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Abstract001

Financial risk detection is an important yet002
challenging task. Existing machine learning003
or deep learning-based approaches have pri-004
marily treated it as a binary classification task.005
Although these approaches already achieved006
good model performance, they still fail to cap-007
ture complex risk patterns as well as to pro-008
vide interpretable steps for financial risk detec-009
tion. To address aforementioned research lim-010
itations, we propose this Risk-MCTS, a novel011
framework integrating large language model012
with monte-carlo tree search method, which013
leverages both cell data and headers in finan-014
cial tables for step-by-step risk inference. To015
better understanding financial tabular data, we016
carefully design a table reward model which017
quantitatively evaluates table content during018
the analytical process, thereby enhancing the019
detection of salient financial content. Exten-020
sive experiments demonstrate that the proposed021
Risk-MCTS achieves the SOTA model perfor-022
mance on real world datasets with respect to a023
number of evaluation criteria.024

1 Introduction025

Financial risk detection (Dyck et al., 2023) has long026

been investigated in the domain of artificial intelli-027

gence, which is an important yet challenging task028

(Wang et al., 2024a). Existing approaches could029

be roughly classified into two categories: tabular030

data analysis-based approaches and textual data031

analysis-based approaches.032

For tabular data analysis approaches, most of the033

approaches are machine learning or deep learning-034

based approaches (Bao et al., 2019; Dechow et al.,035

2010; Cecchini et al., 2010). They often treat fi-036

nancial risk detection as a binary classification task037

using numerical features extracted from financial038

statements. For textual data analysis approaches, a039

few natural language processing approaches have040

been proposed for analyzing such as financial re-041

ports and financial news. For instance, (Xiuguo042

and Shengyong, 2022) analyzes the Management 043

Discussion and Analysis (MD&A) sections and 044

(Craja et al., 2020) combining quantitative data 045

with textual features. 046

Obviously, aforementioned approaches have 047

three fundamental limitations: limited semantic 048

understanding ability for tabular data, uninter- 049

pretable black-box model design and high an- 050

notation cost needed for model training. First for 051

limited semantic understanding ability for tab- 052

ular data, existing approaches treat financial state- 053

ments as pure numerical data, failing to detect the 054

complex risky patterns hidden across multiple table 055

columns, rows, headers or even across multiple ta- 056

bles.(Woźnica et al., 2023; Cheng et al., 2024) Sec- 057

ond for uninterpretable black-box model design, 058

most existing approaches typically design a non- 059

linear high-dimensional kernel mapping functions 060

or a non-linear neural activation layer, which fails 061

to explain how the detection results are generated 062

or lacks an interpretable reasoning process with de- 063

tailed steps.(Samek and Müller, 2019; Zhou et al., 064

2015) Third for high annotation cost challenge, it 065

is well known that most conventional approaches 066

need supervised training data as more as possible 067

to achieve the SOTA performance. However, real- 068

world financial risk cases are inherently limited and 069

seriously imbalanced which limits existing model 070

performance. 071

To address these challenges, we propose this 072

Risk-MCTS approach, which adapts Monte Carlo 073

Tree Search for financial risk detection by design- 074

ing domain-specific components enabling the em- 075

ployed LLMs to analyze financial statements (Fig- 076

ure 1). Unlike previous LLM-MCTS approaches 077

which focuses on general reasoning tasks, our 078

framework is specifically designed to cope with 079

the complex financial tabular data through follow- 080

ing components. A policy model reformulates risk 081

detection as a structural reasoning process. This 082

model decomposes complex financial evaluation 083
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Figure 1: Comparison between 3 financial risk detection methods. (a) Machine Learning method requires training
and output answers directly without intermediate steps. (b) Generic Reasoning with LLM can perform zero-shot
inference and give simple intermediate steps. (c) Risk-MCTS construct a Monte-Carlo search tree iteratively, it can
perform zero-shot inference and give intermediate steps in detail.

