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ABSTRACT
Cross-Domain Recommendation (CDR) has been proposed to im-
prove the recommendation accuracy in the target domain (the
sparser dataset) by benefiting from the auxiliary information trans-
ferred or the knowledge learned from one or many source do-
mains (the denser datasets). However, most of the existing CDR
approaches still suffer from the problem of negative transfer caused
by undifferentiated knowledge transfer, and thus the recommenda-
tion accuracy in some domains, especially in the sparser domains, is
still too low, which is not practical in real application scenarios. To
address this problem, we propose a novel ActiveMasked Attention
framework, i.e., AMA-CDR, for many-to-many CDR scenarios. Our
AMA-CDR pursues a higher goal for CDR approaches, i.e., improv-
ing the recommendation performance in the target domain to achieve
a practically usable level, which is meaningful and challenging in
real CDR systems. Specifically, AMA-CDR adopts an end-to-end
graph embedding to reduce the objective distortion between graph
embedding and embedding combination. More importantly, we
propose an active mask for the embedding combination to ease neg-
ative transfer, which leverages both the prior knowledge, i.e., data
density, and the posterior knowledge, i.e., sample uncertainty. Ex-
tensive experiments conducted on two public datasets demonstrate
that our proposed AMA-CDR models significantly outperform the
state-of-the-art approaches and achieve the new goal.

CCS CONCEPTS
• Information systems→Recommender systems; • Theory of
computation→ Active learning; • Computing methodologies
→ Transfer learning.
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1 INTRODUCTION
1.1 Background
The data sparsity problem is a long-standing problem in many rec-
ommender systems, e.g., Amazon, Taobao, Facebook, and Tiktok,
which may lead to over-fitting to the sparse training dataset. There
are many classical graph-based and factorization-based solutions,
e.g., Random Walk [7], Deep Walk [40], Probabilistic Matrix Factor-
ization (PMF) [36], and Bayesian Personalised Ranking (BPR) [41],
attempting to address this intractable problem in a single dataset.
However, the training data in a sparse domain is very limited,
which means there are still not enough well-trained embeddings of
users/items for information propagation in the graph-based mod-
els and for neighbourhood integration in the factorization-based
models. It is realised that without the help of the auxiliary infor-
mation from other related domains, the traditional single-domain
approaches cannot break the above-mentioned bottleneck. Thus,
Cross-Domain Recommendation (CDR) [2] is proposed to leverage
the auxiliary information from the dense domain to help improve
the recommendation accuracy in the sparse domain.

1.2 Existing Solutions and Their Limitations
According to transfer paradigms, existing CDR models can be gen-
erally classified into four big groups: (1) one-to-one paradigm [4,
48, 54], (2) many-to-one paradigm [22, 39, 59, 60], (3) one-to-many
paradigm [20, 22], and (4) many-to-many paradigm [8, 28, 37, 67].
In this paper, we mainly focus on the hardest but meaningful CDR
scenario, i.e., many-to-many CDR, which leverages the knowledge
from multiple domains (many) to improve the recommendation
in multiple domains (many). The first two categories are called
single-target CDR and the last two categories are called multi-target
CDR as well in the literature [57, 66].

However, for the existing CDR approaches, the performance im-
provement in the target domain is still limited. Most of the existing
approaches only focus on performance improvements compared
with some single-domain models and their state-of-the-art CDR
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Figure 1: Different transfer paradigms in CDR.

models. For example, they can improve the sparse domains from
0.2 to 0.22 (i.e., the improvement is 10%) in terms of the NDCG
(Normalised Discounted Cumulative Gain) metric. Although the
performance improvement is significant compared with their poor
baselines, the recommendation performance (NDCG = 0.2) is still
too low in real application scenarios. It should be highlighted that
if the performance in the target domains cannot reach an ideal
level, the relative improvement of performance is useless in real
recommendation scenarios. Therefore, in addition to enhancing the
recommendation performance in all domains, in this paper, we also
propose a new goal for CDR approaches, i.e., improving the recom-
mendation performance in the sparse domain to achieve a practically
usable level, e.g., closing to the recommendation performance in the
source domain. (New Goal).

To achieve New Goal, we need to enhance the exchangeability
of knowledge among multiple domains. In this paper, we construct
interaction graphs for different domains and integrate these graphs
via a suitable mask strategy, which can significantly enhance the
exchangeability among multiple domains (as designed in Figure
2). This is because embedding propagation and combination for
common users can mine the underlying relations among different
graphs (domains). However, a research problem in the literature sig-
nificantly reduces the effectiveness of the existing CDR approaches.

Research Problem: Negative transfer caused by undiffer-
entiated knowledge transfer.With the increase in the number
of auxiliary domains, if we cannot design a reasonable mechanism
to punish the negative information from auxiliary domains, the
problem of negative transfer seems to be inevitable (see the detailed
problem definition and analysis in the supplementary material).
Although some multi-task learning (MTL) approaches [31] and
transfer learning (TL) approaches [6, 42, 53] have attempted to
address this problem (see the approach details in Section 4.2), some
transfer-related prior knowledge, e.g., data density and sample un-
certainty, in the area of CDR are ignored in these approaches.

1.3 Our Approach and Contribution
To address the above problem and achieve New Goal, in this paper,
we propose a novel Active Masked Attention framework for many-
to-many CDR scenarios. The characteristics and contributions of
our work are summarized as follows:
• In general, we design an end-to-end graph framework to reduce
the objective distortion between graph embedding, i.e., our pro-
posed revisiting graph embedding strategy, and transfer strategy,
i.e., the attention for embedding combination.

