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Abstract

Large Language Models (LLMs), particularly001
Code LLMs, have demonstrated impressive per-002
formance in code generation. Current research003
primarily focuses on the correctness of gen-004
erated code, while efficiency remains less ex-005
plored. Recent works have focused on modify-006
ing the initial version of the code to improve007
its efficiency. However, such refinements are008
limited by the algorithmic design and overall009
logic of the initial code, resulting in only in-010
cremental improvements. In contrast, when hu-011
man developers write high-quality code, they012
typically begin by designing several potential013
solutions at the logical level, evaluating vari-014
ous algorithms and their complexities, and then015
proceeding to implement and optimize the so-016
lution. In this study, we introduce LLM4EFFI:017
Large Language Model for Code Efficiency, a018
novel framework that enables LLMs to gen-019
erate code that balances both efficiency and020
correctness. Specifically, LLM4EFFI divides021
the efficiency optimization process into two022
domains: algorithmic exploration in the logic023
domain and implementation optimization in the024
code domain. The correctness of the code is025
then guaranteed through a synthetic test case026
refinement process. This approach, which pri-027
oritizes efficiency before ensuring correctness,028
offers a new paradigm for efficient code genera-029
tion. Experiments demonstrate that LLM4EFFI030
consistently improves both efficiency and cor-031
rectness, achieving new state-of-the-art perfor-032
mance in code efficiency benchmarks across033
various LLM backbones.034

1 Introduction.035

Large Language Models (LLMs), particularly those036

specialized in code, are revolutionizing the field of037

software engineering at an unprecedented pace. A038

significant area of advancement lies in automated039

code generation (Liu et al., 2023), where LLMs040

such as GPT-4o (OpenAI, 2024), Gemini (Team041

et al., 2023), the DeepSeek Series (DeepSeek-AI,042

Existing works: Generate code and efficiency optimization

Given Task Generated Code Optimization Strategy 
& Execution profile

algorithm practice optimization

synthetic test cases Given Task
“checked” test cases 

generated code

LLM4EFFI (ours): Algorithm Exploration and
Implementation Optimization, then Refinement

Figure 1: Comparison of LLM4EFFI with existing meth-
ods. Existing methods generate code first, then optimize
it using strategy and execution profiles. In contrast,
LLM4EFFI starts with the task, focusing on efficiency
through algorithm exploration and implementation, fol-
lowed by correctness refinement.

2024a), and the Qwen Series (Yang et al., 2024a,b) 043

demonstrating remarkable capabilities. These mod- 044

els have attracted considerable attention from both 045

academia and industry, consistently breaking new 046

ground on code completion and generation bench- 047

marks, including HumanEval (Chen et al., 2021), 048

MBPP (Austin et al., 2021), and LiveCodeBench 049

(Jain et al., 2024). 050

While these LLMs achieve impressive accuracy 051

in automatic code generation, practical software 052

engineering applications require more than just cor- 053

rect code—they also demand efficiency (Shi et al., 054

2024; Niu et al., 2024). In real-world scenarios, 055

even correct code often requires manual optimiza- 056

tion by engineers before it can be used, which un- 057

dermines the goal of "out-of-the-box" automated 058

code generation. Therefore, generating code that is 059

both correct and efficient is essential, yet automat- 060

ing this process has not been widely explored. 061

Recent preliminary works (Huang et al., 2024b; 062

Waghjale et al., 2024) have explored feedback- 063
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Prime_fib returns n-th 
number that is a Fibonacci 
number and it's also prime.

