
Cost-Aware Contrastive Routing for LLMs

Reza Shirkavand
Department of Computer Science

University of Maryland - College Park
rezashkv@cs.umd.edu

Shangqian Gao
Department of Computer Science

Florida State University
sgao@cs.fsu.edu

Peiran Yu
Department of Computer Science and Engineering

University of Texas at Arlington
peiran.yu@uta.edu

Heng Huang∗
Department of Computer Science

University of Maryland - College Park
heng@cs.umd.edu

Abstract

We study cost-aware routing for large language models across diverse and dynamic
pools of models. Existing approaches often overlook prompt-specific context, rely
on expensive model profiling, assume a fixed set of experts, or use inefficient trial-
and-error strategies. We introduce Cost-Spectrum Contrastive Routing (CSCR), a
lightweight framework that maps both prompts and models into a shared embedding
space to enable fast, cost-sensitive selection. CSCR uses compact, fast-to-compute
logit footprints for open-source models and perplexity fingerprints for black-box
APIs. A contrastive encoder is trained to favor the cheapest accurate expert within
adaptive cost bands. At inference time, routing reduces to a single k-NN lookup via
a FAISS index, requiring no retraining when the expert pool changes and enabling
microsecond latency. Across multiple benchmarks, CSCR consistently outperforms
baselines, improving the accuracy–cost tradeoff by up to 25%, while generalizing
robustly to unseen LLMs and out-of-distribution prompts.

1 Introduction

After a burst of reinforcement-learning and specialized finetuning, the Large Language Model (LLM)
[65, 66, 6, 86, 17] ecosystem has fractured: code models excel at generating code but hallucinate
outside programming contexts, math-tuned variants solve AIME [46] yet mishandle open-ended
dialogue, and instruction chatbots trade being precise for fluency. Production systems therefore host
a pool of models with different sizes, licenses, and domain strengths, and decide at run time which
one to call for every user prompt, or worse: burden the users with picking the model they need.

A router (a.k.a. model selector, mixture-gate) adjudicates that choice online. It dynamically selects
the most appropriate LLM from a pool for each input. Without it, operators either over-pay by
defaulting to the largest model or risk quality regressions by pinning to cheaper ones. Current
routers [33, 32, 51, 76] for a pool of LLMs fall into two broad camps.

Parametric routing methods, such as softmax-based “one-head-per-model” classifiers [24], optimize
exclusively for top-1 accuracy without explicit consideration of inference costs. Consequently, they
tend to default to selecting expensive models and require full retraining whenever new models are
introduced.

∗This work was partially supported by NSF IIS 2347592, 2348169, DBI 2405416, CCF 2348306, CNS
2347617, RISE 2536663.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

(a) EmbedLLM (b) MixInstruct (c) RouterBench

Figure 1: Accuracy–cost/size deferral curves on three expert pools. Across all benchmarks,
our Cost-Spectrum Contrastive Router (blue) consistently dominates the Pareto frontier—achieving
higher accuracy at lower model size and latency (left, middle) and reduced cost (right).

Recent approaches, such as UMR [40], enhance generalization by routing across a joint space of
prompt clusters and model footprints. On the other hand, bandit-based methods [61, 34, 48], including
Thompson sampling [85, 2] and UCB [3], track simplified quality–cost metrics that disregard detailed
prompt characteristics, resulting in slower convergence and reduced effectiveness, especially with
heterogeneous workloads. All these methods remain cost-agnostic during training, solely relying on
post-hoc hyperparameter tuning to achieve an effective balance between cost and accuracy.

In our view, routing boils down to similarity search. If we can embed both prompts and experts in
one metric space where cosine distance trades off {quality, cost}, the job reduces to a microsecond
Nearest Neighbor query - no brittle softmax gate, no retraining when the pool changes.

In this paper we introduce:

• Universal ultra-compact descriptors: Two lightweight and fast to compute fingerprints
that work across the full spectrum of LLMs. (1) Logit footprints that require only <10
forward passes through an open-weights model. (2) Perplexity fingerprints that score any
black-box API with a small public LM, enabling vendor-agnostic routing.

• Cost-Spectrum InfoNCE: A novel contrastive objective that (1) selects correct posi-
tives within adaptive cost bands, (2) temperature-scales each band separately, and (3)
down-weights negatives in proportion to their price. This aligns the learned metric with the
accuracy-cost Pareto frontier.

• Routing Efficiency: A shared space turns routing into a single k-NN lookup, eliminating
brittle softmax gates and retraining whenever the pool changes. Then a lightweight FAISS
index makes routing to a microsecond lookup.

• Comprehensive Evaluation: We evaluate our method on three routing benchmarks span-
ning both open-source checkpoints and proprietary APIs. It achieves up to 25% higher
accuracy–cost efficiency on a fixed pool of LLMs and demonstrates strong robustness to
unseen models and out-of-distribution prompts at inference time.

2 Related Work
2.1 LLM Routing

Non-Predictive Routing. Non-predictive methods generate outputs from one or more models
before making a selection. FrugalGPT [10] uses a sequential strategy and a response quality threshold
to minimize cost. Other works adopt layered inference architectures to escalate hard queries to more
powerful models [91], or leverage cascades with self-verification [54, 98, 43, 51].

Predictive Routing. In contrast, predictive routing aims to select the best model before any
inference is performed. Strategies include supervised learning [76], reward-model-based routing [32],
and meta-models trained to predict LLM performance given an input [71]. Router models vary widely
in implementation, including neural networks [19, 88, 11, 1], k-nearest neighbors [34, 76, 80, 43],
matrix factorization [62, 105, 48], and graph neural networks [25]. Others incorporate model-specific
tokens or train across multiple domains [18, 7].

2

Academic routers usually assumed the expert set is static. Recently routing with a dynamic pool of
experts has been explored [40, 48]. UMR [40] clusters probes and stores coarse capability footprints
but still rebuilds them offline whenever the model pool changes. LLM-Bandit [48] optimizes cost but
ignores prompt semantics and offers no cold-start prior for unseen experts.

2.2 Routing within MoE and Hybrid Architectures
Routing LLMs can be viewed as a coarse-grained MoE, where each expert is a full LLM. Routing is
a central mechanism in MoE models [36, 41, 75], where expert modules are dynamically activated
based on input. While classical MoEs involved equally-sized sub-models, modern approaches like
Switch Transformer [24] and Mixtral [38] employ sparse activation to minimize cost. Approaches
like UltraFuser [20] highlight recent advances in combining model specialization and flexibility.

2.3 Model Fusion, Merging and Cascading
Fusion strategies synthesize outputs from multiple LLMs to improve output quality [68, 39, 29,
89, 52]. Fusion approaches often rely on unsupervised metrics [99, 73, 97] or ensemble voting
to determine the final output [44]. A related but distinct technique is model merging [50], where
weights from multiple pre-trained or fine-tuned models are combined, either directly via methods like
weight averaging [92], Task Arithmetic [35], or Fisher merging [56]. In contrast, cascading invokes
models sequentially (often ordered by computational cost) and halts once a satisfactory output is
generated [10, 98, 30].

To the best of our knowledge, no prior work simultaneously (i) embeds both prompts and arbitrary
experts into a unified metric space, (ii) incorporates inference cost explicitly into its learning objective,
and (iii) generalizes effectively to new LLMs and out-of-distribution prompts using simple, efficiently
computable descriptors.

3 Method

This section formalizes our Cost–Spectrum Contrastive Router (CSCR) and its two drop-in,
model-agnostic descriptors: logit fingerprints and perplexity fingerprints. CSCR is trained once on a
fixed pool of LLMs and deployed without modification on any subset of that pool. At inference time
it performs a k-NN lookup in a FAISS [21] index 2 to return the k most cost–effective experts for
a prompt. Throughout, let H={h(1), . . . , h(M)} denote the available LLMs, c(h) their normalized
cost, and Φ(x)∈RD our frozen query encoder with a trainable MLP head gθ(.).

3.1 Model Fingerprints

We map every LLM to a compact, task–independent vector dh ∈ RD′
. Both descriptors are

gradient-free; they can be computed off-line, cached, and shipped without IP-sensitive weights.

3.1.1 Logit–Footprint Descriptors for Transparent LLMs

Let Sprobe = {x(i)}Ni=1 be a fixed set of short, diverse prompts shared across all experts. For an
autoregressive LLM h, denote by

ph(v |x, t) = softmax
(
logitsh(x)t

)
v
, v ∈ V, t ≥ 1 (1)

the probability that h emits vocabulary token v at generation step t conditioned on the prompt prefix
x. We compress these probabilities into a fixed–length logit footprint:

dlogit(h) =
1

N T

N∑
i=1

T∑
t=1

[
ph
(
vk | x(i), t

)]K
k=1

∈ RK , (2)

where T is a small horizon, and {vk}Kk=1 are the K most frequent tokens across all probes. We
ℓ2–normalize dlogit(h) to live on the unit hypersphere, after which cosine similarity is a proxy for KL
divergence between the first–token distributions.

2We use a FAISS IndexFlatIP. https://github.com/facebookresearch/faiss/wiki/Faiss-indexes

3

https://github.com/facebookresearch/faiss/wiki/Faiss-indexes

Why logits? Equation (2) directly samples the model’s internal predictive distribution ph(·)—the
very quantity trained by maximum–likelihood objective −

∑
log pθ [6]. It therefore encodes both

topical preference and generation style while remaining inexpensive (only N×T forward passes with
greedy decoding). Thus, we use (2) as the primary descriptor whenever logits are available. See
Appendix C.1 for a more detailed discussion.

3.1.2 Perplexity Fingerprints for Black-Box or API-Only LLMs

Closed-source APIs (e.g., GPT-o3 [37], Gemini-2.5 [69]) expose responses but hide almost all logits.
For such models we adopt a per–prompt cross-entropy fingerprint:

ℓh(x) = − 1

Lx

Lx∑
j=1

log ph
(
wj | w<j

)
, (3)

dPPL(h) = normalize
([

ℓh
(
x(i)

)]N
i=1

)
∈ RN , (4)

where w1:Lx are the gold target tokens (ground-truth answers if available, or probe continuations);
normalize(·) denotes mean-centering and unit–variance scaling. Practically, we approximate (3)
with a lightweight open LM that scores the API output ŷh(x) instead of inaccessible ph:

ℓ̃h(x) = − 1
|ŷh(x)|

∑
j

log pgpt2
(
ŷh,j | ŷh,<j

)
. (5)

See Appendix C.2 for a more detailed discussion.

Figure 2: Cosine similarity of per-
plexity descriptors for RouterBench
LLMs. Despite using a shared scorer,
the descriptors distinctly separate the
experts.