• To address the problem of negative transfer in many-to-many
CDR scenarios, we propose an active mask for the element-wise
attention weights to ease the problem of negative transfer, which
leverages both the prior knowledge, i.e., data density, and the
posterior knowledge, i.e., sample uncertainty, to actively choose
a suitable probability of uncertain samples. Actively selecting
doubtful samples and giving them a higher probability to absorb
the knowledge learned from other domains can reduce their
uncertainty and thus enhance the performance of all sparser and
denser domains.
• Extensive experiments conducted on two public datasets with
seven domains demonstrate that our proposed AMA-CDR mod-
els significantly improve the state-of-the-art approaches by an
average improvement of 25.34%. With the help of our AMA-CDR,
in most experimental tasks, the sparser domain can even outper-
form the denser domain.

2 THE PROPOSED MODEL
The research problem in Section 1, i.e., negative transfer, motivates
us to design an effective end-to-end framework for many-to-many
CDR scenarios. In this section, we introduce the general structure
of our AMA-CDR and explain the rationale behind the structure.
After that, we present the detailed components of our AMA-CDR,
i.e., a novelActiveMaskedAttention framework for many-to-many
CDR scenarios. Due to the space limitations, we explain the main
notations and the training samples in the supplementary material.

2.1 Graph Embedding
For each domain in many-to-many CDR scenarios, the users and
items can form a heterogeneous graph via their interaction relations.
Graph embedding has shown its powerful ability in embedding
generation for recommendation [11, 30, 49, 65]. Therefore, we tend
to use a graph embedding method to respectively generate the
embeddings of users and items in each domain, e.g.,𝑈 𝑥 and 𝑉 𝑥 in
the domain 𝐷𝑥 (see the graph embedding of Figure 2).

To design an effective end-to-end framework, the structure of
graph embedding should be lightweight rather than complex. There-
fore, in this paper, we only apply a revisited graph neural network
to learn the embeddings of users/items. Next, we will introduce the
process of linear embedding propagation.

2.1.1 Linear embedding propagation. Given ratings of users to
items, the user-item bipartite graph can be denoted as𝐺 = ({U,V},
𝐸), with 𝐸 is the set of user-item interaction relationships, i.e., ob-
served ratings. Inspired by the revisiting graph-based collaborative
filtering in [3], the updating rule of user/item embeddings can be
represented as follows.

𝑈
𝑥,𝑞+1
𝑖

= [ 1
𝑑𝑖

𝑈
𝑥,𝑞

𝑖
+

∑︁
𝑗 ∈𝑅𝑖

1√︁
𝑑𝑖 × 𝑑 𝑗

𝑉
𝑥,𝑞

𝑗
]𝑊 𝑥,𝑞,

𝑉
𝑥,𝑞+1
𝑗

= [ 1
𝑑 𝑗

𝑉
𝑥,𝑞

𝑗
+

∑︁
𝑖∈𝑅 𝑗

1√︁
𝑑 𝑗 × 𝑑𝑖

𝑈
𝑥,𝑞

𝑖
]𝑊 𝑥,𝑞,

(1)

where 𝑈 𝑥,𝑞+1
𝑖

is the embedding of user 𝑢𝑖 in domain 𝐷𝑥 at the
iteration step 𝑞 + 1, 𝑑𝑖 or 𝑑 𝑗 is the diagonal degree of user 𝑢𝑖 or item
𝑣 𝑗 in graph 𝐺𝑥 , 𝑉 𝑥,𝑞+1

𝑗
is the embedding of item 𝑣 𝑗 in domain 𝐷𝑥

at the iteration step 𝑞 + 1, 𝑅𝑖 or 𝑅 𝑗 is the neighbor set of the node
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Figure 2: The structure of our proposed AMA-CDR model.

(user 𝑢𝑖 or item 𝑣 𝑗 ) in graph 𝐺𝑥 , and𝑊 𝑥,𝑞 is the transformation
parameters for domain 𝐷𝑥 .

2.2 Embedding Combination
Traditional transfer strategies tend to transfer the knowledge learned
from one domain to another domain. However, in many-to-many
CDR scenarios, things becomemore complex as we need to leverage
the data of multiple domains (many) to improve the recommenda-
tion performance themselves (many). Unlike the traditional transfer
strategies, in this paper, we combine the embeddings of common
entities generated from multiple domains, i.e., their correspond-
ing user-item graphs. By doing so, the combined embeddings of
common entities for each domain can retain all knowledge learned
from the multiple domains to different extents. To this end, the fine-
grained attention mechanism has been widely used in the literature
[26, 27, 62, 67].

For a common entity (a user 𝑢𝑖 or an item 𝑣𝑖 ), our attention
mechanism pays different attention to the user/item embeddings
generated from different domains. The biggest advantage of this
mechanism is that for an individual common entity, we can inte-
grate their representations from different domains in different pro-
portions. Therefore, it is expected to reduce the effect of inaccurate
embeddings learned from sparser domains and emphasize the accu-
rate embeddings learned from denser domains. Also, the attention
mechanism is fine-grained that corresponds to the level of elements,
and thus remains more informative elements (latent representa-
tion) from each set of embedding elements in {𝑈 0

𝑖
,𝑈 1

𝑖
, ...,𝑈 𝑎−1

𝑖
} or

{𝑉 0
𝑗
,𝑉 1

𝑗
, ...,𝑉𝑎−1

𝑗
}. The combined embedding �̃� 𝑥

𝑖
of a common user

𝑢𝑖 in the domain 𝐷𝑥 can be represented as:

�̃� 𝑥
𝑖 =

𝑎−1∑︁
𝑦=0

𝑊 𝑥,𝑦 ⊙𝑈 𝑦

𝑖
,

𝑎−1∑︁
𝑦=0

𝑊 𝑥,𝑦 =< 1, 1, ..., 1 >∈ R𝑘 , (2)

where𝑊 𝑥,𝑦 ∈ R𝑘 is the weight vector of domain 𝑥 for domain 𝑦

and ⊙ denotes the element-wise multiplication, and 𝑘 is the em-
bedding dimension of 𝑈 𝑦

𝑖
. In fact, we apply the softmax activation
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Figure 3: The masking process.

function to guarantee
∑𝑎−1

𝑦=0𝑊
𝑥,𝑦 = 1𝑘 . Similarly, we can obtain

the combined embedding �̃� 𝑥
𝑗
of a common item 𝑣 𝑗 in the domain

𝐷𝑥 if there are common items among the multiple domains.

