Risk-MCTS: Table-Reward Enhanced LLLM with Monte Carlo Tree Search
for Interpretable Financial Risk Detection

Anonymous ACL submission

Abstract

Financial risk detection is an important yet
challenging task. Existing machine learning
or deep learning-based approaches have pri-
marily treated it as a binary classification task.
Although these approaches already achieved
good model performance, they still fail to cap-
ture complex risk patterns as well as to pro-
vide interpretable steps for financial risk detec-
tion. To address aforementioned research lim-
itations, we propose this Risk-MCTS, a novel
framework integrating large language model
with monte-carlo tree search method, which
leverages both cell data and headers in finan-
cial tables for step-by-step risk inference. To
better understanding financial tabular data, we
carefully design a table reward model which
quantitatively evaluates table content during
the analytical process, thereby enhancing the
detection of salient financial content. Exten-
sive experiments demonstrate that the proposed
Risk-MCTS achieves the SOTA model perfor-
mance on real world datasets with respect to a
number of evaluation criteria.

1 Introduction

Financial risk detection (Dyck et al., 2023) has long
been investigated in the domain of artificial intelli-
gence, which is an important yet challenging task
(Wang et al., 2024a). Existing approaches could
be roughly classified into two categories: tabular
data analysis-based approaches and textual data
analysis-based approaches.

For tabular data analysis approaches, most of the
approaches are machine learning or deep learning-
based approaches (Bao et al., 2019; Dechow et al.,
2010; Cecchini et al., 2010). They often treat fi-
nancial risk detection as a binary classification task
using numerical features extracted from financial
statements. For textual data analysis approaches, a
few natural language processing approaches have
been proposed for analyzing such as financial re-
ports and financial news. For instance, (Xiuguo

and Shengyong, 2022) analyzes the Management
Discussion and Analysis (MD&A) sections and
(Craja et al., 2020) combining quantitative data
with textual features.

Obviously, aforementioned approaches have
three fundamental limitations: limited semantic
understanding ability for tabular data, uninter-
pretable black-box model design and high an-
notation cost needed for model training. First for
limited semantic understanding ability for tab-
ular data, existing approaches treat financial state-
ments as pure numerical data, failing to detect the
complex risky patterns hidden across multiple table
columns, rows, headers or even across multiple ta-
bles.(WoZnica et al., 2023; Cheng et al., 2024) Sec-
ond for uninterpretable black-box model design,
most existing approaches typically design a non-
linear high-dimensional kernel mapping functions
or a non-linear neural activation layer, which fails
to explain how the detection results are generated
or lacks an interpretable reasoning process with de-
tailed steps.(Samek and Miiller, 2019; Zhou et al.,
2015) Third for high annotation cost challenge, it
is well known that most conventional approaches
need supervised training data as more as possible
to achieve the SOTA performance. However, real-
world financial risk cases are inherently limited and
seriously imbalanced which limits existing model
performance.

To address these challenges, we propose this
Risk-MCTS approach, which adapts Monte Carlo
Tree Search for financial risk detection by design-
ing domain-specific components enabling the em-
ployed LLMs to analyze financial statements (Fig-
ure 1). Unlike previous LLM-MCTS approaches
which focuses on general reasoning tasks, our
framework is specifically designed to cope with
the complex financial tabular data through follow-
ing components. A policy model reformulates risk
detection as a structural reasoning process. This
model decomposes complex financial evaluation
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Figure 1: Comparison between 3 financial risk detection methods. (a) Machine Learning method requires training
and output answers directly without intermediate steps. (b) Generic Reasoning with LLM can perform zero-shot
inference and give simple intermediate steps. (c) Risk-MCTS construct a Monte-Carlo search tree iteratively, it can
perform zero-shot inference and give intermediate steps in detail.