into interpretable sub-questions, enabling LLMs to084

analyze both quantitative patterns and semantic re-085

lationships hidden among the input financial state-086

ments. A table operation model enhances data087

analysis capabilities through a structured operation088

pool. Inspired by (Wang et al., 2024b) and (Ji et al.,089

2024), our model combines basic table operations090

with financial operations, providing LLMs with091

the necessary tools to process structured data sys-092

tematically. A value model guides the tree search093

process by evaluating the quality of intermediate094

reasoning steps. This enables the framework to095

construct verifiable reasoning chains for risk as-096

sessment. Through the Monte Carlo Tree Search097

process, inspired by (Qin et al., 2024) and (Huang098

et al., 2024), our framework iteratively constructs a099

solution space which balances exploration of differ-100

ent analytical paths with exploitation of promising101

reasoning directions. This approach enables effec-102

tive risk detection even with limited training data,103

as it leverages the pre-trained knowledge in LLMs104

while maintaining interpretable decision processes.105

Our contributions are summarized as below:106

• We propose Risk-MCTS, a framework that in-107

tegrates LLMs with Monte Carlo Tree Search108

for financial risk detection, providing step-109

by-step reasoning using both numerical and110

semantic information.111

• We develop a table operation model that pro-112

cesses financial data through a combined pool113

of tabular and financial operations. We design114

a value-guided search mechanism that evalu- 115

ates intermediate reasoning steps by combin- 116

ing probability analysis with domain knowl- 117

edge. 118

• We evaluate Risk-MCTS on AAER and CS- 119

MAR datasets, showing improved perfor- 120

mance over both machine learning-based ap- 121

proaches and the SOTA LLMs while maintain- 122

ing interpretable reasoning. 123

2 Related Work 124

Financial Risk Detection Prior works on finan- 125

cial risk detection (Dechow et al., 2010; Cecchini 126

et al., 2010; Bao et al., 2019) primarily focused on 127

machine learning approaches for analyzing tabular 128

financial data. Most recently, methods leveraging 129

large language models have shown promise in this 130

domain. (Yang et al., 2023) demonstrated improved 131

risk detection by optimizing model performance 132

on key financial terminology. However, to the best 133

of our knowledge, no prior work has proposed a 134

comprehensive LLM-based framework specifically 135

designed for financial risk detection that maintains 136

both accuracy and interpretability. 137

MCTS-based Long Reasoning LLM The chal- 138

lenge of enabling LLMs to perform complex, multi- 139

step reasoning has gained significant attention 140

since the release of OpenAI-o1 and Deepseek-R1, 141

with numerous works emerging to enhance LLMs’ 142

long-form reasoning capabilities (Qin et al., 2024; 143

Huang et al., 2024; DeepSeek-AI et al., 2025). 144

Among these approaches, Monte Carlo Tree Search 145
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(MCTS) has emerged as a particularly promising146