2.3 Uncertainty and Active Mask
As introduced in Section 2.2, the attention mechanism can control
the importance of embeddings of users/items learned from multiple
domains according to its attention weights for different domains.
However, the attention weights are trained via the training samples
in different domains, which means that the attention weights for
sparser domains are hard to be properly tuned because of limited
training samples. This is a major cause of negative transfer in many-
to-many CDR scenarios. Accordingly, in this section, we propose
another promising solution, i.e., a new active mask on the attention
mechanism, to achieve a better recommendation performance in
many-to-many CDR scenarios. Especially for sparser domains, with
the help of the proposed active mask, we can verify the claim in
Section 1, i.e., sparser domains can outperform denser domains.

2.3.1 Underlying rationale. The proposed attention mechanism in
Section 2.2 ignores the difference among multiple domains and ex-
pects that the attentionweights can be properly tuned. To avoid neg-
ative transfer, we can obtain some useful prior knowledge about
the difference among multiple domains according to the statistics
of training datasets. In this paper, we choose the density of training
datasets to measure the demand degree of transferred knowledge
from other domains. The general idea of this strategy is that if a
domain is sparse, then it needs more transferred knowledge from
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other domains, and vice versa. Specifically, we will mask fewer at-
tention weights for sparser domains (transferring more knowledge
from other domains) and mask more attention weights for denser
domains (remaining more knowledge learned from themselves). A
similar strategy has been used in some existing CDR approaches,
e.g., DCDCSR[64], which leverages the sparsity degrees to combine
the user embeddings learned from different domains. However, the
density of training datasets is general knowledge to measure the
difference among different domains, and we still cannot distinguish
the difference among different training samples. In addition to the
generally masked probabilities for multiple domains according to
their density, inspired by the basic idea of active learning, we also
need to give more opportunities for the attention weights of uncer-
tain samples in each training epoch to not be masked. This means
that we need to transfer more knowledge from other domains for
uncertain samples rather than for certain samples in each training
epoch. Note that the uncertainty is a posterior knowledge that
needs to be computed in each training batch. Therefore, in this sec-
tion, we will utilise both the prior knowledge, i.e., density, and the
posterior knowledge, i.e., uncertainty, to control the demand degree
of transferred knowledge in the process of embedding combination.

2.3.2 Demand probability of transferred knowledge. According to
the density, the demand probability 𝑝𝑥 of transferred knowledge
of domain 𝐷𝑥 can be represented as follows.

𝑝𝑥 =
(𝑑𝑒𝑛𝑡 − 𝑑𝑒𝑛𝑥 )

𝑑𝑒𝑛𝑡
, 𝑑𝑒𝑛𝑡 =

𝑎−1∑︁
𝑥=1

𝑑𝑒𝑛𝑥 , (3)

where 𝑑𝑒𝑛𝑥 is the density of domain 𝐷𝑥 and 𝑑𝑒𝑛𝑡 is the total den-
sity of all domains. Here, the demand probability 𝑝𝑥 is a relative
probability compared with other domains. For example, as shown
in Table 1 of Section 3, in the Douban datasets, we can obtain the
demand probabilities of all the three domains 𝑝0 = 0.7581 (Book
domain), 𝑝1 = 0.7292 (Music domain), and 𝑝2 = 0.5126 (Movie
domain), according to Eq. (3).

2.3.3 Active masked attention. In this section, to avoid negative
transfer, we set a mask on the attention weights of the domain 𝐷𝑥

according to the demand degree of transferred knowledge, i.e. 𝑝𝑥 ,
from other domains. For domain 𝐷𝑥 , its attention weights for all
domains (including itself) can be denoted as𝑊 𝑥 = {𝑊 𝑥,0,𝑊 𝑥,1, ...,
𝑊 𝑥,𝑎−1}, 𝑊 𝑥 ∈ R𝑎×𝑘 . For clarity, we take an example to show the
masking process in Figure 3. Note that for a target domain 𝐷𝑥 , we
do not mask the attention weights of 𝐷𝑥 for 𝐷𝑥 . This means that a
target domain 𝐷𝑥 always retains the knowledge learned from itself
and absorbs the knowledge learned from other domains according
to 𝑝𝑥 . After many training iterations, our proposed AMA-CDR can
mask fewer attention weights for sparser domains (transferring
more knowledge from other domains) and mask more attention
weights for denser domains (remaining more knowledge learned
from themselves).