into interpretable sub-questions, enabling LL.Ms to
analyze both quantitative patterns and semantic re-
lationships hidden among the input financial state-
ments. A table operation model enhances data
analysis capabilities through a structured operation
pool. Inspired by (Wang et al., 2024b) and (Ji et al.,
2024), our model combines basic table operations
with financial operations, providing LLMs with
the necessary tools to process structured data sys-
tematically. A value model guides the tree search
process by evaluating the quality of intermediate
reasoning steps. This enables the framework to
construct verifiable reasoning chains for risk as-
sessment. Through the Monte Carlo Tree Search
process, inspired by (Qin et al., 2024) and (Huang
et al., 2024), our framework iteratively constructs a
solution space which balances exploration of differ-
ent analytical paths with exploitation of promising
reasoning directions. This approach enables effec-
tive risk detection even with limited training data,
as it leverages the pre-trained knowledge in LLMs
while maintaining interpretable decision processes.
Our contributions are summarized as below:

* We propose Risk-MCTS, a framework that in-
tegrates LLMs with Monte Carlo Tree Search
for financial risk detection, providing step-
by-step reasoning using both numerical and
semantic information.

* We develop a table operation model that pro-
cesses financial data through a combined pool
of tabular and financial operations. We design

a value-guided search mechanism that evalu-
ates intermediate reasoning steps by combin-
ing probability analysis with domain knowl-
edge.

* We evaluate Risk-MCTS on AAER and CS-
MAR datasets, showing improved perfor-
mance over both machine learning-based ap-
proaches and the SOTA LLMs while maintain-
ing interpretable reasoning.

2 Related Work

Financial Risk Detection Prior works on finan-
cial risk detection (Dechow et al., 2010; Cecchini
et al., 2010; Bao et al., 2019) primarily focused on
machine learning approaches for analyzing tabular
financial data. Most recently, methods leveraging
large language models have shown promise in this
domain. (Yang et al., 2023) demonstrated improved
risk detection by optimizing model performance
on key financial terminology. However, to the best
of our knowledge, no prior work has proposed a
comprehensive LLM-based framework specifically
designed for financial risk detection that maintains
both accuracy and interpretability.

MCTS-based Long Reasoning LLLM The chal-
lenge of enabling LLMs to perform complex, multi-
step reasoning has gained significant attention
since the release of OpenAl-ol and Deepseek-R1,
with numerous works emerging to enhance LLMs’
long-form reasoning capabilities (Qin et al., 2024;
Huang et al., 2024; DeepSeek-Al et al., 2025).
Among these approaches, Monte Carlo Tree Search



(MCTS) has emerged as a particularly promising
framework for improving LLM reasoning. (Zhang
et al., 2024a) pioneered this direction by proposing
a self-training framework that leverages MCTS to
generate trajectories from previous iterations, using
these to train the LLM and achieve enhanced perfor-
mance. Building on this work, (Zhao et al., 2024)
demonstrated how integrating LLMs with MCTS
could substantially improve reasoning capabilities
across various tasks. In the specific context of tab-
ular data, (Ji et al., 2024; Deng et al., 2023) have
made some efforts but still lack domain-specific
capabilities needed for financial risk detection.

3 The Proposed Approach

3.1 Overview

We propose Risk-MCTS, a framework that com-
bines Monte Carlo Tree Search with large lan-
guage models to address key challenges in finan-
cial risk detection. Unlike traditional methods
that treat risk detection as binary classification,
our approach decomposes complex financial anal-
ysis into interpretable reasoning steps. Following
(Lan et al., 2019; Luo et al., 2024; Zhang et al.,
2024a), we adapt the Monte Carlo Tree Search
methodology to financial risk detection through
three key innovations: (1) Domain-Specific Tree
Construction: While existing MCTS-LLM ap-
proaches (Zhang et al., 2024¢,b) focus on general
reasoning, Risk-MCTS constructs a specialized rea-
soning tree for financial analysis, implementing
the four MCTS processes (Chaslot et al., 2008)
with financial domain-specific components. (2)
Table-Reward Enhanced Evaluation: Inspired
by (Wang et al., 2024b) and (Ji et al., 2024), we
develop a specialized table reward mechanism that
combines probability analysis of LLM outputs with
financial domain knowledge for more reliable eval-
uation of intermediate reasoning steps. (3) Struc-
tured Operation Space: Risk-MCTS constrains
exploration through a carefully designed operation
pool that combines basic table operations with fi-
nancial computations, ensuring all reasoning steps
are grounded in valid financial analysis.