Why perplexity? Cross-entropy is proportional to
KL(ptrue ∥ ph) plus entropy of the data distribution; it there-
fore quantifies text fit and has long been a proxy for LM qual-
ity [58, 66]. Prior work has shown that perplexity can serve
as an effective metric for distinguishing between human-
generated text and LLM-generated output [31]. Moreover,
although ℓ̃h is an approximation, the descriptor vector in (4)
still captures how hard each prompt is for a given expert;
routing on these vectors recovers much of the benefit of logit
footprints while remaining viable for black-box LLMs. Fig-
ure 2 shows that, despite using the same model to compute
the perplexity of text generated by different LLMs, we still
observe a clear separation between the expert descriptors.

Unified metric space. We can make both descriptors re-
side on the unit sphere SK−1 by setting N = K (i.e., the
number of top tokens equals the number of prompts) with
cosine similarity σ(d1,d2) = d⊤

1 d2. A single k-NN router
can thus mix transparent experts (logit fingerprints) and
opaque experts (perplexity fingerprints) without altering
downstream training loss; only the descriptor extraction
pipeline changes (See Table 4) .

3.2 Cost-Spectrum Contrastive Router

A contrastive router learns a shared embedding space where each query vector is pulled toward the
descriptor of the right-sized expert and pushed away from less suitable ones; this yields three key
pay-offs. First, because routing reduces to a nearest-neighbor lookup in that space, inference is a
microsecond operation that adds virtually no latency to serving large expert pools. Second, contrastive
objectives let the router exploit implicit supervision (“expert X solved this prompt while expert Y
failed” or “X is cheaper than an equally accurate Y”) so it can be trained with only correctness
or cost signals, no dense human annotations. Third, the geometry learned by contrastive learning

4

naturally generalizes: queries that look semantically or structurally similar land near the same expert
regions, which improves robustness to distribution shift and unseen prompts, a behavior long noted in
contrastive representation learning. Together, these properties make a contrastive router an efficient,
supervision-light and highly adaptable choice for directing traffic in modern multi-LLM systems.

3.3 Background: The Classic INFONCE Loss.

Let a minibatch contain B queries {xi}Bi=1 and a memory bank of M keys {em}Mm=1. A query
encoder fθ :X →Rd produces representations qi = fθ(xi)/∥fθ(xi)∥2, and the keys are ℓ2-normalized
in advance, em = Em/∥Em∥2 (here, Em is the expert descriptor from Equation (2) or (4), i.e.
Em = d(hm)). For each query i let P(i) ⊂ [M] denote the positives (e.g. correct experts) and
N (i) = [M] \ P(i) the negatives. The vanilla InfoNCE objective [87] maximizes a log-softmax over
cosine similarities

LInfoNCE = − 1

B

B∑
i=1

log

∑
m∈P(i)

exp
(q⊤

i em

τ

)
M∑

m′=1

exp
(q⊤

i em′
τ

) , (6)

where τ > 0 is a temperature. It encourages queries to be close to any positive but far from all
negatives, thereby learning a metric embedding.

3.4 Cost-Spectrum InfoNCE.

Why Incorporate Cost: Routing must balance two competing axes: quality (the expert is correct)
and inference cost cm (e.g. dollars or latency). The classical InfoNCE loss ignores cm, so the encoder
can satisfy the objective by clustering any correct experts—most often the cheapest ones, since there
are usually more of them in the pool—around the query embedding. Compounding this, easier
prompts tend to occur more frequently, so training examples are skewed toward cases where cheap
experts suffice. Once those low-cost positives are nearby, there is no training signal to learn where
the slightly more expensive but markedly more accurate models live. Empirically, this drives the
router to over-use the bargain-bin checkpoints, hurting accuracy and leaving significant headroom
untapped, even though paying a few extra cents would buy a large quality jump (see Table 5).

We therefore introduce a cost-aware spectrum version that:

1. Selects all positive per cost band, preventing domination by extremely cheap or extremely
costly experts

2. Assigns band-specific temperatures so that harder (costlier) positives yield smoother gradi-
ents

3. Penalizes negatives proportionally to their cost, pushing the encoder to prefer cheaper
mistakes if it must err.

Formally we first normalize costs cm ∈ [0, 1] and partition them into K disjoint percentile bands
Bk = {m : cm ∈ [βk, βk+1)} with quantiles β0 =0 < · · ·<βK =1. For each query i and band k,
let Pik = P(i) ∩ Bk denote the set of correct experts in that band. All experts in Pik are treated as
positives, and weighted by a softmax over similarities scaled by a band-specific temperature

τk = τmin + α · c̄k, (7)

where c̄k is the mean cost of experts in Bk.

With Φ(x)∈RD being our frozen query encoder with a lightweight trainable MLP head gθ(.), the
loss for a query qi = gθ(Φ(xi))/∥gθ(Φ(xi))∥2 is then an average over all non-empty bands:

5

ℓCS
i = − 1

|Ki|
∑
k∈Ki

log

∑
m∈Pik

exp
(

q⊤
i em

τk

)
∑M

m′=1 exp
(

q⊤
i em′−γcm′

τk

) , (8)

where Ki is the set of cost bands that contain at least one positive and γ≥0 controls the negative cost
penalty. Averaging over the minibatch yields LCS = 1

B

∑B
i=1 ℓ

CS
i .

Banded positives. By retaining all positives within each cost band, we ensure that high-cost, correct
experts still receive gradient signal, even when low-cost models also answer correctly. This prevents
cost-collapse, the failure mode discussed in 3.4, where training signal concentrates on cheap experts
due to prompt and model imbalances.

Cost-dependent temperature. Higher bands (larger c̄k) get larger τk, flattening their softmax and
avoiding vanishing gradients when few difficult positives exist. In contrast, cheap bands keep a low
temperature, sharpening the push towards inexpensive correct experts.

Negative cost penalty. Subtracting λcm in the denominator (not the numerator) means that expen-
sive wrong experts contribute more to the partition function, hence increase the loss; the encoder is
thus encouraged to separate from them first.

Thus the contrastive potential aligns three signals in the same metric space: (i) semantic proximity
via the query encoder, (ii) expert capability via fingerprints, and (iii) user preference via cost scaling.
Previous cost-aware objectives for retrieval weight the final scoring function at inference time
(e.g. [48, 40]); our formulation also integrates cost during representation learning, inducing a feature
geometry that naturally interpolates accuracy and cost. Equation (8) collapses to standard InfoNCE
when K=1 and λ=0. See Appendices C.3 and C.4 for a more detailed discussion.

3.5 Inference Router

Given a test prompt x we retrieve

r̂(x) = argmin
h∈Topk(x)

[
cos⟨gθ(Φ(x)),dh⟩+ λ c(h)

]
, (9)

λ is the cost weight and Topk(x) retrieves the k most similar experts to the prompt from the FAISS
index. We use k = 4 by default. During training, a similar composite score appears in the cost-
spectrum InfoNCE objective (Equation (8)), allowing the encoder to rank candidate models by
similarity to expert descriptors plus the cost term γc(h), just as in the inference rule of Equation 9.
We show in the next section that this alignment between training and inference is highly effective.

4 Experiments

4.1 Experimental Settings

Baselines We compare our proposed method against a comprehensive set of baselines. Specifically,
we include UMR [40], a recent technique that clusters prompt embeddings to route queries to
LLM pools efficiently; Thompson Sampling [48, 2], which frames routing as a bandit exploration-
exploitation problem to balance cost and accuracy dynamically; Pareto-optimal routing [34], a
strategy that selects models by explicitly considering the cost-accuracy Pareto frontier; and two
extreme baselines: Random, which selects models uniformly at random to represent naive routing
without intelligent selection, and Oracle [40], which always selects the most accurate model at the
lowest possible cost and thus represents a theoretical performance ceiling. Additionally, we evaluate
against parametric-softmax gating methods inspired by mixture-of-experts architectures [62] and
SoftMoE [64], which models router decisions via differentiable soft gating functions.

Datasets & Benchmarks We train our router and evaluate it on three datasets: EmbedLLM [105],
MixInstruct [39], and RouterBench [34]. For EmbedLLM and MixInstruct, we sample 192 probes
from their respective validation sets. Each probe is processed to extract logit-based descriptors by

6

EmbedLLM Mix-Instruct RouterBench

Router AUDC ↑ QNC ↓ Peak ↑ AUDC ↑ QNC ↓ Peak ↑ AUDC ↑ QNC ↓ Peak ↑
Oracle (upper bound) 0.960 2.87 0.979 0.079 10.17 0.081 0.891 0.290 0.910

UMR [40] 0.515 58.61 0.562 0.049 10.35 0.050 0.568 0.487 0.615
Thompson [2] 0.472 48.81 0.514 0.044 10.09 0.045 0.622 1.634 0.787
Soft-MoE [64] 0.404 70.00 0.577 0.030 10.09 0.045 0.599 1.659 0.794
Parametric [62] 0.506 70.00 0.555 0.039 12.00 0.052 0.691 1.658 0.794
Pareto-Random [34] 0.369 16.03 0.393 0.036 6.16 0.043 0.5172 0.589 0.545
Random 0.379 18.09 0.392 0.037 6.16 0.043 0.5147 0.585 0.542
CSCR (Ours) 0.541 43.28 0.578 0.051 9.32 0.052 0.7110 1.660 0.794

Table 1: Deferral-curve metrics across three benchmarks. Our Cost-Spectrum Contrastive Router
achieves the highest area under the deferral curve (AUDC), competitive or superior peak accuracy
and lower quality-neutral cost (QNC) compared to key baselines. The Oracle router serves as an
upper bound, retrospectively selecting the lowest-cost LLM that yields the correct answer.

capturing the top K = 256 tokens over a horizon of T = 10 tokens (Equation (2)). For RouterBench,
we sample 192 probes from its training set. We compute perplexity-based descriptors on RouterBench
and use GPT-2 [66]. On both EmbedLLM and RouterBench, we use binary accuracy as the per-sample
evaluation metric. For MixInstruct, we employ exponentiated BARTScore [97] as the evaluation
metric, following the approach in prior work [40, 39].

Training We use a frozen sentence-transformers/all-MiniLM-L6-v2[70] model as the em-
bedding backbone across all experiments. Our trainable router component is a two-layer MLP which
projects prompt embeddings into the expert descriptor space. We train our contrastive router on
the training splits of each dataset. For the cost spectrum loss (Equation (8)), we set the number of
cost bands K = 5 and the negative cost penalty γ = 0.2. The hyperparameters for band-specific
temperatures (Equation (7)) are set as α = 0.25 and τmin = 0.05. See D.1 for full details.

