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Abstract

We introduce TimeMCL, a method leveraging the
Multiple Choice Learning (MCL) paradigm to
forecast multiple plausible time series futures.
Our approach employs a neural network with
multiple heads and utilizes the Winner-Takes-All
(WTA) loss to promote diversity among predic-
tions. MCL has recently gained attention due to
its simplicity and ability to address ill-posed and
ambiguous tasks. We propose an adaptation of
this framework for time-series forecasting, pre-
senting it as an efficient method to predict diverse
futures, which we relate to its implicit quanti-
zation objective. We provide insights into our
approach using synthetic data and evaluate it on
real-world time series, demonstrating its promis-
ing performance at a light computational cost.

1. Introduction
Predicting the weather of the upcoming weekend or the
stock prices of next month with perfect accuracy would un-
doubtedly be useful. Unfortunately, time-series forecasting
is a highly ill-posed problem. In many cases, the available
input information is insufficient to reduce our uncertainty
about the estimation of the underlying stochastic process
and the data itself may contain noise. Consequently, the best
a forecaster can do is estimate plausible future trajectories,
ideally along with the probability of each outcome.

Because temporal data are highly structured and typically
come with input–output pairs that require no additional man-
ual annotation, autoregressive neural networks have become
the de facto standard for forecasting high-dimensional time
series from historical data and exogenous covariates (Ran-
gapuram et al., 2018; Salinas et al., 2019; Benidis et al.,
2020). To capture predictive uncertainty, practitioners often
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place an explicit distribution on the model’s output and per-
form maximum likelihood estimation (Salinas et al., 2020;
Alexandrov et al., 2020). While such parametric methods
can be computationally efficient, they may depend heavily
on the choice of distribution family, reducing their flexibility
in capturing complex uncertainties (Gneiting & Katzfuss,
2014).

In parallel, the success of general-purpose generative
models, especially conditional diffusion models (Ho et al.,
2020) such as TimeGrad (Rasul et al., 2021a), has led
to strong empirical performance in high-dimensional
time series forecasting. However, these models tend to
be computationally expensive at inference, particularly
when multiple what-if scenarios, which we will refer
to as hypotheses, need to be generated in real-time.
Moreover, there is often no explicit mechanism to guarantee
sufficiently diverse hypotheses within a single model pass.

To address these limitations, we propose TimeMCL—a
novel approach based on Multiple Choice Learning (MCL)
techniques—that produces diverse and plausible predictions
via a single forward pass.

Contributions.

• We introduce TimeMCL, a new approach for time
series forecasting that adapts the Winner-Takes-All
(WTA) loss to generate multiple plausible futures.

• We show that TimeMCL can be viewed as a functional
quantizer, and we illustrate its theoretical properties
on synthetic data.

• We evaluate our method on real-world benchmarks,
demonstrating that TimeMCL efficiently produces a
diverse set of forecasts with just a few samples in a
single forward pass.1

2. Related Work
Ambiguity and need for diversity time series forecast-
ing. In recent years, sequence-to-sequence neural networks
(Hochreiter & Schmidhuber, 1997; Sutskever et al., 2014;

1Code available at https://github.com/Victorletzelter/timeMCL.
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Chung et al., 2014; Torres et al., 2021) have become increas-
ingly effective in time series forecasting, often surpassing
classical techniques (Hyndman et al., 2008; Hyndman &
Khandakar, 2008). Yet capturing the inherent ambiguity
in future outcomes remains a critical challenge, especially
in high-dimensional settings (Ashok et al., 2024). Salinas
et al. (2020) proposed a probabilistic autoregressive global
model capable of fitting and forecasting high-dimensional
time series while highlighting the need to quantify uncer-
tainty in predictions. Building on this line of research, Rasul
et al. (2021a) introduced a conditional diffusion model that
summarizes the past values of the time series into a hidden
state, then performs a diffusion process—conditioned on
this state—to generate forecasts. Rasul et al. (2021b) re-
tained the conditional architecture but replaced the diffusion
mechanism with a normalizing-flow generator. While these
methods are capable of modeling uncertainty, computational
efficiency remains a crucial factor, particularly in real-time
scenarios (Chen & Boccelli, 2018) where multiple plausi-
ble futures must be generated. To address these challenges,
we introduce a new family of general-purpose autoregres-
sive time series forecasters based on the Winner-Takes-All
(WTA) principle, leveraging its quantization properties to
produce diverse and realistic forecasts in a single forward.

Optimal vector quantization & Multiple choice learn-
ing for conditional distribution estimation. Quantization
is concerned with finding the best finitely supported ap-
proximation of a probability measure (Bennett, 1948; Du
et al., 1999; Pagès, 2015; Chevallier, 2018). In the context
of time series forecasting, this translates to quantizing the
conditional probability distribution of the target time series.
Multiple Choice Learning (MCL) with a Winner-Takes-All
(WTA) loss (Guzman-Rivera et al., 2012; Lee et al., 2016)
provides a practical framework for such conditional quan-
tization through multi-head networks, which act as a fixed
set of codevectors (also called hypotheses) (Rupprecht et al.,
2017; Letzelter et al., 2024; Perera et al., 2024). While
MCL has thus far been explored in various applications,
notably computer vision tasks (Lee et al., 2017; Rupprecht
et al., 2017; Tian et al., 2019), we adapt it here to predict
a quantized representation of the conditional probability
distribution of future time series values, using a training
scheme specifically tailored for this setting.

3. Problem setup and notations
Let (xt:T ) ∈ X T−t+1 represent a multivariate time series
on X = RD over time indexes [[t, T ]], where t ∈ [[1, T ]]. We
aim to learn the conditional law

p(xt0:T | x1:t0−1, c1:T ), (1)

of future values xt0:T (over the interval [[t0, T ]]) given past
observations x1:t0−1 and covariates c1:T , the latter being

omitted in the following for conciseness. Our focus is on
scenarios where the conditional distribution may exhibit
multiple modes (multi-modality), motivating a richer repre-
sentation than a single-mean regressor.

To address this issue, the goal of probabilistic time series
forecasting is to capture conditional distributions over future
time series given past values with model pθ, with parameters
θ, whose likelihood can be expressed as

pθ(xt0:T | x1:t0−1) =

T∏
t=t0

pθ(xt | x1:t−1) . (2)

Once trained, ancestral sampling methods can be used to in-
fer sequence-level predictions. Let us illustrate this scheme
using for instance hidden-variable based recurrent neural
networks (RNNs) from Graves (2013).

When considering hidden-variables-based models, the ba-
sic building block of sequence-to-sequence architectures
(Sutskever et al., 2014), one often implicitly parametrize the
model with, up to a (log) normalization constant,

log pθ(xt | xt0:t−1, x1:t0−1) = −ℓ(fθ(ht−1), xt) , (3)

where ℓ(·, ·) be an appropriate loss, e.g., the mean squared
error ℓ(α, β) ≜ ∥α − β∥2 and all the context and previ-
ous states is encapsulated into a hidden state ht−1 ∈ H.
Assuming the vanilla form for recurrent networks, the hid-
den state propagation is represented by a model sθ with
ht−1 = sθ(xt−1, ht−2), and fθ is the final projection.

Once trained, the predictions can then be performed
by first encoding the past sequence x1:t0−1 with a
hidden state by applying recursively sθ: ht0 =
sθ(xt0−1, . . . , sθ(x2, sθ(x1, h0) . . . )), where h0 is an ar-
bitrary initial hidden state. Then the recurrent model can
be unrolled, i.e., turned into autoregressive mode by decod-
ing the predicted sequence by applying recursively sθ, this
time over its own predicted outputs, leading the prediction
x̂t0:T ∼ pθ(xt0:T | xt0:T−1, ht0). In the following, we will
denote Fθ : x1:t0−1 7→ x̂t0:T = Fθ(x1:t0−1) ∈ X T−t0+1

the unrolled network.

4. TimeMCL method
TimeMCL leverages the Winner-Takes-All principle
(Guzman-Rivera et al., 2012; Lee et al., 2016), which was
originally introduced to address ambiguous tasks. WTA
naturally extends to scenarios in which future time-series
trajectories exhibit multimodality (e.g., seasonality, regime
switches, and abrupt events). We build on the Multiple
Choice Learning framework, which produces K distinct
“hypotheses” through multiple heads. Not only does our esti-
mator allow us to produce plausible hypotheses; TimeMCL
provably quantizes the target distribution of futures, and
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is therefore expected to infer the K most representative
predictions of the target distribution.

4.1. Training scheme

A key insight behind WTA is that learning K separate hy-
potheses x̂1, . . . , x̂K ∈ X T−t0+1 with an objective that ef-
fectively induces a tesselation (Du et al., 1999) of the target
space into K cells (one for each hypothesis) aims to capture
the best possible information of the target distribution with
K points.

TimeMCL works as an alternative to the vanilla maximum
likelihood estimation (MLE) of (2). Let p1θ, . . . , p

K
θ be K

models with parameters (θ1, . . . , θK), for which one can
associate heads f1

θ , . . . , f
K
θ : H → X using the hidden-

state representation as in Section 3. In our implementation,
the K models have shared sθ for hidden-state propagation,
and differ only by their final heads fk

θ , and one may define
the complete models with fk

θ ◦ sθ.

The Winner-Takes-All consists of the following training
scheme for each data point (x1:t0−1, xt0:T ):

1. We compute the negative-log-likelihood of each model

Lk
θ(x1:t0−1, xt0:T ) = −

T∑
t=t0

log pkθ(xt | x1:t−1) ,

where log pkθ(xt | x1:t−1) = −ℓ(fk
θ (ht−1), xt), for

each head k ∈ [[1,K]].

2. We pick the “winner” k⋆ = argmink Lk
θ , and we back-

propagate only through that winning head (k⋆).

This two-step optimization allows to optimize the loss in an
alternating fashion, despite the non-differentiability of the
min operator. Note that the latter can be computed batch-
wise on the historical data, computing the Winner head of
each batch index, with a loss that writes as:

LWTA(θ1, . . . , θK) ≜ Ex1:T
[ min
k=1,...,K

Lk
θ(x1:t0−1, xt0:T )] ,

(4)
where the expectation is taken over (x1:t0−1, xt0:T ) ∼
p(x1:T ). While the WTA Loss trains several models with
the aim of producing several trajectories, we also use score
heads as in Letzelter et al. (2023) γ1

θ , . . . , γ
K
θ : H → [0, 1]

to learn to predict the probability of head being the winner
and avoid overconfident heads. The latter are trained with

Ls ≜ Ex1:T

 ∑
k=1,...,K
t=t0,...,T

BCE
(
1 [k = k⋆] , γk

θ (ht−1)
) ,

(5)

where the binary cross entropy BCE(p, q) ≜ −p log(q)−
(1 − p) log(1 − q), aligns the predicted and target winner
assignation probabilities. The final training objective is a
compound loss L = LWTA + βLs, where β > 0 is the
confidence loss weight. See Figure 1 for an illustration of
the components of TimeMCL.

x1 x2 xT

sθ sθ sθh0 h1 h2 hT−1

f1θ
fkθ

fKθ

x̂12
x̂k2

x̂K2

γ1θ
γkθ

γKθ

γ̂1 γ̂k
γ̂K

hT

f1θ
fkθ

fKθ

x̂1T
x̂kT

x̂KT

γ1θ
γkθ

γKθ

γ̂1 γ̂k
γ̂K

Figure 1. Components of TimeMCL. Prediction heads are in
Lightcoral color, and Score heads are in Blue. Rectangles contain
functions, and circles contain features.