3.2 Problem Formulation

Given a company’s financial statements, we for-
malize the risk detection task as a structured rea-
soning problem over tabular financial data. Let
F = {T1,...,Ta} be the set of financial tables,
where each table T; consists of paired header and

data elements:
T, = {(hy, )} (1)

where h; represents the header of the j-th column,
t; represents the corresponding numerical data, and
N; is the number of columns in table 7.

The objective is to construct a reasoning chain
C = {(Q,T)) z’JL through Monte Carlo Tree
Search, where each step s; consists of: a question-
answer pair (); analyzing specific financial aspects,
a table operation sequence O; processing relevant
financial data an intermediate conclusion support-
ing the final risk assessment. At each step i:

Qit1 = 7(Qi, Ti)
Oi+1 = T(Qia E)
Ti—i—l = Execute(Oi+17 Tz)

where 7 is the policy model generating the next
analytical question, 7 is the table operation model
selecting appropriate financial operations, Execute
applies the selected operations to produce updated
table views.

The final output is a binary risk assessment y €
{0, 1} along with the complete reasoning chain C'
documenting the analytical process.

3.3 Framework Components

Policy Model guides the systematic exploration of
financial risk indicators through structured reason-
ing. Formally, given the current state (Q;, T;), the
policy model 7 generates the next partial solutions
step:

Qiv1 = m(Qi, T;) (2)

The process of building a Monte Carlo search tree
requires the Policy Model to generate several dif-
ferent answers based on the same input prompt. As
a consequence, we set temperature of Policy Model
to be greater than O to encourage diversity in the
generated reasoning paths.

Table Operation Model aims to enhance the un-
derstanding of tabular data through a structured op-
eration space O designed specifically for financial
statement analysis. The operation space consists of
two hierarchical levels:

0= Obasic U Oﬁnancial 3)
where basic operations handle table manipulation:

Obasic = {SELECT, FILTER,JOIN...}  (4)
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Figure 2: Construction of the Monte-Carlo search tree in Risk-MCTS. The framework consists of four phases:

Selection using UCB scores (Equation 16, Expansion

where Policy Model generates reasoning steps (Equation

2), Evaluation through the probability-based scoring, and Backpropagation. Right upper box: expansion phase
demonstrates how Policy Model and Table Operation Model interact via operations. Right lower box: evaluation
phase illustrates the value estimation process. Solid arrows indicate operations; dashed arrows show information

flow.

and financial operations compute domain-specific
metrics:

Ofinancial = {RATIO, YOY, GROWTH...} (5)

The hierarchical design of the operation space re-
flects two key considerations: (1) Basic opera-
tions ensure fundamental table manipulation ca-
pabilities that are essential for any financial analy-
sis, while (2) financial operations encode domain-
specific computations commonly used in risk as-
sessment. This separation allows the model to com-
bine generic table processing with specialized fi-
nancial analysis in a structured manner.

For each analytical step, the table operation
model 7 performs two sequential decisions, the
first is Operation Selection:

OPr,., =7(Qi,T;) €O (6)
The second is Argument Generation:

ArgSTi+1 = T(Qi, T, OPTZ.+1) S A<OPTi+1)
(7
where A(OPr,_ ) defines the valid argument space
for the selected operation. For example:

A(RATIO) = {(z,9)[z.y € Ty #0}  (®
A(YOY) = {a]a € T3, 3z, 1} ©)

The selected operation and arguments are then exe-
cuted through a parser to obtain a new sub-table:

Ti+1 = Parser(OPr,, (T3, Argsy, ) (10)

This structured approach ensures that all operations
are financially meaningful, arguments satisfy op-
erational constraints and the results maintain data
consistency.