Evaluation We evaluate each routing strategy using a deferral curve [40] which plots the average
response quality against the total inference cost. Sweeping the routing penalty parameter λ over the
interval λ∈ [0, λmax] (Equation (9)) traces the deferral curve. For the EmbedLLM and MixInstruct
datasets, we define the cost of processing a prompt as the number of parameters in the LLM, a proxy
for computational resources and latency. In the case of RouterBench, we utilize the actual API call
costs in USD, as provided in the dataset. Following [40] we employ evaluation metrics including
Area Under the Deferral Curve (AUDC), peak accuracy and Query-Normalized Cost (QNC), the
minimum relative cost required to match the performance of the most accurate tested LLM.

4.2 Results

Table 1 presents deferral-curve metrics across the benchmarks. Our CSCR consistently outperforms
all relevant baselines, achieving the highest AUDC and demonstrating competitive or superior
peak accuracy. Notably, it attains lower QNC, indicating more cost-effective routing decisions.
These results underscore the effectiveness of our cost-aware router learning approach in balancing
performance and inference cost. The Oracle router, which retrospectively selects the optimal LLM
for each query, establishes an upper bound for performance. The benchmarks are dominated by lower
cost experts, hence the lower QNC for random baselines. See Appendix D.6 for results on statistical
significance.

4.2.1 Generalization to New LLMs

We also evaluate the robustness of our method and baselines in scenarios where new LLMs are
introduced during testing. Specifically, we select two-thirds of the EmbedLLM training models to
train our router and the baselines following [40], using only responses from these selected models.
Table 2 summarizes the performance metrics, while Figure 3 illustrates the corresponding deferral
curves. Testing is conducted exclusively on the unseen LLM pool. Our results indicate that our
approach exhibits superior robustness under these conditions.

7

Figure 3: Deferral curves of test on new LLMs. Figure 4: Deferral curve of OOD prompts.

Router EmbedLLM
AUDC ↑ QNC ↓ Peak ↑

Oracle (upper bound) 0.9111 4.118 0.951

UMR 0.4766 64.300 0.518
Thompson 0.4478 68.904 0.514
Soft-MoE 0.4109 18.282 0.485
Pareto-Random 0.3812 15.662 0.407
Random 0.3829 15.372 0.403
CSCR (Ours) 0.4848 70.000 0.565

Table 2: Deferral-curve metrics on new LLMs.
CSCR shows better robustness to new LLMs.

Router EmbedLLM
AUDC ↑ QNC ↓ Peak ↑

Oracle (upper bound) 0.9511 2.872 0.979

UMR 0.4249 47.910 0.459
Thompson 0.4863 69.983 0.574
Soft-MoE 0.4207 70.017 0.555
Pareto-Random 0.3676 17.417 0.396
Random 0.3717 17.499 0.397
CSCR (Ours) 0.5146 42.338 0.568

Table 3: Deferral-curve metrics on OOD prompts.
CSCR shows superior robustness.

4.2.2 Generalization to Out-of-Distribution Prompts

We evaluate our approach on an out-of-distribution (OOD) prompt at test time scenario. We split
the EmbedLLM dataset into two subsets: one focusing on STEM-related prompts (e.g., science and
technology) and the other comprising all remaining categories (see Appendix D.2.1 for detailed
experimental settings). As illustrated in Figure 4 and quantified in Table 3, CSCR significantly
outperforms all baselines across all key metrics. Specifically, our router achieves an AUDC of 0.5146
compared to the next-best baseline, Thompson, at 0.4863, highlighting its superior robustness and
accuracy when handling diverse OOD prompts. This performance advantage demonstrates that our
method generalizes exceptionally well, maintaining reliable decision-making capability across varied
and harsh distributional shifts.

4.3 Ablative Studies

4.3.1 Descriptor Choice

Table 4 compares two descriptors on Mix-Instruct, the only benchmark where we can compute both.
Perplexity descriptors (obtained by running every candidate answer through an auxiliary language
model) lift the AUDC from 0.461 to 0.467. The absolute peak accuracy, however, changes less than
0.1%. Because the perplexity pipeline requires (i) generating text with the model in the pool and
(ii) a second forward pass through a public LM, it is often at least 2× slower. Logit descriptors, in
contrast, need only a single pass on open-weights models and still deliver competitive AUDC. We
therefore adopt logit-based descriptors for all open LLMs and fall back to perplexity descriptors
only when logits are inaccessible. The “mixed” row in 4 represents the results obtained by using
logit descriptors for 6 randomly selected LLMs and perplexity descriptors for the remaining 5. This
shows that both descriptors can be combined within the same pool without negatively affecting the
results. In fact, performance slightly improves compared to using only a single descriptor type. This
observation further supports our discussion of the “unified metric” in Section 3.1.2.

4.3.2 Cost-Aware Training

8

Router MixInstruct
AUDC ↑ QNC ↓ Peak ↑

Logit Desc. 0.0461 6.426 0.046
Perp. Desc. 0.0467 8.967 0.047
Mixed 0.0473 6.233 0.047

Table 4: Effect of Descriptor Type. Perplexity
descriptors slightly improve AUDC but require an
extra pass compared to the faster logit descriptors.
Mixing descriptors has no impact on results.

Router EmbedLLM
AUDC ↑ QNC ↓ Peak ↑

Vanilla 0.3421 6.382 0.362
Cost-Aware 0.4951 11.065 0.540

Table 5: Effect of cost-aware training: injecting
cost awareness into the contrastive loss prevents
the router from concentrating on cheap experts,
and boosts the AUDC and peak accuracy of the
router. The trade-off is a higher QNC.

Figure 5: Real sample of routing decisions made by
UMR, vanilla contrastive router, and CSCR. CSCR
chooses a more expensive but accurate expert than
the vanilla router, while also selecting a cheaper
option than UMR, achieving better accuracy-cost
trade-offs on both ends.

Replacing the vanilla InfoNCE loss with our
cost-spectrum variant significantly increases
the AUDC (0.342 → 0.495) and raises the
peak attainable accuracy from 36% to 54% as
shown in Table 5. The trade-off is a higher
Quality-Neutral Cost QNC, meaning the router
now leans more on expensive but accurate mod-
els; however, the large AUDC gain shows that,
for any realistic cost budget, users receive better
accuracy-per-dollar overall. This confirms our
discussion in Section 3.4, that explicitly teach-
ing the encoder to respect the cost hierarchy of
experts is crucial.

Furthermore, Figure 1 and Table 1 show that while cost-aware contrastive training incurs more cost
than the vanilla variant, it remains far more efficient than the baselines, achieving lower QNC by
learning to distinguish good cheap experts from both bad cheap and bad expensive ones. See Figure 5
for an example.

4.3.3 Cost-Spectrum Granularity

Figure 6: Deferral-curves across differ-
ent numbers of cost bands.

Figure 6 shows that performance varies with the number
of cost bands. Using 5 bands yields the best results, with
the highest AUDC and Peak accuracy, suggesting a good
balance between flexibility and generalization. Fewer
bands (e.g., 2) limit routing precision, while too many
bands (e.g., 15 or 20) degrade performance, likely due
to over-fragmentation and increased decision noise. This
highlights the importance of tuning the number of bands
per dataset to avoid both under- and overfitting. See Ap-
pendix D.2 for more ablations and detailed discussion.

5 Theoretical Analysis

Set-up. Let X be the space of prompts and H =
{h1, . . . , hM} a fixed pool of experts with per-call cost
c(h) ∈ R>0. For a query x ∈ X and ground-truth y we
write ℓ(x, y, h) = 1[h(x) ̸= y] for the 0–1 loss and γ(x, h) = Py|x[ℓ(x, y, h) = 1] for the Bayes
error. The cost–adjusted risk of a router r is

Rλ(r) = E(x,y)∼D

[
ℓ
(
x, y, hr(x)

)
+ λ c

(
hr(x)

)]
,

where λ∈R≥0 trades accuracy for cost [23].

Our router embeds queries via Φq : X →Rd and experts via E =
[
e1; . . . ; eM

]
∈RM×d, using either

(i) logits fingerprints (EmbedLLM, Mix-Instruct) or (ii) perplexity fingerprints (RouterBench). Given
a query x, the k-NN rule selects

9

r̂k(x;λ) = argmin
m∈[M]

[
1
k

∑
j∈Nk(x)

γ
(
xj , hm

)
︸ ︷︷ ︸

local error

+λ c(hm)
]
.

where Nk(x) are the k nearest training prompts to x in ∥Φq(·)∥2.

5.1 Excess-risk of cost–spectrum k-NN

Assumption 5.1 (Lipschitz Bayes error). There exists L > 0 s.t. for all x, x′ ∈ X and h ∈ H,
|γ(x, h)− γ(x′, h)| ≤ L ∥Φq(x)− Φq(x

′)∥2.
Theorem 5.2 (Excess risk). Let r̂k be trained on n i.i.d. prompt embeddings. Under Assumption 5.1,
for any λ≥0 and any k≤n,

E
[
Rλ(r̂k)

]
−Rλ(r

⋆) ≤ C
(√

k
n + k−1/d

)
,

where C depends only on L and the diameter of Φq(X), and r⋆ is the Bayes-optimal rule r⋆(x) =
argminm

[
γ(x, hm) + λc(hm)

]
.

The proof follows the classical k-NN bound of [53, 5] with an extra λc(h) term that is constant w.r.t.
x and therefore preserves the rate.

5.2 Consistency of Cost–Spectrum InfoNCE

Fingerprints live on Sd−1, so dot products are scaled similarities Sim =
q⊤i em
τk

with band-dependent
temperature τk (Equation (7)). Let β0 = 0 < β1 < · · · < βK = 1 partition costs into bands
Bk = {m : c(hm)∈ [βk, βk+1)}, and denote Pik = P(i) ∩ Bk the correct experts for query i that
fall in band k. The Cost-Spectrum InfoNCE loss for a single query i is

ℓCS
i = − 1

|Ki|
∑
k∈Ki

log

∑
m∈Pik

exp
(
Sim

)
M∑

m′=1

exp
(
Sim′ − γ cm′

) ,
where Ki = {k : Pik ̸=∅} and γ≥0 is the negative cost penalty.
Lemma 5.3 (Directional alignment with cost bands). At any stationary point of LCS = 1

B

∑
i ℓ

CS
i ,

for every query i and any m+∈Pik, m−∈N (i) with cm+ ≤cm− , q⊤i em+ > q⊤i em− .

Lemma 5.3 shows the optimum ranks cheaper correct experts ahead of expensive or wrong ones,
explaining the empirical benefit of the cost term.

5.3 Discussion

Theorem 5.2 guarantees that if query–expert descriptors are Lipschitz, CSCR converges to the
Bayes-optimal router at the usual k-NN rate. Lemma 5.3 justifies the specific form of our InfoNCE
objective. Sec. 4 verifies these claims on three benchmarks. See proofs in Appendix B.