4.2. Inference and Sampling

Once trained, TimeMCL provides K plausible predictions
x̂1 ∼ p1θ, . . . , x̂

K ∼ pKθ , by ancestral sampling on each
of the models. When using recurrent neural networks, the
unrolling procedure described in Section 3 can be applied by
first encoding the input sequence sθ to obtain a hidden state
ht0 , and unrolling the autoregressive model. As in Section
3, we encapsulate these operation with unrolled networks
F 1

θ , . . . ,F
K
θ . The scores are computed in the same way,

using the score heads γk
θ instead of the prediction heads fk

θ ,
and we denote Γk

θ their unrolled networks. To get a single
score associated with each predicted trajectory, we averaged
the predicted scores over the sequence.

In cases where the ambiguity is reduced, such that for short-
horizon forecasts when only one prediction is required, one
might pick the best head according to the predicted score or
sample from them in proportion to some confidence measure.
In a longer autoregressive forecast, we can consider the K
outputs at each time step —thus producing a set of possible
futures from the single forward pass.

4.3. Taking advantage of Winner-takes-all variants

While the WTA Loss has been proven effective for handling
ambiguous tasks (Lee et al., 2016; Seo et al., 2020; Garcia
et al., 2021), some heads may theoretically be under-trained
(Rupprecht et al., 2017). This may occur when a single
mode (or a few modes) dominates the target distribution, or
due to suboptimal initialization, similar to what can happen
in Lloyd’s algorithm for K-Means clustering (Lloyd, 1982;
Arthur & Vassilvitskii, 2007). In this case, the scoring loss
Ls ensures setting a low probability to those concerning
hypotheses so that the latter can be ignored at inference.
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It is possible to mitigate this issue, and therefore improve the
performance of the estimator by using relaxation techniques
of the min operator. In this case, the best head loss in (4)
can be substituted with weighted loss from the different
heads:

L̃WTA(θ1, . . . , θk) ≜ Ex1:T

[
K∑

k=1

qkLk
θ(x1:t0−1, xt0:T )

]
,

(6)

where the coefficients qk ≥ 0 sum to one, and allow to
assign some weight to non-winner hypotheses.

This idea was originally suggested through Relaxed Winner-
takes-all (R-WTA) loss proposed by Rupprecht et al. (2017),
which suggested back-propagating not only on the winning
head k⋆, but also on the non-winner. In this case qk⋆ = 1−ε
and qk = ε

K−1 for k ̸= k⋆ (See (21) in Appendix C.3).
More recently, Perera et al. (2024) proposed an annealed
method inspired from Deterministic annealing (Rose et al.,
1990) using a softmin operator:

qk(T ) =
1

Z(x1:t0−1, xt0:T ;T )
exp
(
−Lk

θ(x1:t0−1, xt0:T )

T

)
,

(7)
with

Z(x1:t0−1, xt0:T ;T ) ≜
K∑
s=1

exp
(
−Ls

θ(x1:t0−1, xt0:T )

T

)
,

where the temperature T is annealed during training, e.g.,
considering at training step t, T (t) = T (0)ρt with ρ < 1.
At higher temperatures, the target assignment is effectively
softened, making the early stages of training easier.

We implemented these two variants, within our TimeMCL
model in the Gluonts framework (Alexandrov et al.,
2020). Based on our experience, these methods are mean-
ingful variations of WTA that were worth exploring, as they
demonstrated improvements over vanilla WTA in certain
configurations.

5. Theoretical analysis and interpretation
In this section, based on the notion of functional quanti-
zation, we provide insights into the interpretation of our
approach. In particular, we show that, under squared error,
the K heads form a Voronoi tessellation of future trajectories
and act as a conditional codebook. This viewpoint explains
how WTA theoretically captures the best possible way the
conditional law over stochastic processes, given a sampling
budget of K predictions. Our claims are then illustrated
through a synthetic data example, specifically focusing on
certain Gaussian Processes.

5.1. TimeMCL is a stationary conditional functional
quantizer

For simplicity and without loss of generality, let us tem-
porarily assume that β = 0, i.e., only the WTA Loss LWTA

is optimized. When predicting the future of a time series
given its context x1:t0−1, we are effectively observing, dur-
ing supervision, a (partial) path realization xt0:T of an un-
derlying stochastic process. Following standard functional
data analysis (Bosq, 2000; Ramsay & Silverman, 2005), we
assume that each time-series trajectory xt0:T belongs to a
Banach space (E, ∥·∥). For concreteness, one may consider
E = L2([t0, T ]) endowed with the usual L2 norm, though
any separable Banach space is admissible for the theoretical
arguments to hold. In this space, the distance d(·, ·) induced
by ∥ · ∥ enables us to define the Voronoi tessellation over
future paths xt0:T as described below.

The L2 quantization problem aims at finding the best ap-
proximation of a random vector X , using K points in E.
The quality of the approximation using at most K points
{f1, . . . , fK}, is generally measured with the distortion, de-
fined as: D2(X) = EX [minf∈{f1,...,fK} d(X, f)2] , which
is finite over if X admits a second order moment. Note that
our learning setup involves quantization in conditional form,
i.e., the random variable of interest depends on a context.

We state hereafter our main theoretical result, showing that
TimeMCL can provably perform functional quantization of
the target space of plausible trajectories. It can be seen as
an adaptation of Proposition 5.2 in Letzelter et al. (2024) to
the case of functional quantization of time series.

Proposition 5.1. See Proposition A.4 in the Appendix. Un-
der the assumptions that:

1. The batch size is big enough so that the difference
between the LWTA risk and its empirical version can
be neglected (Assumption A.1).

2. The neural network we are considering is expressive
enough so that minimizing the risk is equivalent to
minimizing the input-dependent risk for each context
x1:t0−1 (Assumption A.2).

3. The training has converged and LWTA has reached a
local minima (Assumption A.3).

Then, TimeMCL is a conditional stationary quantizer for
each sampled window (x1:t0−1, xt0:T ), that is, for each
k ∈ [[1,K]]:

F k
θ (x1:t0−1) = E[xt0:T | xt0:T ∈ Xk(x1:t0−1)] , (8)

where

Xk(x1:t0−1) =
{
xt0:T | Lk

θ < Lr
θ ,∀r ̸= k

}
.

4



Winner-takes-all for Multivariate Probabilistic Time Series Forecasting

We denoted by abuse of notations Lk
θ = Lk

θ(x1:t0−1, xt0:T )
for simplicity and the same for Lr

θ. This makes TimeMCL
akin to a conditional and gradient-based version of K-
Means over the set of possible future trajectories.

Sketch of proof. See Proposition A.4 for the full proof. The
demonstration of this result is made by first leveraging As-
sumption A.1 to re-write the WTA Loss in the form

Ex1:t0−1

[
K∑

k=1

∫
Xk(x1:t0−1)

Lk
θ dp(xt0:T | x1:t0−1)

]
, (9)

where each xt0:T ∈ Xk(x1:t0−1) picks the head k it is clos-
est to. Under the expressivity assumption (Assumption
A.2), (9) comes down to optimizing a functional (14) of
the hypotheses position for each fixed context x1:t0−1. We
assume that, during training, our predictor generates tra-
jectories solely from the context (i.e., independently of the
observed values), effectively as though F 1

θ , . . . ,F
K
θ were

used directly for training.

From here, we leverage the fact that TimeMCL is a two-step
training procedure, and then the alternating optimization
argument from Rupprecht et al. (2017) (Theorem 1) applies
to obtain the optimal centroids. This is performed using
L2 square loss for ℓ, from the vanishing gradient condition
on the optimized functional (Assumption A.3). We also
say that in this case, Voronoi tesselation on the trajectory
space induced by the hypothesis is centroidal (Du et al.,
1999).

Now if we assume β > 0, we can show the following
proposition.

Proposition 5.2. Under similar assumptions as in Proposi-
tion 5.1, one can show that a necessary optimality condition
for the score heads is that

Γk
θ (x1:t0−1) = P (xt0:T ∈ Xk (x1:t0−1) | x1:t0−1) . (10)

Proof. Full proof in Appendix A.6.

TimeMCL can thus be viewed as a conditional vector quan-
tization scheme (Gersho & Gray, 1992), where each head k
is a code vector (in functional form).

By conditioning on the past data x1:t0−1, TimeMCL effec-
tively learns a family of partitions in the time-series trajec-
tory space. If the number of hypotheses is large, increasing
K under the above assumptions typically reduces recon-
struction error at a rate akin to K−2/d, in line with classical
quantization theory (Zador, 1982).

5.2. Smoothness of TimeMCL predictions for (most)
time series

As we have shown, under certain assumptions, if the model
reaches a stationary point,

F k
θ (x1:t0−1) = E [xt0:T | xt0:T ∈ Xk(x1:t0−1)] ,

and we can interpret the prediction as a mean of different
hypothetical trajectories. Since most stochastic time series
contain centered noise—caused by various factors such as
measurement errors or random events—the averaging pro-
cess tends to eliminate this noise, resulting in a smooth
appearance. We observe this phenomenon consistently in
the real examples we visualized. We also noticed that the
appearance of smoothness increases as training progresses.
This property of mean predictions reinforces our conviction
that the model is providing representative trajectories rather
than just random samples.

5.3. Synthetic data example

We evaluate TimeMCL on three synthetic processes: Brow-
nian motion, a Brownian bridge, and an AR(5) process.
While the Brownian motion serves as a simple example
with minimal context dependence, the Brownian bridge
introduces a time-conditioned structure, and the AR(5) pro-
cess tests the model’s ability to handle stronger context
dependencies. Training is performed on randomly sampled
trajectories with appropriate conditioning, and quantization
is assessed using theoretical references: Karhunen-Loève-
based quantization for Brownian motion and the Brownian
bridge, and Lloyd’s algorithm for the AR(5) process (Ap-
pendix B).

For this toy experiment, we used a three-layer MLP that
predicts the entire sequence at once from its context (see
Appendix B for details). To keep the implementation as
straightforward as possible, we kept the model’s parameteri-
zation lightweight and omitted the score heads.

As shown in Figure 2, TimeMCL consistently produces
smooth and near-optimal quantizations across all settings.
For Brownian motion, the predicted trajectories closely align
with the theoretical optimal quantization, demonstrating the
model’s ability to learn conditional distributions from min-
imal context. In the Brownian bridge setting, where the
conditioning depends on both time and value, the model
successfully captures the structural constraints, leading to
coherent and well-quantized trajectories. The AR(5) pro-
cess presents a more complex challenge due to its stronger
temporal dependencies, yet TimeMCL effectively utilizes
the past observations to produce long-horizon predictions
that remain consistent with Lloyd’s quantization. The re-
sults highlight the model’s ability to condition on past ob-
servations, effectively adapting to different processes and
maintaining predictive stability over extended time horizons.

5



Winner-takes-all for Multivariate Probabilistic Time Series Forecasting

Figure 2. Conditional Quantization of Stochastic Processes with TimeMCL. The Figure shows the predictions of TimeMCL on three
synthetic datasets as described in Section 5.3 and Appendix B. Predictions of TimeMCL are shown in lightcoral color, and target
quantization in each case are shown in brown. We used 10 hypotheses here, a three-layer MLP as backbone with score-heads disabled in
those toy experiments. Brownian Motion, Brownian Bridge, and AR(p) are increasingly complex in terms of conditioning dependencies
in the context window (See Section 5.3). We see that in those three cases, TimeMCL predictions nicely approximate the shape of target
quantization functions, justifying its interpretation as a conditional functional quantizer.

