, and aacc,t is the expert’s command in acceleration (< 0
means braking, > 0 means accelerate). (b): A causal diagram of the data-generating process within
two timesteps t− 1, t in driving tasks, subscripts representing the timestep. Dashed nodes and edges
denote the variables and interactions an imitator cannot observe: as modeled in Section 2.2, the
mismatched observation forms impose difficulty in recovering expert policy. ∆at is the difference
between previous expert action at−1 and current expert action at. vt denotes the measurement vec-
tor that comes with the image observation ot.

prior knowledge of the causal model of the task. (4) The evident and consistent spurious cor-
relations: a mapping between spurious features and the expert’s previous action is easily learned
and rarely violated, while differences between successive actions are usually minor. With all the
factors above, an imitator prefers to infer previous actions from spurious correlated features as its
prediction, instead of struggling in the large network parameter search space.

Appendix A.1 provides an introduction to works in related areas. Although methods have proposed
to bring causality into fields of IL and autonomous driving, most of their approaches either focus
on theoretical analysis(Howard & Kunze, 2024; Ruan et al., 2022; Ruan & Di, 2022; Kumor et al.,
2021; Swamy et al., 2022b), interpreting and evaluating agents’ behavior (Maier et al., 2024; Li
et al., 2024; Atakishiyev et al., 2023; Jacob et al., 2022; Hart & Knoll, 2020), operating in relatively
simple settings (Guo et al., 2024; Samsami et al., 2021), or designed for certain sub-tasks (Cheng
et al., 2024; Hu et al., 2022b; Tang et al., 2022) instead of end-to-end driving. In contrast, we aim
to use causality to assist the imitator in visually complex end-to-end driving tasks.

2.2 DEFINITIONS

In this paper, we consider the imitation driving task under the partially observable Markov deci-
sion process (POMDP) setting. POMDP is commonly used to model decision-making problems in
nondeterministic and partially observable scenarios.

Similar to (Kurniawati, 2022), the POMDP model is defined as a 5-tuple < S,A,O,T ,F >, where
S is the state space, A the action space, O the imitator’s observation space, T (st+1∣st,at) denotes
the state transition function, and F(ot+1∣st,at) denotes the observation function. Here, variables’
subscripts represent the timesteps they are in. We use boldface with lowercase letters to denote
instances in corresponding spaces, such as st ∼ S, ∼ denotes the sample process.

The partial observability in the driving task is represented by the mismatch between the expert’s
and the imitator’s observation form. While the expert receives and processes the ground truth in-
formation (e.g. bird-eye view images or vectored description of the whole scenario) as state s, the
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imitator can only observe an image o as the profile of the current expert state, and o only carries
partial information about s.

Additionally, we consider the driving task under the conditional imitation learning (CIL) setting
proposed by (Codevilla et al., 2018), and introduce a measurement vector v that come with o. v
describes the ego vehicle state and navigation information, and is also provided to the imitator as
conditions. As human drivers often drive under the indication of navigation information, we also
design our method to express the effect of v more comprehensively to the imitator. In the imple-
mentation, the navigation information can be derived from a simple route planner which requires no
parameter optimization, and the incorporation of v in CIL does not violate the general end-to-end
driving setting.

At each timestep t the expert observes the state st, selects an action at ∼ πe(at∣st) based on its
policy πe, and then observe the next state st+1 ∼ T (st+1∣st,at) sampled from the state transition
function. During the above interaction with environment, image observation ot and measurements
vt that obtained from the observation function (ot,vt) ∼ F(ot,vt∣st−1,at−1) are recorded as the
proxy of the state st observed by expert. The dataset De is organized as a combination of N expert
demonstrations (oi,vi,ai)Ni=1. The goal of typical BC approaches is to learn a policy π(at∣ot,vt)
with the supervision of the expert demonstrations such that the distribution of hidden reward gener-
ated by the policy π is the same as the one generated by expert policy πe.

Following the setting of typical Behavioral Cloning from Observation Histories (BCOH) approaches
(Chuang et al., 2022; Hu et al., 2022a; Seo et al., 2023), we assume that observations in history can
provide useful information about st, as a snapshot typically cannot tell the whole story. Therefore,
we extend the temporal input range of π to encourage it to extract more information from the past
and have a better understanding of the current scenario. By setting a history perception window
length l, we use ot−l∶t to denote the observed images in the period [t − l, t], vt−l∶t is defined in a
similar way. In a certain timestep t, the observation history under the perception window length l of
an imitator is defined as ht = (ot−l∶t,vt−l∶t), the imitator’s policy is rewrote π as π(at∣ht), and the
training dataset is organized as De = (hi,ai)Ni=1.

While the incorporation of observations in the history provides vast information and helps imitators
learn the dynamics of the environment, it also introduces shortcuts in imitating and prevents imitators
from faithfully recovering πe, as showcased by Figure 1a.

3 METHOD

3.1 INSIGHTS FROM CAUSALITY

We use the causal diagram to give a description of the driving tasks, as shown in Figure 1b. In
the modeled causal graph, it’s clear to see that the observed variable tuple (ot,vt) has not directed
edges that point at the current state st and action at. We design this based on the fact that (ot,vt)
is just a profile of the state observed by the expert, derived as (ot,vt) ∼ F(ot,vt∣st−1,at−1).
Therefore, directly building a policy that maps (ot,vt) to at is inappropriate, as the state st that
the expert used for the decision has not been inferred, and (ot,vt) cannot cover enough information
for replicating πe(at∣st). On the other hand, building an imitator policy π(at∣ht) that considers
historical information can also foster the negative effects of previous actions on identifying the
expert’s decision process.

In this paper, we propose Causality-inspired Contrastive Conditional Imitation Learning (3CIL), an
BC approach that incorporates causal insights into its design. In the training stage, 3CL decomposes
the task of IL into two sub-tasks: representation learning and policy learning, corresponding to
learning a representation model G(ŝ∣h), and a predictor model J(â∣ŝ). Here, we add hats ‘ˆ ’
to the imitator’s predictions to distinguish them from the expert’s states and actions. Based on the
causal graph and analysis we made above, we conclude the important traits (T1,T2, T3) that a robust
imitator must have, and introduce the targeted treatments in our proposed method 3CIL, as shown
in following paragraphs.

(T1) Ability to extract enough information from observation history, bridging a mapping
ht → ŝt matches (st−1,at−1) → st: a robust imitator must have its clues about the current sce-
nario. To achieve T1, 3CIL imposes a future image reconstruction task on its representation learning
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phase. With emphasis on the temporal and navigation conditions, we propose to model the feature
extraction module with a conditional Variational Auto-Encoder (VAE) and recurrent process. Based
on supervision from the causal direction ŝt → ôt+1, 3CIL transforms the history concluding process
into a simulation of observation function F(ot+1∣st,at) in the modeled POMDP. With this modifi-
cation, the representation model G(ŝ∣h) is urged to conclude enough information from observation
history ht, so that it can match with the actual expert state st in the metric of quality of inferred
future image observation ôt.

(T2) Minor reliance on spurious correlations, learning influence of previous actions through
at−1 → st → at instead of ht ← at−1 → at: to guarantee its performance in non-i.i.d deployment
time. To accomplish T2, 3CIL incorporates an action residual prediction task in the representation
learning phase to encourage the model to capture changes in the expert’s decisions. The proposed
action residual prediction task enforces the imitator to capture the variations within consecutive ac-
tions ∆at = at−at−1 without explicitly accessing at and at−1, which bypasses spurious correlation
by the effect estimation in causal direction ŝt → ∆ât (i.e., require st to reflect clues about changes
between actions, instead of serve as proxy of at−1). We also add a contrastive learning objective to
help shape a regression-aware representation space that provides clues about current action. The su-
pervised contrastive learning guides the representation model with the anti-causal direction ŝt ← at

hindsight, to enhance the consistency of causal effect from ŝt to predicting action at.

(T3) Ability to investigate the difference between the expert’s policy and the imitator’s policy,
identifying scenarios that caused high divergence between at and π(at∣ht): a robust imitator
must not be satisfied with its great average offline evaluation performance, but to focus on the factors
that caused its inconsistency with expert behaviors. For T3, 3CIL proposes a sample weight term to
guide the imitator focusing on samples that cause their predictions to contradict the expert.