6 Conclusion

We presented CSCR, a simple and efficient framework for cost-aware routing across a pool of LLMs.
Our method uses two lightweight expert descriptors and trains a contrastive encoder to select the
cheapest accurate expert within adaptive cost bands. Despite its simplicity, CSCR outperforms more
complex routing baselines and demonstrates strong generalization to unseen models and out-of-
distribution prompts. Our findings highlight the importance of embedding cost-awareness directly
into the training objective of routers, rather than deferring it to test time. As model pools grow in size
and diversity, activating the right-sized expert per query is critical for minimizing latency and cost.
We see CSCR as a step toward more sustainable and adaptive LLM deployments, and believe this
line of research is essential to avoid defaulting to unnecessarily large models for simple tasks.

10

7 Acknowledgments

The authors would like to thank Zahra Miri for her assistance in preparing the figures.
This work was made possible by NSF IIS 2347592, 2348169, DBI 2405416, CCF 2348306, CNS
2347617.

References
[1] Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei

Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappaganthu, Yiming Yang, Shyam Upadhyay, Manaal
Faruqui, and Mausam . Automix: Automatically mixing language models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=e6WrwIvgzX.

[2] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem.
In Conference on learning theory, pages 39–1. JMLR Workshop and Conference Proceedings, 2012.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47:235–256, 2002.

[4] Peter L. Bartlett and Marten H. Wegkamp. Classification with a reject option using a hinge loss.
Journal of Machine Learning Research, 9(59):1823–1840, 2008. URL http://jmlr.org/papers/v9/
bartlett08a.html.

[5] Gérard Biau and Luc Devroye. Lectures on the nearest neighbor method, volume 246. Springer, 2015.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates,
Inc., 2020.

[7] Ruisi Cai, Saurav Muralidharan, Greg Heinrich, Hongxu Yin, Zhangyang Wang, Jan Kautz, and Pavlo
Molchanov. Flextron: Many-in-one flexible large language model. In International Conference on
Machine Learning (ICML), July 2024.

[8] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
MEDUSA: Simple LLM inference acceleration framework with multiple decoding heads. In Proceedings
of the 41st International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

[9] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023.

[10] Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv: Arxiv-2305.05176, 2023.

[11] Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. RouterDC: Query-based
router by dual contrastive learning for assembling large language models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=7RQvjayHrM.

[12] C Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on information theory, 16
(1):41–46, 1970.

[13] Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann,
Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling laws for routed
language models. In International conference on machine learning, pages 4057–4086. PMLR, 2022.

[14] Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. Learning with rejection. In ALT, 2016. URL
https://cs.nyu.edu/~mohri/pub/rej.pdf.

[15] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on information
theory, 13(1):21–27, 1967.

11

https://openreview.net/forum?id=e6WrwIvgzX
https://openreview.net/forum?id=e6WrwIvgzX
http://jmlr.org/papers/v9/bartlett08a.html
http://jmlr.org/papers/v9/bartlett08a.html
https://openreview.net/forum?id=7RQvjayHrM
https://openreview.net/forum?id=7RQvjayHrM
https://cs.nyu.edu/~mohri/pub/rej.pdf

[16] Christoph Dann, Yishay Mansour, Teodor Vanislavov Marinov, and Mehryar Mohri. Domain adaptation
for robust model routing. In Adaptive Foundation Models: Evolving AI for Personalized and Efficient
Learning, 2024. URL https://openreview.net/forum?id=86eGohKPyy.

[17] DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model,
2024. URL https://arxiv.org/abs/2405.04434.

[18] Fnu Devvrit, Sneha Kudugunta, Aditya Kusupati, Tim Dettmers, Kaifeng Chen, Inderjit S Dhillon,
Yulia Tsvetkov, Hannaneh Hajishirzi, Sham M. Kakade, Ali Farhadi, and Prateek Jain. MatFormer:
Nested transformer for elastic inference. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=fYa6ezMxD5.

[19] Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks V. S.
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid LLM: Cost-efficient and quality-aware query
routing. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=02f3mUtqnM.

[20] Ning Ding, Yulin Chen, Ganqu Cui, Xingtai Lv, Weilin Zhao, Ruobing Xie, Bowen Zhou, Zhiyuan Liu,
and Maosong Sun. Mastering text, code and math simultaneously via fusing highly specialized language
models, 2024.

[21] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv, 2024.

[22] Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. Chapman and Hall/CRC, 1994.

[23] Charles Elkan. The foundations of cost-sensitive learning. In International joint conference on artificial
intelligence, volume 17, pages 973–978. Lawrence Erlbaum Associates Ltd, 2001.

[24] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39, 2022.

[25] Tao Feng, Yanzhen Shen, and Jiaxuan You. GraphRouter: A graph-based router for llm selections, 2024.
URL https://arxiv.org/abs/2410.03834.

[26] Elias Frantar, Carlos Riquelme, Neil Houlsby, Dan Alistarh, and Utku Evci. Scaling laws for sparsely-
connected foundation models. arXiv preprint arXiv:2309.08520, 2023.

[27] Yonatan Geifman and Ran El-Yaniv. SelectiveNet: A deep neural network with an integrated reject
option. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
2151–2159. PMLR, 09–15 Jun 2019.

[28] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

[29] Neel Guha, Mayee F Chen, Trevor Chow, Ishan S. Khare, and Christopher Re. Smoothie: Label free
language model routing. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=pPSWHsgqRp.

[30] Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna Menon,
and Sanjiv Kumar. Language model cascades: Token-level uncertainty and beyond. In The Twelfth In-
ternational Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=KgaBScZ4VI.

[31] Abhimanyu Hans, Avi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha Saha, Micah
Goldblum, Jonas Geiping, and Tom Goldstein. Spotting llms with binoculars: Zero-shot detection of
machine-generated text, 2024. URL https://arxiv.org/abs/2401.12070.

[32] Surya Narayanan Hari and Matt Thomson. Tryage: Real-time, intelligent routing of user prompts to large
language models. CoRR, 2023.

[33] Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas Raunak, Mohamed Gabr, Hitokazu Matsushita,
Young Jin Kim, Mohamed Afify, and Hany Hassan Awadalla. How good are GPT models at machine
translation? a comprehensive evaluation, 2023. URL https://arxiv.org/abs/2302.09210.

[34] Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt Keutzer,
and Shriyash Kaustubh Upadhyay. RouterBench: A benchmark for multi-LLM routing system. In Agentic
Markets Workshop at ICML 2024, 2024. URL https://openreview.net/forum?id=IVXmV8Uxwh.

12

https://openreview.net/forum?id=86eGohKPyy
https://arxiv.org/abs/2405.04434
https://openreview.net/forum?id=fYa6ezMxD5
https://openreview.net/forum?id=02f3mUtqnM
https://openreview.net/forum?id=02f3mUtqnM
https://arxiv.org/abs/2410.03834
https://openreview.net/forum?id=pPSWHsgqRp
https://openreview.net/forum?id=KgaBScZ4VI
https://openreview.net/forum?id=KgaBScZ4VI
https://arxiv.org/abs/2401.12070
https://arxiv.org/abs/2302.09210
https://openreview.net/forum?id=IVXmV8Uxwh

[35] Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=6t0Kwf8-jrj.

[36] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures of
local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

[37] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

[38] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al. Mixtral of
experts. arXiv preprint arXiv:2401.04088, 2024.

[39] Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models with pair-
wise ranking and generative fusion. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors,
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 14165–14178, Toronto, Canada, July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.792. URL https://aclanthology.org/2023.acl-long.792.

[40] Wittawat Jitkrittum, Harikrishna Narasimhan, Ankit Singh Rawat, Jeevesh Juneja, Zifeng Wang, Chen-Yu
Lee, Pradeep Shenoy, Rina Panigrahy, Aditya Krishna Menon, and Sanjiv Kumar. Universal model
routing for efficient llm inference, 2025. URL https://arxiv.org/abs/2502.08773.

[41] M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. In Proceedings
of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), volume 2, pages
1339–1344 vol.2, 1993. doi: 10.1109/IJCNN.1993.716791.

[42] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. ArXiv,
2020.

[43] Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. Orchestrallm: Efficient orchestration of language
models for dialogue state tracking. CoRR, 2023.

[44] Young-Suk Lee, Md Arafat Sultan, Yousef El-Kurdi, Tahira Naseem Asim Munawar, Radu Florian, Salim
Roukos, and Ramón Fernandez Astudillo. Ensemble-instruct: Generating instruction-tuning data with a
heterogeneous mixture of lms. arXiv preprint arXiv:2310.13961, 2023.

[45] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pages 19274–19286. PMLR, 2023.

[46] Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif Rasul,
Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in ai4maths with
860k pairs of competition math problems and solutions. Hugging Face repository, 13:9, 2024.

[47] Margaret Li, Sneha Kudugunta, and Luke Zettlemoyer. (mis) fitting: A survey of scaling laws. arXiv
preprint arXiv:2502.18969, 2025.

[48] Yang Li. LLM Bandit: Cost-efficient llm generation via preference-conditioned dynamic routing, 2025.
URL https://arxiv.org/abs/2502.02743.

[49] Yueyue Liu, Hongyu Zhang, Yuantian Miao, Van-Hoang Le, and Zhiqiang Li. Optllm: Optimal assignment
of queries to large language models. In 2024 IEEE International Conference on Web Services (ICWS),
pages 788–798. IEEE, 2024.

[50] Jinliang Lu, Ziliang Pang, Min Xiao, Yaochen Zhu, Rui Xia, and Jiajun Zhang. Merge, ensemble, and
cooperate! a survey on collaborative strategies in the era of large language models. arXiv preprint
arXiv:2407.06089, 2024.

[51] Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou. Routing
to the expert: Efficient reward-guided ensemble of large language models. CoRR, 2023.

[52] Xiaoding Lu, Zongyi Liu, Adian Liusie, Vyas Raina, Vineet Mudupalli, Yuwen Zhang, and William
Beauchamp. Blending is all you need: Cheaper, better alternative to trillion-parameters llm. arXiv
preprint arXiv: 2401.02994, 2024.

13

https://openreview.net/pdf?id=6t0Kwf8-jrj
https://aclanthology.org/2023.acl-long.792
https://arxiv.org/abs/2502.08773
https://arxiv.org/abs/2502.02743

[53] Ulrike von Luxburg and Olivier Bousquet. Distance-based classification with lipschitz functions. Journal
of Machine Learning Research, 5(Jun):669–695, 2004.

[54] Aman Madaan, Pranjal Aggarwal, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei Zhou,
Aditya Gupta, Dheeraj Rajagopal, Karthik Kappaganthu, Yiming Yang, Shyam Upadhyay, Mausam, and
Manaal Faruqui. Automix: Automatically mixing language models. CoRR, 2023.