6. Empirical evaluation
In this section, we empirically validate our method, with
experiments on real-world time series. Compared to the
experiments in Section 5.3, the underlying law of the data-
generating process is not known, making the task more
realistic. The goal is to compare TimeMCL with state-of-
the-art probabilistic time series forecasters, emphasizing its
balance between quantization, predictive performance, and
computational efficiency.

6.1. Experimental setup

Datasets. Our approach is evaluated on six well-established
benchmark datasets taken from Gluonts library (Alexan-
drov et al., 2020), preprocessed exactly as in Salinas et al.
(2019); Rasul et al. (2021a). Each dataset consists of strictly
positive and bounded real-valued time series. The char-
acteristics of these datasets are summarized in Table 5 in
the Appendix. SOLAR contains hourly solar power outputs
from 137 sites with strong daily seasonality. ELECTRICITY
records hourly power consumption for 370 clients, exhibit-
ing daily and weekly periodicities. EXCHANGE tracks daily
exchange rates for eight currencies, showing less seasonality
and being influenced by macroeconomic factors. TRAFFIC
provides hourly occupancy rates from 963 road sensors, cap-
turing rush-hour peaks and weekly patterns. TAXI comprises
time series of NYC taxi rides recorded at 1,214 locations.
WIKIPEDIA includes daily views of 2,000 Wikipedia pages
(Gasthaus et al., 2019). See Lai et al. (2018) and Appendix
C.1 for an extensive description.

Metrics. We evaluate our approach with six different met-
rics, each of them being detailed in Appendix C.2. First, we
considered the Distortion, which is computed as

D2 =
1

N

N∑
i=1

min
k=1,...,K

d
(
F k

θ (x
i
1:t0−1), x

i
t0:T

)
,

consisting of computing the Euclidean distance d between
the target series and closest hypothesis, averaged over the
test set with N samples. This allows us to compare fairly
with other baselines when the sample size K is fixed. To
assess computational efficiency during inference, we re-
port both the inference Floating Point Operations (FLOPs)
and run-time for each baseline in Table 2. As a means
to validate the theoretical claim presented in Section 5.2,
we also compute the Total Variation (TV), which quanti-
fies the smoothness of the predicted trajectories in Table 3.
Finally, for comprehensive comparison, we include the Av-
erage Root Mean Square Error (RMSE) and the Continuous
Ranked Probability Score (CRPS) (summed over all time
series dimensions). These results are reported in Tables 7
and 8 in the Appendix.

Baselines. We considered the following baselines: ETS
(Hyndman et al., 2008), Tactis2 (Ashok et al., 2024),
DeepAR (Salinas et al., 2020), TempFlow (Rasul et al.,
2021b), and TimeGrad (Rasul et al., 2021a). These were
compared against TimeMCLwith two relaxation techniques:
Relaxed-WTA (Rupprecht et al., 2017) and aMCL (Perera
et al., 2024). Note that both of these Multiple Choice Learn-
ing variants use score heads as in Letzelter et al. (2023)
(with β = 0.5).
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Figure 3. Qualitative results. Visualization of the predictions on the SOLAR dataset, comparing Tactis2 (purple), TimeGrad (red),
TempFlow (orange), and TimeMCL trained with two relaxation techniques (blue). Each model predicts sixteen hypotheses, dashed lines
represent the predicted mean of the conditional distribution which was computed as the weighted sum of the predicted hypotheses by the
scores for TimeMCL. Each row represents a different dimension (D = 137 here). The light yellow zone highlights the prediction window,
and the score intensities are displayed as shaded blue lines, as per the scale on the right. DeepAR is not included in this visualization as it
does not perform competitively. In this example, TimeGrad, TempFlow and Tactis2 generate meaningful hypotheses. However,
TimeMCL’s predictions are noticeably smoother and more diverse.

Architectures. We compare DeepAR, TempFlow, and
TimeGrad with TimeMCL, using the same neural net-
work backbone: an RNN with LSTM cells, as in the orig-
inal implementations (Hochreiter & Schmidhuber, 1997).
This ensures fair comparison conditions. In these experi-
ments, each hypothesis head in TimeMCL and the projec-
tion layer of DeepAR consists of a single linear layer. Mean-
while, the noise prediction in TimeGrad is implemented
with a dilated ConvNet featuring residual connections (Van
Den Oord et al., 2016; Kong et al., 2021; Rasul et al., 2021a).
Additionally, we include comparisons with methods based
on transformer backbones, such as the transformer-based
version of TempFlow, (named Trf.TempFlow (Rasul
et al., 2021b)) and Tactis2 (Drouin et al., 2022; Ashok
et al., 2024), which leverages copulas for modeling depen-
dencies. Note that ETS does not use a neural network.

Training. Training is conducted using the Adam optimizer
with an initial learning rate of 10−3 for 200 training epochs.
During each epoch, 30 batches of size 200 are sampled
from the historical data, considering random windows with
a context set equal to the prediction length. We used a
validation split of size equal to 10 times the prediction length.
Except for Tactis2, which uses Z-Score normalization,
the data are scaled by computing the mean value dimension
by dimension over the context and dividing the target by this
mean. This scaling follows the TimeGrad experimental
setup (Rasul et al., 2021a), ensuring consistency. The model
is trained on the scaled data, and the inverse transformation
is applied later for prediction.

Evaluation. The evaluation dataset is divided into mul-
tiple non-overlapping subsets, each containing sufficient
points for both context and prediction lengths, allowing
comprehensive assessment across different temporal seg-
ments. To compute TimeMCL metrics while accounting
for predicted hypothesis probabilities, we resample with
replacement from the K hypotheses obtained in a single for-
ward pass, weighting them by their predicted scores before
computing the metrics.

6.2. Results

Tables 1 and 2 show Distortion performance, FLOPs, and
run-time, comparing TimeMCL with two tested WTA vari-
ants with 16 hypotheses — WTA-Relaxed (Rupprecht et al.,
2017) and aMCL (Perera et al., 2024) — against the base-
lines. Table 3 displays Total Variation comparison, as a
means to quantify smoothness.

Distortion and Computation Cost. Table 1 demonstrates
that TimeMCL, particularly when trained with its Relaxed
variant, achieves competitive performance compared to the
other models when the number of hypotheses is fixed (with
K = 16 here). This is especially promising, as Tactis2
and TimeGrad, which are the strongest competitors in
terms of distortion, incur significantly higher FLOPs and
run-time (see Table 2). A similar trend is observed in Table
6 in the Appendix, which shows results for 8 hypotheses.
This behavior is expected since TimeMCL explicitly op-
timizes for distortion. It’s worth noting that, among the
neural-based methods, TimeMCL is the second most com-
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Table 1. Distortion Risk with 16 Hypotheses. TimeMCL(R.) and TimeMCL(A.) correspond to the relaxed and annealed variants.
ETS, Trf.TempFlow and Tactis2, columns are in gray because they don’t share the same backbone as the other baselines. The test
scores are averaged over four training seeds for each model. Best scores are in bold, and second-best are underlined.

ETS Trf.TempFlow Tactis2 TimeGrad DeepAR TempFlow TimeMCL (R.) TimeMCL (A.)

ELEC. 14041 ± 877 13407 ± 2921 9558 ± 1024 9799 ± 660 133640 ± 2341 14787 ± 674 11287 ± 730 11493 ± 1326
EXCH. 0.051 ± 0.005 0.062 ± 0.015 0.031 ± 0.002 0.035 ± 0.005 0.061 ± 0.001 0.051 ± 0.008 0.033 ± 0.004 0.041 ± 0.003
SOLAR 641.32 ± 3.57 376.98 ± 21.85 362.21 ± 39.94 360.78 ± 34.57 746.12 ± 24.91 368.93 ± 18.0 280.66 ± 22.23 286.3 ± 21.59
TRAFFIC 2.64 ± 0.01 1.26 ± 0.01 0.85 ± 0.03 0.77 ± 0.01 2.13 ± 0.05 1.19 ± 0.02 0.68 ± 0.01 0.72 ± 0.05
TAXI 583.52 ± 0.41 277.96 ± 13.0 246.09 ± 11.32 208.32 ± 2.76 407.63 ± 15.89 268.18 ± 12.18 186.99 ± 6.15 228.18 ± 21.3
WIKI. 715150 ± 4742 515285 ± 16000 254109 ± 4322 260927 ± 1185 366286 ± 8924 382819 ± 3508 258256 ± 3253 260025 ± 2649

Table 2. Computational cost at inference of neural-based methods for K = 16 hypotheses on EXCHANGE. FLOPs are computed
with a single batch of size 1. Run-times are averaged over 15 random seeds.

Trf.TempFlow Tactis2 TimeGrad DeepAR TempFlow TimeMCL

FLOPS. (↓) 2.04× 108 1.85× 108 3.05× 109 4.65× 105 9.29× 107 8.83× 106

RUN TIME. (↓) 2.47± 0.23 8.69± 0.36 241.57± 2.24 0.70± 0.04 1.39± 0.03 1.12± 0.04

Table 3. Total Variation (↓) comparison for K = 16 hypotheses.
See Table 11 for the full scores.

Tactis2 TimeGrad TempFlow TimeMCL (R.) TimeMCL (A.)

ELEC. 276601 ± 19341 371934 ± 16589 433494 ± 23503 220372 ± 29409 245904 ± 26410

EXCH. 0.225 ± 0.0176 0.606 ± 0.016 1.156 ± 0.155 0.031 ± 0.0065 0.042 ± 0.0123

SOLAR 4249 ± 240 6505 ± 1897 3637 ± 354 3391 ± 820 2195 ± 257

TRAFFIC 10.89 ± 1.079 12.9 ± 1.391 17.644 ± 0.234 5.766 ± 0.165 5.715 ± 0.245

TAXI 5262.07 ± 592.83 3728.29 ± 6.39 4104.29 ± 361.39 712.56 ± 291.79 703.29 ± 171.0

WIKI. 2650865 ± 422885 2518198 ± 233471 12729658 ± 367297 9530 ± 9256 271611 ± 311180

putationally efficient model, just behind DeepAR, while
achieving significantly better distortion scores. On that
account, TimeMCL strikes a promising trade-off between
computational cost and performance. For more details, refer
to Appendices C.2.4 and C.2.5.

Smoothness. Table 3 displays the Total Variation defined as
TV = 1

K

∑K
k=1

∑T
t=t0

∥∥x̂k
t+1 − x̂k

t

∥∥
2

which quantifies the
average smoothness of the predicted trajectories (lower is
more smooth). We see that TimeMCL, when trained either
with the annealed or relaxed variant, provides significantly
smoother trajectories compared to the baselines, further
confirming the claim of Section 5.2 as a consequence of
Proposition 5.1.

Comparing TimeMCL with the baselines on standard
metrics. Table 7 and 8 provides performance on CRPS
and RMSE, respectively. We see that, except for CRPS and
RMSE on the SOLAR dataset and RMSE on EXCHANGE
(for which Tactis is better), TimeGrad outperforms the
other baselines. We also observe that TimeMCL is com-
petitive despite optimizing a completely different training
objective, at a fraction of TimeGrad’s and Tactis’s com-
putational cost.