𝒂𝑡−1

𝒉𝑡

ො𝒔𝑡

𝒂𝑡

Δ𝒂𝑡

ℒRNC: Refining 
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effect of 𝒂𝑡−1
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of inferring future

Δෝ𝒂𝑡

𝐺(ො𝒔|𝒉)
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ෝ𝒐𝑡+1

Figure 2: Modules in our 3CIL method are rep-
resented by rectangles, and colored based on the
type of variables they are about to predict. 3CIL
optimizes its representation model G(ŝ∣h) from
both causal direction (Lar ∶ ŝt → ∆ât,Lfo ∶ ŝt →
ôt+1) and anti-causal direction LRNC ∶ ŝt ← at.
Here, fr is the action residual predictor: ∆ât =
fr(ŝt), and do is an image decoder predicts the
image in next frame :ôt+1 = do(ŝt) .

In conclusion, the above three traits indicate
stable causal influences: ht → ŝt and ŝt → ât,
to simulate the actual expert strategy. Figure 2
and Section 3.2 describe the treatments used in
3CIL that enhance the robustness of the repre-
sentation model G(ŝ∣h) from both causal di-
rection (ŝt → ∆ât, ŝt → ôt+1) and anti-causal
direction (ŝt ← at). With supervision from
these two directions, the extracted representa-
tion ŝt is impulsed to have steady causal ef-
fects on the descendant nodes of actual expert
state st, help aligning inferred state ŝt with st
to produce a stable representation. Figure 3
and Section 3.3 illustrate the optimizing pro-
cess of predictor model J(â∣ŝ). The incor-
porated sample-weighting term is inspired by
classical studies in causal reasoning, to miti-
gate the biases in both the representation learn-
ing stage and expert demonstration distribution.
We detail the design of learning objectives in
3CIL in the following sections.

3.2 REPRESENTATION LEARNING

The idea of representation learning is to train
a representation model G(ŝ∣h) that extracts
meaningful and reliable features for down-
stream predictor, corresponding to accomplish
both T1 and T2. Appendix A.2.1 provides an
introduction to the implementation details and
a visualization of modules in G(ŝ∣h).
As shown in (Codevilla et al., 2018), CIL eases the driving task by introducing conditions, i.e.
navigation information organized as route commands that indicate what high-level action the agent
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should take in the current route (e.g. lane following, turn left, turn right), into the input field of policy.
Here, we move a step forward: instead of appending route commands into the feature vector for
downstream predictor, 3CIL processes the route command as factors that affect the state transition.

Inspired by approaches in causal inference (Nie et al., 2021; Schwab et al., 2020) that impose the
influence of treatment variables into networks’ parameters for more accurate estimations, we seek
to integrate the effect of navigation condition in the whole process of the representation model. By
embedding the measurement vector v (including ego vehicle speed, and route commands) into a
feed-forward network that decides the parameters of the hidden state’s posterior distribution, we
merge the influence of navigation information and current speed into the state abstraction process.
Therefore, by using these navigation conditions as proxy variables of actual states observed by only
experts, 3CIL guides the representation model to have a more reliable estimation of the current state.

Concretely, we design our G(ŝ∣h) as a conditional VAE, with a recurrent state sequence module
(RSSM) proposed by (Hafner et al., 2019), to simulate the state transition function T (st+1∣st,at).
We first extract the dense features (xt−l∶t,mt−l∶t) from non-structured historical images ot−l∶t and
raw measurement vectors vt−l∶t, with a pre-trained image encoder Eo and a measurement vector
encoder Ev in G(ŝ∣h), produced as (xt−l∶t,mt−l∶t) = [Eo(xt−l∶t∣ot−l∶t),Ev(mt−l∶t∣vt−l∶t)]. After
that, we model the latent representation ŝt as conditioned on these features.

As empirically shown in (Hu et al., 2022a; Hafner et al., 2019), using both deterministic and stochas-
tic features to model the latent representation enhances the flexibility and capability of the represen-
tation model. Therefore, we design the estimated latent state in timestep t: ŝt as a combination
of the deterministic historical features ct and the stochastic current latent information zt. RSSM
models the distribution of current latent information zt under transition T by a posterior distribution
qz(zt∣ct,mt,xt) ∶ zt ∼ N (µθ(ct,mt,xt), σθ(ct,mt,xt)) that conditioned on historical informa-
tion ct, and features (mt,xt) that derived from measurement vector and image observation. Here,
the mean µθ and standard deviation σθ of modeled Gaussian distribution qz are predicted by a feed-
forward network that takes (ct,mt,xt) as input. The historical features ct are extracted from a
recurrent network fd that takes former historical information ct−1 and former latent information
zt−1 as input. For a training set De with N samples, the optimization objective is written in a
variational lower bound form:

ELBO =
N−1
∑
i=1

EG(zi,ci∣hi)[logp(oi+1∣zi,ci)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Lfo: future image reconstruction

−D(qz(zi∣ci,mi,xi)∣∣pz(zi∣ci−1,zi−1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

posterior regularization

, (1)

where D(⋅∣∣⋅) denotes the KL-divergence measurement, and the future image reconstruction task Lfo

is carried out by an image decoder that receives (z,c) as input. Unlike previous works that recon-
struct all images in ht to examine the ability of G(ŝ∣h) in reserving all history information, we
resort to future image reconstruction Lfo to evaluate abilities of G(ŝ∣h) to extract history informa-
tion and infer future state. With this modification, Lfo indicates the representation model G(ŝ∣h)
to capture temporal evolution by examining the simulated future image ôt+1. Therefore, ŝ is urged
to reproduce the similar causal effect of st on ot+1.

Different from previous approaches (Hu et al., 2022a; Hafner et al., 2019), we eliminate the explicit
use of the previous action variable at in all modules in the representation model, which seems to
contradict the causal effect at−1 → st modeled in the causal diagram Figure 1b. However, the causal
diagram further shows that the effect of previous action at−1 on current action at can be inferred
from the variation between them, denotes as ∆at = at−at−1. In this view, we proposed to maximize
the conditional mutual information I(ŝt,at∣at−1), by optimizing the prediction accuracy of ∆at by
ŝ only. Therefore, we introduce an action residual prediction objective in the representation learning
phase:

Lar =
1

N

N

∑
i=1
(∆ai − fr(ŝi))2, (2)

where fr is an action residual predictor that predicts action difference ∆at = at − at−1. The intro-
duced action residual prediction task builds a causal directed edge ŝt → ∆ât to encourage G(ŝ∣h)
capturing variations caused by previous actions.
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While embedding the influence of observation history and action residual into the representation
learning enhances the model’s ability to infer the current state, it inevitably introduces more promi-
nent spurious correlations, as discussed in former sections. Therefore, to alleviate such effects, we
further introduce a contrastive learning objective to help shape a robust representation model.

As we aim to achieve driving with expert demonstrations, we resort to the supervised contrastive
learning (Khosla et al., 2020) methods to enhance robustness, as the expert’s actions naturally reflect
differences among samples. With this intuition, we introduce the Rank-N-Contrast (RNC) loss from
(Zha et al., 2023) to the optimization objective of representation learning in 3CIL. The idea of RNC
is to align distances in the representation space ordered by distances in their labels, which by design
meets the requirement of alleviating the effect of spurious correlation left in the features: samples
that carry similar historical information may end up poles apart in the representation space when
their corresponding action labels are different.

Therefore, G(ŝ∣h) equipped with the RNC loss is encouraged to use the anti-causal relation ŝt ← at

to infer a suitable state corresponding to the actual expert action at. In this view, the performed su-
pervised contrastive learning is equivalent to conducting a hindsight investigation on the consistency
of constructed causal effect ŝt → at.

For a batch sampled from De with batch size B, we apply two independent augmentations to obtain
a new batch with 2B samples, and write the RNC loss as:

LRNC =
1

2B

2B

∑
i=1

1

2B − 1
2B

∑
j=1,j/=i

−log
exp(sim(ŝi, ŝj)/τ)

∑ŝk∈set(i,j) exp(sim(ŝi, ŝk)/τ)
, (3)

where τ is the temperature parameter, sim(⋅) is the similarity measure between two inferred states
(cosine similarity is used in this work), set(i, j) collect those samples’ representations whose
corresponding action labels have higher rank (in terms of distance with ŝi) compare to ŝj (i.e.,
set(i, j) = ŝk ∣k /= i,d(ak,ai) ≥ d(aj ,ai),d(⋅, ⋅) measures distance between two labels).