framework for improving LLM reasoning. (Zhang147

et al., 2024a) pioneered this direction by proposing148

a self-training framework that leverages MCTS to149

generate trajectories from previous iterations, using150

these to train the LLM and achieve enhanced perfor-151

mance. Building on this work, (Zhao et al., 2024)152

demonstrated how integrating LLMs with MCTS153

could substantially improve reasoning capabilities154

across various tasks. In the specific context of tab-155

ular data, (Ji et al., 2024; Deng et al., 2023) have156

made some efforts but still lack domain-specific157

capabilities needed for financial risk detection.158

3 The Proposed Approach159

3.1 Overview160

We propose Risk-MCTS, a framework that com-161

bines Monte Carlo Tree Search with large lan-162

guage models to address key challenges in finan-163

cial risk detection. Unlike traditional methods164

that treat risk detection as binary classification,165

our approach decomposes complex financial anal-166

ysis into interpretable reasoning steps. Following167

(Lan et al., 2019; Luo et al., 2024; Zhang et al.,168

2024a), we adapt the Monte Carlo Tree Search169

methodology to financial risk detection through170

three key innovations: (1) Domain-Specific Tree171

Construction: While existing MCTS-LLM ap-172

proaches (Zhang et al., 2024c,b) focus on general173

reasoning, Risk-MCTS constructs a specialized rea-174

soning tree for financial analysis, implementing175

the four MCTS processes (Chaslot et al., 2008)176

with financial domain-specific components. (2)177

Table-Reward Enhanced Evaluation: Inspired178

by (Wang et al., 2024b) and (Ji et al., 2024), we179

develop a specialized table reward mechanism that180

combines probability analysis of LLM outputs with181

financial domain knowledge for more reliable eval-182

uation of intermediate reasoning steps. (3) Struc-183

tured Operation Space: Risk-MCTS constrains184

exploration through a carefully designed operation185

pool that combines basic table operations with fi-186

nancial computations, ensuring all reasoning steps187

are grounded in valid financial analysis.188

3.2 Problem Formulation189

Given a company’s financial statements, we for-190

malize the risk detection task as a structured rea-191

soning problem over tabular financial data. Let192

F = {T1, ..., TM} be the set of financial tables,193

where each table Ti consists of paired header and194

data elements: 195

Ti = {(hj , tj)}Ni
j=1 (1) 196

where hj represents the header of the j-th column, 197

tj represents the corresponding numerical data, and 198

Ni is the number of columns in table Ti. 199

The objective is to construct a reasoning chain 200

C = {(Qi, Ti)}Ni=1 through Monte Carlo Tree 201

Search, where each step si consists of: a question- 202

answer pair Qi analyzing specific financial aspects, 203

a table operation sequence Oi processing relevant 204

financial data an intermediate conclusion support- 205

ing the final risk assessment. At each step i: 206

Qi+1 = π(Qi, Ti) 207

Oi+1 = τ(Qi, Ti) 208

Ti+1 = Execute(Oi+1, Ti) 209

where π is the policy model generating the next 210

analytical question, τ is the table operation model 211

selecting appropriate financial operations, Execute 212

applies the selected operations to produce updated 213

table views. 214

The final output is a binary risk assessment y ∈ 215

{0, 1} along with the complete reasoning chain C 216

documenting the analytical process. 217

3.3 Framework Components 218

Policy Model guides the systematic exploration of 219

financial risk indicators through structured reason- 220

ing. Formally, given the current state (Qi, Ti), the 221

policy model π generates the next partial solutions 222

step: 223

Qi+1 = π(Qi, Ti) (2) 224

The process of building a Monte Carlo search tree 225

requires the Policy Model to generate several dif- 226

ferent answers based on the same input prompt. As 227

a consequence, we set temperature of Policy Model 228

to be greater than 0 to encourage diversity in the 229

generated reasoning paths. 230

Table Operation Model aims to enhance the un- 231

derstanding of tabular data through a structured op- 232

eration space O designed specifically for financial 233

statement analysis. The operation space consists of 234

two hierarchical levels: 235

O = Obasic ∪ Ofinancial (3) 236

where basic operations handle table manipulation: 237

Obasic = {SELECT,FILTER, JOIN...} (4) 238
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Figure 2: Construction of the Monte-Carlo search tree in Risk-MCTS. The framework consists of four phases:
Selection using UCB scores (Equation 16, Expansion where Policy Model generates reasoning steps (Equation
2), Evaluation through the probability-based scoring, and Backpropagation. Right upper box: expansion phase
demonstrates how Policy Model and Table Operation Model interact via operations. Right lower box: evaluation
phase illustrates the value estimation process. Solid arrows indicate operations; dashed arrows show information
flow.

and financial operations compute domain-specific239

metrics:240

Ofinancial = {RATIO,YOY,GROWTH...} (5)241

The hierarchical design of the operation space re-242

flects two key considerations: (1) Basic opera-243

tions ensure fundamental table manipulation ca-244

pabilities that are essential for any financial analy-245

sis, while (2) financial operations encode domain-246

specific computations commonly used in risk as-247

sessment. This separation allows the model to com-248

bine generic table processing with specialized fi-249

nancial analysis in a structured manner.250

For each analytical step, the table operation251

model τ performs two sequential decisions, the252

first is Operation Selection:253

OPTi+1 = τ(Qi, Ti) ∈ O (6)254

The second is Argument Generation:255

ArgsTi+1
= τ(Qi, Ti, OPTi+1) ∈ A(OPTi+1)