Qualitative comparison. We qualitatively compare the
predictions of TimeMCL with those of the baselines on the
SOLAR, TRAFFIC, and ELECTRICITY datasets, as shown

in Figure 3 and in Figures 7 and 8 in the Appendix. Fig-
ure 3 demonstrates the ability of the hypotheses to predict
multiple futures with the aim of capturing different modes
of the target data distribution. Tactis2, TimeGrad,
TempFlow struggle to produce predictions that deviate
significantly from the mean, with most of their predictions
being sampled from the same mode of the distribution. In-
terestingly, TimeMCL demonstrates the ability to generate
predictions far from the mean with a non-negligible prob-
ability, indicating that the model successfully captures dif-
ferent modes and estimates the probability of each mode,
including possibly rare events.

6.3. Effect of the number of hypotheses

Table 4 presents a comparison of performance as a function
of the number of hypotheses on the test split of the SOLAR
dataset. See also Table 10 for an evaluation of the run-time
as a function of the number of hypotheses. As expected,
the methods generally show improved performance as the
number of hypotheses increases, although this also leads to
longer run times. However, the performance improvement
is not always strictly monotonic with TimeMCL. This sug-
gests that our method still has room for refinement, as some
hypotheses may remain slightly underutilized. We suspect
that this may be partially due to the choice of scaling by the
mean, which could be suboptimal for initializing TimeMCL.
Indeed, as mentioned above, we scale the data by dividing
by the mean estimated dimension by dimension, which gen-
erally results in a target of constant sign when time series
values lie far from the origin, which may be suboptimal
when hypotheses are randomly initialized around the origin.
To address this, we plan to investigate the impact of different
scalers and data pre-processing techniques, such as Z-score
normalization or reversible instance normalization (Kim
et al., 2021), which could promote better use of hypotheses.
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Figure 4. Cryptocurrency price forecasting for January 4, 2025 with K = 4 hypotheses. Setup in described in Section 6.4. Legend is
the same as in Figure 3. We see that TimeMCL produces at least one hypothesis that closely matches the realized trajectory. We expect
each hypothesis to specialize in a distinct market scenario, for example, a trend reversal or a sudden collapse.

Table 4. Effect of the number of hypotheses on the Distortion
Risk for SOLAR. Results are averaged over three training seeds.
TimeMCL(R.) and TimeMCL(A.) corresponds to the relaxed
and annealed variants. See Table 9 for the full results.

K Tactis2 TimeGrad TempFlow TimeMCL(R.) TimeMCL(A.)

1 417.25 ± 32.09 397.18 ± 36.13 427.49 ± 12.97 429.49 ± 79.65 429.49 ± 79.65

2 405.44 ± 30.53 390.29 ± 58.09 403.29 ± 20.33 363.33 ± 44.07 403.42 ± 103.73

3 386.06 ± 31.3 386.84 ± 57.97 398.01 ± 19.17 368.0 ± 50.32 354.5 ± 24.25

4 378.31 ± 37.92 382.76 ± 52.45 390.31 ± 21.31 326.19 ± 20.82 341.7 ± 5.74

5 373.86 ± 39.89 381.04 ± 49.75 384.66 ± 22.39 375.96 ± 43.55 320.21 ± 22.06

8 370.1 ± 37.09 371.17 ± 37.34 379.16 ± 24.42 311.72 ± 22.4 334.02 ± 26.74

16 362.21 ± 39.94 360.78 ± 34.57 368.93 ± 18.0 280.66 ± 22.23 286.3 ± 21.59

6.4. Financial time series

TimeMCL was evaluated on a corpus of 2 years of hourly
cryptocurrency prices (15 correlated tickers collected from
YahooFinance). Table 5 lists the assets, along with their
pairwise correlations and price scales. Due to the wide
variance in price magnitudes across assets, we apply Z-
score normalization rather than mean scaling. All models
are trained with K = 4 hypotheses. TimeMCL employs
the annealed winner-takes-all loss and is compared with
Tactis2, TimeGrad, and TempFlow. As reported in
Table 12, TimeMCL demonstrates strong performance in
Distortion, RMSE, and CRPS, while also providing smooth
trajectories at a reasonable computation cost (measured in
FLOPs). Among the baselines, Tactis2 and TempFlow
(with a transformer backbone) achieved competitive results,
whereas TimeGrad, DeepAR, and the RNN version of
TempFlow were less effective. Figure 4 shows represen-
tative trajectories of our approach. At least one TimeMCL
hypothesis aligns closely with the realized path, illustrating
that individual hypotheses can specialize in distinct market
regimes (e.g., trend reversals, sudden collapses). Figure 6
contrasts these predictions with the baselines, highlighting

both the smoothness of the TimeMCL trajectories and their
capacity to capture rare events. Implementation details and
further analysis can be found in Appendix C.4.

7. Conclusion
We introduced TimeMCL, a new model for time series fore-
casting, designed to predict multiple plausible scenarios
that can be viewed as an optimal quantization of the future
distribution of the process we aim to predict. This model
effectively captures different modes of distribution while
providing smooth predictions. Moreover, unlike traditional
models that rely primarily on the mean and variance of their
predictions for interpretation, TimeMCL provides directly
interpretable predictions by capturing multiple plausible
future scenarios.

TimeMCL could be useful when combined with other back-
bones, as it complements state-of-the-art approaches with
its objective function. In this paper, we implemented the
model using a recurrent neural network to model temporal
dependencies. Exploring the same approach with different
architectures and datasets, such as transformer-based back-
bones when scaling the dataset size, would be a valuable
direction for future research.

Limitations. We found that the choice of scaler can be a
limitation in TimeMCL. An inadequate scaler may bias the
model toward certain hypotheses. While relaxation tech-
niques help by softening hard winner assignments, we plan
to explore advanced normalization methods to further im-
prove TimeMCL’s vanilla setup. Another possible limita-
tion is that TimeMCL requires the number of predictions
to be predefined beforehand. Exploring dynamic rearrange-
ments of hypotheses when adding new ones without full
retraining is left for future work.
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and Richard, G. Resilient multiple choice learning: A
learned scoring scheme with application to audio scene
analysis. In NeurIPS, 2023.

Letzelter, V., Perera, D., Rommel, C., Fontaine, M., Essid,
S., Richard, G., and Perez, P. Winner-takes-all learners
are geometry-aware conditional density estimators. In
ICML, 2024.

Lloyd, S. Least squares quantization in pcm. IEEE Trans-
actions on Information Theory, 1982.

Loubes, J.-M. and Pelletier, B. Prediction by quantization of
a conditional distribution. Electronic Journal of Statistics,
2017.

Matheson, J. E. and Winkler, R. L. Scoring rules for con-
tinuous probability distributions. Management science,
1976.

Pagès, G. Introduction to vector quantization and its appli-
cations for numerics. ESAIM: Proceedings and Surveys,
2015.

Pages, G. and Printems, J. Optimal quantization for finance:
from random vectors to stochastic processes. In Hand-
book of numerical analysis. Elsevier, 2009.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing flows for
probabilistic modeling and inference. JMLR, 2021.

Perera, D., Letzelter, V., Mariotte, T., Cortés, A., Chen, M.,
Essid, S., and Richard, G. Annealed multiple choice learn-
ing: Overcoming limitations of winner-takes-all with an-
nealing. In NeurIPS, 2024.

Ramsay, J. O. and Silverman, B. W. Functional Data Anal-
ysis. Springer, 2005.

Rangapuram, S. S., Seeger, M. W., Gasthaus, J., Stella, L.,
Wang, Y., and Januschowski, T. Deep state space models
for time series forecasting. In NeurIPS, 2018.

Rasul, K., Seward, C., Schuster, I., and Vollgraf, R. Au-
toregressive denoising diffusion models for multivariate
probabilistic time series forecasting. In ICML, 2021a.

Rasul, K., Sheikh, A.-S., Schuster, I., Bergmann, U. M.,
and Vollgraf, R. Multivariate probabilistic time series
forecasting via conditioned normalizing flows. In ICLR,
2021b.

Rose, K., Gurewitz, E., and Fox, G. A deterministic anneal-
ing approach to clustering. Pattern Recognition Letters,
1990.

Rupprecht, C., Laina, I., DiPietro, R., Baust, M., Tombari,
F., Navab, N., and Hager, G. D. Learning in an uncertain
world: Representing ambiguity through multiple hypothe-
ses. In ICCV, 2017.

Salinas, D., Bohlke-Schneider, M., Callot, L., Medico, R.,
and Gasthaus, J. High-dimensional multivariate forecast-
ing with low-rank gaussian copula processes. In NeurIPS,
2019.

Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski,
T. Deepar: Probabilistic forecasting with autoregressive
recurrent networks. International Journal of Forecasting,
2020.

Seo, Y., Lee, K., Clavera Gilaberte, I., Kurutach, T., Shin, J.,
and Abbeel, P. Trajectory-wise multiple choice learning
for dynamics generalization in reinforcement learning. In
NeurIPS, 2020.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In NeurIPS, 2014.

Tian, K., Xu, Y., Zhou, S., and Guan, J. Versatile multiple
choice learning and its application to vision computing.
In CVPR, 2019.

11



Winner-takes-all for Multivariate Probabilistic Time Series Forecasting

Torres, J. F., Hadjout, D., Sebaa, A., Martı́nez-Álvarez, F.,
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Organization of the Appendix
The Appendix is organized as follows. Appendix A contains the proofs of the theoretical results, establishing that TimeMCL
can be interpreted as a functional quantizer. Appendix B describes the synthetic data used in the toy example. Appendix C
details the empirical evaluation on real data, covering the datasets (Appendix C.1), the experimental procedure and evaluation
metrics (Appendix C.2), and the baseline models (Appendix C.3). Finally, Appendix C.4 presents additional results for the
financial time series.

A. Theoretical results
Following the main paper notations, we assume each time series lives in X = RD. We refer to the context and target
sequences as x1:t0−1 ∈ X 1:t0−1 and xt0:T ∈ X t0:T respectively.

A.1. Proof of Proposition 5.1

Let us consider the following assumptions.

Assumption A.1 (True risk minimization). The batch size is big enough so that the difference between the LWTA risk and
its empirical version can be neglected.

In the Assumption A.2 that follows, we considered the forecaster (or unrolled) network Fθ as a function X 1:t0−1 → X t0:T

that is directly optimized during training, i.e., teacher forcing is disabled. This implies that the same forward computation
applies in training and inference. In particular, the model predictions on the target window X T−t0+1 at training time depend
only on the past context x1:t0−1. We adopt this simplified setup in the toy experiments presented in Section 5.3 and in
Appendix B.

Assumption A.2 (Expressiveness). The family of neural networks considered is expressive enough so that minimizing the
expected training risk reduces to minimizing the input-dependent risk for each individual input2. Formally, this means

inf
θ∈Θ

Ex1:T
[ℓ (Fθ(x1:t0−1), xt0:T )] =

∫
X 1:t0−1

inf
z∈X t0:T

Ext0:T∼p(xt0:T |x1:t0−1) [ℓ (z, xt0:T )] dp(x1:t0−1) , (11)

where Θ is the set of possible neural network parameters, and ℓ may be the mean square error loss ℓ (x̂t0:T , xt0:T ) ≜∑T
t=t0

∥x̂t − xt∥2 .

Assumption A.3 (Optimality). The training has converged and LWTA has reached a local minima.