As analysed in Section 2.3.1, although the demand degree of
transferred knowledge is the general knowledge to measure the
difference among different domains, we still cannot distinguish
the difference among different training samples. To address this
problem, in each training step, we first forward to obtain the uncer-
tainties of a batch of training samples, and then mask the attention

Algorithm 1: Active masking function 𝐴𝑀1
Input: The attention weights of domain 𝐷𝑥

𝑊 𝑥 = {𝑊 𝑥,0,𝑊 𝑥,1, ...,𝑊 𝑥,𝑎−1}, the demand probability
𝑝𝑥 of domain 𝐷𝑥 (the prior knowledge)

Output:Masked weights𝑊 𝑥
𝑚𝑎𝑠𝑘

1 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 ← ∅;
/* Uncertainty prediction stage: calculate the

uncertainties (active mask probabilities) */

2 𝑠𝑡𝑎𝑔𝑒 ← ‘uncertainty prediction’ ;
3 𝑊 𝑥

𝑛𝑜−𝑚𝑎𝑠𝑘
← 𝐴𝑀2 (𝑊 𝑥 , 𝑝𝑥 , 𝑠𝑡𝑎𝑔𝑒, 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 ) ; /* forward to

obtain 𝑊 𝑥 without a mask, 𝐴𝑀2 is the detailed
active masking function (see Algorithm 2) */

4 Obtain the combined embeddings �̃� 𝑥 and �̃� 𝑥 according to Eq. (2);
5 Obtain the predicted ratings according to Eqs. (6 and 7) ;
6 Calculate the uncertainties 𝛾 of all samples in this training batch

according to Eq. (4);
7 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒 (𝛾 ) ;
/* Active masking stage: Call 𝐴𝑀2 function again and

obtain masked weights */

8 𝑠𝑡𝑎𝑔𝑒 ← ‘active masking’ ;
9 𝑊 𝑥

𝑚𝑎𝑠𝑘
← 𝐴𝑀2 (𝑊 𝑥 , 𝑝𝑥 , 𝑠𝑡𝑎𝑔𝑒, 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 ) ;

10 return𝑊 𝑥
𝑚𝑎𝑠𝑘

Algorithm 2: Active masking function 𝐴𝑀2
Input: The attention weights of the domain 𝐷𝑥

𝑊 𝑥 = {𝑊 𝑥,0,𝑊 𝑥,1, ...,𝑊 𝑥,𝑎−1}, the demand probability
𝑝𝑥 of the domain 𝐷𝑥 (the prior knowledge), the stage
𝑠𝑡𝑎𝑔𝑒 , and the mask probabilities 𝑃𝑎𝑐𝑡𝑖𝑣𝑒

Output:Masked weights𝑊 𝑥
𝑚𝑎𝑠𝑘

1 𝑊 𝑥
𝑚𝑎𝑠𝑘

← ∅;
2 for𝑊 𝑥,𝑗 in𝑊 𝑥 do
3 𝑊

𝑥,𝑗

𝑚𝑎𝑠𝑘
=𝑊 𝑥,𝑗 ;

4 if the mode is training and 𝑠𝑡𝑎𝑔𝑒 == ‘active masking’ then
5 if 𝑥 ! = 𝑗 then
6 𝑚𝑎𝑠𝑘 ← 𝑝𝑎𝑐𝑡𝑖𝑣𝑒 < 𝑝𝑥 ;
7 𝑊

𝑥,𝑗

𝑚𝑎𝑠𝑘
=𝑊 𝑥,𝑗 ⊗𝑚𝑎𝑠𝑘 ;

8 Append𝑊 𝑥,𝑗

𝑚𝑎𝑠𝑘
to𝑊 𝑥

𝑚𝑎𝑠𝑘
;

9 end
10 𝑊 𝑥

𝑚𝑎𝑠𝑘
= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊 𝑥

𝑚𝑎𝑠𝑘
) ;

11 return𝑊 𝑥
𝑚𝑎𝑠𝑘

weights for uncertain samples. This is because uncertain samples
lack confidence in their predictions, and thus they are more likely
negatively affected by the knowledge transferred from other do-
mains. In this paper, we use the entropy of the prediction to measure
the uncertainty. The larger is the entropy, the more uncertain is
the prediction. The uncertainty 𝛾 of a sample can be represented as
follow.

𝛾 = −�̂� ∗ 𝑙𝑜𝑔 (�̂�) − (1 − �̂�) ∗ 𝑙𝑜𝑔 (1 − �̂�) . (4)

The detailed processes are demonstrated in Algorithms 1 and
2. We can obtain the masked attention weights𝑊 𝑥

𝑚𝑎𝑠𝑘
for domain

𝐷𝑥 according to Algorithms 1 and 2. Therefore, the function of the
embedding combination (Eq. (2)) will be improved as follows.

�̃� 𝑥
𝑖 =

𝑎−1∑︁
𝑦=1

𝑊
𝑥,𝑦

𝑚𝑎𝑠𝑘
⊙𝑈 𝑦

𝑖
,

𝑎−1∑︁
𝑦=1

𝑊
𝑥,𝑦

𝑚𝑎𝑠𝑘
= 1𝑘 =< 1, 1, ..., 1 >∈ R𝑘 . (5)
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Table 1: Experimental datasets and tasks
Datasets Douban Amazon
Domains Book Music Movie Music Electronics Movie Video Games
#Users 2,110 1,672 2,712 4,838 51,397 40,007 6,683
#Items 6,777 5,567 34,893 8,367 79,626 48,770 14,750

#Interactions 96,041 69,709 1,278,401 59,264 838,179 1,135,485 127,575
Density 0.67% 0.75% 1.35% 0.15% 0.02% 0.06% 0.13%
Demand

probability 𝑝
0.7581 0.7292 0.5126 0.5833 0.9444 0.8333 0.6389

Tasks Sparser Denser Overlap

Two-to-two
CDR

Task 1 DoubanBook DoubanMovie #Common Users = 2,106
Task 2 DoubanMusic DoubanMovie #Common Users = 1,666
Task 3 AmazonMusic AmazonElectronics #Common Users = 544
Task 4 AmazonMovie AmazonVideoGames #Common Users = 1,629

Tasks Domains Overlap

Many-to-many
CDR

Task 5 DoubanBook+DoubanMusic+DoubanMovie #Common Users = 1,662

Task 6 AmazonMusic+AmazonElectronics+
AmazonMovie+AmazonVideoGames #Common Users = 75

2.4 Model Training and Prediction
As introduced in Section 2.3, we can obtain the masked attention
weights for the combined embeddings of users and items, i.e., �̃� 𝑥

and �̃� 𝑥 , for domain𝐷𝑥 . As shown in Figure 2, we employ anMLP to
learn the interaction relations between users and items. Therefore,
we can obtain the output of the MLP in the domain 𝐷𝑥 as follows.