After introducing all designs we proposed that aim to shape a robust representation model which
meets the requirements T1 and T2, we write our final optimization objective of G(ŝ∣h) as maximiz-
ing: LG = ELBO −Lar −LRNC.

3.3 POLICY LEARNING

𝒉𝑡

ො𝒔𝑡

𝒘𝒆𝒊𝒈𝒉𝒕𝑡: 
Investigating 

divergence 

with expert 

𝐺(ො𝒔|𝒉)

𝐽(ෝ𝒂|ො𝒔) 𝒂𝑡

Δ𝒂𝑡

Δෝ𝒂𝑡

ෝ𝒂𝑡

𝑓𝑟

ℒ𝐽 = ℒ𝑎 ×𝒘𝒆𝒊𝒈𝒉𝒕𝑡: optimizing the predictor model

ℒ𝑎: prediction loss

Figure 3: Modules in our 3CIL method are
represented by rectangles, and colored based
on the type of variables they are about to pre-
dict. 3CIL incorporates the sample-weighting
term weightt into the optimization objective
of predictor model J(â∣ŝ), to transform the di-
vergence between the expert and imitator into
emphasis on important samples.

After representation model G(ŝ∣h) is trained and
its parameters are frozen, the downstream predictor
network J(â∣ŝ) is more resistant to spurious cor-
relations. However, a severe problem remains un-
solved: the inconsistency of imitators when repli-
cating an expert’s strategy in certain scenarios. We
believe this problem can be attributed to the un-
matched growth between the diversity of driving
scenarios and the number of expert demonstra-
tions: scenarios are not distributed uniformly in the
dataset. Such a characteristic indulges the imitator
to be indifferent about rare scenarios and hinders it
from achieving T3.

To enhance the imitator’s ability to cope with rare
situations, 3CIL incorporates a sample-weighting
process in training the predictor J(â∣ŝ): i.e., we
assign weights on samples based on the divergence
between imitator and expert, enforcing the predic-
tor attaching importance on rare situations. To de-
tect the extent of divergence, we reuse the action
residual predictor fr that was trained from the pre-
vious phase, to describe such difference in a per-
sample manner.
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Denote the action residual prediction error between fr(ŝ) and ∆a as δa ∶ δa = ∣∆a − fr(ŝ)∣,
and denote the operation: bound(⋅, bmin, bmax) as a function bounds a variable or all elements
within a vector, to the range [bmin, bmax]. For a sample (hi,ai) from expert demonstration, its
corresponding weight is computed as:

weighti = exp(bound(δat − δa, bmin, bmax) × γ), (4)

where δa is the mean of residual errors in the minibatch, [bmin, bmax] is set to [−0.3,0.3], γ is the
factor controlling strength of sample weight and it is set to 6.67 in our experiment.

Consider the causal relations between (st,∆at,at) in Figure 1b, variations in δat can be seen as
performing interventions on ∆at, such variation based sample-weighting process is akin to tech-
niques like inverse probability weighting and doubly robust learning that widely used in the causal
inference literature. Indeed, the quantification of prediction error for ∆at identifies the potentially
under-represented certain scenarios and also mediates the bias introduced by inaccurate estimations
in previous representation learning.

The training objective of predictor J(â∣ŝ) is then to minimize: LJ = 1
N ∑

N
i=1La(at, J(ŝi)) ×

weighti, where La can be typical metrics that used for supervised learning (e.g., cross-entropy and
mean-squared error, based on the form of expert action label).

3CIL divides the imitating process as two separate stages: first use LG to train a representation
model G(ŝ∣h), then LJ is used to train a predictor model J(â∣ŝ) while the parameters of G(ŝ∣h)
is frozen. We detail the implementation of 3CIL method in Appendix A.2.For a certain sample hi,
the imitator’s prediction is made as: âi ∼ J(âi∣ŝi), ŝi ∼ G(ŝi∣hi).

4 EXPERIMENTAL EVALUATION

4.1 SETTINGS

Environments and dataset: We conduct in the visually complex driving simulator CARLA (Doso-
vitskiy et al., 2017). Expert demonstrations are collected by an RL agent from (Zhang et al.,
2021b) that trained using privileged information as input, we deploy it in four towns (Town01,
Town03, Town04, Town06) to generate about N = 1,125,300 training samples. These samples
is then organized in form of De ∶ (hi,ai)Ni=1, with the perception window length l set to 4, and
the observation history ht is organized as ht = (ot−l∶t,vt−l∶t). An image observation o is of
size (channel=RGB,width=240px,height=150px), and a measurement vector v is composed as
v = (vspeed, vroute command, vroute command next).
In the testing phase, we modify the weather conditions, traffic density, camera parameters, and
also introduce two new towns (Town02, Town05) as environments to evaluate the performance of
methods under severe distribution shifts. We design four evaluation scenario settings (denote as
Scenario 1,2,3,4) corresponding to experiments in four towns that are seen in De, and two evaluation
scenario settings (denote as Scenario 5,6) for experiments in Town02 and Town05. Appendix A.3.3
and A.3.4 described the experiment design in detail.

Baselines: For comparison, we choose the following baselines as representatives of different types
of approaches. (1) Conditional Imitation Learning (CIL, (Codevilla et al., 2018) ): stands as the
vanilla CIL method. (2) Keyframe-Focused Visual Imitation Learning (Keyframe, (Wen et al.,
2021)): utilizes action prediction errors to assign weights on samples. (3) Domain Generalizable
Imitation Learning by Causal Discovery (DIGIC, (Chen et al., 2024)): performs causal discovery to
sort causal features and learn a domain generalizable policy. (4) Past Action Leakage Regularization
(PALR, (Seo et al., 2023)): imposes regularization on conditional dependence between inferred state
ŝt and previous action at−1 to alleviate spurious correlation. (5) Premier-TACO from (Zheng et al.,
2024): conducts temporal action-driven contrastive learning to shape a robust representation model.
We also implement two methods that can be seen as ablation experiments of 3CIL. (6) Rank-N-
Contrast framework (RNC, (Zha et al., 2023)): adding the LRNC loss into the training representation
model, without action residual prediction task. (7) Visual Imitation Learning via Residual Action
Prediction (RAP, (Chuang et al., 2022)): adding the Lar in training representation, without assigning
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sample weights in training predictor.A detailed introduction about used baselines and the ways we
implement them is provided in Appendix A.3.1.

Evaluation metrics: We quantify the performance of methods based on three metrics: accumulated
rewards, average collision rate, and average speed. The reward function is constructed as R =
rspeed + rposition + rrotation + raction, a combination of four factors that independently judge an
agent’s driving ability in following indicated routes, similar to previous work (Zhang et al., 2021b).
Details of the reward function are listed in Appendix A.3.5. We combine all metrics to discuss
strategies learned by each method.

4.2 PERFORMANCE AND DISCUSSION

Table 1: Performance of each method in three metrics: accumulated reward (R), average collision
rate (C, in ‰), and average speed (S, in km/h). We add arrows beside R and C to indicate the optimal
direction. No arrow is placed beside S, as the speed metric alone can not reflect driving performance.
Bold numbers in rows R and C indicate the best results, second-best results are underlined.