[55] David Madras, Toniann Pitassi, and Richard Zemel. Predict responsibly: Improving fairness and accuracy
by learning to defer. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NeurIPS’18, page 6150–6160, Red Hook, NY, USA, 2018. Curran Associates Inc.

[56] Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging, 2022.

[57] Quinn McNemar. Note on the sampling error of the difference between correlated proportions or
percentages. Psychometrika, 12(2):153–157, 1947.

[58] Tomas Mikolov and Geoffrey Zweig. Context dependent recurrent neural network language model. In
2012 IEEE Spoken Language Technology Workshop (SLT), pages 234–239. IEEE, 2012.

[59] Yannis Montreuil, Axel Carlier, Lai Xing Ng, and Wei Tsang Ooi. Adversarial robustness in two-stage
learning-to-defer: Algorithms and guarantees, 2025. URL https://arxiv.org/abs/2502.01027.

[60] Harikrishna Narasimhan, Aditya Krishna Menon, Wittawat Jitkrittum, Neha Gupta, and Sanjiv Kumar.
Learning to reject for balanced error and beyond. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=ta26LtNq2r.

[61] Quang H Nguyen, Duy C Hoang, Juliette Decugis, Saurav Manchanda, Nitesh V Chawla, and Khoa D
Doan. Metallm: A high-performant and cost-efficient dynamic framework for wrapping llms. arXiv
preprint arXiv:2407.10834, 2024.

[62] Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez, M Waleed
Kadous, and Ion Stoica. RouteLLM: Learning to route LLMs with preference data, 2024. URL
https://arxiv.org/abs/2406.18665.

[63] Michael Poli, Armin W Thomas, Eric Nguyen, Pragaash Ponnusamy, Björn Deiseroth, Kristian Kersting,
Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Ré, et al. Mechanistic design and scaling of hybrid
architectures. arXiv preprint arXiv:2403.17844, 2024.

[64] Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. From sparse to soft mixtures of
experts, 2024. URL https://arxiv.org/abs/2308.00951.

[65] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving lan-
guage understanding by generative pre-training. https://cdn.openai.com/research-covers/
language-unsupervised/language_understanding_paper.pdf, 2018.

[66] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[67] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. ArXiv, 2023.

[68] Mathieu Ravaut, Shafiq Joty, and Nancy F Chen. Summareranker: A multi-task mixture-of-experts
re-ranking framework for abstractive summarization. arXiv preprint arXiv:2203.06569, 2022.

[69] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

[70] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.10084.

[71] Marija Šakota, Maxime Peyrard, and Robert West. Fly-swat or cannon? cost-effective language model
choice via meta-modeling. arXiv preprint arXiv:2308.06077, 2023.

[72] Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=uLYc4L3C81A.

14

https://arxiv.org/abs/2502.01027
https://openreview.net/forum?id=ta26LtNq2r
https://arxiv.org/abs/2406.18665
https://arxiv.org/abs/2308.00951
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1908.10084
https://openreview.net/forum?id=uLYc4L3C81A
https://openreview.net/forum?id=uLYc4L3C81A

[73] Thibault Sellam, Dipanjan Das, and Ankur Parikh. BLEURT: Learning robust metrics for text generation.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
7881–7892, 2020.

[74] Avital Shafran, Roei Schuster, Thomas Ristenpart, and Vitaly Shmatikov. Rerouting LLM routers, 2025.
URL https://arxiv.org/abs/2501.01818.

[75] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
B1ckMDqlg.

[76] Tal Shnitzer, Anthony Ou, Mírian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil Thompson, and
Mikhail Yurochkin. Large language model routing with benchmark datasets. CoRR, 2023.

[77] Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autoregressive
models. CoRR, abs/1811.03115, 2018. URL http://arxiv.org/abs/1811.03115.

[78] George Stoica, Daniel Bolya, Jakob Bjorner, Pratik Ramesh, Taylor Hearn, and Judy Hoffman. Zipit!
merging models from different tasks without training, 2024.

[79] Charles J Stone. Consistent nonparametric regression. The annals of statistics, pages 595–620, 1977.

[80] Dimitris Stripelis, Zijian Hu, Jipeng Zhang, Zhaozhuo Xu, Alay Dilipbhai Shah, Han Jin, Yuhang Yao,
Salman Avestimehr, and Chaoyang He. TensorOpera router: A multi-model router for efficient LLM
inference, 2024. URL https://arxiv.org/abs/2408.12320.

[81] Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière, Jacob
Kahn, Daniel Li, Wen-tau Yih, Jason Weston, et al. Branch-train-mix: Mixing expert llms into a
mixture-of-experts llm. arXiv preprint arXiv:2403.07816, 2024.

[82] Mingjie Sun, Yida Yin, Zhiqiu Xu, J Zico Kolter, and Zhuang Liu. Idiosyncrasies in large language models.
In Forty-second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=FCZ3jVzmTZ.

[83] Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix Yu. Spectr:
Fast speculative decoding via optimal transport. Advances in Neural Information Processing Systems, 36,
2024.

[84] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. BranchyNet: Fast inference via early exiting
from deep neural networks. In 23rd International Conference on Pattern Recognition, ICPR 2016, Cancún,
Mexico, December 4-8, 2016, pages 2464–2469. IEEE, 2016.

[85] William R Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[86] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. LLaMA: Open and efficient foundation language models, 2023.

[87] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding, 2019. URL https://arxiv.org/abs/1807.03748.

[88] Marija Šakota, Maxime Peyrard, and Robert West. Fly-swat or cannon? Cost-effective language model
choice via meta-modeling. In Proceedings of the 17th ACM International Conference on Web Search
and Data Mining, WSDM ’24, page 606–615, New York, NY, USA, 2024. Association for Computing
Machinery. ISBN 9798400703713. doi: 10.1145/3616855.3635825. URL https://doi.org/10.
1145/3616855.3635825.

[89] Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
text embeddings with large language models, 2024. URL https://arxiv.org/abs/2401.00368.

[90] Xuezhi Wang, Jason Wei, D. Schuurmans, Quoc Le, E. Chi, and Denny Zhou. Self-consistency improves
chain of thought reasoning in language models. International Conference on Learning Representations,
2022. doi: 10.48550/arXiv.2203.11171.

15

https://arxiv.org/abs/2501.01818
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
http://arxiv.org/abs/1811.03115
https://arxiv.org/abs/2408.12320
https://openreview.net/forum?id=FCZ3jVzmTZ
https://openreview.net/forum?id=FCZ3jVzmTZ
https://arxiv.org/abs/1807.03748
https://doi.org/10.1145/3616855.3635825
https://doi.org/10.1145/3616855.3635825
https://arxiv.org/abs/2401.00368

[91] Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo. Tabi: An efficient multi-level inference system
for large language models. In Proceedings of the Eighteenth European Conference on Computer
Systems, EuroSys ’23, page 233–248, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9781450394871. doi: 10.1145/3552326.3587438. URL https://doi.org/10.1145/3552326.
3587438.

[92] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S
Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: aver-
aging weights of multiple fine-tuned models improves accuracy without increasing inference time. In
International conference on machine learning, pages 23965–23998. PMLR, 2022.

[93] Jiahao Wu, Wenqi Fan, Jingfan Chen, Shengcai Liu, Qing Li, and Ke Tang. Disentangled contrastive
learning for social recommendation. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pages 4570–4574, 2022.

[94] Prateek Yadav, Derek Tam, Leshem Choshen, Colin A. Raffel, and Mohit Bansal. Ties-merging: Resolving
interference when merging models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine, editors, Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html.

[95] Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning. CoRR, abs/2310.02575, 2023. doi:
10.48550/ARXIV.2310.02575. URL https://doi.org/10.48550/arXiv.2310.02575.

[96] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, T. Griffiths, Yuan Cao, and Karthik Narasimhan. Tree
of thoughts: Deliberate problem solving with large language models. Neural Information Processing
Systems, 2023. doi: 10.48550/arXiv.2305.10601.

[97] Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: Evaluating generated text as text generation.
Advances in Neural Information Processing Systems, 34:27263–27277, 2021.

[98] Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu Yao. Large language model cascades with
mixture of thoughts representations for cost-efficient reasoning. CoRR, 2023.

[99] Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with bert. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SkeHuCVFDr.

[100] Zihuai Zhao, Wenqi Fan, Jiatong Li, Yunqing Liu, Xiaowei Mei, Yiqi Wang, Zhen Wen, Fei Wang,
Xiangyu Zhao, Jiliang Tang, et al. Recommender systems in the era of large language models (llms).
IEEE Transactions on Knowledge and Data Engineering, 2024.

[101] Ziyu Zhao, Leilei Gan, Guoyin Wang, Wangchunshu Zhou, Hongxia Yang, Kun Kuang, and Fei Wu. Lo-
raRetriever: Input-aware LoRA retrieval and composition for mixed tasks in the wild. In Lun-Wei Ku, An-
dre Martins, and Vivek Srikumar, editors, Findings of the Association for Computational Linguistics: ACL
2024, pages 4447–4462, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.findings-acl.263. URL https://aclanthology.org/2024.findings-acl.263/.

[102] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex reasoning
in large language models. arXiv, 2023.

[103] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. BERT loses patience:
Fast and robust inference with early exit. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 18330–18341.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf.

[104] Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Y Zhao, Andrew M. Dai, Zhifeng
Chen, Quoc V Le, and James Laudon. Mixture-of-experts with expert choice routing. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=jdJo1HIVinI.

[105] Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li, Jiantao Jiao, and Kannan Ramchandran.
Embedllm: Learning compact representations of large language models. arXiv preprint arXiv:2410.02223,
2024.

16

https://doi.org/10.1145/3552326.3587438
https://doi.org/10.1145/3552326.3587438
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2310.02575
https://openreview.net/forum?id=SkeHuCVFDr
https://aclanthology.org/2024.findings-acl.263/
https://proceedings.neurips.cc/paper_files/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://openreview.net/forum?id=jdJo1HIVinI

Limitations and Broader Impact

This paper proposes a routing framework that improves inference efficiency in large language
models (LLMs). By directing simple queries to smaller models, it cuts computation and memory
overhead, lowering costs and environmental impact. Although the framework is built for large-scale
deployments, we could not test very large LLM pools due to resource limits; still, our experiments
validate the concept. Future work will examine routing across specialized subnetworks and conditional
computation within a single LLMN. Moreover, future work can answer: How big must a model be
to recognize a problem’s difficulty even if it can’t solve the problem itself? Future work can study
whether size and fine-tuning helps; Would RL on LLMs makes them able to purely as routers, at
whether there is a model size when difficulty awareness kicks in.