Value Model evaluates the quality of intermedi-
ate generated steps through a probability-based ap-
proach that combines LLM confidence with finan-
cial domain knowledge. Rather than directly gener-
ating numerical scores, our approach leverages the
LLM’s next-token detection distribution for more
reliable evaluation. This design is motivated by
two factors: (1) LLMs typically show better cal-
ibration in their token probabilities compared to
direct numerical outputs, and (2) the distribution
over possible outcomes provides richer information
for guiding the search process.

Formally, we define a probability distribution
vector w over the model’s vocabulary, computed
from the LLLM’s token logits:

w = P(tn = Olt[:n_1)), V0 € vocab (11)

where (1., 1) represents the context tokens and
vocab represents vocabulary of the Policy Model.
This distribution is normalized through a softmax
function:
exp(z; ,
o(zj) = =g 1) J=1., K (2
2 k=1 €xp(2k)

For financial risk assessment, we specifically focus
on the probabilities of risk-indicating tokens:

Strue — P(tOkenrisk") (13)
Sfalse = P(tOkenno-risk") (14)

These probabilities are combined into a quality
score through a modified softmax function:

w — el’p(strue) (15)

exp(strue) + exp(Sfalse)

where w is quality value of current step.



AUC Recall Fl-score balanced accuracy Intermediate
LLM
Llama3.3-70b 0.551 - 0.185 0.551 -
Qwen2-72b 0.610 - 0.701 0.554 -
DeepSeek-R1 0.736 - 0.723 0.612 -
Grok-3 0.630 - 0.729 0.364 -
TableGpt2-7b 0.266 - 0.372 0.436 -
CcoTr
Llama3-70b-cot 0.662 - 0.853 0.677 2.48
Qwen2-72b-cot 0.703 - 0.736 0.797 2.73
DeepSeek-R1-cot 0.735 - 0.785 0.642 2.79
Grok-3-cot 0.649 - 0.773 0.637 2.41
TableGPT2-7b-cot  0.544 - 0.569 0.627 2.30
Machine Learning
NeuralNet 0.718 - 0.882 0.505 -
RandomForest 0.731 - 0.857 0.502 -
XGBoost 0.667 - 0.849 0.499 -
Ours
Risk-MCTS 0.814 - 0.893 0.870 3.31
T 10.6% - 3.7% 9.2% 18.6%

Table 1: AAER evaluation results. Intermediate refers to the human evaluation score of intermediate steps. Because
there are only 0.66% positive samples in AAER dataset, Recall may not reflect the full ability of models in this
dataset. The 1 refers to the improvement compared to the LLM-based approach.

3.4 Monte Carlo Tree Search

Our framework adapts the classical MCTS algo-
rithm for financial risk detection through domain-
specific selection, expansion, evaluation, and back-
propagation strategies. Each node in the search tree
represents a state (Q;, 7).

Selection In the selection stage, we select the node
that is most worth expanding as root node to ex-
pand. We use the Upper Confidence Bound (UCB)
as an indicator to determine whether a node is
worth expanding.

UCB are designed to balance between the exploita-
tion of high value steps and the exploration of less
explored steps.

UCB = Wegploration +cx* Vve:cploitation (16)

where c is is the exploration hyper-parameter.

In the traditional MCTS process, Vegpioitation 18
often calculated using simulations, which performs
poorly when the problem is too complex. In our
approach, we improve the UCB formula to bet-
ter adapt the financial tabular data by changing

Vveacploration and ‘/eacploitation-

Vvemploztatwn = nodev node) (17)
In visit_num,,,ge
Vvea:ploratzon (18)
> enirg ViSit_nUMp1q

where T},,4. and D,,,q. denotes the table and ques-
tion of the node respectively, visit_num denotes
the total number of visits to the node. Traditional
MCTS implementations often rely on random roll-
outs for evaluation, which becomes inefficient for

complex financial analysis. Our adaptation replaces
rollouts with the Value Model’s probability-based
scoring, making the search process more focused
and computationally efficient while maintaining
the exploration-exploitation balance through the
UCB mechanism.

Expansion After selecting the best node R, Unless
R reaching the end stage, we create child nodes of
R as new leaf nodes.

In Risk-MCTS, the policy model and table opera-
tion model is responsible for node expansion. We
prompt policy model and table operation model to
generate the next sub-solution D;; and sub-table
T;11 based on D; and T; using Equation 2 and
Equation 10.