Metric
Method CIL Keyframe DIGIC PALR Premier-TACO RNC RAP 3CIL(Ours)

Scenario 1
R ↑ 330.49 353.83 437.32 354.47 469.99 411.31 383.54 521.26
C ↓ 0.66 0.58 0.73 2.42 0.85 0.55 0.60 0.54
S 5.22 6.05 11.99 8.52 12.59 7.50 7.95 9.76

Scenario 2
R ↑ 12.14 309.70 484.49 422.79 431.22 519.14 362.31 587.44
C ↓ 0.36 0.57 0.47 1.67 0.55 0.42 0.53 0.46
S 7.89 9.56 18.96 19.11 19.76 18.12 15.95 19.85

Scenario 3
R ↑ 247.29 125.30 404.44 327.85 204.38 64.80 136.6 420.38
C ↓ 1.35 1.56 1.38 4.18 1.31 2.20 3.15 1.25
S 3.99 7.74 13.43 9.60 10.76 12.67 11.66 12.07

Scenario 4
R ↑ 345.00 529.68 400.42 837.98 561.13 735.19 505.63 966.35
C ↓ 0.37 0.31 0.32 0.97 0.37 0.31 0.35 0.27
S 7.00 9.46 18.58 11.23 19.40 17.05 16.78 16.20

Scenario 5
R ↑ 7.18 278.95 306.10 421.16 516.70 299.72 302.50 538.50
C ↓ 0.29 0.53 0.49 1.47 0.37 0.50 0.59 0.48
S 7.61 9.24 12.60 11.92 15.32 13.71 11.00 14.46

Scenario 6
R ↑ 45.93 215.77 409.88 389.07 331.29 447.44 195.53 447.24
C ↓ 0.34 0.64 0.94 1.54 0.68 0.64 0.63 0.59
S 4.32 8.95 10.98 8.66 12.19 8.56 7.78 10.99

In Table 1, we present the evaluation results in the CARLA simulator. A detailed ablation study is
provided in Appendix A.4. We analyze the performance of methods from several aspects.

Effect of spurious correlation. Our proposed method 3CIL is one of the most cautious drivers
with the lowest collision rate in half settings (3 of 6). Interestingly, another method with the lowest
collision rate is the earliest approach CIL Codevilla et al. (2018) which did not consider the spurious
correlations problem. This phenomenon can be explained when we consider the accumulated reward
and average speed: the quantized results of CIL in these two metrics are significantly lower than
most of its competitors, suggesting that CIL has built doubtful decision patterns that showed overly
cautiousness. Indeed, in our observation, the agent trained with CIL often got stuck or even failed
to launch. In contrast, the rest of the methods generally have no such issues, demonstrating the
necessity of alleviating the effects of spurious correlations.

On the contrary, PALR effectively removes the effect from the previous action by regularizing condi-
tional dependence (ŝt;at−1∣at). However, such regularization may not be suitable for driving tasks,
as shown in Figure 1b, investigation of effects from previous action is still required for recovering
information about the expert’s state. Indeed, although PALR achieves relatively stable rewards, it
obtains the highest collision rates in most settings.

Sample-weighting strategies and contrastive learning help imitating. Both Keyframe and 3CIL
translate errors in prediction into assigned weights on corresponding samples. Experimental results
demonstrate that sample-weighting strategies indicate the imitator to focus on crucial changepoints
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in a simple yet efficient way. Moreover, the proposed weighting design in 3CIL utilizes errors in
action residual prediction in the representation learning stage instead of the copycat policy action
prediction errors in (Wen et al., 2021). Such a strategy enables 3CIL to identify abnormal scenes
that the representation model fails to cover and empowers it to cope with more general problems
than the copycat phenomenon.

On the other hand, contrastive learning also contributes the imitating performance. Both Premier-
TACO (temporal action-driven contrastive loss) (Zheng et al., 2024) and RNC (supervised con-
trastive loss) (Zha et al., 2023) can assist the representation model to capture the intrinsic character-
istics from observation history, which is demonstrated by their relatively good performance in both
seen and unseen scenarios. Our 3CIL approach utilizes supervised contrastive learning to help infer
states, as the actions made by experts can provide clear clues for constructing representation space,
without the need to tune hyper-parameters for sampling temporal positive/negative pairs.

While methods like DIGIC that introduce causal discovery can also investigate the essential re-
lationships related to experts’ decisions, the masking or filtering operation will inevitably cause
information loss, which may lead to safety concerns in applications like driving, and sub-optimal
performance in evaluation.

Robustness requires effort. Although variations in experimental settings and novel map layouts
pose challenges to imitators’ capabilities, 3CIL still maintains a robust driving strategy. As shown
in Table 1, 3CIL obtains the highest accumulated rewards in most settings (5 of 6). Recall that the
reward function in evaluation measures the ability of an imitator in executing general driving tasks
given navigation conditions, the outstanding performance in accumulated rewards indicates that the
pursuit for T1,T2,T3 does improve the robustness of the imitator.

Moreover, when we analyze the performance of RNC and RAP that can be seen as parts of the abla-
tion study of 3CIL, the effectiveness of interactions we introduced in Figure 2 and Figure 3 become
evident: the shared reconstruction task Lfo, coupled with hindsight from supervised contrastive
learning task LRNC or action variation capturing task Lar, both alleviate the spurious correlations,
but fail to maintain steady performance in all settings. Concretely, when we incorporate the anti-
causal direction ŝ ← at influence to shape the imitator’s representation space, G(ŝ∣h) is enforced
arrange inferred states to match their corresponding potential actions’ propensity, but not enforced
to capture the effect that previous actions imposed on the current state, while RAP approach is
equivalent to do the opposite. Either way, the absence of essential information will result in an in-
adequate estimation of the expert state, hindering models from robust generalization performance.
Also, the sample-weighting process proposed in 3CIL does improve the imitator’s ability to handle
rare scenarios, as the agent trained with 3CIL shows more caution and obtains lower collision rates.

5 CONCLUSION

In this work, we investigate the factors hindering imitation learning methods from generalizing
training performance into unfamiliar testing environments in autonomous driving tasks. Based on
causal reasoning about the expert’s decision process, we identify crucial traits an imitator must have
for robust performance. After that, we introduce Causality-inspired Contrastive Conditional Imi-
tation Learning (3CIL), an imitation learning method that imposes regularization on the imitator’s
representation by supervised contrastive learning and action residual prediction, corresponding to
assigning supervisions on representation model from both causal direction and anti-causal direction
to guarantee quality of the inferred state. Moreover, 3CIL introduces a sample-weighting term to
transform the high divergences between the expert and imitator, into the emphasis on rare scenar-
ios, enabling the imitator to adapt to diverse situations. We perform experiments in the CARLA
simulator to demonstrate the effectiveness of the proposed 3CIL.
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A APPENDIX

A.1 RELATED WORK

A.1.1 IMITATION LEARNING FOR AUTONOMOUS DRIVING

Imitation Learning (IL) is widely used in autonomous driving (Le Mero et al., 2022; Bansal et al.,
2018), as it requires few or zero actual interactions with the target environment. Classical literatures
have divided IL into behavior cloning (BC) and inverse reinforcement learning (IRL). The idea of
adversarial learning also introduces adversarial imitation learning (AIL) to the IL family. End-to-end
autonomous driving approaches typically use BC in training, as BC does not need actual interactions
with the environment, but seeks to learn driving patterns from numerous offline demonstrations(Chib
& Singh, 2023).

However, the performance of BC is often problematic, which arises from the contradiction between
the i.i.d assumption made by BC and the out-of-distribution (OOD) nature of driving tasks (Sridhar
et al., 2023). Such a conflict leads to the compounding error that a BC imitator behaves unreliably
when observing unfamiliar scenarios. Moreover, BC often suffers from causal confusion (de Haan
et al., 2019), as its lack of the explicit causal model makes the imitator cannot tell the difference
between spurious correlations and causal relations. This phenomenon becomes more severe when
the BC imitator interacts with the environment in a sequential manner. Commonly the learned
shortcuts (Wen et al., 2022) fail to apply in the test stage, or the BC imitator is even stuck in delusions
caused by itself(Ortega et al., 2021).
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A.1.2 REMEDIES FOR CAUSAL CONFUSION

Previous approaches have proposed several remedies for handling the phenomenon of causal confu-
sion to obtain a robust imitator, including: randomly masking encoded discrete features (Park et al.,
2021), incorporating additional supervisions or regularization on the encoder or predictor (Hu et al.,
2022a; Kumar et al., 2023; Seo et al., 2023), querying experts about certain scenarios (de Haan et al.,
2019) and performing interventions on the environment state or policy input (Pfrommer et al., 2023;
Ruan & Di, 2022), filtering input features based on causal discovery (Chen et al., 2024; Samsami
et al., 2021), maximizing certain bounds or mutual information to achieve deconfounding (Swamy
et al., 2022a; Wan et al., 2023).