A Related Work

A.1 Enhancing and Optimizing LLMs

Large language models (LLMs) have demonstrated remarkable capabilities across diverse NLP
tasks [66, 6]. To further improve their performance and efficiency, numerous strategies have been
proposed.

Single-LLM Techniques. Enhancement approaches targeting individual LLMs include fine-
tuning [67], prompting strategies like Chain-of-Thought (CoT) [102, 90], Tree-of-Thoughts [96],
and inference-acceleration techniques such as early exiting [84, 103, 72] and speculative decod-
ing [77, 83, 9, 45, 8]. Additionally, Mixture-of-Experts (MoE) architectures [36, 41, 75, 24, 104, 38]
route inputs through sparse sub-models or "experts," reducing cost while retaining performance.
However, these methods typically operate within a single LLM’s structure and may not generalize to
multi-model scenarios.

Model Fusion and Merging. Fusion strategies synthesize outputs from multiple LLMs to improve
output quality [68, 39, 29, 89, 52]. Fusion approaches often rely on unsupervised metrics [99, 73, 97]
or ensemble voting to determine the final output [44]. A related but distinct technique is model
merging [50], where weights from multiple pre-trained or fine-tuned models are combined—either
directly via methods like weight averaging [92], Task Arithmetic [35], or Fisher merging [56]—or
using more sophisticated techniques like TIES [94], AdaMerging [95], and ZipIt [78].

Cascading. In contrast, cascading invokes models sequentially—often ordered by computational
cost—and halts once a satisfactory output is generated [10, 98, 10, 30]. Such approaches strike a
balance between quality and efficiency, making them particularly attractive in production settings.

A.2 LLM Routing

Routing methods dynamically select the most appropriate LLM from a pool for each input, aiming
to optimize performance and cost without querying all models. Two primary strategies dominate:
non-predictive and predictive routing.

Non-Predictive Routing. Non-predictive methods generate outputs from one or more models
before making a selection. FrugalGPT [10] exemplifies this category, using a sequential strategy and
a response quality threshold to minimize cost. Other works adopt layered inference architectures to
escalate hard queries to more powerful models [91], or leverage cascades with self-verification [54,
98, 43, 51].

Predictive Routing. In contrast, predictive routing aims to select the best model *before* any
inference is performed. Strategies include supervised learning [76], reward-model-based routing [32,
51], and meta-models trained to predict LLM performance given an input [71]. Router models
vary widely in implementation, including neural networks [19, 88, 11, 1], k-nearest neighbors [34,
76, 80, 43], matrix factorization [62, 105, 48], and graph neural networks [25]. Others incorporate
model-specific tokens or train across multiple domains [18, 7].

17

Theoretical Foundations and Robustness. Routing and cascading are grounded in broader litera-
ture, including selective classification [27, 60], learning to defer [55], and learning to reject [12, 4, 14].
Several works explore supervision levels [51, 101], robustness [16, 59, 74], and evaluation frame-
works for routers [33, 32].

Despite rapid innovation, a standardized evaluation framework for LLM routers has been lacking.
Our work addresses this gap by proposing a comprehensive benchmark for routing strategies.

A.3 Routing as Recommendation

Routing can also be framed as a recommendation problem, wherein the input query plays the role of
a "user," the pool of LLMs corresponds to "items," and past performance metrics form the implicit
interaction history [100, 93]. However, unlike conventional recommender systems, routing has
limited "user" features (i.e., input metadata), making label collection and generalization especially
challenging [61, 49].

Matrix factorization, attention-based models, and graph neural networks are used in both recom-
menders and routers [62, 105, 25], reinforcing the close link between the two domains.

A.4 Scaling Laws and Architecture Trends

Scaling laws [42, 47] describe predictable trends between model size, data, and performance, guiding
the development of efficient LLM architectures. These insights have been extended to MoEs [24, 13],
sparse models [26], and hybrid systems [28, 63], offering context for when routing or merging
approaches might be most beneficial.

A.5 Routing within MoE and Hybrid Architectures

Routing is a central mechanism in MoE models [36, 41, 75], where expert modules are dynami-
cally activated based on input. While classical MoEs involved equally-sized sub-models, modern
approaches like Switch Transformer [24] and Mixtral [38] employ sparse activation to minimize cost.

Routing LLMs can be viewed as a coarse-grained MoE, where each expert is a full LLM. Approaches
like UltraFuser [20], Branch-Train-MiX [81], and token-level fusion highlight recent advances in
combining model specialization and flexibility.

B Proofs of Theoretical Results

B.1 Notation and Preliminaries

Let the Bayes-optimal router be r⋆(x) = argminm∈[M]

[
γ(x, hm) + λcm

]
and define the excess

cost–error gap
∆m(x) = γ(x, hm) + λcm −

(
γ(x, hr⋆(x)) + λcr⋆(x)

)
.

Hence ∆r⋆(x)(x) = 0 and ∆m(x) ≥ 0. For a query x let rk(x) be the radius of the ball B(x, r) ⊂
Sd−1 (in the cosine metric) that contains the k-th nearest training neighbor. If the marginal on q(X)
has a density, E

[
rk(x)

d
]
≤ C1k/n [15, 79].

B.2 Proof of Theorem 5.2

Writing qi = q(xi) to lighten notation, decompose

E
[
Rλ(r̂k)

]
−Rλ(r

⋆) = E
x

∆r̂k(x)(x)−∆r̂k(x)(xj∈Nk(x))︸ ︷︷ ︸
(A)

+∆r̂k(x)(xj∈Nk(x))−∆r⋆(x)(xj∈Nk(x))︸ ︷︷ ︸
(B)

 .

Term (A): Lipschitz bias. Assumption 5.1 gives |γ(x, h) − γ(x′, h)| ≤ L∥q(x) − q(x′)∥2, so
|(A)| ≤ Lrk(x). Taking expectations and using E[rk(x)] ≤ (C1k/n)

1/d yields E[(A)] ≤ C2k
−1/d.

18

Term (B): Estimation variance. Let the empirical cost-adjusted risk be

∆̂m(x) =
1

k

∑
j∈Nk(x)

[
γ(xj , hm) + λcm

]
.

Hoeffding’s inequality bounds

P
(
|∆̂m(x)− E[∆̂m(x) | x]| ≥ t

)
≤ 2e−2kt2 ,

and a union bound over m ≤ M plus integration gives

E[max
m

|∆̂m(x)− E[∆̂m(x) | x]|] ≤ C3

√
logM

k .

Because r̂k(x) minimizes ∆̂m(x), (B) ≤ 2maxm |∆̂m(x)− E[∆̂m(x) | x]|. Combining with (A)
implies

E[Rλ(r̂k)]−Rλ(r
⋆) ≤ C

(√
k/n+ k−1/d

)
.

B.3 Proof of Lemma 5.3

For convenience write Sim = q⊤i em/τk when m ∈ Bk. The single-query loss (Equation (8)) is

ℓCS
i = − 1

|Ki|
∑
k∈Ki

log

∑
m∈Pik

exp(Sim)∑M
m′=1 exp

(
Sim′ − γcm′

) .
Let

pim = exp(Sim)/
∑

j∈Pik

exp(Sij)

when m ∈ Pik and

qim = exp(Sim − γcm)/

M∑
j=1

exp(Sij − γcj)

Then
ℓCS
i = − 1

|Ki|

∑
k

log
∑

m∈Pik

pim/qim

Taking the gradient w.r.t. qi and setting it to zero gives
∑

m(pim − qim)em = 0. Project onto qi:∑
m(pim − qim)Sim = 0. Fix m+ ∈ Pik, m− ∈ N (i) with cm+ ≤ cm− . Because pim− = 0 while

pim+ > 0, the equality forces qim+ > qim− , hence Sim+ − γcm+ > Sim− − γcm− . Re-arranging
yields q⊤i em+ > q⊤i em− , establishing directional alignment.

2

C Method

C.1 Logit-Footprint Descriptors

Why take the most frequent tokens? We use the most frequent tokens so the basis is shared and
stable: they appear in all models, give low-noise estimates with few probes, and make calibration
comparable across experts. They give less noisy estimates because they get non-negligible probability
across many contexts, so their averaged log-probs vary less than rare or Out-of-Vocabulary tokens.
In all experiments, we set K = 256 and T = 10 (D.1), which is large enough that the basis isn’t
dominated by a few function words.

19

Are frequent tokens trivial? These tokens aren’t used for their meaning. They’re probes of each
model’s output behavior. Even common words get scored differently across models (temperature,
punctuation/number handling, style). By averaging over many prompts and steps, the descriptor
captures overall model behavior, not any single word’s semantics. Also, a recent work [82] shows
that LLMs exhibit stable, word-level idiosyncrasies (as the authors call them) that enable near-
perfect model attribution using only the first few generated tokens (even after paraphrasing or
translation), implying that common tokens still provide discriminative signals about a model’s
predictive calibration.

Shared token set vs. per-model selection. A shared basis gives all descriptors a common coordi-
nate system. If each model used a different token set, cosine distances would mix basis changes with
true behavior, hurting comparability. It would also require computing many more probes to align
per-model bases that are different across models.

Beyond raw frequency. We deliberately kept the descriptors simple to isolate and quantify the
contrastive router’s contribution. Nonetheless, frequency is a pragmatic, not necessarily optimal,
choice. Two variants that we considered and could be explored are:

• TF–IDF-weighted selection over the probe corpus.

• Picking tokens with the largest across-model log-prob variance.

These can be dropped into Equation 2 without changing downstream training or inference.

C.2 The Step from Equation 3 to Equation 5

Equation (3) defines a per-prompt token NLL that requires access to an expert’s next-token distribution
ph(· | ·). For API-only (black-box) experts, logits/probabilities are not exposed, so Equation (3) is
not computable. Our remedy is to (a) let the API expert h produce a deterministic continuation ŷh(x)
for prompt x (greedy decoding), and (b) evaluate that sequence under a single shared, public scorer
pS (kept fixed across all experts). This yields Equation (5), a pseudo-perplexity:

ℓ̃h(x) = − 1

|ŷh(x)|

|ŷh(x)|∑
t=1

log pS(ŷh,t | ŷh,<t) ,

which we then normalize (similar to Equation (4)) and use as the fingerprint coordinate(s) for black-
box experts.

If ŷh is a typical (high-probability) output of h (i.e., ŷh ∼ ph) then averaging the pseudo-perplexity
ℓ̃h(x) = − 1

|ŷh(x)|
∑

t log pS(ŷh,t | ŷh,<t) over many prompts/tokens is equivalent to taking an
expectation over y∼ph:

Ey∼ph

[
− log pS(y)

]
= H(ph, pS) = H(ph) + KL

(
ph ∥ pS

)
.