Evaluation Traditional MCTS uses roll-out policy
to evaluate the quality of current step, which is
ineffective in a LLM-based MCTS framework. In
our approach, we use value model to judge the
quality of one step. we prompt value model to
generate quality of current step wjy1. W;yq will
be used in Selection phase.

Back-propagation The final phase updates node
values from the evaluated leaf node to the root.
Using the value w;y; from the Evaluation phase,
we recursively update the quality score w for each
node along the path:

N Ly T; 5 —+ w
Wnew (Qi, Ti) = (@i, Ti) - w(Q; ) i+1
(Qi7 Z)
(19)
where N (Q;,T;) denotes the visit count of state
(Q4,T;). This update rule ensures that frequently

visited promising paths maintain higher scores



while allowing for exploration of alternative rea-
soning chains.

4 Experiments

4.1 Datasets

We evaluate our approach on two complementary
financial risk datasets: the SEC’s AAER dataset
from the U.S. market and the CSMAR dataset from
the Chinese market. Both contain standard finan-
cial statements (balance sheet, income statement,
and cash flow statement) that are publicly available.

Following prior work (Bao et al., 2019), we use
the material accounting misstatements from SEC’s
AAERSs, containing 146,044 samples with 42 finan-
cial attributes each. The CSMAR dataset provides
Chinese financial data and violation information
from CSRC’s Enforcement Actions. After filtering
columns with >20% missing values, this dataset
contains 225,000 samples with 248 financial at-
tributes per sample.

4.2 Model Architecture and Baselines

Our Risk-MCTS framework uses llama-3-7b-
instruct (Illa, 2024) and glm-4-8b-chat (GLM
et al., 2024) as base models for the value model,
policy model, and table operation model, imple-
menting zero-shot learning (Kojima et al., 2023)
for task-specific adaptation. For comparison, we
evaluate against traditional machine learning ap-
proaches including NeuralNet, RandomForest,
and XGBoost models trained using Autogluon,
maintaining a 24-month gap between training and
test periods following (Dyck et al., 2007). We also
compare against larger language models including
llama-3.3-70b-instruct (lla, 2024), qwen2-72b
(Yang et al., 2024), DeepSeek-R1 (DeepSeek-Al
et al., 2025) and Grok-3 which have significantly
larger parameter counts (>70B) than our base mod-
els. These are evaluated both with and without
Chain of Thought (CoT) prompting (Wang et al.,
2024b). Additionally, we include tablegpt2-7b
(Su et al., 2024), a model specifically fine-tuned for
tabular data processing, to evaluate our framework
against domain-specialized approaches.

4.3 Evaluation Method

We evaluate model performance through both auto-
matic metrics and human evaluation. For automatic
evaluation, we focus on metrics suitable for imbal-
anced datasets: AUC, F1-score, and balanced accu-
racy. Due to the extreme class imbalance in AAER

(0.66% positive samples) and CSMAR (2.11% pos-
itive samples), we note that Recall may not be fully
representative, particularly for AAER. For human
evaluation, we randomly sample 100 predictions
from each model and have 3 financial experts rate
the quality of their intermediate reasoning steps
on a 0-5 scale, focusing on logical coherence and
financial soundness.

4.4 Main Results

4.4.1 Automatic Evaluation

Our experimental results (Table 2 and 3) demon-
strate how Risk-MCTS addresses the key chal-
lenges in financial risk detection:

First, Risk-MCTS significantly outperforms
larger language models, achieving a 31.9% im-
provement in AUC and 9.0% improvement in F1-
score on CSMAR compared to gqwen2-72b-cot.
This improvement, despite using fewer parameters
(7B vs 70B+).

Second, traditional machine learning methods
show strong performance on numerical features
but lack interpretability. While Random Forest
achieves competitive AUC (0.731 on both datasets),
Risk-MCTS provides comparable or better per-
formance while generating explanatory reasoning
chains.