𝑈 𝑥
𝑜𝑢𝑡 = 𝑓𝑢 (�̃� 𝑥 ,Θ𝑥

𝑀𝐿𝑃,𝑈 ), 𝑉 𝑥
𝑜𝑢𝑡 = 𝑓𝑣 (�̃� 𝑥 ,Θ𝑥

𝑀𝐿𝑃,𝑉 ), (6)

where 𝑓𝑢 (∗) and 𝑓𝑣 (∗) are the MLP networks with the activation
function ReLU for user and item embeddings. Θ𝑥

𝑀𝐿𝑃,𝑈
and Θ𝑥

𝑀𝐿𝑃,𝑉

are the corresponding parameters of user MLP and item MLP.
Next, we can obtain the rating predictions in the domain 𝐷𝑥 via

a cosine similarity as follows:

𝑌𝑥 = 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑈 𝑥
𝑜𝑢𝑡 ,𝑉

𝑥
𝑜𝑢𝑡 ) =

𝑈 𝑥
𝑜𝑢𝑡 · 𝑉 𝑥

𝑜𝑢𝑡

∥𝑈 𝑥
𝑜𝑢𝑡 ∥ ∥𝑉 𝑥

𝑜𝑢𝑡 ∥
. (7)

To avoid the seesaw phenomenon caused by a joint objective, we
train our proposed model in each domain via a separate optimiser.
The objective function of our proposed AMA-CDR in domain 𝐷𝑥

can be represented as follows.

min
𝑈 𝑥
𝑜𝑢𝑡 ,𝑉

𝑥
𝑜𝑢𝑡 ,Θ

𝑥

∑︁
𝑦∈𝑌𝑥+∪𝑌𝑥−

𝑠

ℓ (�̂�, 𝑦) + 𝜆 ( ∥𝑈 𝑥
𝑜𝑢𝑡 ∥2𝐹 + ∥𝑉

𝑥
𝑜𝑢𝑡 ∥2𝐹 ) . (8)

3 EXPERIMENTS AND ANALYSIS
We conduct extensive experiments on two real-world datasets, i.e.,
the Douban dataset with three domains and the Amazon dataset
with four domains, to answer the following key questions:
• Q1: How does our AMA-CDR model perform when compared
with the state-of-the-art models (see Result 1)?
• Q2: Can sparser domains outperform denser domains with the
help of our AMA-CDR (see Result 1)?
• Q3: How do the end-to-end attention and the active mask con-
tribute to performance improvement (see Result 2)?
• Q4: How does our AMA-CDR model perform when the negative
transfer occurs (see Result 3)?

3.1 Experimental Setting
3.1.1 Experimental Datasets and Tasks. To validate the perfor-
mance of our AMA-CDR and the state-of-the-art (SOTA) base-
lines, we choose two public datasets, i.e., Douban1 [63] with the
1Douban dataset URL: https://github.com/FengZhu-Joey/GA-DTCDR/tree/main/Data

three domains (DoubanBook, DoubanMusic, and DoubanMovie)
and Amazon2 [21] with the four domains (AmazonMusic, Ama-
zonElectronics, AmazonMovie, and AmazonVideoGames). For the
Douban dataset, we retain the users and items with at least 5 in-
teractions, while for the Amazon dataset, we retain the users and
items with at least 10 interactions. The same filtering strategy has
been widely used in the existing approaches [56, 67]. Also, to train
the CDR models smoothly, we serialise the user IDs of the multiple
domains. The common users from different domains have dupli-
cate IDs and distinct users in different domains have different IDs.
Therefore, all users from different domains are in the same user
space. For example, in the three domains of the Douban dataset,
all the users from these three domains are mapped into the same
user space. In this way, we can easy to combine the embeddings of
common users from different domains. Note that for the Douban
dataset and the Amazon dataset, the items are different among
different domains, and thus we cannot combine the embeddings of
common items. We list the dataset statistics and tasks in Table 1.

3.1.2 Parameter Setting. To ensure a fair comparison, we optimize
the hyper-parameters of our AMA-CDR with those SOTA baseline
models according to the parameter settings reported in their original
papers. For all experimental models, we set the maximum number
of training epochs to 50 and only report the best-performing result
of all training epochs. For our proposed AMA-CDR, we randomly
choose 7 unobserved interactions for each observed interaction
(positive sample) as negative samples, set the depth of the revisiting
graph 𝑞 (in Eq. (1)) as 2, the dimension 𝑘 of user/item embeddings is
32, the structure of the MLP for user embeddings and item embed-
dings in Eq. (6) is ‘𝑘’, the regularisation coefficient 𝜆 is 0.001, the
learning rate is 0.01, the optimiser function is Adam [19], and the
batch size is 1, 024. We list the demand probability of transferred
knowledge 𝑝 for each domain in Table 1.