Proposition A.4. Under the Assumptions A.1, A.2 and A.3, TimeMCL is a conditional stationary quantizer for each sampled
window (x1:t0−1, xt0:T ), that is

F k
θ (x1:t0−1) = E[xt0:T | xt0:T ∈ Xk(x1:t0−1)], (12)

where
Xk(x1:t0−1) =

{
xt0:T ∈ X t0:T | Lk

θ(x1:t0−1, xt0:T ) < Lr
θ(x1:t0−1, xt0:T ) ,∀r ̸= k

}
,

where accordingly with Assumption A.2; Lk
θ(x1:t0−1, xt0:T ) =

∑T
t=t0

∥F k
θ (x1:t0−1)t − xt∥2. This makes TimeMCL akin

to a conditional and gradient-based version of K-Means over the set of possible future trajectories.

Proof. Assuming we are performing true risk minimization (Assumption A.1), the WTA Loss LWTA can be re-written as

LWTA =

∫
x1:t0−1∈X 1:t0

K∑
k=1

∫
xt0:T∈Xk(x1:t0−1)

Lk
θ(x1:t0−1, xt0:T ) dp(xt0:T | x1:t0−1)dp(x1:t0−1) , (13)

due to Chasles relation because the Voronoi tesselation forms a partition of the output space. Under the expressiveness
Assumption A.2, (13) comes down to optimizing

Fx1:t0−1(z
1, . . . , zK) ≜

K∑
k=1

∫
Xk(x1:t0−1)

Lk
z(x1:t0−1, xt0:T )dp(xt0:T | x1:t0−1) , (14)

2See also Assumption 1 in Perera et al. (2024) and Section 3 of Loubes & Pelletier (2017).
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for each fixed context x1:t0−1, where each zk ∈ X t0:T and

Lk
z(x1:t0−1, xt0:T ) ≜

T∑
t=t0

ℓ(zkt , xt) .

To prove that each model F k
θ (x1:t0−1) converges to the conditional mean of the future trajectories that fall into its

corresponding Voronoi cell, we follow the decoupling strategy of Rupprecht et al. (2017) and Letzelter et al. (2024). Define
two sets of variables:

• Generators {gk(x1:t0−1)}Kk=1, which induce a partition of the output space xt0:T via the Voronoi diagram:

Xk(g) ≜
{
xt0:T ∈ X t0:T | ∥xt0:T − gk(x1:t0−1)∥2 < ∥xt0:T − gr(x1:t0−1)∥2, ∀r ̸= k

}
.

• Centroids {zk(x1:t0−1)}Kk=1, which are the points used to compute the intra-cell L2 loss.

Decoupling generators vs. centroids through alternating optimization. In TimeMCL the update is done in a two-step
fashion: first, the winners are computed for each point in the batch, and then the latter are updated. This two-step optimization
allows us to bypass the non-differentiability of the min operator in (4).

Let us decouple the two variables and define the following functional to optimize:

F
(
g, z;x1:t0−1

)
≜

K∑
k=1

∫
Xk(g)

∥xt0:T − zk(x1:t0−1)∥2 p(xt0:T | x1:t0−1) dxt0:T .

We now consider minimizing F(g, z;x1:t0−1) with respect to g and z in an alternating manner:

• (a) Fixing the partition (g) and optimizing the centroids (z). In this case, the gradient update of zk has direction:

∂F
∂ zk(x1:t0−1)

(g, z, x1:t0−1) = 2

(
zk(x1:t0−1)Vol(Xk(g))−

∫
Xk(g)

xt0:T p(xt0:T | x1:t0−1)dxt0:T

)
,

where Vol(Xk(g)) ≜
∫
Xk(g)

p(xt0:T | x1:t0−1)dxt0:T . Thus each zk(x1:t0−1) is updated in the direction of the cell
conditional mean, similarly to the Lloyd algorithm (Lloyd, 1982).

• (b) Fixing the centroids (z) and optimizing the partition (g). Conversely, if z is fixed, one can reduce F(g, z;x1:t0−1)
by ensuring that Xk(g) is indeed the Voronoi cell generated by zk(x1:t0−1). Indeed, for any deviation from a strict
Voronoi partition, there would exist subsets of xt0:T incorrectly assigned to some cell, and reassigning them to the
nearest zk(x1:t0−1) would lower the overall loss (See also Rupprecht et al. (2017), Theorem 1).

By alternating between these two steps, any stationary point of F(g, z;x1:t0−1) must satisfy

zk(x1:t0−1) = gk(x1:t0−1) .

Such a configuration is a centroidal Voronoi tessellation (see, e.g., Du et al., 1999).

Reverting to the original notation of the WTA network, we identify gk(x1:t0−1) = zk(x1:t0−1) = F k
θ (x1:t0−1) at optimality,

thus each prediction head coincides with the mean of the distribution restricted to its Voronoi cell:

F k
θ (x1:t0−1) = E

[
xt0:T | xt0:T ∈ Xk(x1:t0−1)

]
.

Consequently, at the global minimum of the WTA objective, we obtain the desired conditional centroidal Voronoi tessellation.
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A.2. Proof of Proposition 5.2 (Scoring Heads as Unbiased Estimators)

Once trained, predictions from score heads are performed through the unrolled version of the score heads Γk
θ , which can be

viewed as a function Γk
θ : X 1:t0−1 → [0, 1] when averaging the predicted scores over the sequence. In the following, we

assume that the Γk
θ is directly optimized during training, similarly to the approach used for the prediction heads in Section A.

We prove that when the training of TimeMCL with β > 0 has converged globally, the (unrolled) scoring heads Γk
θ(x1:t0−1)

match the conditional probability mass of their respective Voronoi region Xk(x1:t0−1). This statement generalizes the
arguments from Letzelter et al. (2024) to our time-series setup.
Assumption A.5 (Global optimality for both centroids and scores). In addition to having converged to a global minimum of
the centroid objective (13), the TimeMCL model also reaches a global minimum for its scoring objective

Ls(θ) =

∫
X 1:t0−1

K∑
k=1

∫
Xk(x1:t0−1)

BCE
(
1[xt0:T ∈ Xk(x1:t0−1)], Γ

k
θ(x1:t0−1)

)
p(x1:t0−1, xt0:T ) dxt0:T dx1:t0−1 ,

where BCE(·, ·) denotes the binary cross-entropy, and x1:t0−1 7→ (Xk(x1:t0−1))
K
k=1 is the optimal Voronoi tessellation

corresponding to the converged heads {F k
θ }.

Proposition A.6 (Unbiased Estimator of Voronoi Cell Mass). We assume, as in Assumption A.1, that the batch size is big
enough so that the difference between the Ls and its empirical version can be neglected. Under Assumption A.5, and
assuming perfect expressiveness of the score heads as in Assumption A.2, for any context x1:t0−1 and index k ∈ {1, . . . ,K},
the optimal scoring head satisfies

Γk
θ(x1:t0−1) = P (xt0:T ∈ Xk (x1:t0−1) | x1:t0−1) .

Proof. We adapt the derivation of the unbiased property to our time-series setup. Recall that the optimal scoring objective
(see Assumption A.5) may be written as

min
θ

∫
X 1:t0−1

K∑
k=1

∫
Xk(x1:t0−1)

BCE
(
1[xt0:T ∈ Xk(x1:t0−1)], Γ

k
θ(x1:t0−1)

)
p(xt0:T | x1:t0−1) p(x1:t0−1) dxt0:T dx1:t0−1.

(15)
Under the true risk minimization and expressiveness assumptions, and since the input-dependent risk decomposes over each
k ∈ {1, . . . ,K}, we can focus on a fixed x1:t0−1 and a single index k in the sum. For that fixed x1:t0−1 and k, the part of
(15) to optimize is: ∫

X t0:T

BCE
(
1[xt0:T ∈ Xk(x1:t0−1)], Γ

k
θ(x1:t0−1)

)
p(xt0:T | x1:t0−1) dxt0:T .

Writing out the binary cross-entropy explicitly, we get:

−
∫
Xk(x1:t0−1)

log
(
Γk
θ(x1:t0−1)

)
p(xt0:T | x1:t0−1) dxt0:T −

∫
X t0:T \Xk(x1:t0−1)

log
(
1−Γk

θ(x1:t0−1)
)
p(xt0:T | x1:t0−1) dxt0:T .

Let us denote mk(x1:t0−1) = P
(
xt0:T ∈ Xk(x1:t0−1) | x1:t0−1

)
. Then the above expression becomes

−mk(x1:t0−1) log
(
Γk
θ(x1:t0−1)

)
− (1−mk(x1:t0−1)) log

(
1− Γk

θ(x1:t0−1)
)
.

We recognize this as the binary cross-entropy between the probabilities Γk
θ(x1:t0−1) and mk(x1:t0−1). The unique global

minimum of that scalar binary cross-entropy is attained at

Γk
θ(x1:t0−1) = mk(x1:t0−1) = P

(
xt0:T ∈ Xk (x1:t0−1) | x1:t0−1) .

This equality must hold for each context x1:t0−1 and each index k, completing the proof.

B. Experimental details on the synthetic datasets
All toy examples were conducted using a neural network with a three-layer fully connected backbone (200 hidden units,
ReLU activation) and K prediction heads, each generating a trajectory of a given length. Training uses a Winner-Takes-All
loss combined with squared error minimization, optimized with Adam using a learning rate of 10−3, a batch size of 4096,
and 500 iterations. For each of the setups, we used the Relaxed version of TimeMCL with ε = 0.05.
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Brownian Motion. In order to conduct interpretable experiments and generate synthetic data, we employed Brownian
motion. A Brownian motion {Wt}t≥0 is a Gaussian process characterized by a mean E[Wt] = 0 and a covariance function
Cov(Wt,Ws) = min(t, s) for t, s ≥ 0. This process possesses several properties of interest (Karatzas et al., 1998). In
particular, the Markov property, which ensures that the process {Ws+t −Ws}t≥0 is itself a Brownian motion starting at 0,
independent of the process {Wt : 0 ≤ t ≤ s}. This implies that to condition a Brownian motion on its trajectory up to time t,
it suffices to condition on its value Wt. The process beyond time t behaves as if it were a new Brownian motion originating
at Wt. In conditional quantization, we aim to quantize Brownian motion at a given prediction horizon, conditioned on its
value at time t. To compute the target quantization, we followed the methodology detailed in (Pages & Printems, 2009),
leveraging the Karhunen-Loève decomposition (Arcozzi et al., 2015) of the Brownian motion on t ∈ [0, 1]:

Wt =

∞∑
n=1

√
λW
n ξne

W
n (t) , (16)

where ξn ∼ N (0, 1) are independent standard Gaussian random variables. Here, λW
n ≜ 1

π2(n− 1
2 )

2 are the eigenvalues

of the covariance operator of Brownian motion, and eWn (t) ≜
√
2 sin(π(n − 1

2 )t) are the corresponding eigenfunctions
(Corlay, 2010). To quantize Brownian motion, we first truncate its Karhunen-Loève decomposition (16) to m terms. Then,
the coefficients ξn are quantized into Kn optimal levels {α(Kn)

1 , . . . , α
(Kn)
Kn

}, using the quantile function of the normal
distribution. All possible combinations of quantized coefficients are generated via the Cartesian product. In this case, for
each multi-index i = (i1, . . . , im) ∈

∏m
n=1[[1,Kn]], it is possible to define a quantizer

x
(K1,...,Km)
i (t) ≜

m∑
n=1

√
λW
n α

(Kn)
in

eWn (t) ,

which takes
∏m

n=1 Kn possible values. Following Pages & Printems (2009), product quantization with exactly K codevectors
requires optimizing two parameters: the truncation parameter m and the quantization level allocation {Kn}mn=1, with∏m

n=1 Kn = K. Pages & Printems (2009) provides a list of optimal tuples for these parameters. In our numerical example,
we select m = 2 and (K1,K2) = (5, 2) resulting in a quantizer with 5× 2 = 10 codevectors.