(7)256

where A(OPTi+1) defines the valid argument space257

for the selected operation. For example:258

A(RATIO) = {(x, y)|x, y ∈ Ti, y ̸= 0} (8)259

A(YOY) = {x|x ∈ Ti,∃xt−1} (9)260

The selected operation and arguments are then exe-261

cuted through a parser to obtain a new sub-table:262

Ti+1 = Parser(OPTi+1(Ti,ArgsTi+1
)) (10)263

This structured approach ensures that all operations264

are financially meaningful, arguments satisfy op-265

erational constraints and the results maintain data266

consistency.267

Value Model evaluates the quality of intermedi- 268

ate generated steps through a probability-based ap- 269

proach that combines LLM confidence with finan- 270

cial domain knowledge. Rather than directly gener- 271

ating numerical scores, our approach leverages the 272

LLM’s next-token detection distribution for more 273

reliable evaluation. This design is motivated by 274

two factors: (1) LLMs typically show better cal- 275

ibration in their token probabilities compared to 276

direct numerical outputs, and (2) the distribution 277

over possible outcomes provides richer information 278

for guiding the search process. 279

Formally, we define a probability distribution 280

vector ω over the model’s vocabulary, computed 281

from the LLM’s token logits: 282

ω = P(tn = θ|t[1:n−1]), ∀θ ∈ vocab (11) 283

where t[1:n−1] represents the context tokens and 284

vocab represents vocabulary of the Policy Model. 285

This distribution is normalized through a softmax 286

function: 287

σ(zj) =
exp(zj)∑K
k=1 exp(zk)

, j = 1, ...,K (12) 288

For financial risk assessment, we specifically focus 289

on the probabilities of risk-indicating tokens: 290

Strue = P (tokenrisk|·) (13) 291

Sfalse = P (tokenno-risk|·) (14) 292

These probabilities are combined into a quality 293

score through a modified softmax function: 294

w =
exp(Strue)

exp(Strue) + exp(Sfalse)
(15) 295

where w is quality value of current step. 296
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AUC Recall F1-score balanced accuracy Intermediate
LLM

Llama3.3-70b 0.551 - 0.185 0.551 -
Qwen2-72b 0.610 - 0.701 0.554 -

DeepSeek-R1 0.736 - 0.723 0.612 -
Grok-3 0.630 - 0.729 0.364 -

TableGpt2-7b 0.266 - 0.372 0.436 -
COT

Llama3-70b-cot 0.662 - 0.853 0.677 2.48
Qwen2-72b-cot 0.703 - 0.736 0.797 2.73

DeepSeek-R1-cot 0.735 - 0.785 0.642 2.79
Grok-3-cot 0.649 - 0.773 0.637 2.41

TableGPT2-7b-cot 0.544 - 0.569 0.627 2.30
Machine Learning

NeuralNet 0.718 - 0.882 0.505 -
RandomForest 0.731 - 0.857 0.502 -

XGBoost 0.667 - 0.849 0.499 -
Ours

Risk-MCTS 0.814 - 0.893 0.870 3.31
↑ 10.6% - 3.7% 9.2% 18.6%

Table 1: AAER evaluation results. Intermediate refers to the human evaluation score of intermediate steps. Because
there are only 0.66% positive samples in AAER dataset, Recall may not reflect the full ability of models in this
dataset. The ↑ refers to the improvement compared to the LLM-based approach.