However, masking and regularizing encourage the imitator to be indifferent about spurious corre-
lated features but may cause the loss of useful information. Adding extra supervision during training
requires modifying the data-collecting process, and querying experts or intervening in the environ-
ment seems unfeasible in the driving task. While approaches with causal discovery match humans’
instinct, they typically only work with low-dimensional data form (i.e., vectored observation), and
the choice of causal discovery algorithm impacts the imitator’s performance. Approaches aimed to
deconfound may need more clues about the expert’s policy and the dynamic of target environments
or mainly contribute to the theoretical analysis. Therefore, we aim to develop a method that requires
no extra information beyond the training dataset and has a robust policy that can drive in unseen
environments without reliance on spurious correlations.

A.1.3 CAUSAL REASONING

Causal reasoning (Pearl, 2009) approaches can be generally divided into two genres: causal dis-
covery and causal inference. Causal discovery aims to recover the underlying causal relations
among variables in the target system, to help researchers learn the mechanisms of a system and
aid downstream tasks. On the other side, causal inference is designed to learn the effect of modify-
ing one/multiple variables’ value (i.e., intervening on treatment variables) on the outcome variables,
while considering the mechanisms between variables.

While typical studies have demonstrated the effectiveness and necessity of causality, incorporating
causal reasoning into visually complex and partially observable tasks is still challenging. While
efforts have been made to investigate causality in high-dimensional and confounded data (Günther
et al., 2023; Zhu et al., 2022; Wang & Zhou, 2021; Wang et al., 2021; Sun et al., 2021; Cheng et al.,
2022; Yang et al., 2021), the full identification of causalities in tasks like autonomous driving is still
intractable without further assumptions (Zheng et al., 2018) or specifications (Huang et al., 2020).
Moreover, using the observational samples alone generally cannot provide sufficient indications
for recovering all causal relations or estimating precise causal influence. Performing interventions
(Pfrommer et al., 2023; Zhang et al., 2021a) or querying experts about certain scenarios (de Haan
et al., 2019; Zhang & Cho, 2017) are unfeasible in tasks with safety concerns and high interaction
frequency like robotics and autonomous driving.

A.2 IMPLEMENTATION OF 3CIL

A.2.1 MODULES

As shown in Figure 4, G(ŝ∣h) is composed of an image encoder Eo(x∣o), a measurement vector
encoder Ev(m∣v), a recurrent state sequence module (RSSM) from (Hafner et al., 2019) that com-
bines both deterministic state model fd(ct∣ct−1,zt−1) and stochastic state model qz(zt∣ct,xt,mt).
xt and mt are the features extracted from the image encoder Eo and the measurement vector en-
coder Ev , respectively. ct is a feature vector that preserves history information, and zt is the hidden
state sampled from a Gaussian distribution ps(zt∣ct,xt,mt) whose mean and variance are param-
eterized by a feed-forward network.

Denote ⊕ as the concatenation operation, for a sample in timestep t with observation history
ht, its corresponding representation is obtained as: ŝt = ct ⊕ zt, ct ∼ fd(ct∣ct−1,zt−1),zt ∼
qz(zt∣ct,xt,mt), and we assume a fixed initial feature vector c0 without loss of generality.

In addition, we incorporate an image decoder do(ôt+1∣ŝt) to carry out the image reconstruction task,
and an action residual predictor fr(∆̂at∣ŝt) to capture the variation in expert’s actions in a period. In
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Figure 4: The illustration of proposed framework in 3CIL, with observation history perception win-
dow length l set to 3 as example. Dashed edges denote the sampling process. The representation
model G(ŝ∣h) is composed of an image encoder Eo, a measurement vector encoder Ev , and a recur-
rent state sequence module (fd, qz). The predictor model J(â∣ŝ) is composed of a feature mapper
jm, a throttle-or-brake classifier jc and an action predictor ja.

practice, we use the Mean-Squared Error (MSE) loss to carry out the maximum likelihood estimation
for future image reconstruction part in Eq.1. MSE loss is also used in optimizing the action residual
prediction accuracy, as shown in Eq.2.

Similar to approaches (Cultrera et al., 2023) that divide the action command prediction task into
multi-stages to restrain the inertia problem, our predictor model J(â∣ŝ) is composed of a throttle-
or-brake classifier jc and an action predictor ja.

The classifier jc(P (go),1 − P (go)∣ŝ) processes the coarse action command corresponding to go
and stop as a binary classification task, P (go) denotes the probability of increasing speed, while
1 − P (go) represents the probability of slowing down.

The prediction of jc is then fed into ja as part of the action predictor’s input features. ja(â∣P (go),1−
P (go), ŝ) predicts the steering angle and the absolute value of acceleration [âsteer, abs(âacc)],
the final prediction of J(â∣ŝ) is then: if P (go) > 0.5, â = [âsteer, abs(âacc)], else â =
[âsteer,−abs(âacc)]. We use binary cross-entropy loss to optimize jc, and MSE loss to optimize
ja. These two loss terms are then multiplied with the sample-weighting term Eq. 4 to produce the
final action loss.

A.2.2 SPECS

We list the implementation details of modules in 3CIL in this section. Table 2 concludes the struc-
tures of data and major components of 3CIL.

Starting with the representation model G(ŝ∣h), the image encoder Eo(x∣o) is implemented as a
pre-trained ResNet18 model (He et al., 2016), while the measurement vector encoder Ev(m∣v) is
a multi-layer perceptron (MLP) coupled with embedding layers that process discrete navigation
commands. vroute command and vroute command nex are processed through an embedding layer
(embedding num = 7, embedding dim = 8), then concatenate with vspeed and feed to a MLP
(linear layers = 3,hidden units = 128,output dim = 128, activiation = ReLU(⋅)) to produce the
encoded feature m.

In implementation, the RSSM model of G(ŝ∣h) is composed of a linear layer that maps the feature
xt−l∶t ⊕mt−l∶t extracted from Eo and Ev , into a vector with size = 256, a GRU module whose
both input size and hidden size set to 256 is added as the instance of recurrent network fd, a MLP
(linear layers = 3,hidden units = 256 + 128,output dim = 128 × 2, activiation = ReLU(⋅)) is used
to predict the mean and standard deviation of the posterior distribution qz(zt∣ct,mt,xt). Finally, a
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Table 2: Structures of data and models.
Type Specification

Observation ot = (channel=RGB, width= 240px,
height=150px)

Condition vt = (vspeed ∼ [0,100],
vroute command ∈ {−1, ...,6},

vroute command next ∈ {−1, ...,6})
Input History ht = (ot−l∶t,vt−l∶t), l = 4

Representation
Model G(ŝ∣h)

Image Encoder Eo(x∣o) ∶ pre-trained ResNet18
Measurement

Vector Encoder
Ev(m∣v) ∶MLP(linear layers = 3,

hidden units = 128, output dim = 128,
activiation = ReLU(⋅))

(RSSM)
Deterministic State

Model

fd(ct∣ct−1,zt−1) ∶ GRU (input size = 256,
hidden size = 256)

(RSSM) Stochastic
State Model

qz(zt∣ct,mt,xt) ∶ (mean, std) ∼MLP
(linear layers = 3, hidden units = 256 + 128,

output dim = 128 × 2, activiation = ReLU(⋅))
Extracted

Representation
ŝt = ct ⊕ zt = Tensor(shape ∶ [1,128 + 256])

Additional
Modules

Action Residual
Predictor

fr(∆ât∣ŝt) ∶MLP (linear layers = 3,
hidden units = 256, output dim = 2,

activiation = ReLU(⋅))
Image Decoder do(ôt+1∣ŝt) ∶ 3 ConvTranspose2d layers with

activiation = ReLU(⋅))

Predictor
Model J(â∣ŝ)

Feature Mapper jm ∶MLP (linear layers = 3, hidden units = 512,
output dim = 512, activiation = ReLU(⋅))

Throttle/brake
Classifier

jc ∶MLP (linear layers = 4, hidden units = 512,
output dim = 2, activiation = ReLU(⋅)), and

Sigmoid(⋅) as output transform function
Action Predictor ja ∶MLP(linear layers = 4, hidden units = 512,

output dim = 2, activiation = ReLU(⋅))
Output Action ât = [âsteer,t, âacc,t] = Tensor(shape ∶ [1,2])
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linear layer connects the computed last historical information vector ct in timestep t and the sampled
hidden state zt, and maps them into ŝt, a feature vector with length = 384.