3.1.3 EvaluationMetrics. Similar to themajority of SOTA baselines
[12, 67], we also adopt the leave-one-out evaluation. This evaluation
strategy will scan all users in a domain, and for each test user, we
choose his/her latest interaction as a positive testing sample and
randomly select 99 observed interactions for this test user as neg-
ative testing samples. The process of evaluation is to rank these
100 testing samples according to the prediction results of recom-
mendation models and observe the positive testing samples in the
ranking list. There are two metrics for this evaluation strategy, i.e.,
Hit Ratio (HR) and Normalised Discounted Cumulative Gain (NDCG)
[51]. HR@𝑁 means that the recall rate when the positive testing
sample rank in the top-𝑁 list. In contrast, NDCG@𝑁 measures the
ranking quality of the positive testing sample in the top-𝑁 list.

3.1.4 Comparison Methods. Considering the comparison fairness,
our proposed AMA-CDR can only be compared with single-domain
recommendation baselines in each domain, two-to-two CDR base-
lines in both two domains (a specific case of the many-to-many
transfer paradigm), and many-to-many CDR baselines in multiple
domains. Thus, we choose seven SOTA or representative base-
lines in three groups, i.e., (1) single-domain recommendation (SDR),
(2) two-to-two CDR, and (3) many-to-many CDR. To validate the
detailed contribution of the main components of our proposed
2Amazon dataset URL: http://jmcauley.ucsd.edu/data/amazon/

https://github.com/FengZhu-Joey/GA-DTCDR/tree/main/Data
http://jmcauley.ucsd.edu/data/amazon/
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Table 2: The comparison of the baselines and our methods

Model Training
labels Encoding Embedding Training

paradigm Optimization target Transfer strategy

Baselines

Single-domain
recommendation (SDR)

NeuCF [12] Interaction
label (0/1) One-hot Non-linear MLP End-to-end Single target -

LightGCN [11] Interaction
label (0/1) One-hot GCN End-to-end Single target -

Two-to-two CDR

DDTCDR [24] Rating One-hot
& multi-hot Non-linear MLP End-to-end Dual targets

(joint loss) Dual transfer learning

Bi-TGCF [30] Interaction
label (0/1)

Heterogeneous
graph Graph embedding End-to-end Dual targets

(joint loss)

Combination
(concatenation/
average pooling)

Many-to-many CDR

MMOE [32] Rating One-hot Non-linear MLP End-to-end Multiple targets
(joint loss)

Multi-task learning
& mixture of experts

GA-MTCDR-P [67] Rating Heterogeneous
graph Graph embedding Two-steps Multiple targets

(multiple separated losses)
Element-wise attention

& personalization

NMCDR [55] Rating Heterogeneous
graph Graph embedding End-to-end Multiple targets

(joint loss) Node matching

Our
Methods Many-to-many CDR

AMA-CDR-A
(a variant of AMA-CDR) Rating Heterogeneous

graph Revisiting GNN End-to-end Multiple targets
(multiple separated losses) Element-wise attention

AMA-CDR-RM
(a variant of AMA-CDR) Rating Heterogeneous

graph Revisiting GNN End-to-end Multiple targets
(multiple separated losses)

Element-wise attention
& random masking

AMA-CDR (full-version) Rating Heterogeneous
graph Revisiting GNN End-to-end Multiple targets

(multiple separated losses)
Element-wise attention

& active masking

Table 3: The experimental results (HR@10 & NDCG@10) for Tasks 1 to 6 (the results of best-performing baselines are marked
with ‘*’ while the results of our best-performing models are marked with bold font). Note that the SDR models can be applied
in each domain and thus we can obtain their results on seven domains (3 Douban domains and 4 Amazon domains). The
two-to-two CDR models can not be applied in many-to-many tasks, i.e., Tasks 5 and 6, but the many-to-many CDR models can
be applied in two-to-two tasks, i.e., Tasks 1 to 4

Task
Domain
(D: Denser
S: Sparser)

SDR baselines Two-to-two
CDR baselines

Many-to-many
CDR baselines Our Method Improvement

(AMA-CDR
Can sparser
domain

NeuCF LightGCN DDTCDR Bi-TGCF MMOE GA-MTCDR-P NMCDR AMA-CDR vs. best baselines) achieve the
HR NDCGHR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG new goal?

Task 1 DoubanBook (S) .3899 .2182.3956 .2264 .4242 .2562 .4412 .2637 .4342 .2591 .4771* .2899* .4511 .2664 .6995 .4425 46.61%↑ 45.74%↑ YesDoubanMovie (D) .5411 .2991.5652 .3241 .5666 .3272 .6068 .3586 .6723 .4211 .6742* .4277* .6023 .4116 .6812 .4308 1.03%↑ 0.73%↑

Task 2 DoubanMusic (S) .3198 .1771.3312 .2031 .3493 .1892 .4288* .2233 .4244 .2412 .4174 .2452* .4119 .2318 .6920 .4542 67.27%↑ 85.95%↑ YesDoubanMovie (D) .5411 .2991.5652 .3241 .5681 .3307 .6064 .3716 .6322 .3978 .6672* .4121* .6011 .4066 .6742 .4183 1.05%↑ 1.50%↑

Task 3 AmazonElectronics (S) .4041 .2301.4066 .2465 .4235 .2549 .6447 .4385 .7112 .4555 .7741* .4920 .7165 .5027* .8178 .5341 8.85%↑ 6.25%↑ YesAmazonMusic (D) .3834 .2156.3906 .2169 .4070 .2194 .5823 .3801 .6021 .3566 .6144* .3755* .6055 .3690 .7526 .5146 25.05%↑ 39.84%↑