TimeMCL was trained on 250-step sequences randomly drawn from a Brownian motion on [0, 1], discretized with 500 steps.
At each iteration, a new sample was generated, with the model conditioned on the last observed value and tasked with
predicting the next 249 steps. The generated trajectories are smooth and closely match the theoretical optimal ones. The
model demonstrates consistent long-term predictions and effectively learns conditional quantization.

Brownian Bridge. Brownian motion is unrepresentative of most natural processes, as its future evolution is independent of
the conditioning time. In contrast, many real-world processes depend on when they are observed. A Brownian bridge, viewed
as a Brownian motion conditioned to reach a fixed value at T = 1, better captures such dependencies. A continuous process
{Bt}t∈[0,T ] is a Brownian bridge on the interval [0, T ] if and only if it has the same distribution as {Wt − t

T WT }t∈[0,T ],
where {Wt}t∈[0,T ] is a standard Brownian motion. In our case, T = 1, and the process B is referred to as a standard
Brownian bridge. As we need to conditionally quantize the Brownian bridge, we note that if we pick a random time t ∈ [0, 1],
the Brownian bridge conditioned on its value at this point remains a Brownian bridge. To obtain the optimal quantization,
the same process as for Brownian motion is used, with adapted eigenvalues and eigenvectors in the Karhunen-Loève
decomposition (See Corlay (2010), page 3),

eBn (t) ≜

√
2

T
sin

(
πn

t

T

)
, λB

n ≜
T 2

π2n2
, n ≥ 1 .

In our numerical example, we select the same values for m and (K1,K2) as those chosen for the Brownian motion.
TimeMCL, like for Brownian motion, is trained on random samples from a Brownian bridge starting at B0 = 1 and ending
at B1 = 1. With 500 discretization points, it predicts 250 steps, conditioned on the prediction start time and value.

Autoregressive model AR(p). The two first experiments involved Brownian motion, where only the last value matters
for prediction, and the Brownian bridge, which depends on the last observed time and value. While these processes assess
TimeMCL’s quantization ability, they lack strong context dependence. Real-world applications require modeling context to
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predict and quantize future trajectories effectively. Consider an autoregressive process

Xt =

p∑
i=1

ϕiXt−i + ϵt , (17)

where (ϵt)t is a white noise with variance σ2. We generate an autoregressive sequence where the first five values follow a
normal distribution with scale σ. The process runs for an initial warm-up period of 100 steps. After this, we predict and
quantize the next 250 steps using the last 100 observations, i.e., {Xt0−99, . . . , Xt0}. The five values preceding t0 form a
crucial context—without it, correctly quantizing the future distribution is impossible. TimeMCL is expected to exploit this
information for optimal quantization. To the best of our knowledge, no simple analytical solution exists for quantizing an
autoregressive process. To approximate an optimal quantization, the process is simulated multiple times from t0, conditioned
on its context, to construct a conditional distribution. The Lloyd algorithm, run with a very large number of simulations (105

sampled trajectories), produces a set of quantized trajectories that serve as references for TimeMCL.

TimeMCL is trained on 250-step sequences randomly sampled from 500-step trajectories of the AR(5) process, with a
new batch generated at each iteration. To ensure consistency with Brownian bridge and motion experiments, time is
normalized by dividing all steps by the total number of steps. We took ϕ1 = 0.4, ϕ2 = ϕ3 = 0.2, ϕ4 = ϕ5 = 0.1,
and σ = 0.06. The trajectories predicted by TimeMCL closely align with the optimal ones found by Lloyd’s algorithm,
exhibiting smooth behavior. Various values and orders of the autoregressive process, both stationary and non-stationary,
were tested, consistently yielding results aligned with Lloyd’s algorithm.

C. Experiments with real data
C.1. Datasets

We evaluate our approach on six well-established benchmark datasets taken from Gluonts (Alexandrov et al., 2020), each
containing strictly positive and bounded real-valued series. See Lai et al. (2018) for an extensive description.

• The SOLAR dataset (Lai et al., 2018) consists of hourly aggregated solar power outputs from 137 photovoltaic sites,
spanning 7009 time steps. Strong daily seasonality is typically observed due to the day–night cycle.

• The ELECTRICITY dataset (Asuncion et al., 2007) contains hourly power consumption data from 370 clients across
5833 time steps. Demand patterns often exhibit both daily and weekly periodicities, driven by regular human activity
and business operations.

• The EXCHANGE dataset (Lai et al., 2018) features daily exchange rates for eight different currencies, with 6071
observations per series. Unlike energy or traffic data, exchange rates often lack clear seasonal patterns and are
influenced by broader macroeconomic factors.

• The TRAFFIC dataset (Asuncion et al., 2007) comprises occupancy rates (ranging from 0 to 1) measured hourly by
963 road sensors over 4001 time steps. These series generally display recurrent rush-hour peaks as well as differences
between weekdays and weekends.

• The TAXI dataset consists of traffic time-series data of New York City taxi rides, recorded at 1214 locations every 30
minutes in January 2015 (training set) and January 2016 (test set). We used the preprocessed version from (Salinas
et al., 2019).

• The WIKIPEDIA dataset (Gasthaus et al., 2019) contains daily views of 2000 Wikipedia pages.

Table 5 provides an overview of the main characteristics of these six datasets. Note for each dataset, we used the official
train/test split. We dedicate 10 times the number of prediction steps for validation, at the end of the training data.

C.2. Metrics

In all the following, each model produces K hypotheses {x̂k
t0:T

}k. Additionally Time-MCL predicts K scores (one per
trajectory), that we denote as γ̂1, . . . , γ̂K ∈ [0, 1], with

∑K
k=1 γ̂k = 1, omitting the input x1:t0−1 for conciseness. The

observed trajectory is denoted as xt0:T ∈ RD×(T−t0+1). We used the Gluonts integrated Evaluator to compute the
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Table 5. Datasets characteristics.
DATASET DIMENSION D DOMAIN X FREQ. TIME STEPS PRED STEPS T − t0 + 1
SOLAR 137 R+ HOUR 7,009 24
ELECTRICITY 370 R+ HOUR 5,833 24
EXCHANGE 8 R+ DAY 6,071 30
TRAFFIC 963 (0, 1) HOUR 4,001 24
TAXI 1,214 N 30-MIN 1,488 24
WIKI. 2,000 N DAY 792 30

metrics, and we customized it to include the distortion. For evaluation over the whole test set, we have N input-targets pairs
(xi

1:t0−1, x
i
t0:T

), i ∈ {1, . . . , N}. We denote by x̂k,i
t the k-th hypothesis generated for input xi

1:t0−1 at time t.

In the following, we define the summation over dimension operator as A : x ∈ RD 7→
∑D

d=1 x
d ∈ R, where xd denotes the

d-th dimension of the vector x.

C.2.1. RMSE (ROOT MEAN SQUARE ERROR)

Let us denote by x̄ ∈ RD×(T−t0+1) the conditional mean estimator of p(xt0:T | x1:t0−1) given the probabilistic model
we are evaluating. For TimeMCL, we used x̄ =

∑K
k=1 γ̂kx̂

k
t0:T

and for the other methods that do not use score heads,
x̄ = 1

K

∑K
k=1 x̂

k
t0:T

. RMSE is defined as:

RMSE ≜

√√√√ 1

N

N∑
i=1

1

T − t0 + 1

T∑
t=t0

(
A(xi

t)−A(x̄i
t)
)2

. (18)

In Gluonts, we can access this metric under the name m sum rmse. The prefix m sum indicates in (18) that the RMSE
is computed after aggregating the target and the prediction dimension by dimension.

C.2.2. CRPS (CONTINUOUS RANKED PROBABILITY SCORE)

In the following, we denote by QX(q) the quantile of order q a real random variable X , with q ∈ [0, 1] (when it exists).

Let us define the random variable Xi
t which takes the value A(x̂k,i

t ) with probability γ̂k, or uniformly with probability 1
K

when using no score heads, respectively. Let us introduce:

Lq

(
xi
t0:T , x̂

i
t0:T

)
≜ 2

T∑
t=t0

∣∣∣A(xi
t)−QXi

t
(q)
∣∣∣(1(A(xi

t) ≤ QXi
t
(q))− q

)
, T (xt0:T ) ≜

1

N

N∑
i=1

T∑
t=t0

∣∣A(xi
t)
∣∣ ,

where Lq and T are referred as the quantileLoss and abs target sum in Gluonts.

CRPS (Matheson & Winkler, 1976) is computed as

CRPS ≜
1

|Q|
∑
q∈Q

∑N
i=1 Lq

(
xi
t0:T

, x̂i
t0:T

)
T (xt0:T )

, (19)

where we used Q = {0.05, 0.1, . . . 0.95}. Equation (19) is referred to as m sum mean wQuantileLoss in the python
library, or CRPS-Sum (Salinas et al., 2019; Ashok et al., 2024) in the related literature.

C.2.3. DISTORSION

Distortion, also referred to as the Oracle or Quantization error in the literature (Pages & Printems, 2009; Lee et al., 2016;
Perera et al., 2024) was defined as

D2 ≜
1

N

N∑
i=1

min
k∈{1,...,K}

√√√√ D∑
d=1

1

T − t0 + 1

T∑
t=t0

(xi,d
t − x̂i,k,d

t )2 .

This metric was integrated into the Evaluator class from Gluonts.
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Table 6. Distortion comparison with 8 Hypotheses. Results are averaged over four training seeds. ETS, Trf.TempFlow and
Tactis2, columns are in gray because they don’t share the same backbone as the other baselines. Best scores are in bold, and
second-best are underlined.

ETS Trf.TempFlow Tactis2 TimeGrad DeepAR TempFlow TimeMCL (R.) TimeMCL (A.)

ELEC. 15132 ± 1662 14049 ± 3492 9922 ± 938 10165 ± 750 143638 ± 5048 15298 ± 760 12156 ± 415 11371 ± 951
EXCH. 0.057 ± 0.002 0.066 ± 0.012 0.032 ± 0.002 0.038 ± 0.006 0.062 ± 0.001 0.052 ± 0.008 0.042 ± 0.007 0.042 ± 0.006
SOLAR 654.48 ± 3.45 385.09 ± 16.33 370.1 ± 37.09 371.17 ± 37.34 768.19 ± 22.89 379.16 ± 24.42 311.72 ± 22.4 334.02 ± 26.74
TRAFFIC 2.65 ± 0.0 1.29 ± 0.03 0.86 ± 0.03 0.77 ± 0.01 2.18 ± 0.06 1.22 ± 0.03 0.69 ± 0.02 0.71 ± 0.02
TAXI 589.15 ± 0.75 283.73 ± 14.62 247.4 ± 11.41 209.94 ± 2.85 425.09 ± 16.74 273.27 ± 11.43 188.78 ± 5.53 254.46 ± 22.83
WIKI. 722166 ± 5248 529398 ± 14698 254772 ± 4581 261326 ± 1023 368717 ± 6238 382839 ± 3959 264596 ± 16414 257624 ± 2931

C.2.4. FLOPS (FLOATING POINT OPERATIONS)

FLOPs serve as an approximate measure of the model’s computational load. For each baseline, we only considered FLOPs
evaluation at inference, with a single batch of size 1 on the EXCHANGE dataset. We used the FlopCountAnalysis
function from the fvcore library to measure it.