The feature mapper jm is a MLP as (linear layers = 3,hidden units = 512,output dim =
512, activiation = ReLU(⋅)), which processes features that feed into jc, ja. The throttle/brake clas-
sifier is a MLP as (linear layers = 4,hidden units = 512,output dim = 2, activiation = ReLU(⋅)),
with a Sigmoid(⋅) transform the prediction in range (0,1). The action predictor ja receives out-
puts from jm and jc, computes its prediction through a MLP with (linear layers = 4,hidden units =
512,output dim = 2, activiation = ReLU(⋅)).

A.2.3 TRAINING

For 3CIL and baselines we used for comparison that can conduct representation learning and policy
learning in separate stages (i.e., DIGIC, PALR, Premier-TACO, RNC, and RAP in Section 4.1),
we first conduct their corresponding representation learning with expert demonstrations to obtain
stable representation models. For these methods, we use an Adam optimizer (Kingma, 2014) with a
learning rate set to 5e−6 to optimize their representation models. An early-stopping monitor module
is also added to prevent models from overfitting the training set, with an evaluation set Dv divided
from the training set De in a dividing factor 10%. After training an epoch on the training set, the
representation model is required to run on Dv. If the performance increment in Dv is lower than
the optimization threshold 1e − 3, this optimization epoch is marked as a potential invalid update.
When the consecutive invalid updates that a representation model encountered have reached the
early-stopping threshold (set to 10 in this phase), the optimization process of the representation is
finished.

When the training process for representation models was finished, we fixed these models’ weights
and deployed them in the following policy training phase. Similar to the former stage, an Adam
optimizer with a learning rate set to 1e − 6, and an early-stopping monitor with an optimization
threshold of 1e − 6 and an early-stopping threshold of 20 are used.

During the representation learning phase of (3CIL, DIGIC, PALR, Premier-TACO, RNC, and RAP)
and overall optimization of CIL, data augmentation operations are applied on the imitator’s image
observations to increase the diversity of the dataset and enhance the robustness of methods. Added
data augmentation operations and their corresponding probability are: horizontal flip with probabil-
ity = 0.3, color jitter (brightness = 0.4, contrast= 0.4, saturation = 0.4 and hue = 0.1) with probability
= 0.4, and gray-scale with probability = 0.2.

A.3 EXPERIMENTAL DETAILS

A.3.1 BASELINES

As described in Section 4.1, we have picked and implemented baselines including CIL, Keyframe
(Wen et al., 2021), DIGIC (Chen et al., 2024), PALR (Seo et al., 2023), Premier-TACO (Zheng
et al., 2024), RNC (Zha et al., 2023), and RAP (Chuang et al., 2022) in our experiments. We now
introduce each baseline and our implementations.

The Conditional Imitation Learning (CIL) approach (Codevilla et al., 2018) eases the complex
vision-based driving task by introducing conditions (i.e., the expert’s intention, often expressed as
route commands) to the model’s input. The vanilla CIL pipeline operates in a supervised learning
manner by directly minimizing the prediction difference between the policy and expert demon-
strations, as: LJ = 1

N ∑
N
i=1La(at, J(ot,vt)). In our implementation, we replace the input tuple

(ot,vt) with ŝt ∼ G(ŝt∣ht), allowing the representation to capture more information from the tem-
poral aspect. The overall model is still optimized by only the prediction loss.

The Keyframe-Focused Visual Imitation Learning (Keyframe) approach (Wen et al., 2021) allevi-
ates the copycat problem by introducing sample-weighting strategies, based on precomputed “action
prediction error” (APE) between a copycat policy and the expert demonstrations. Concretely, a copy-
cat policy πc(â∣at−l∶t−1) is trained to use only previous actions at−l∶t−1 to predict current action â.
The policy πc is then used to locate frames that are more likely to be changepoints, by identifying
the samples with high APEs. Higher weights are then assigned to these identified samples, regular-
izing the imitator to focus on changepoints. In our implementation, we train a copycat policy whose
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structure and input data are set similar to Wen et al., and use their step(⋅) function to map samples’
APEs into weights on samples. The samples’ weights are then plugged into the learning process of
CIL.

The Domain Generalizable Imitation Learning by Causal Discovery (DIGIC) (Chen et al., 2024)
framework, may stand as a representative for approaches that combine causal discovery and IL.
Specifically, they picked the covariates that directly contribute to expert action at as the input of the
downstream predictor. In our implementation, the causal discovery is operated upon the extracted
features from the representation model G(ŝi∣hi). The representation model is first trained with the
image reconstruction and posterior regularization losses, to ensure it captures rich information from
raw history observations while achieving feature compression. The causal discovery task is then
conducted with the mutual information regression test which is provided by the causal discovery
toolbox (Kalainathan et al., 2020). Only features that exhibit test statistics that are higher than a
threshold(0.20) are picked as input for the downstream BC predictor.

The Past Action Leakage Regularization (PALR) method (Seo et al., 2023) bypasses the causal con-
fusion problem with a regularization on the conditional dependence between extracted representa-
tion ŝt and expert’s previous action at−1, given current expert’s action at, as Lreg(ŝt;at−1,at). Fol-
lowing their work, we adopt the Hilbert-Schmidt conditional independence criterion (HSCIC) from
(Park & Muandet, 2020) to perform past action leakage regularization in a non-parametric manner,
as: Lreg-HSCIC(ŝt;at−1,at) = HSCIC(st,at−1∣at). Such regularization term is incorporated in the
representation learning stage in our implementation, with parameters set as ridge lambda = 1e − 3
and reg coef = 0.1.

The Premier-TACO framework (Zheng et al., 2024) employs a temporal action-driven contrastive
loss function for visual representation pretraining, with a new negative example selecting strat-
egy. For a state ŝt, its corresponding positive example is ŝt+k, while its negative examples are
then selected based from a window with size w centered at state ŝt+k within the same episode, as
ŝt,neg ∼ (ŝt+k−w, ..., ŝt+k−1, ŝt+k+1, ..., ŝt+k+w). We incorporate this framework in our representa-
tion learning stage with positive stride k = 4 and window size w = 5. The action encoder utilized in
Premier-TACO is implemented with a three-layer MLP with 256 hidden units.

Different from Premier-TACO that constructs positive pairs and negative pairs based on temporal
indexes, the Rank-N-Contrast framework (RNC) (Zha et al., 2023) conducts supervised contrastive
learning to shape a robust representation space with guidance from samples’ continuous labels. As
part of optimization target in our 3CIL method, the LRNC in Eq 3 help aligning the distances of
samples in the representation space with distances in their labels. To evaluate the benefit from LRNC
solely, we set RNC as one of our baseline, with implementation as adding it alongside with the
image reconstruction and posterior regularization losses.

The Residual Action Prediction (RAP) method (Chuang et al., 2022) aims to resolve the copycat
problem by designing the residual action prediction objective Eq 2. This approach is also introduced
as a baseline, without the sample-weighting strategy in Eq 4.

To alleviate the performance bias incurred by different model capacities, all baselines in our exper-
iments share same architecture design in Appendix A.2.2 and training strategy in A.2.3. Therefore,
the major differences in metrics will come from methods’ designs.

A.3.2 PLATFORMS

All models used in experiments was trained on a batch size of 64 on a workstation with a RTX4090
GPU. In the testing phase, these models are deployed to the CARLA simulator (version 0.9.12) on
another workstation with a RTX3080 GPU.

Table 3 lists configurations for the CARLA simulator used in our experiments, both collecting train-
ing data and evaluating models. Specifically, the history subsample frequency is set lower than the
actual interaction frequency, as the dynamics in urban driving environments do not contain many
high frequency components. Similarly, the frequency of computing and reporting metrics (reward,
collision) is set to 4Hz.
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Table 3: Configurations of CARLA simulator in experiments.
Configuration Value

System platform Windows 10
Graphics quality quality-level=Epic

Interaction frequency 20Hz
History subsample frequency 4Hz

Perception window length l = 4
Metrics computation frequency 4Hz

A.3.3 ENVIRONMENTAL PARAMETERS

In the conducted experiments, we modified the weather condition, traffic density, and camera pa-
rameter for each scenario used in the evaluation, we listed the environmental parameters used in
expert demonstrations and evaluation process in Table 4, and introduce the effect of changing these
parameters as follows.