Third, Chain of Thought (CoT) prompting
improves baseline LLM performance, but Risk-
MCTS shows superior gains (15.8% in AUC and
21.3% in F1-score on AAER). The value model’s
probability-based scoring mechanism proves par-
ticularly effective in guiding the search process, as
shown by the consistent performance across both
datasets despite their different distributions.

4.4.2 Human Evaluation

The human evaluation results are shown in the In-
termediate column in Table 2 and Table 3. Risk-
MCTS achieved significantly higher expert ratings
(3.48 on CSMAR, 3.31 on AAER) compared to
the best baseline models (2.73 and 2.63 respec-
tively), representing improvements of 32.3% and
44.4%. This substantial gap in interpretability
scores demonstrates that our framework’s struc-
tured reasoning approach produces more coherent
and financially sound analysis chains.

4.5 Ablation study

We evaluate the table operation model by compar-
ing three variants: (1) the full model, (2) basic op-
erations only (removing financial operations), and



AUC Recall Fl-score balanced accuracy Intermediate
LLM
Llama3.3-70b 0.526 0.714 0.325 0.526 -
Qwen2-72b 0.543  0.643 0.496 0.554 -
DeepSeek-R1 0.619  0.357 0.680 0.526 -
Grok-3 0.527  0.381 0.703 0.549 -
TableGPT2-7b 0.367  0.524 0.312 0.413 -
CcoTr
Llama3-70b-cot 0.541  0.262 0.785 0.535 2.53
Qwen2-72b-cot 0.565 0.714 0.810 0.557 2.54
DeepSeek-R1-cot ~ 0.593  0.286 0.786 0.546 2.63
Grok-3-cot 0.552  0.119 0.841 0.496 2.41
TableGPT2-7b-cot  0.469  0.238 0.728 0.493 2.19
Machine Learning
NeuralNet 0.659  0.725 0.856 0.504 -
RandomForest 0.731 0.730 0.863 0.502 -
XGBoost 0.736  0.718 0.738 0.499 -
Ours
Risk-MCTS 0.745  0.857 0.883 0.666 348
T 204% 20.0% 9.0% 19.6% 32.3%

Table 2: CSMAR evaluation results. Intermediate refers to the human evaluation score of intermediate steps. The
1 refers to the improvement compared to the LLM-based approach.
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Figure 3:

Total
146,044
225,000

Attributes
42
248

Positive )
964 0.66
4659 2.11

Datasets
AAER
CSMAR

Table 3: Information of two datasets, % represents the
proportion of positive examples in the dataset
AUC  F1-Score

Ours 0.814 0.893
Ours w/o financial OPs  0.758 0.499
Ours w/o full OPs 0.715 0.327

Table 4: Results of ablation study

(3) no structured operations. As shown in Table 4,
removing financial operations leads to a significant
drop in F1-score (0.893 — 0.499), while removing
all structured operations further degrades perfor-
mance (F1-score: 0.327). This degradation pattern
demonstrates that both general table operations and
domain-specific financial operations are crucial for
effective risk detection.

4.6 Score calculation formulas of value model

We evaluate the value model by prompting the
value model to directly output the score instead of

Score

0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Score

Score distribution of different models

using the next token logits as score. Additionally,
we modify the quality value calculation formula
(Equation 15) to:

Strue

S — 20
v Strue + Sfalse ( )

Results in Table 5 show that the direct score method
performs significantly worse than the next token
logits method (AUC: 0.642 vs 0.814), validating
our probability-based scoring mechanism. The
modified score calculation formula has minor im-
pact on performance (AUC: 0.810), suggesting the
robustness of our token probability approach.

4.7 Sensitivity Analysis

In order to verify the effectiveness of the MCTS
framework, we evaluate the performance of the
model under branch 1, 2 and 4, then compare their
performance. Results in Figure 5 show that build-
ing a tree instead of a chain significantly improves
performance (AUC: 0.546 vs 0.814). However,



Pormpt: I will give you a set of financial
statements of a listed company. Please analyze
whether the company has financial risks based on
these data.

Let's think step by step.