3.4 Monte Carlo Tree Search297

Our framework adapts the classical MCTS algo-298

rithm for financial risk detection through domain-299

specific selection, expansion, evaluation, and back-300

propagation strategies. Each node in the search tree301

represents a state (Qi, Ti).302

Selection In the selection stage, we select the node303

that is most worth expanding as root node to ex-304

pand. We use the Upper Confidence Bound (UCB)305

as an indicator to determine whether a node is306

worth expanding.307

UCB are designed to balance between the exploita-308

tion of high value steps and the exploration of less309

explored steps.310

UCB = wexploration + c ∗ Vexploitation (16)311

where c is is the exploration hyper-parameter.312

In the traditional MCTS process, Vexploitation is313

often calculated using simulations, which performs314

poorly when the problem is too complex. In our315

approach, we improve the UCB formula to bet-316

ter adapt the financial tabular data by changing317

Vexploration and Vexploitation.318

Vexploitation = µ(Tnode, Dnode) (17)319

Vexploration =

√
ln visit_numnode∑
child

visit_numchild
(18)320

where Tnode and Dnode denotes the table and ques-321

tion of the node respectively, visit_num denotes322

the total number of visits to the node. Traditional323

MCTS implementations often rely on random roll-324

outs for evaluation, which becomes inefficient for325

complex financial analysis. Our adaptation replaces 326

rollouts with the Value Model’s probability-based 327

scoring, making the search process more focused 328

and computationally efficient while maintaining 329

the exploration-exploitation balance through the 330

UCB mechanism. 331

Expansion After selecting the best node R, Unless 332

R reaching the end stage, we create child nodes of 333

R as new leaf nodes. 334

In Risk-MCTS, the policy model and table opera- 335

tion model is responsible for node expansion. We 336

prompt policy model and table operation model to 337

generate the next sub-solution Di+1 and sub-table 338

Ti+1 based on Di and Ti using Equation 2 and 339

Equation 10. 340

Evaluation Traditional MCTS uses roll-out policy 341

to evaluate the quality of current step, which is 342

ineffective in a LLM-based MCTS framework. In 343

our approach, we use value model to judge the 344

quality of one step. we prompt value model to 345

generate quality of current step wi+1. Wi+1 will 346

be used in Selection phase. 347

Back-propagation The final phase updates node 348

values from the evaluated leaf node to the root. 349

Using the value wi+1 from the Evaluation phase, 350

we recursively update the quality score w for each 351

node along the path: 352

wnew(Qi, Ti) =
N(Qi, Ti) · w(Qi, Ti) + wi+1

N(Qi, Ti) + 1
(19) 353

where N(Qi, Ti) denotes the visit count of state 354

(Qi, Ti). This update rule ensures that frequently 355

visited promising paths maintain higher scores 356
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while allowing for exploration of alternative rea-357