Here H(ph, pS) is the cross-entropy of ph with respect to pS , which decomposes into the entropy of
h’s own distribution H(ph) and its divergence from the scorer KL(ph∥pS).
Because pS is fixed for all experts, H(ph, pS) is a stable, model-specific quantity that makes descrip-
tors comparable across experts (“same yardstick”). It is not the true NLL under ph, but it preserves
differences between experts via H(ph) and their mismatch to pS via KL(ph∥pS). In practice we use
deterministic (greedy) decoding to reduce variance; averaging over many prompts/tokens makes the
empirical ℓ̃h(x) closely track the expectation above. Figure 2 empirically validates this argument.

C.3 Band-Specific Temperatures and Smoother Gradients

Most prompts in everyday interactions (and in our datasets) can be handled by cheaper models; plus
there are usually fewer very expensive experts overall. These expensive experts are only needed for a
small fraction of hard prompts, so within those high-cost bands there are fewer suitable positives per
query. With few positives, the similarity distribution becomes very peaky.

20

A larger τk in Equation 7 flattens the per-band softmax, reducing gradient variance and preventing
the update from collapsing onto a single rare positive. Formally, for band k the per-query gradient
w.r.t. the query embedding is

∇qLk = −
∑

m∈Pik

p(+)
m

em
τk

+

M∑
m′=1

p
(−)
m′

em′

τk
, (10)

where p(+) and p(−) are the band-restricted softmaxes over positives and all experts (with the negative
cost penalty in the denominator). As τk increases, both softmaxes become less concentrated, so (i)
the gradient magnitude scales like 1/τk and (ii) its direction is averaged over more positives, lowering
variance across minibatches.

This is the sense in which band-specific temperatures yield smoother gradients; it is especially
helpful in high-cost bands that otherwise have few positives and highly variable similarities. Without
band-specific temperatures, the router can exhibit oscillatory updates on hard prompts (rare positives
dominate, then vanish), slowing convergence and encouraging over-use of cheap experts. Empirically,
we observed that bands and band-specific temperatures are important (Table 7)

C.4 Dense Human Annotations

We considered using human annotations but intentionally avoided them: model pools change quickly,
so adding/replacing experts would require fresh labels that are costly and often unavailable. Instead,
we train with sparse correctness and cost signals, which remain portable across experts. If dense
feedback is available, it could help in several ways:

• Positive sets P (i) with preference structure. Replace binary "correct expert" labels with
pairwise preferences (cheap-and-good ≻ expensive-and-similar ≻ clearly wrong), yielding
band-aware positives and margin constraints. This can be implemented by expanding P (i)
and adding a lightweight pairwise ranking (DPO-style) regularizer within each cost band.

• Difficulty-aware reweighting. Use human "hardness" scores to upweight rare/hard prompts
when computing the contrastive loss, especially in higher cost bands. this could balance
the effective sample sizes across easy vs. hard (and cheap vs. expensive band) cases so the
gradient isn’t dominated by the abundant, easy examples.

• Band calibration. We can ask users how much quality they’re willing to trade for a lower
cost, then use that to set the cost bands and the penalty for picking more expensive models,
so the router’s choices match what users actually prefer.

D Experiments

D.1 Experimental Settings

Baselines We compare our proposed method against a comprehensive set of baselines designed
to capture key routing strategies and their trade-offs. Specifically, we include UMR [40], a recent
state-of-the-art technique that clusters prompt embeddings to route queries to LLM pools efficiently;
Thompson Sampling [48, 2], which frames routing as a bandit exploration-exploitation problem to
balance cost and accuracy dynamically; Pareto-optimal routing [34], a strategy that selects models
by explicitly considering the cost-accuracy Pareto frontier; and two extreme baselines—Random,
which selects models uniformly at random to represent naive routing without intelligent selection,
and Oracle (Clairvoyant Upper-Bound [40]), which always selects the most accurate model at
the lowest possible cost and thus represents a theoretical performance ceiling. Additionally, we
evaluate against parametric gating methods (Parametric Softmax Router) inspired by classical mixture-
of-experts architectures [62] and SoftMoE, which models router decisions via differentiable soft
gating functions [64]. Collectively, these baselines enable us to rigorously assess whether our
contrastive routing approach delivers meaningful improvements in performance, cost-efficiency, and
generalization capabilities relative to existing strategies.

21

Table 6: Full breakdown of training and testing categories used in OOD experiments.
Set Categories

Train (STEM)

asdiv, gsm8k, medmcqa, mathqa, piqa, logiqa, gpqa_main_cot_n_shot, gpqa_main_cot_zeroshot, gpqa_main_n_shot,
gpqa_main_zeroshot, gpqa_diamond_cot_n_shot, gpqa_diamond_cot_zeroshot, gpqa_diamond_n_shot, gpqa_diamond_zeroshot,
gpqa_extended_cot_n_shot, gpqa_extended_cot_zeroshot, gpqa_extended_n_shot, gpqa_extended_zeroshot, mmlu_college_medicine,
mmlu_astronomy, mmlu_conceptual_physics, mmlu_college_computer_science, mmlu_college_biology, mmlu_electrical_engineering,
mmlu_medical_genetics, mmlu_college_physics, mmlu_high_school_chemistry, mmlu_computer_security, mmlu_clinical_knowledge,
mmlu_virology, mmlu_machine_learning, mmlu_college_mathematics, mmlu_elementary_mathematics, mmlu_professional_medicine,
mmlu_college_chemistry, mmlu_high_school_biology, mmlu_anatomy, mmlu_high_school_statistics, mmlu_high_school_physics,
mmlu_high_school_computer_science, mmlu_high_school_mathematics

Test (Non-STEM)

social_iqa, truthfulqa_mc1, mmlu_high_school_european_history, mmlu_us_foreign_policy,
mmlu_high_school_microeconomics, mmlu_business_ethics, mmlu_public_relations, mmlu_jurisprudence, mmlu_nutrition,
mmlu_high_school_world_history, mmlu_miscellaneous, mmlu_formal_logic, mmlu_management, mmlu_high_school_psychology,
mmlu_high_school_government_and_politics, mmlu_high_school_geography, mmlu_world_religions, mmlu_international_law,
mmlu_human_aging, mmlu_sociology, mmlu_professional_accounting, mmlu_prehistory, mmlu_logical_fallacies, mmlu_moral_disputes,
mmlu_human_sexuality, mmlu_professional_psychology, mmlu_high_school_us_history, mmlu_high_school_macroeconomics,
mmlu_abstract_algebra, mmlu_global_facts, mmlu_security_studies, mmlu_philosophy, mmlu_professional_law, mmlu_moral_scenarios,
mmlu_marketing

Datasets, Benchmarks, and Evaluation We train our router and evaluate it on three datasets:
EmbedLLM [105], MixInstruct [39], and RouterBench [34]. For EmbedLLM and MixInstruct, we
sample 192 probes from their respective validation sets. Each probe is processed to extract logit-based
descriptors by capturing the top K = 256 tokens over a horizon of T = 10 tokens (Equation (2)),
resulting in a 256-dimensional vector per model. For RouterBench, we sample 192 probes from its
training set, ensuring these probes are excluded from the training data used for the contrastive router.
We compute perplexity-based descriptors on RouterBench and use GPT-2 [66]. On both EmbedLLM
and RouterBench, we use binary accuracy as the per-sample evaluation metric, meaning an LLM
response is classified strictly as correct or incorrect. For MixInstruct, we employ exponentiated
BARTScore [97] as the evaluation metric, following the approach in prior work [40, 39].

We evaluate each routing strategy using a deferral curve [40] which plots the average response
quality against the total inference cost. Sweeping the routing penalty parameter λ over the interval
λ∈ [0, λmax] (refer to Equation (9)) traces the deferral curve. For the EmbedLLM and MixInstruct
datasets, we define the cost of processing a prompt as the number of parameters in the LLM, serving
as a proxy for computational resources and latency. In the case of RouterBench, we utilize the
actual API call costs in USD, as provided in the dataset. Following [40] we employ evaluation
metrics including Area Under the Deferral Curve (AUDC), Query-Normalized Cost (QNC), and peak
accuracy. QNC is the minimum relative cost required to match the performance of the most accurate
tested LLM.

Training We use a frozen sentence-transformers/all-MiniLM-L6-v2[70] model as the em-
bedding backbone (Φ(x) in Section3) across all experiments. Our trainable router component is a
two-layer MLP, denoted as gθ(.), which projects prompt embeddings into the expert descriptor space.
We train our contrastive router on the training splits of each dataset, excluding the probe examples
from RouterBench. Training is performed for 10 epochs using the AdamW optimizer with a batch
size of 512 and a learning rate of 5 × 10−4. For the cost spectrum loss (Equation (8)), we set the
number of cost bands to K = 5 and the negative cost penalty to λ = 0.1. The hyperparameters for
the linear schedule of band-specific temperatures (Equation (7)) are set as α = 0.25 and τmin = 0.05.
All training and descriptor extraction are done on RTX6000Ada GPUs with ∼48GB GPU memory.

D.2 Results

D.2.1 Out-of-Distribution Prompt Experiments

In the out-of-distribution (OOD) experiments, we divided the prompts in the EmbedLLM dataset into
two challenging sets based on their categories: STEM-related (Science, Technology, Engineering,
and Mathematics) and Non-STEM-related (covering Social sciences, Humanities, Arts, etc.). A
detailed summary of the train and test categories for the OOD experiments is provided in Table 6.
Our splitting yielded 18,193 out of 36,054 total training questions and 1,060 distinct test prompts.
Training and testing is done on all available LLMs across both splits.

22

Figure 7: Deferral-curve metrics across different
numbers of cost bands.

Router (Bands) AUDC ↑ QNC ↓ Peak ↑
bands:2 0.5357 47.693 0.563
bands:5 0.5480 66.057 0.590
bands:11 0.5173 30.412 0.547
bands:15 0.4460 13.474 0.496
bands:20 0.4649 11.541 0.477

Table 8: Deferral-curve metrics across different
numbers of cost bands.

D.3 Ablation of Cost Bands

We measured AUCD and peak accuracy with and without bands. Table 7 presents these results,
showing having cost bands is indeed effective.

Setting AUCD Peak Accuracy
Without bands 0.4574 0.482
With bands 0.4951 0.540

Table 7: Effect of banded cost temperatures on model performance

D.3.1 Ablation of Number of Cost bands

Table 8 and Figure 7 show that performance varies with the number of cost bands. Using 5 bands
yields the best results, with the highest AUDC (0.5480) and Peak accuracy (0.590), suggesting a good
balance between flexibility and generalization. Fewer bands (e.g., 2) limit routing precision, while
too many bands (e.g., 15 or 20) degrade performance, likely due to over-fragmentation and increased
decision noise. This highlights the importance of tuning the number of bands to avoid both under-
and overfitting.