Task 4 AmazonMovie (S) .5772 .3502.5900 .3670 .6051 .3737.7805* .5475* .7201 .4991 .7502 .5144 .7422 .5075 .8053 .5476 3.17%↑ 0.02%↑ NoAmazonVideoGames (D) .4507 .2751.4524 .2831 .4700 .2587 .7507 .5187 .7311 .5029 .7557* .5118* .7397 .4996 .8109 .5726 6.65%↑ 11.88%↑

Task 5
DoubanBook (S) .3899 .2182.3956 .2264 - - .4611 .2881 .4805* .3084 .4799 .3339* .7056 .4531 46.85%↑ 35.69%↑

YesDoubanMusic (S) .3198 .1771.3312 .2031 - - .3922 .2289 .4165 .2449 .5091* .3370* .6967 .4554 36.85%↑ 35.13%↑
DoubanMovie (D) .5411 .2991.5652 .3241 - - .6229 .3811 .6761* .4280* .6429 .4008 .6938 .4370 2.62%↑ 2.10%↑

Task 6

AmaoznElectronics (S) .4041 .2301.4066 .2465 - - .6799 .4213 .7649* .4869 .7306 .4990* .8226 .5459 7.54%↑ 9.40%↑

YesAmazonMovie (S) .5772 .3502.5900 .3670 - - .6911 .4341 .7614* .5222* .7249 .5195 .8213 .5793 7.87%↑ 10.93%↑
AmazonVideoGames (S) .4507 .2751.4524 .2831 - - .6933 .4415 .7600* .5218* .7461 .5144 .8406 .5760 10.61%↑ 10.39%↑

AmazonMusic (D) .3834 .2156.3906 .2169 - - .6111 .3910 .6286 .3809 .6623* .4671* .7972 .5544 20.37%↑ 18.69%↑

AMA-CDR framework, i.e., random masked attention and active
masked attention, we conduct an ablation study to compare the
two variants, i.e., AMA-CDR-A (only with end-to-end element-wise
attention) and AMA-CDR-RM (with random masked attention),
with the full-version AMA-CDR (with active masked attention). For
a clear comparison, in Table 2, we list the technical details of all ex-
perimental models, including training labels, encoding, embedding,
training paradigm, optimization target, and transfer strategies.

3.2 Result 1: Performance Comparison and
Analysis (for Q1 and Q2)

To answer Q1, we compare the recommendation performance of
our AMA-CDR with those of the seven baselines listed in Table
2. We report their experimental results in Table 3. Table 3 demon-
strates the experimental results in terms of HR@10 & NDCG@10
for the six experimental tasks (see the tasks in Table 1). As we can

see from Table 3, our proposed AMA-CDR can outperform all the
SDR, two-to-two CDR, and many-to-many CDR baselines by an
average improvement of 30.60%, including HR@10&NDCG@10. In
particular, our AMA-CDR improves the best-performing baselines
(with results marked by * in Table 3) by an average of 30.14% for
Task 1, an average of 39.42% for Task 2, an average of 22.46% for
Task 3, an average of 6.21% for Task 4, an average of 29.49% for
Task 5, and an average of 11.47% for Task 6. Also, for the sparser
domain, our AMA-CDR can significantly improve the performance
of the best-performing baseline, and the performance of the sparser
domain can reach and even surpass that of the denser domain (for
Q2). Therefore, for Q2, our AMA-CDR can help the sparser domain
outperform the denser domain. Note that we mark the detailed re-
sults for Q2 in the last column of Table 3. In addition to Task 4, the
performance of the sparser domains in other tasks can outperform
those of the denser domains.
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(a) Ablation study (Task 5)
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Figure 4: Ablation study in tasks 5 and 6. AMA-CDR-A (revisiting GNN + element-wise attention) and AMA-CDR-RM (revisiting
GNN + element-wise attention + random masking) are the two variants of our proposed AMA-CDR.

Comparison analysis. As for Q1, our proposed AMA-CDR can
outperform the SOTA or representative baselines due to (1) the end-
to-end training paradigm that can reduce the objective distortion
between the generation of graph embeddings and transfer process,
and (2) the active mask mechanism that can leverage both the prior
knowledge (data density) and the posterior knowledge (uncertainty
of training samples) to avoid the problem of negative transfer. As
for Q2, the performance of the sparser domain can reach and even
surpass that of the denser domain because a higher demand proba-
bility 𝑝 (see Table 1) of transferred knowledge from other domains
can force the recommendation system in the sparser domain to ab-
sorb more knowledge (user/item embeddings) from other domains
rather than to retain their own inaccurate knowledge.

3.3 Result 2: Ablation Study (for Q3)
To answer Q3, we implement two variants of our proposed AMA-
CDR, i.e., AMA-CDR-A (only with element-wise attention and with-
out any mask strategies) and AMA-CDR-RM (with random masked
attention). To validate the detailed contributions of the two compo-
nents of our proposed AMA-CDR, i.e., random masked attention
and active masked attention, we compare the two variants with our
full-version AMA-CDR and report their results for Tasks 5 and 6 in
Figure 4.

Firstly, as shown in Figure 4, even only with revisiting GNN and
element-wise attention, our end-to-end AMA-CDR-A can signifi-
cantly improve the SOTA or representative baselines in terms of
HR@10 & NDCG@10. This means that if we can design suitable
graph embedding and transfer strategies, our end-to-end models
can significantly ease the problem of objective distortion.