soning chains.358

4 Experiments359

4.1 Datasets360

We evaluate our approach on two complementary361

financial risk datasets: the SEC’s AAER dataset362

from the U.S. market and the CSMAR dataset from363

the Chinese market. Both contain standard finan-364

cial statements (balance sheet, income statement,365

and cash flow statement) that are publicly available.366

Following prior work (Bao et al., 2019), we use367

the material accounting misstatements from SEC’s368

AAERs, containing 146,044 samples with 42 finan-369

cial attributes each. The CSMAR dataset provides370

Chinese financial data and violation information371

from CSRC’s Enforcement Actions. After filtering372

columns with >20% missing values, this dataset373

contains 225,000 samples with 248 financial at-374

tributes per sample.375

4.2 Model Architecture and Baselines376

Our Risk-MCTS framework uses llama-3-7b-377

instruct (lla, 2024) and glm-4-8b-chat (GLM378

et al., 2024) as base models for the value model,379

policy model, and table operation model, imple-380

menting zero-shot learning (Kojima et al., 2023)381

for task-specific adaptation. For comparison, we382

evaluate against traditional machine learning ap-383

proaches including NeuralNet, RandomForest,384

and XGBoost models trained using Autogluon,385

maintaining a 24-month gap between training and386

test periods following (Dyck et al., 2007). We also387

compare against larger language models including388

llama-3.3-70b-instruct (lla, 2024), qwen2-72b389

(Yang et al., 2024), DeepSeek-R1 (DeepSeek-AI390

et al., 2025) and Grok-3 which have significantly391

larger parameter counts (>70B) than our base mod-392

els. These are evaluated both with and without393

Chain of Thought (CoT) prompting (Wang et al.,394

2024b). Additionally, we include tablegpt2-7b395

(Su et al., 2024), a model specifically fine-tuned for396

tabular data processing, to evaluate our framework397

against domain-specialized approaches.398

4.3 Evaluation Method399

We evaluate model performance through both auto-400

matic metrics and human evaluation. For automatic401

evaluation, we focus on metrics suitable for imbal-402

anced datasets: AUC, F1-score, and balanced accu-403

racy. Due to the extreme class imbalance in AAER404

(0.66% positive samples) and CSMAR (2.11% pos- 405

itive samples), we note that Recall may not be fully 406

representative, particularly for AAER. For human 407

evaluation, we randomly sample 100 predictions 408

from each model and have 3 financial experts rate 409

the quality of their intermediate reasoning steps 410

on a 0-5 scale, focusing on logical coherence and 411

financial soundness. 412

4.4 Main Results 413

4.4.1 Automatic Evaluation 414

Our experimental results (Table 2 and 3) demon- 415

strate how Risk-MCTS addresses the key chal- 416

lenges in financial risk detection: 417

First, Risk-MCTS significantly outperforms 418

larger language models, achieving a 31.9% im- 419

provement in AUC and 9.0% improvement in F1- 420

score on CSMAR compared to qwen2-72b-cot. 421

This improvement, despite using fewer parameters 422

(7B vs 70B+). 423

Second, traditional machine learning methods 424

show strong performance on numerical features 425

but lack interpretability. While Random Forest 426

achieves competitive AUC (0.731 on both datasets), 427

Risk-MCTS provides comparable or better per- 428

formance while generating explanatory reasoning 429

chains. 430

Third, Chain of Thought (CoT) prompting 431

improves baseline LLM performance, but Risk- 432

MCTS shows superior gains (15.8% in AUC and 433

21.3% in F1-score on AAER). The value model’s 434

probability-based scoring mechanism proves par- 435

ticularly effective in guiding the search process, as 436

shown by the consistent performance across both 437

datasets despite their different distributions. 438

4.4.2 Human Evaluation 439

The human evaluation results are shown in the In- 440

termediate column in Table 2 and Table 3. Risk- 441

MCTS achieved significantly higher expert ratings 442

(3.48 on CSMAR, 3.31 on AAER) compared to 443

the best baseline models (2.73 and 2.63 respec- 444

tively), representing improvements of 32.3% and 445

44.4%. This substantial gap in interpretability 446

scores demonstrates that our framework’s struc- 447

tured reasoning approach produces more coherent 448

and financially sound analysis chains. 449

4.5 Ablation study 450

We evaluate the table operation model by compar- 451

ing three variants: (1) the full model, (2) basic op- 452

erations only (removing financial operations), and 453
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AUC Recall F1-score balanced accuracy Intermediate
LLM

Llama3.3-70b 0.526 0.714 0.325 0.526 -
Qwen2-72b 0.543 0.643 0.496 0.554 -

DeepSeek-R1 0.619 0.357 0.680 0.526 -
Grok-3 0.527 0.381 0.703 0.549 -

TableGPT2-7b 0.367 0.524 0.312 0.413 -
COT

Llama3-70b-cot 0.541 0.262 0.785 0.535 2.53
Qwen2-72b-cot 0.565 0.714 0.810 0.557 2.54

DeepSeek-R1-cot 0.593 0.286 0.786 0.546 2.63
Grok-3-cot 0.552 0.119 0.841 0.496 2.41

TableGPT2-7b-cot 0.469 0.238 0.728 0.493 2.19
Machine Learning

NeuralNet 0.659 0.725 0.856 0.504 -
RandomForest 0.731 0.730 0.863 0.502 -

XGBoost 0.736 0.718 0.738 0.499 -
Ours

Risk-MCTS 0.745 0.857 0.883 0.666 3.48
↑ 20.4% 20.0% 9.0% 19.6% 32.3%

Table 2: CSMAR evaluation results. Intermediate refers to the human evaluation score of intermediate steps. The
↑ refers to the improvement compared to the LLM-based approach.

Figure 3: Score distribution of different models

Datasets Total Positive % Attributes
AAER 146,044 964 0.66 42

CSMAR 225,000 4659 2.11 248

Table 3: Information of two datasets,% represents the
proportion of positive examples in the dataset