Table 4: Environmental parameters in the training set and test stage.
Environmental

parameters Training set Test stage

Towns Scenario 1, 2, 3, 4 ( Town01,
Town03, Town04, Town06)

Scenario 1, 2, 3, 4, 5, 6 ( Town01,
Town03, Town04, Town06, Town02,

Town05)
Weather group ‘ClearNoon’, ‘WetNoon’,

‘HardRainNoon’,
‘ClearSunset’

‘WetCloudyNoon’, ‘SoftRainSunset’,
‘WetSunset’, ‘HardRainSunset’

Number of
vehicles

Scenario 1: [80, 160],
Scenario 2: [40, 100],

Scenario 3: [100, 200],
Scenario 4: [80, 160]

Scenario 1: 120, Scenario 2: 70,
Scenario 3: 200, Scenario 4: 120,
Scenario 5: 70, Scenario 6: 120

Front camera
FOV

Scenario 1: 70, Scenario 2:
80, Scenario 3: 100, Scenario

4: 120

Scenario 1: 75, Scenario 2: 105,
Scenario 3: 95, Scenario 4: 85,
Scenario 5: 90, Scenario 6: 110

Except for four scenarios that appeared in the training set, two new scenarios are also included in
the test stage. As the vroute command, vroute command next are offered as navigation information,
driving in unfamiliar towns is less terrifying. Still, the introduced new scenarios can examine the
applicability of learned patterns of each imitator in new domains.

The weather condition is set differently in the training set and test stage as shown in Table 4, no
weather condition in the test stage has been introduced to the imitator in the training dataset. Al-
though the weather in the CARLA simulator does not affect the vehicle’s physics, it does affect the
lighting condition and the visibility of visual-based imitators, new weather conditions impose trials
on imitators’ ability in generalization. Moreover, the distribution of weather conditions in the test
stage is shifted: sunsets and rain conditions more frequently appear, making the driving task more
difficult.

We modify the traffic density by setting the number of other vehicles. Naturally, denser traffic leads
to harder challenges on imitators’ strategies. In particular, we increase the vehicle count to 200 in
Scenario 3, corresponding to Town04 in CARLA, which is a small town. This contradiction between
compact map size and heavy traffic load poses stress on imitators and leads to their highest collision
rates in the design experiments.

Finally, the camera parameter we modified is the field of view (FOV) of the RGB camera that pro-
duces the image observation for imitators. Higher FOV means an imitator can perceive information
with a wider perception range, but also brings distortions to objects in an image’s corner. Moreover,
an object located in an identical spot will be depicted in different sizes when setting FOV at different
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levels. Such variances in observation further intensify the extent of distribution shift in the test stage
and pose threats to the imitators’ generalization.

Figure 5 shows samples from scenarios with environmental parameters set differently.

(a) (b)

(c) (d)

(e) (f)

Figure 5: Illustrations of six scenarios used in our experiments. (a): Scenario 1 with the weather set
to ‘ClearNoon’ and camera FOV set to 70. (b) Scenario 2 with the weather set to ‘WetNoon’ and
camera FOV set to 90. (c) Scenario 3 with the weather set to ‘HardRainNoon’ and camera FOV set
to 80.(d): Scenario 4 with the weather set to ‘ClearSunset’ and camera FOV set to 100. (b) Scenario
5 with the weather set to ‘WetCloudyNoon’ and camera FOV set to 110. (c) Scenario 6 with the
weather set to ‘WetSunset’ and camera FOV set to 120.

A.3.4 TEST SUITES

During evaluation, an imitator is required to drive through multiple preset routes in each scenario.
A run corresponding to a route is terminated when the imitator: reaches the destination, runs out of
the time limit, has a collision with other objects, or is stuck in a place for a while.

Concretely, we picked 10 routes for Scenario 1, 20 routes for Scenario 2, 20 routes for Scenario 3,
6 routes for Scenario 4, 10 routes for Scenario 5, and 10 routes for Scenario 6. In the test stage,
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an imitator needs to drive in a route four times, corresponding to the set four weather conditions in
Table 4. We set the run time limit to 2000 timesteps, and the stuck detection period is set to 600.

A.3.5 REWARD DESIGN

The reward function is organized as: R = rspeed + rposition + rrotation + raction.

In a certain timestep i, rspeed computes the speed reward signal based on the difference between the
imitator’s current speed vspeed,i and desire speed rdesire speed. The desired speed rdesire speed varies
when the imitator is around different kinds of objects, set the maximum speed limit for imitator as
maximum speed = 30, the rdesire speed is computed as

rdesire speed = min(maximum speed,maximum speed × vehicle factor,

maximum speed × light factor,maximum speed × sign factor), (5)

where vehicle factor, light factor, sign factor are modified from the code of Zhang et al.
(2021b). Take vehicle factor as an example: it first locates the nearest hazard vehicle in the ego
vehicle’s local coordinate as loc veh, and computes the distance dist veh = max(0, ∣∣loc veh∣∣2 −
bveh) with base distance bveh = 8, then runs through a bounding function as vehicle factor =
bound(dist veh,0,5)/5. light factor, sign factor are computed similarly except the different
base distances blight = 6 and bsign = 5. The speed reward is then computed as:

rspeed = 1 −
∣vspeed,i − rdesire speed∣
maximum speed

. (6)

The position signal rposition is computed based on the imitator’s lateral distance dlateral with navi-
gation point: rposition = −1 × (dlateral/2).
The rotation punishment rrotation is computed based on the rotation yaw angle differences between
the imitator and the navigation point dyaw, as: rrotation = −1 × deg2rad(abs((dyaw + 180)%360 −
180)), where deg2rad(⋅) is the function converts angles from degrees to radians.

The raction signal punishes the imitator with raction = −0.1 if ∣asteer,t − asteer,t−1∣ > 0.01 else
raction = 0.

A.4 ADDITIONAL RESULTS

In this section, we present an empirical test on assumptions made by 3CIL, and a further ablation
study on the utilities of each module in 3CIL. We select three representative scenarios from Table4
to conduct experiments on: Scenario 1, Scenario 5, and Scenario 6.

A.4.1 EFFECTS OF HISTORY

An assumption adopted by our work, and previous works that belong to Behavioral Cloning from
Observation Histories (BCOH) or POMDP-related approaches is: that using only the most recent
frame ot cannot provide enough essential information for agents to recover an expected policy.
Therefore, it is common to design policies that utilize observation history, such as expanding the
temporal perceived range of models and using suitable networks for capturing temporal dependency.

To verify whether history helped these approaches capture more crucial information, we designed
an intervention analysis similar to (Chuang et al., 2022). Specifically, we replace the original his-
tory ht = (ot−l∶t,vt−l∶t) with the counterfactual history: [repeat((ot,vt), l)], which is replacing all
frames in the history with current frame (ot,vt). Figure 6 provides examples of the factual setting
and the counterfactual history setting. The average performances of models that deployed in exper-
iments under counterfactual history setting are recorded, and compared to their performance under
the setting of original history.

Therefore, the difference between performances in these two settings can be seen as the effect of
incorporating observation history. We report the results of three methods (CIL, Premier TACO)
in three scenarios, as Table 5. Clearly, for all methods, replacing the original history with the
counterfactual history will incur performance degeneration in most Scenarios. Such a phenomenon
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…

𝒐𝑡−3 𝒐𝑡−2 𝒐𝑡−1 𝒐𝑡

Factual history: 𝒉𝑡 = (𝒐𝑡−4:𝑡 , 𝒗𝑡−4:𝑡)

5 × 𝒐𝑡

Counterfactual history:

[repeat 𝒐𝑡, 𝒗𝑡 , 5]

Figure 6: An illustration of the factual history setting and the counterfactual history setting.

Table 5: The extent of degeneration in performance when switching to the counterfactual history
setting. The ratios of reward dropping and collision rate increasing are computed with the methods’
performance in the factual setting (Table 1).

Metric
Method CIL Premier TACO 3CIL

Scenario 1
Dropped R (%)↓ 35.09 (331→ 215) 13.64 (470→ 406) 28.82 (521→ 371)

Increased C (%) ↓ 12.12 (0.66→ 0.74) -11.76 (0.85→ 0.75) 29.63 (0.54→ 0.70)

Scenario 5
Dropped R (%) ↓ 685.51(7→ −42) 33.01 (517→ 346) 26.44 (539→ 396)
Increased C (%) ↓ 20.68 (0.29→ 0.35) 59.46 (0.37→ 0.59) 22.92 (0.48→ 0.59)

Scenario 6
Dropped R (%) ↓ 220.53 (46→ −55) 38.95 (331→ 203) 30.34 (447→ 312)
Increased C (%) ↓ 61.76(0.34→ 0.55) 35.29 (0.68→ 0.92) 16.95(0.59→ 0.69)

suggests that models can learn patterns from transitions in observations, and observations in the past
will contribute to the prediction quality.