D.3.2 Ablation of the Number of Neighbors

Increasing k (the number of ANN neighbors selected before cost-aware scoring) generally provides
modest improvements before reaching a plateau. (The baseline UMR [40] also included an ablation
on k in a K-NN router.) Beyond a small K, the gains in accuracy or AUDC become minimal, while
both latency and the likelihood of choosing unnecessarily expensive experts increase. We selected a
default of K = 4 and it worked reasonably well so we did not do further hyperparameter tuning. We
performed an ablation on a subset of embedllm prompts. The results are shown in Table 9 which are
consistent with the trend observed in UMR.

K AUDC cost@max_acc

1 0.5186 7.665
2 0.5294 7.759
4 0.5344 7.831
8 0.5378 7.940

16 0.5402 8.034
Table 9: Effect of Number of Nearest Neighbors (K) on AUDC and Average Cost

23

Router AUDC max_acc cost@max_acc

γ=0 0.5518 0.5980 55.543
γ=0.1 0.5566 0.5850 44.499
γ=0.2 0.5526 0.5720 43.083
γ=0.3 0.5272 0.5307 14.901
γ=0.5 0.5129 0.5147 8.836

Table 10: Gamma ablation

α AUDC max_acc cost@max_acc

0 0.5567 0.5930 64.292
0.1 0.5704 0.6033 55.680
0.25 0.5701 0.6003 48.360
0.4 0.5557 0.5657 32.854
0.5 0.5448 0.5517 29.175

Table 11: Ablation over the band slope α in τk = τmin + α c̄k. Moderate α (0.1–0.25) maximizes
AUDC and lowers the cost required to reach peak accuracy; large α oversmooths high-cost bands and
reduces peak accuracy.

D.3.3 Ablation of Negative Cost Penalty

γ is a soft deterrent against assigning probability mass to costly, wrong experts during training
(it appears in the denominator of the band-softmax in the loss in Equation 8. We ablate this
hyperparameter in Table 10. If too small, the router learns to over-consider expensive hub experts
(cost creep). If too large, it over-penalizes cost and undertrains on valid high-cost positives, hurting
hard prompts. We picked 0.2 as it’s a light regularizer: enough to push apart costly negatives first,
but not so strong that it drowns the similarity signal for truly necessary expensive experts.

D.3.4 Ablation of Band-Specific Temperature Slope

In the band-specific temperature schedule τk = τmin + α c̄k (Equation 7), the slope α sets how much
flatter the softmax is in higher-cost bands. Increasing α raises τk for expensive bands, which flattens
their per-band softmax over experts. This reduces gradient variance in those bands (where each query
has fewer suitable positive) mitigating collapse onto a single rare positive and preventing cost-creep
during training.

See Table 11 for an ablation of this hyperparameter. As α increases from 0 to a moderate value
(0.1–0.25), AUDC improves and the cost@max_acc drops, indicating we reach peak quality at
lower cost, while max_acc remains comparable. For larger α (≥ 0.4), the high-cost bands become
oversmoothed, weakening discrimination among expensive experts; max_acc and AUDC decline
despite further cost reductions. This validates our choice of adopting a moderate setting (default
α=0.25, with 0.1 performing slightly better).

D.3.5 Ablation of Cheapest Cost Band

τmin is the softmax temperature for the cheapest cost band in Equation 7; all other bands inherit
τk = τmin + α c̄k. A very small τmin makes the cheap-band softmax sharp (highly discriminative but
prone to noisy, peaky gradients) while a larger τmin smooths the distribution, lowering variance but
also blurring differences among cheap experts.

Table 12 ablates τmin. Raising τmin from 0 to 0.02 increases AUDC and peak accuracy, showing that
a touch of smoothing stabilizes learning without hurting discrimination. At τmin = 0.05 we keep
nearly the same AUDC while cutting the cost needed to achieve peak accuracy by ≈ 14% (from
51.7 to 44.6). Pushing to τmin = 0.08 oversmoothes the cheap band: accuracy at low cost rises
slightly, but max_acc and AUDC both fall. Thus a moderate setting (τmin≈0.02–0.05) offers the
best efficiency–stability trade-off.

24

τmin AUDC max_acc cost@max_acc

0 0.5484 0.5877 51.232
0.02 0.5602 0.6037 51.704
0.05 0.5581 0.5883 44.633
0.08 0.5515 0.5707 38.395

Table 12: Ablation over the base temperature τmin (with α = 0.25). Moderate values improve AUDC
and lower the cost required for peak or near-peak accuracy; very small or large values underperform.

Router AUDC
MLP-x1 0.5189
MLP-x4 0.5384

Table 13: Effect of Router Size on AUDC

D.4 Larger Encoder Size

We kept the router is deliberately small: a frozen sentence-transformer plus a 2-layer MLP. We
performed an ablation where we increased the dimension of the middle layer in Table 13. As the
router size increases, AUDC improves, but latency also increases.

Broadly, future work can answer: How big must a model be to recognize a problem’s difficulty even
if it can’t solve the problem itself? Future work can also study whether size and fine-tuning helps and
whether RL on LLMs makes them able to purely as routers? Future work can also study different
model sizes to pinpoint when difficulty awareness kicks in.

D.5 Qualitative Insights and Interpretability of Routing

We performed an analysis on embedllm, which features a large pool of models with diverse costs.
Note that these observed trends are specific to the dataset and may not generalize to other datasets or
prompt pools with more challenging examples.

D.5.1 Selection Profiles

Qwen/Qwen1.5-0.5B-Chat (selected 91 times), google/gemma-2b-it (233), and
microsoft/phi-2 (292) are smaller experts that are selected frequently. Some expensive
experts (e.g., Qwen/Qwen-72B, ibivibiv/alpaca-dragon-72b-v1) are rarely chosen, since a
less costly correct expert typically exists in the dataset.

We also report per-expert selection rates by cost band in Table 14.

D.5.2 Routing Error Breakdown

We present a confusion-style breakdown of routing errors in Table 15

• Too cheap—the router selects a cheap but incorrect expert
• Too expensive—the router selects an unnecessarily costly expert, though correct
• Optimal—the router selects a correct and minimally costly expert

Band Index Count
0 533
1 837
2 805
3 694
4 131

Table 14: Prompt Counts by Band Index

25

Outcome Count
Too cheap 235
Too expensive 586
Optimal 773
No correct 63

Table 15: Routing Outcome Breakdown

Dataset ∆AUDC 95% CI p (bootstrap) c⋆ n10/n01 p (McNemar)

EMBEDLLM +0.053 [0.037, 0.069] 2.0× 10−4 6.08 560/366 9.76× 10−11

Table 16: Paired significance versus the strongest baseline. ∆AUDC = AUDCCSCR − AUDCUMR
(area under the deferral curve; higher is better). “95% CI” and the one-sided p come from a paired
bootstrap over prompts (N = 3000, B = 5000; H1 : ∆ > 0). c⋆ is the matched budget used for
McNemar. n10/n01 are discordant counts (CSCR correct / baseline correct), and “p (McNemar)” is
the one-sided exact binomial p for CSCR > baseline at c⋆. CIs that exclude 0 and small p-values
indicate a statistically significant improvement of CSCR.

• No correct—no available expert produces a correct answer

D.6 Statistical Significance

We perform full evaluation on Embedllm [105] using paired, prompt-level significance tests to
concretely assess statistical significance. Specifically, we computed a paired bootstrap [22] (sampling
3,000 prompts with replacement, 5,000 times) to obtain a 95% confidence interval for ∆AUDC =
AUDCCSCR − AUDCUMR (UMR is the best baseline overall). We also report a one-sided p-value
for the hypothesis ∆ > 0. Additionally, we ran McNemar’s [57] test at a matched budget (using the
median of the combined cost grids) to compare per-prompt wins and losses at equivalent operating
cost. These tests quantify uncertainty over the test prompts.

∆AUDC is positive with CIs that exclude zero, and McNemar shows win rates above 0.5 with very
small p-values at the matched budget. In other words: CSCR’s deferral curve encloses more area
(higher accuracy at the same or lower cost on average), and at a fixed budget it wins on more prompts
than it loses. This complements the Pareto-frontier plots: the gains are not an artifact of a single
operating point or random variation, but hold paired, prompt by prompt. The paired test establishes
statistical significance.

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide theoretical analysis in Section 5 and empirical results in Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Provided in Section 7

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

27

Justification: We provide a theoretical analysis with proofs and assumptions in Section 5.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experimental details are provided in Section 4 and D.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

28

Answer: [Yes]
Justification: All datasets used are open source. We will provide the code for our experiments
after paper decision is available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details are provided in Section 4 and D.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We could not provide error bars deviation due to computational costs. No
other prior work and baselines in our work do this either.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experimental details are provided in Section 4 and D.1. They include this
information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There are not ethical concerns that we know of.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: A discussion of broader impact is provided in Section 7.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

30

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All original owners of assets have been properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

31

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

32

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

33

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	LLM Routing
	Routing within MoE and Hybrid Architectures
	Model Fusion, Merging and Cascading

	Method
	Model Fingerprints
	Logit–Footprint Descriptors for Transparent LLMs
	Perplexity Fingerprints for Black‑Box or API‑Only LLMs

	Cost‑Spectrum Contrastive Router
	Background: The Classic InfoNCE Loss.
	Cost‑Spectrum InfoNCE.
	Inference Router

	Experiments
	Experimental Settings
	Results
	Generalization to New LLMs
	Generalization to Out-of-Distribution Prompts

	Ablative Studies
	Descriptor Choice
	Cost-Aware Training
	Cost-Spectrum Granularity

	Theoretical Analysis
	Excess‑risk of cost–spectrum k‑NN
	Consistency of Cost–Spectrum InfoNCE
	Discussion

	Conclusion
	Acknowledgments
	Related Work
	Enhancing and Optimizing LLMs
	LLM Routing
	Routing as Recommendation
	Scaling Laws and Architecture Trends
	Routing within MoE and Hybrid Architectures

	Proofs of Theoretical Results
	Notation and Preliminaries
	Proof of Theorem 5.2
	Proof of Lemma 5.3

	Method
	Logit-Footprint Descriptors
	The Step from Equation 3 to Equation 5
	Band-Specific Temperatures and Smoother Gradients
	Dense Human Annotations

	Experiments
	Experimental Settings
	Results
	Out-of-Distribution Prompt Experiments

	Ablation of Cost Bands
	Ablation of Number of Cost bands
	Ablation of the Number of Neighbors
	Ablation of Negative Cost Penalty
	Ablation of Band-Specific Temperature Slope
	Ablation of Cheapest Cost Band

	Larger Encoder Size
	Qualitative Insights and Interpretability of Routing
	Selection Profiles
	Routing Error Breakdown

	Statistical Significance