AUC F1-Score
Ours 0.814 0.893

Ours w/o financial OPs 0.758 0.499
Ours w/o full OPs 0.715 0.327

Table 4: Results of ablation study

(3) no structured operations. As shown in Table 4,454

removing financial operations leads to a significant455

drop in F1-score (0.893 → 0.499), while removing456

all structured operations further degrades perfor-457

mance (F1-score: 0.327). This degradation pattern458

demonstrates that both general table operations and459

domain-specific financial operations are crucial for460

effective risk detection.461

4.6 Score calculation formulas of value model462

We evaluate the value model by prompting the463

value model to directly output the score instead of464

using the next token logits as score. Additionally, 465

we modify the quality value calculation formula 466

(Equation 15) to: 467

w =
Strue

Strue + Sfalse
(20) 468

Results in Table 5 show that the direct score method 469

performs significantly worse than the next token 470

logits method (AUC: 0.642 vs 0.814), validating 471

our probability-based scoring mechanism. The 472

modified score calculation formula has minor im- 473

pact on performance (AUC: 0.810), suggesting the 474

robustness of our token probability approach. 475

4.7 Sensitivity Analysis 476

In order to verify the effectiveness of the MCTS 477

framework, we evaluate the performance of the 478

model under branch 1, 2 and 4, then compare their 479

performance. Results in Figure 5 show that build- 480

ing a tree instead of a chain significantly improves 481

performance (AUC: 0.546 vs 0.814). However, 482
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Figure 4: an example of Risk-MCTS expands the solu-
tion space for correct answers.

increasing the number of branches does not signif-483

icantly improve performance, and the complexity484

of the method increases significantly.485

4.8 Score distribution of Value Models486

In Figure 3 we compare the distribution of the487

final risk score evaluated by the value model488

in Risk-MCTS with the final risk score distri-489

bution of all COT methods. We observe that490

scores of COT methods are very unevenly dis-491

tributed, reaching a very high proportion in a cer-492

tain score range (Llama3-70b-cot>60%, Grok3-493

cot>40%, TableGPT2-7B-cot>30%), which indi-494

cates that these three models are likely to perform495

poorly in risk prediction tasks. However, the score496

distribution of the Risk-MCTS method is more497

even and has a higher proportion of low scores,498

which matches the imbalanced distribution of the499

dataset and explains why the Risk-MCTS method500

performs well in risk prediction tasks.501

Figure 5: AUC and F1-Score in different branch settings

AUC F1-Score
Original score 0.814 0.893
Direct score 0.642 0.261

modified formula 0.810 0.876

Table 5: Performance of Risk-MCTS under different
score calculation formulas

4.9 Case Study 502

To demonstrate the interpretability of Risk-MCTS, 503

we present a detailed example of reasoning trajec- 504

tory in Figure 4. The framework systematically 505

analyzes financial risk through multiple steps: 506

First, Risk-MCTS calculates key financial ratios 507

from the raw financial statements, focusing on in- 508

dicators that could signal potential risks. Then, it 509

systematically analyzes each ratio, providing de- 510

tailed reasoning for why certain patterns might indi- 511

cate financial irregularities. Finally, it synthesizes 512

these individual analyses into a comprehensive risk 513

assessment, supported by the evidence gathered 514

through each step. 515

This example illustrates how Risk-MCTS pro- 516

vides transparent and verifiable decision-making, 517

contrasting with the black-box nature of traditional 518

approaches. 519

5 Conclusions 520

In this work, we propose a novel framework called 521

Risk-MCTS to solve the financial risk detection 522

problem based on financial statements. This frame- 523

work is composed of LLM-based policy model, 524

value model and table operation model. In the it- 525

erative process of building a Monte Carlo search 526

tree, the policy model provides expansion policy, 527

the value model evaluates every node, and table 528

operation model is designed to modify tables in ev- 529

ery node and enhance the understanding of tabular 530

data. In our experiments, we compare Risk-MCTS 531

with base LLMs, LLMs with COT, LLM special- 532

ized for tabular data and machine learning methods. 533

Experiments show that we achieve SOTA in both 534

accuracy and explainability. 535
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Limitations536

Our research is a significant step forward in apply-537

ing large language models to diverse downstream538

tasks. However, there are still some challenges.539

The main constraint is that our framework requires540

LLM to generate text content iteratively, which541

costs a large number of tokens and time, and We542

have not yet found a more efficient way to build543

a MCTS search tree. In addition, since our frame-544

work requires LLM to generate multiple different545

answers for the same input prompt, we need to set546

a higher temperature for LLM, which will lead to547

unstable generated results. Further research may548

need to focus on these limitations and seek for a549

better solution.550
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