C.2.5. INFERENCE RUN-TIME

Inference time was computed on a single NVIDIA GeForce RTX 2080 Ti, while making sure it is the only process that runs
on the node. It was measured over the whole test set of EXCHANGE (make evaluation predictions function in
Gluonts), using a batch size of 64. For fair and accurate time comparison with respect to the number of hypotheses, we
disable parallel sampling for each baseline (by setting num parallel samples to 1).

C.2.6. TOTAL VARIATION

We quantify the average smoothness of the sampled trajectories using the Total Variation (TV). Given K sampled trajectories,
we defined it as

TV ≜
1

N

N∑
i=1

(
1

K

K∑
k=1

T∑
t=t0

∥∥∥x̂k,i
t+1 − x̂k,i

t

∥∥∥
2

)
. (20)

For TimeMCL, we sampled the hypotheses in proportion to their scores for Total Variation computation instead of uniformly
as in (20) for the other baselines. The smoother the predictions of a probabilistic estimator, the smaller its total variation.

C.3. Experimental details

C.3.1. ARCHITECTURES, TRAINING, AND INFERENCE

Recurrent Neural Network Backbone. Time-MCL, TempFlow, TimeGrad, and DeepAR share the same RNN
backbone, which takes as input a concatenation of feature types. Let B be the batch size, T the time series length, and
Dtarget the target dimension. The input includes (i) lagged target values, normalized and shaped as B× T × (nlags ×Dtarget),
and (ii) Fourier features of shape B × T × (2 × Nf ). The combined input to the RNN thus has shape B × T ×
((nlags ×Dtarget) + (2×Nf )). Our RNN implementation follows Rasul et al. (2021a) and consists of L = 2 layers of Long
Short-Term Memory (LSTM) cells, each containing C = 40 hidden units. The term Nf , which is associated with Fourier
transforms, will be further detailed in the following sections.

Sampling and dataloader The time series is first segmented into past and future windows based on predefined
lengths and lead time—sampling slicing points randomly during training and using the last timestamp during predic-
tion (InstanceSlicer). After transformation, the dataloader assembles inputs used across all models. It separates past
and future targets and adds several structured features: (i) a Target Dimension Indicator (B ×Dtarget) uniquely labels each
target dimension; (ii) an Observed Values Indicator replaces missing target entries with dummies and flags them as observed
(1) or missing (0); (iii) a Padding Mask marks synthetic padding to ensure uniform sequence lengths, preventing them from
influencing training. Additionally, temporal features of shape B × Tpred × 2Nf encode periodic patterns using sine and
cosine projections, where Nf denotes the number of unique values for a given frequency (e.g., Nf = 12 for months).

Transformer Backbone. For the transformer-based version of TempFlow (Trf.TempFlow) and for Tactis2, we
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Table 7. RMSE (↓) comparison for K = 16 hypotheses.

ETS Trf.TempFlow Tactis2 TimeGrad DeepAR TempFlow TimeMCL (R.) TimeMCL (A.)

ELEC. 25771 ± 1117 20551 ± 11019 15897 ± 2848 12060 ± 905 147404 ± 1653 23590 ± 2787 17963 ± 2619 18208 ± 3070
EXCH. 0.089 ± 0.01 0.147 ± 0.043 0.071 ± 0.009 0.078 ± 0.026 0.085 ± 0.004 0.093 ± 0.018 0.089 ± 0.012 0.086 ± 0.014
SOLAR 3661.86 ± 28.87 4112.38 ± 239.2 3317.51 ± 671.32 3193.21 ± 324.15 7181.85 ± 127.04 3793.0 ± 62.22 3100.51 ± 321.95 3622.0 ± 573.02
TRAFFIC 15.24 ± 0.09 27.63 ± 0.27 12.17 ± 0.71 3.92 ± 0.47 39.73 ± 1.3 26.65 ± 1.19 5.46 ± 0.65 5.72 ± 0.69
TAXI 9779.81 ± 13.42 4223.77 ± 565.52 2826.4 ± 184.3 2321.4 ± 113.16 7395.54 ± 273.7 4428.98 ± 595.0 6789.85 ± 3423.68 8903.44 ± 2367.2
WIKI. 765663 ± 39186 1152828 ± 171868 584384 ± 113710 501638 ± 59512 3562564 ± 1802493 963681 ± 142202 835145 ± 138204 3623632 ± 2956320

Table 8. CRPS-Sum (↓) comparison for K = 16 hypotheses. Results averaged over four training seeds.

ETS Trf.TempFlow Tactis2 TimeGrad DeepAR TempFlow TimeMCL (R.) TimeMCL (A.)

ELEC. 0.0601 ± 0.0045 0.0433 ± 0.0214 0.0341 ± 0.0056 0.0241 ± 0.001 0.424 ± 0.0099 0.0503 ± 0.0043 0.0473 ± 0.0066 0.047 ± 0.0091
EXCH. 0.0079 ± 0.001 0.0138 ± 0.0039 0.0077 ± 0.0013 0.0075 ± 0.0028 0.008 ± 0.0003 0.0088 ± 0.0017 0.009 ± 0.0015 0.0104 ± 0.0017
SOLAR 0.509 ± 0.0041 0.4524 ± 0.0256 0.3785 ± 0.0648 0.3682 ± 0.0442 1.0235 ± 0.0286 0.4352 ± 0.0139 0.3518 ± 0.0371 0.3615 ± 0.0365
TRAFFIC 0.2007 ± 0.0014 0.3963 ± 0.0065 0.143 ± 0.0126 0.0488 ± 0.005 0.5295 ± 0.0216 0.3812 ± 0.0255 0.0664 ± 0.0089 0.0657 ± 0.0091
TAXI 0.8948 ± 0.0017 0.2872 ± 0.0467 0.1975 ± 0.0165 0.1417 ± 0.0061 0.5262 ± 0.0245 0.3113 ± 0.0533 0.4429 ± 0.1916 0.5965 ± 0.2101
WIKI. 0.0789 ± 0.0041 0.1309 ± 0.0316 0.0682 ± 0.0167 0.0562 ± 0.0084 0.5193 ± 0.2987 0.0964 ± 0.0079 0.0896 ± 0.0233 0.1325 ± 0.026

employed the same architectures as in their respective original implementations (Rasul et al., 2021b; Ashok et al., 2024).

Optimization Training is conducted using the Adam optimizer with a learning rate of 10−3, and following an ‘LR on
plateau’ scheduler (See Pytorch documentation), a weight decay of 10−8 and 200 training epochs. Additionally, a separate
validation split is used with a temporal size equal to 10 times the prediction length. When training TimeMCL, the WTA
loss (and its variants) was divided by the prediction length T − t0 + 1. All models are trained and evaluated using Pytorch
float32 precision.

Inference. We used the official experimental protocol for evaluation in this benchmark (e.g., (Rasul et al., 2021a)). The
official test dataset is divided into multiple non-overlapping subsets, each containing sufficient points for both context and
prediction lengths, allowing comprehensive assessment across different temporal segments. To compute the TimeMCL
metrics while respecting the probabilities given by the scores, we applied a simple trick: after a single forward pass, we
obtain K hypotheses along with their associated probabilities (derived from the scores). To ensure that the hypotheses
contribute to the metrics in proportion to their assigned probabilities, we performed resampling with replacement from these
K hypotheses based on their respective probabilities before computing metrics.

C.3.2. BASELINES

DeepAR. (Salinas et al., 2020). The output distribution as a multivariate normal distribution with mean vector µ ∈ RD, a
low-rank covariance factor L ∈ RD×r, and a diagonal covariance vector σ ∈ RD, where the covariance matrix Σ is defined
as Σ = LL⊤ + diag(σ), thereby ensuring efficient parameterization and capturing primary dependencies among the target
dimensions. In all the experiments, we set the rank r to 1.

TimeGrad. (Rasul et al., 2021a). For the diffusion process, as in Rasul et al. (2021a) we employ 100 diffusion steps
with a linear variance schedule, transitioning from β1 = 1× 10−4 to β100 = 0.1. The loss function utilized is the L2 loss.
The residual architecture is integrated within the diffusion component to facilitate effective training and capture complex
temporal dependencies. This residual network consists of 8 residual layers, each with 8 residual channels. The dilation cycle
length is set to 2, which controls the expansion of the receptive field without increasing the number of parameters.

TempFlow Rasul et al. (2021b). TempFlow applies a conditional normalizing flow (Papamakarios et al., 2021) that is
invertible and has a tractable Jacobian, yielding an exact likelihood. Batch normalization after each coupling layer and
per-series mean scaling further stabilizes optimization. We adopt the original TempFlow configuration from Rasul et al.
(2021b): a two-layer LSTM conditioner with 40 cells and dropout 0.1, fed with a 100-step context, and a Real-valued
Non-Volume Preserving (RealNVP) (Dinh et al., 2017) head composed of 3 coupling blocks whose scale/shift networks
have 2 hidden layers with 100 hidden units. The transformers version of TempFlow Trf.TempFlow uses 8 heads with 3
encoder and 3 decoding layers, with an embedding dimension of 32, and a feedforward dimension of 128 with a dropout
rate of 0.1 and Gelu (Hendrycks & Gimpel, 2016) activation layers.
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Table 9. Distorsion (↓) Comparison for Solar Dataset. Results averaged over four training seeds. In this table, the distortion is computed
with a variable number of hypotheses K for each baseline, as in Table 4 of the main paper.

K ETS Trf.TempFlow Tactis2 TimeGrad DeepAR TempFlow TimeMCL (R.) TimeMCL (A.)

1 685.77 ± 23.08 466.31 ± 28.92 417.25 ± 32.09 397.18 ± 36.13 860.89 ± 34.53 427.49 ± 12.97 429.49 ± 79.65 429.49 ± 79.65
2 678.49 ± 13.29 422.8 ± 14.36 405.44 ± 30.53 390.29 ± 58.09 819.55 ± 14.12 403.29 ± 20.33 363.33 ± 44.07 403.42 ± 103.73
3 678.94 ± 10.6 407.93 ± 19.19 386.06 ± 31.3 386.84 ± 57.97 797.59 ± 20.83 398.01 ± 19.17 368.0 ± 50.32 354.5 ± 24.25
4 671.97 ± 16.52 400.69 ± 18.6 378.31 ± 37.92 382.76 ± 52.45 791.94 ± 18.91 390.31 ± 21.31 326.19 ± 20.82 341.7 ± 5.74
5 666.44 ± 6.8 396.98 ± 14.95 373.86 ± 39.89 381.04 ± 49.75 780.64 ± 15.05 384.66 ± 22.39 375.96 ± 43.55 320.21 ± 22.06
8 654.48 ± 3.45 385.09 ± 16.33 370.1 ± 37.09 371.17 ± 37.34 768.19 ± 22.89 379.16 ± 24.42 311.72 ± 22.4 334.02 ± 26.74
16 641.32 ± 3.57 376.98 ± 21.85 362.21 ± 39.94 360.78 ± 34.57 746.12 ± 24.91 368.93 ± 18.0 280.66 ± 22.23 286.3 ± 21.59

Tactis2 (Ashok et al., 2024). Unlike the RNN-based TimeGrad, TempFlow, and Time-MCL, Tactis2 encodes
each time step as a token that includes the value, a binary missingness flag, static covariates, and a positional code. Two
Transformer encoders process these tokens to produce separate embeddings: one for the marginal distributions and another
for the dependence structure. A hyper-network transforms the marginal embedding into the parameters of a Deep-Sigmoidal
Flow, which maps the observation to its probability integral transform. An attentional copula conditioned on the dependence
embedding captures cross-series interactions. The training follows a two-stage curriculum: first, learning the marginals
associated with each dimension; then freezing them and fitting the copula. We use the default hyperparameters reported by
Ashok et al. (2024) for fred-md (Godahewa et al., 2021), detailed in this notebook from the official code. Our setup uses
5-dimensional time-series embeddings. Both the Marginal CDF Encoder and the Attentional Copulas Encoder have two
layers with one attention head (dimension 16, no dropout). The Transformer Decoder has one attention layer (dimension 8)
with 3 heads, a 2-layer MLP (hidden dimension 48), and 20 histogram bins. The Deep Sigmoidal Flow marginals (Huang
et al., 2018) consist of 2 flow layers of dimension 8 and a 2-layer MLP (hidden dimension 48). The training comprises 20
epochs in phase 1 and 180 epochs in phase 2. Each time series is standardized by subtracting its training-set mean and
dividing by its training-set standard deviation, ensuring zero mean and unit variance before model ingestion. Optimization
parameters are kept the same as in the other baselines.