Besides, as proposed in (Chuang et al., 2022), the performance under the counterfactual history
setting can also reflect the models’ capability in severe copycat status: frozen observations suggest
the vehicle is in the stationary state, introduce more evident spurious correlations between current
action ât and previous actions ât−n∶t−1. With this insight, we further investigate the degeneration
extent of each method.

Interestingly, the ranks of performance under the counterfactual setting (pointed by →) of methods:
CIL > 3CIL > Premier TACO in collision rate, 3CIL > Premier TACO > CIL in reward, are roughly
aligned with their original performance ranks in Table 1. Although the fixed observations in history
prevent the models from inferring further information as well as introduce severe causal confusion,
still our 3CIL approach manages to achieve relatively less degeneration. This may attributed to
the sample-weighting strategy which is utilized in the policy learning phase of 3CIL: as the repre-
sentation model failed to capture the variations within history from the frozen observations, such a
deviation from learned patterns is akin to the samples with high weightt due to failures in action
residual prediction, which belongs to the circumstances we emphasis the 3CIL model to learn.

A.4.2 SAMPLE-WEIGHTING STRATEGY

To showcase the process of our proposed sample-weighting strategy in 3CIL, we pick a circumstance
where a sample’s weightt is computed with high value, as shown in Figure 7. The high deviation
in action residual prediction is then translated to emphasis on learning this sample.

Previous work also incorporates sample-weighting process, such as (Wen et al., 2021) used two
distinct functions to map the APE into samples’ weights: step(⋅) and softmax(⋅). The step(⋅) sorts
those samples whose APEs are greater than a large proportion of overall samples’ APEs (the top 10%
samples measured in APE), and assigns these samples with a constant weight W (set to 5.0 in their
experiments), other samples are assigned with weight 1.0. Another implementation computes the
samples’ corresponding weights within a batch, by feeding their APEs into a softmax(⋅) function.

To evaluate the effectiveness of each sample-weighting strategy, we conduct experiments by chang-
ing the weighting process in 3CIL, which results in 3 different performance statistics in Table 6.
Specifically, we replace the measurement of error in (Wen et al., 2021) (APE) with the error in
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…

𝒐𝑡𝒐𝑡−1𝒐𝑡−2𝒐𝑡−3

𝑎𝑎𝑐𝑐,𝑡−1: −1.000
𝑎𝑠𝑡𝑒𝑒𝑟,𝑡−1: −0.246

𝑎𝑎𝑐𝑐,𝑡: 0.998
𝑎𝑠𝑡𝑒𝑒𝑟,𝑡: −0.246

Δෝ𝒂𝑡 = 𝑓𝑟 ො𝒔
= [0.001,0.0]

𝒉𝑡 = (𝒐𝑡−4:𝑡 , 𝒗𝑡−4:𝑡) ො𝒔𝑡~𝐺(ො𝒔|𝒉)
Δ𝒂𝑡 = 𝒂𝑡 − 𝒂𝑡−1
= [1.998,0.0]

𝛿𝒂𝑡 = |Δෝ𝒂𝑡 − Δ𝒂𝑡|
= [1.997,0.0]

𝒘𝒆𝒊𝒈𝒉𝒕𝑡 = exp(bound(𝛿𝒂𝑡 − 𝛿𝒂), 𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥) × 𝛾 ≈ [𝑒2, 1]ℒ𝐽 = ℒ𝑎 ×𝒘𝒆𝒊𝒈𝒉𝒕𝑡

Figure 7: An illustration of the sample with high weightt. For concision, ot−4 and vt−4∶t are
omitted here. Based on features ŝt obtained from the observation history ht, the action residual
predictor fr gives its prediction as ∆ât = [∆âacc,t = 0.002,∆âsteer,t = 0.0] since it might be safer
to remain still, given that the blue car is getting closer. However, the expert chose to accelerate to
finish its left turn and give space for the upcoming blue vehicle, which led the actual residual to be:
∆at = [∆aacc,t = 0.001,∆asteer,t = 0.0]. This huge disagreement δat = [1.997,0.0] results in a
high sample weightt, urging the predictor model to focus more on such an abnormal scene.

Table 6: The extent of degeneration in performance when replacing the sample-weighting strategy
in 3CIL with None (no applying weights), step(⋅) and softmax(⋅). The ratios of reward dropping
and collision rate increasing are computed with the original performance of 3CIL ( Table 1).

Metric
Strategy None step(proportion = 20%,

weight = 3.0)
softmax(

temperature = 0.2)

Scenario 1
R ↑ 491.77 (5.66% ↓) 446.47 (14.3% ↓) 389.97 (25.19% ↓)
C ↓ 0.61 (12.96% ↓) 0.59 (9.26% ↓) 0.57(5.56% ↓)

Scenario 5
R ↑ 460.35(14.51% ↓) 338.75 (37.09% ↓) 402.22(25.31% ↓)
C ↓ 0.52 (8.33% ↓) 0.52 (8.33% ↓) 0.54 (12.50% ↓)

Scenario 6
R ↑ 401.51 (10.22% ↓) 359.62 (19.59% ↓) 383.05 (14.35% ↓)
C ↓ 0.71 (20.33% ↓) 0.68(15.25% ↓) 0.64 (8.47% ↓)
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residual prediction. The residual prediction receives the extracted features ŝt as input and can iden-
tify more general abnormal scenes beyond the copycat problem.

Out of the blue, the incorporation of sample-weighting processes does not always come with benefit
(compared to “None”, in the measurement of Reward). This may be caused by the potential mis-
match between the functions’ hyper-parameters and training data distribution, as these functions are
rather sensitive to the choice of hyper-parameters: the step(⋅) especially, which shows extremely
low average speed (3.55 in Scenario 1) when set hyper-parameters as default. We expect the per-
formance of these sample-weighting strategies can be further improve when finetuning them with
domain knowledge. Still, both step(⋅) and softmax(⋅) generally reduce the collision rate of the
imitator, which may be attributed to the up-weighting on potential changepoints.

In conclusion, the choice of sample-weighting strategy is flexible, as long as the function that com-
putes weights is a monotonic non-decreasing function of the action residual prediction error, similar
to the setting of (Wen et al., 2021). However, it is essential to tune the function to achieve a bal-
ance between overly flat (not enough emphasis on abnormal scenes) and overly steep (potentially
underfitting with ordinary driving scenes).

A.4.3 EFFECTIVENESS OF EACH DESIGN

Table 7: Ablation studies.

Metric
Method No Lar,

no weightt

No LRNC,
no weightt

No LRNC No weightt 3CIL

Scenario 1
R ↑ 411.31 383.54 476.35 491.77 521.26
C ↓ 0.55 0.60 0.57 0.61 0.54

Scenario 5
R ↑ 299.72 302.50 387.24 460.35 538.50
C ↓ 0.50 0.59 0.55 0.52 0.48

Scenario 6
R ↑ 447.44 195.53 234.44 401.51 447.24
C ↓ 0.64 0.63 0.63 0.71 0.59

We examine the effect of each design decision in our approach and present the results in Table 7.

The results show that all major designs in 3CIL have contributed to the overall performance. Con-
cretely, the supervised contrastive learning loss LRNC (“No Lar, no weightt”) provides important
guidance in arranging the representation space, helps the imitator to achieve better alignment with
the expert policy. While the presence of action residual prediction task Lar enhances the imita-
tor’s capability in capturing crucial influence from previous actions at−1, the Lar stands alone (“No
LRNC, no weightt”) does not provide satisfactory gains. After incorporating the weighting strat-
egy, the performance of an imitator (“No LRNC”) does show significant improvement, but still fails
to generalize in some cases, which emphasizes the importance of contrastive learning in shaping a
robust representation space. Finally, the divergence between “No weightt” and 3CIL provides the
evidence that adjusting weights on diverse samples is beneficial, as it can guide the imitator to focus
on crucial changepoints and abnormal scenes.
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