Secondly, comparing AMA-CDR-RM with AMA-CDR-A, we can
see from Figure 4 that with the help of the randommask, i.e., leverag-
ing the prior knowledge – data density, our AMA-CDR-RM can ease

the problem of negative transfer to some extent. This means that
the prior knowledge, i.e., data density, can guide our CDR model
to effectively combine the knowledge, i.e., user/item embeddings,
from other domains.

Finally, comparing AMA-CDR (the full version) with AMA-CDR-
RM, we can see from Figure 4 that with the help of the active mask,
i.e., leveraging both the prior knowledge – the data density and
the posterior knowledge – the uncertainty of training sample, our
AMA-CDR can further address the problem of negative transfer.
Actively selecting uncertain samples and giving them a higher
probability to absorb the knowledge learned from other domains
can reduce their uncertainty and thus enhance the performance of
all sparser and denser domains.

3.4 Result 3: Negative Transfer (for Q4)
To validate the performance of our AMA-CDR when the negative
transfer occurs, we report the performance of the best-performing
baseline, i.e., GA-MTCDR-P, and our AMA-CDR, and compare the
changes from Task 1/2 to Task 5 (Douban dataset) and from Task
3/4 to Task 6 (Amazon dataset). For the Douban dataset, from Task
1/2 (Book+Movie or Music+Movie) to Task 5 (Book+Music+Movie),
we only add a new domain, while for the Amazon dataset. from
Task 3/4 (Music+Electronics or Movie+VideoGames) to Task 6 (Mu-
sic+Electronics+Movie+VideoGames), we add two new domains.
As we can see from Figure 5, from Task 1/2 to Task 5 and from Task
3/4 to Task 6, our AMA-CDR can improve the performance in all
domains while GA-MTCDR-P occurs the phenomenon of negative
transfer, i.e., with more auxiliary domains, the performance of GA-
MTCDR-P decreases in some cases. This result demonstrates that
our AMA-CDR can avoid negative transfer to a large extent.
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negative transfer
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domains from Task 1/2 
to Task 5 can improve 
the performance in all 
target domains 
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Figure 5: The experimental results of negative transfer on Douban and Amazon datasets. Note that we add a new domain
from Task 1/2 (Book+Movie or Music+Movie) to Task 5 (Book+Music+Movie) and add two new domains from Task 3/4 (Mu-
sic+Electronics or Movie+VideoGames) to Task 6 (Music+Electronics+Movie+VideoGames).

4 RELATEDWORK
4.1 Cross-Domain Recommendation
According to transfer paradigm, we classify the existing cross-
domain recommendation (CDR) approaches into the following
four groups. (1) One-to-one paradigm: Most traditional CDR
approaches belong to the one-to-one paradigm, which tends to
leverage auxiliary information from the source domain (one) to
improve the recommendation accuracy in the target domain (one)
(also called as single-target CDR in the literature [66]). These ap-
proaches either leverage content information to link and share
information across domains [2, 17, 43, 45, 47, 48, 50, 58] or leverage
common entities (users/items) as a bridge to transfer their embed-
dings [5, 13, 15, 18, 23, 29, 34, 35, 52, 61, 64, 68] or rating patterns
[10, 56] across domains. (2)Many-to-one paradigm: This category
of CDR approaches tends to leverage the auxiliary information from
multiple domains (many) to improve the recommendation accuracy
in the target domain (one) [22, 60]. (3) One-to-many paradigm:
There are few related approaches in this category [20, 22, 46], which
mainly focus on one-dense andmany-sparse CDR scenarios. (4)
Many-to-many paradigm: Recently, some CDR approaches have
attempted to leverage the rich information from multiple domains
(many) to enhance the recommendation performance in these mul-
tiple domains (many) [8, 9, 14, 16, 22, 33, 37, 37, 55, 67]. Compared
with the first three paradigms, the many-to-many paradigm is more
meaningful because it can almost serve all CDR scenarios.

4.2 Avoiding Negative Transfer in MTL & TL
In the literature, some multi-task learning (MTL) approaches [31,
32] and transfer learning (TL) approaches [6, 42, 53] have attempted
to address this problem by measuring the distribution gap between
two domains or leveraging adversarial learning to re-weight the
importance of samples, and thus they can generate a kind of hidden

irrelevance among different domains to avoid the negative transfer.
However, some transfer-related prior knowledge, i.e., data density,
and the posterior knowledge, i.e., sample uncertainty, in the area
of CDR are ignored in these approaches.

4.3 Attention and Active Learning for CDR
Because we employ attention and active learning for our proposed
AMA-CDR, we also review the related literature as follows. (1)
Attention: Attention is first introduced in [1], which provides a
more accurate alignment for each position in a machine translation
task. In the area of CDR, the attention mechanism is applied to
select more informative parts of the auxiliary domains to help the
target domain [25, 26, 65]. (2) Active learning: The key idea of
active learning is that machine learning algorithms can achieve
greater accuracy with fewer training samples if the algorithms can
actively choose the samples from which are learned [44]. As for
CDR, active learning can actively choose the uncertain samples that
urgently need auxiliary information from other domains [38, 60].

5 CONCLUSION AND FUTUREWORK
In this paper, we have proposed a novel Active Masked Attention
framework, i.e., AMA-CDR, formany-to-manyCDR scenarios. Specif-
ically, we have designed an end-to-end graph framework to reduce
the objective distortion between graph embedding and transfer
strategy. More importantly, we have proposed an active mask to
address the problem of negative transfer. Also, we have conducted
extensive experiments to demonstrate the superior performance of
our AMA-CDR and verify that the recommendation performance
in the target domain can be close to or even overhauled in the
source domain. In the future, we plan to study more prior knowl-
edge and posterior knowledge to control the demand probability of
transferred information and choose suitable uncertain samples.
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