Financial Statements: ...(140 columns omitted)

Intermediate Steps:

Step 1: First calculate the Current Ratio and Quick
Ratio for the given data. (104 words ommited. The
current ratio is 1.89 and the quick ratio is 0.85.

Step 2: Analyze the results of the Current Ratio
and Quick Ratio.(78 words omitted). A Quick Ratio
less than 1 suggests that the company might have
difficulty meeting its short-term obligations without
liquidating inventory, indicating potential liquidity
risk.

Step 3: Calculate the Debt-to-Equity Ratio using
the data provided in the table.(49 words omitted).
The Debt-to-Equity Ratio is 1.89.

Step 4: Analyze the Debt-to-Equity Ratio. (63
words omitted). This might indicate that the
company is relying heavily on debt to finance its
operations, which could be a financial risk if the
company faces difficulties in repayment or if
interest rates rise.

Step 12: Analysis the Return on Assets (ROA) to
assess the company's overall efficiency in using its
assets to generate profit.(51 words omitted). The
Return on Assets (ROA) is 2.6%.

Output:
Based on analysis above, This company may have
some financial problems in debt aspect.

Figure 4: an example of Risk-MCTS expands the solu-
tion space for correct answers.

increasing the number of branches does not signif-
icantly improve performance, and the complexity
of the method increases significantly.

4.8 Score distribution of Value Models

In Figure 3 we compare the distribution of the
final risk score evaluated by the value model
in Risk-MCTS with the final risk score distri-
bution of all COT methods. We observe that
scores of COT methods are very unevenly dis-
tributed, reaching a very high proportion in a cer-
tain score range (Llama3-70b-cot>60%, Grok3-
cot>40%, TableGPT2-7B-cot>30%), which indi-
cates that these three models are likely to perform
poorly in risk prediction tasks. However, the score
distribution of the Risk-MCTS method is more
even and has a higher proportion of low scores,
which matches the imbalanced distribution of the
dataset and explains why the Risk-MCTS method
performs well in risk prediction tasks.

(a) AUC (b) F1-Score
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Figure 5: AUC and F1-Score in different branch settings

AUC  F1-Score
Original score 0.814 0.893
Direct score 0.642 0.261
modified formula 0.810 0.876

Table 5: Performance of Risk-MCTS under different
score calculation formulas

4.9 Case Study

To demonstrate the interpretability of Risk-MCTS,
we present a detailed example of reasoning trajec-
tory in Figure 4. The framework systematically
analyzes financial risk through multiple steps:

First, Risk-MCTS calculates key financial ratios
from the raw financial statements, focusing on in-
dicators that could signal potential risks. Then, it
systematically analyzes each ratio, providing de-
tailed reasoning for why certain patterns might indi-
cate financial irregularities. Finally, it synthesizes
these individual analyses into a comprehensive risk
assessment, supported by the evidence gathered
through each step.

This example illustrates how Risk-MCTS pro-
vides transparent and verifiable decision-making,
contrasting with the black-box nature of traditional
approaches.

5 Conclusions

In this work, we propose a novel framework called
Risk-MCTS to solve the financial risk detection
problem based on financial statements. This frame-
work is composed of LLM-based policy model,
value model and table operation model. In the it-
erative process of building a Monte Carlo search
tree, the policy model provides expansion policy,
the value model evaluates every node, and table
operation model is designed to modify tables in ev-
ery node and enhance the understanding of tabular
data. In our experiments, we compare Risk-MCTS
with base LLMs, LL.Ms with COT, LLM special-
ized for tabular data and machine learning methods.
Experiments show that we achieve SOTA in both
accuracy and explainability.



Limitations

Our research is a significant step forward in apply-
ing large language models to diverse downstream
tasks. However, there are still some challenges.
The main constraint is that our framework requires
LLM to generate text content iteratively, which
costs a large number of tokens and time, and We
have not yet found a more efficient way to build
a MCTS search tree. In addition, since our frame-
work requires LLM to generate multiple different
answers for the same input prompt, we need to set
a higher temperature for LLM, which will lead to
unstable generated results. Further research may
need to focus on these limitations and seek for a
better solution.
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