ETS. Exponential smoothing (Hyndman et al., 2008) is a non-neural model. Holt-Winters Exponential Smoothing was
applied with an additive trend and an additive seasonality, assuming a seasonal period of 24. Model parameters were
estimated through automatic optimization using the statsmodels library.

TimeMCL(Relaxed) The Relaxed-WTA Loss (Rupprecht et al., 2017) was computed for each pair (x1:t0−1, xt0:T ) as

(1− ε) Lk⋆

θ (x1:t0−1, xt0:T ) +
ε

K − 1

K∑
s=1, s ̸=k⋆

Ls
θ(x1:t0−1, xt0:T ) , (21)

with ε = 0.1. We found that this provides a good trade-off for handling under-trained hypotheses without deteriorating the
distortion performance. However, we did not specifically tune this value for each dataset.

TimeMCL(Annealed) The annealed MCL (aMCL) Loss (Perera et al., 2024) was computed with an exponential
temperature scheduler; T (t) = T0ρ

t, where t is the number of the training epoch, T0 is the initial temperature, and ρ is the
decay factor. At each temperature T , the aMCL loss is computed for each pair (x1:t0−1, xt0:T ) as

K∑
k=1

qk(T )Lk
θ(x1:t0−1, xt0:T ) , (22)

where the coefficients

qk(T ) ≜
1

Z(x1:t0−1, xt0:T ;T )
exp

(
−Lk

θ(x1:t0−1, xt0:T )

T

)
, Z(x1:t0−1, xt0:T ;T ) ≜

K∑
s=1

exp

(
−ℓ(Ls

θ(x1:t0−1, xt0:T )

T

)
,

(23)

are detached from the computational graph. In our experiments with aMCL, we set ρ = 0.95 and T0 = 10, and we set as
limit temperature Tlim = 5× 10−4 before switching back to the vanilla WTA mode.
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Table 10. Inference time (in seconds) for EXCHANGE dataset. Results averaged over 15 random seeds. For accurate time comparison
with respect to K, we disable parallel computation of the samples for each baseline. ETS, which doesn’t require neural networks is also
included for completeness (in gray). See Appendix C.2.5 for details.

K ETS Trf.TempFlow Tactis2 TimeGrad DeepAR TempFlow TimeMCL

1 0.06 ± 0.01 0.19 ± 0.02 0.56 ± 0.04 14.92 ± 0.23 0.09 ± 0.01 0.13 ± 0.01 0.08 ± 0.01
2 0.06 ± 0.00 0.34 ± 0.01 1.10 ± 0.05 30.04 ± 0.49 0.13 ± 0.01 0.22 ± 0.01 0.11 ± 0.01
3 0.06 ± 0.00 0.48 ± 0.02 1.63 ± 0.07 45.10 ± 0.50 0.18 ± 0.01 0.30 ± 0.02 0.14 ± 0.01
4 0.06 ± 0.00 0.63 ± 0.02 2.18 ± 0.08 60.07 ± 0.97 0.22 ± 0.01 0.39 ± 0.01 0.18 ± 0.01
5 0.07 ± 0.00 0.79 ± 0.04 2.75 ± 0.20 75.69 ± 0.86 0.26 ± 0.01 0.49 ± 0.05 0.23 ± 0.02
8 0.06 ± 0.00 1.22 ± 0.05 4.32 ± 0.11 119.67 ± 0.97 0.38 ± 0.02 0.73 ± 0.03 0.39 ± 0.01

16 0.06 ± 0.00 2.47 ± 0.23 8.69 ± 0.36 241.57 ± 2.24 0.70 ± 0.04 1.39 ± 0.03 1.12 ± 0.04

Table 11. Total Variation (↓) comparison for K = 16 hypotheses. ETS, Trf.TempFlow and Tactis2 columns are in gray because
they don’t share the same backbone as the other baseline. Best methods are bold, second best are underlined. Results averaged over four
training seeds. Total Variation quantifies the average smoothness of the predicted trajectories (lower is more smooth).

ETS Trf.TempFlow Tactis2 TimeGrad DeepAR TempFlow TimeMCL (R.) TimeMCL (A.)

ELEC. 315611 ± 1609 451750 ± 52854 276601 ± 19341 371934 ± 16589 4584308 ± 84474 433494 ± 23503 220372 ± 29409 245904 ± 26410
EXCH. 0.426 ± 0.0045 0.633 ± 0.0662 0.225 ± 0.0176 0.606 ± 0.016 2.075 ± 0.0376 1.156 ± 0.155 0.031 ± 0.0065 0.042 ± 0.0123
SOLAR 5899 ± 15 3924 ± 330 4249 ± 240 6505 ± 1897 10163 ± 198 3637 ± 354 3391 ± 820 2195 ± 257
TRAFFIC 18.782 ± 0.014 20.755 ± 0.753 10.89 ± 1.079 12.9 ± 1.391 69.662 ± 2.345 17.644 ± 0.234 5.766 ± 0.165 5.715 ± 0.245
TAXI 4385.41 ± 9.92 5330.4 ± 416.49 5262.07 ± 592.83 3728.29 ± 6.39 7713.98 ± 569.13 4104.29 ± 361.39 712.56 ± 291.79 703.29 ± 171.0
WIKI. 19692927 ± 233519 18818790 ± 1248330 2650865 ± 422885 2518198 ± 233471 9925416 ± 276424 12729658 ± 367297 9530 ± 9256 271611 ± 311180

Table 12. Results of neural networks-based methods on the cryptocurrency dataset. Here, K = 4, and the results were averaged over
three random seeds. Here, TimeMCL follows the same experimental setup as in the previous benchmark, except that we used Z-Score
normalization (instead of mean scaling) during training.

Trf.TempFlow Tactis2 TimeGrad DeepAR TempFlow TimeMCL(A.)

Distortion 1334.441 ± 245.746 1898.896 ± 255.785 1834.202 ± 188.147 2437.798 ± 94.987 1870.915 ± 174.434 1400.396 ± 144.5
Total Variation 8895.81 ± 1198.262 4209.638 ± 1047.498 12797.597 ± 3040.59 32352.73 ± 3054.369 9957.855 ± 2982.198 2174.019 ± 769.041
CRPS 0.014 ± 0.001 0.018 ± 0.001 0.018 ± 0.003 0.019 ± 0.001 0.02 ± 0.001 0.016 ± 0.004
RMSE 2275.986 ± 165.877 2515.755 ± 138.424 2642.089 ± 366.955 2743.841 ± 93.297 2756.95 ± 68.081 2528.18 ± 687.728
FLOPs 3.89 ×107 9.81 ×107 9.13 ×108 1.74 ×105 1.94 ×107 9.98 ×105
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C.4. Evaluation on financial data

An application of Time-MCL is in forecasting financial time series, such as asset prices. Rather than working directly
with raw prices, it is common practice to use the log returns (Tsay, 2005), defined as xd

t = logP d
t − logP d

t−1, where P d
t

represents the price of asset d at time t. These log returns are challenging to forecast. Capturing the extreme tails of their
distribution can yield particularly valuable insights for financial applications.

Ticker Min. Max. Points.

ADA 0.24 1.31 14 614
BCH 180.45 711.92 14 614
BTC 25 001.41 108 240.09 14 614
DOGE 0.06 0.48 14 607
EOS 0.40 1.50 14 614
ETC 14.52 39.67 14 614
ETH 1 528.68 4 076.34 14 613
LINK 5.77 30.44 14 614
LTC 51.16 144.77 14 607
MATIC 0.26 1.28 14 607
SOL 17.49 287.81 14 613
VET 0.01 0.08 14 614
XLM 0.08 0.60 14 614
XMR 101.70 241.71 14 614
XRP 0.40 3.39 14 614

Figure 5. Cryptocurrency dataset description. (Left) Pair-wise matrix correlations of log returns between the time series. (Right) Yahoo
Finance ticker symbols, number of hourly observations per asset (Points), and the corresponding price scales (Min, Max), thereby
summarizing both data volume and cross-asset dependence.

We obtained cryptocurrency data from YahooFinance and was divided into three splits: training (2023-07-01 to 2024-
09-01), validation (2024-09-02 to 2024-12-05), and test (2024-12-06 to 2025-03-01), with an hourly resolution. Figure 5
provides an overview of the assets collected for training, including return correlations among these assets, their price ranges,
and the number of data points available. Missing data points were handled using forward filling.

Setup. We trained and evaluated the previously introduced neural-based baselines on this dataset, using K = 4 hypotheses.
Each model was trained for 100 epochs, with 100 iterations per epoch and a batch size of 64. The prediction length
and context length were both set to 24. The experimental setup was the same as in the previous benchmark, except that
we applied Z-score normalization instead of mean scaling during training, which better handles the wide range of asset
price scales. With the exception of Tactis2, which already uses Z-score normalization, we observed that this change
significantly improved the performance of all baselines, except for DeepAR where we retained mean scaling.

Results. Quantitative results on quality (Distortion, CRPS, RMSE), smoothness (Total Variation), and computational cost
(FLOPs) are presented in Table 12. TimeMCL produces the smoothest predictions overall. Among non-transformer-based
baselines (TimeGrad, DeepAR, and TempFlow), TimeMCL consistently outperforms the others in terms of quality. In
this setup, it also performs competitively with Tactis2, which was the strongest competitor in the previous benchmark.
Unlike in the previous benchmark, we found that the Transformer-based variant of TempFlow (Trf.TempFlow) now
outperforms the original TempFlow and slightly surpasses TimeMCL in quality metrics, though it requires nearly 40 times
more FLOPs. In the future, we plan to refine this comparison by implementing a Transformer-based version of TimeMCL.

Cryptocurrency price predictions for 04/01/2025 are visualized in Figure 6. Each row represents a target dimension, and
each column corresponds to a method listed in Table 12. Following the notation introduced in Figure, TimeMCL predictions
are shown in shades of blue, with color intensity reflecting the associated score. We observe that TimeMCL produces
smoother predictions compared to other methods and effectively captures rare modes in the conditional distribution, as
illustrated in the last row. For clarity, only a subset of the cryptocurrencies is shown in the figure; however, all models were
trained to jointly predict all cryptocurrencies.
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Figure 6. Cryptocurrency Price Prediction on 04/01/2025 with K = 4 Hypotheses.
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Figure 7. Qualitative results on the TRAFFIC dataset, with same experimental setup as in Figure 3 with 8 hypotheses.

Figure 8. Qualitative results on the ELECTRICITY dataset, with same experimental setup as in Figure 3 with 8 hypotheses.
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