1. Entry Point Function Name: 
     prime_fib

2. Input/Output Conditions and 
    Parameter Types:
        Input: take a single integer
       Output: return type is int

3. Edge Cases:
     • small values of n:
     • large values of n:
     • invalid values of n:

4. Expected Behavior:
The function should return the 
correct n-th Fibonacci number… 
prime_fib(1) = 2

Given Task

LLM4EFFI

Formalized Task

Efficiency First

Algorithm Exploration Implementation optimization

Correctness Later

Synthetic Test Cases

Algorithm: 
Dynamic Programming with Prime Caching：This 
approach combines dynamic programming for generating 
Fibonacci numbers and …

Complexity Analysis:
over time complexity is …

Pesudo Code:
Function is_prime(num):
…

assert prime_fib(1) == 2
assert prime_fib(10)== 1597
assert prime_fib(2) == 3
...
assert prime_fib(4) == 11
assert prime_fib(8) == 51429
assert prime_fib(5) == 89

Final Code

Optimization Suggestions:
1.Prime Checking Optimization: Use a Sieve of 
Eratosthenes for Caching Primes…
2. Avoid Repeated Fibonacci Calculation…

Code Candidates:
import math
def sieve_of_eratosthenes(limit):
…
def prime_fib(n):# Initialize

assert prime_fib(1) == 2
assert prime_fib(10)== 1597
assert prime_fib(2) == 3
...
assert prime_fib(4) == 11
assert prime_fib(8) == 51429
assert prime_fib(5) == 89

Checked Test Cases
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Figure 2: The workflow of LLM4EFFI. Given a programming task, LLM4EFFI formalizes it into a code-oriented
description, generates optimal algorithms and pseudocode in logic domain, and then produces implementation
suggestions in code domain. LLM4EFFI synthesizes test cases and uses a verification-based adaptive framework to
evaluate candidate solutions. The final code is selected based on the highest pass rate of the "checked" test cases.

based approaches to optimize generated code and064

enhance its efficiency. As illustrated in Figure065

1, these methods typically involve profiling code066

execution time and incorporating reflective feed-067

back into the optimization process. However, the068

"generate-then-optimize" paradigm is constrained069

by the algorithmic design and overall structure of070

the initial code, leading to only incremental im-071

provements. We provide detailed examples in Fig-072

ure 23 and 22 in Appendix B. In contrast, when073

human developers write high-quality code, whether074

in practical software development or algorithmic075

teaching scenarios, they typically start by design-076

ing multiple potential solutions at a logical level.077

For example, when tackling a sorting problem, a078

developer might consider Quicksort for its average-079

case efficiency of O(N ∗ logN), while also fac-080

toring in its worst-case time complexity of O(N2).081

By carefully analyzing the problem’s constraints082

and evaluating various algorithms along with their083

complexities, they then proceed to implement the084

solution, applying various coding techniques to op-085

timize it. Finally, they debug and refine the code to086

achieve a high-quality implementation.087

Inspired by this thought, we propose LLM4EFFI,088

as shown in Figure 2, a novel paradigm that en-089

ables LLMs to generate both efficient and correct090

code. Specifically, for a given programming task 091

described in natural language, LLM4EFFI first "for- 092

malizes" it into a code-oriented problem descrip- 093

tion. In other words, it converts the broad natural 094

language statement into a clear, concrete, and well- 095

defined coding problem, ensuring that the LLM can 096

accurately interpret it. Next, LLM4EFFI prompts 097

the LLM for logic-level reasoning and exploration, 098

considering various algorithmic approaches, pro- 099

viding corresponding complexity analyses, and 100

generating relevant pseudocode. Based on these 101

different algorithm designs and their associated 102

pseudocode, LLM4EFFI suggests code implemen- 103

tation strategies, followed by code generation and 104

optimization at the implementation level, as high- 105

quality code also requires careful consideration dur- 106

ing the practical implementation stage. To ensure 107

the functional correctness of the generated code 108

while targeting efficiency, LLM4EFFI introduces 109

a bidirectional verification-based adaptive testing 110

framework to check synthetic test cases. Finally, 111

the code solutions are executed on the "checked" 112

test cases and iterated upon for correctness. The 113

solution with highest pass rate across the "checked" 114

test cases is selected as the final generated code. 115

The LLM4EFFI has two distinctive uniqueness: 116

Uniqueness 1: Separation of Efficiency Optimiza- 117
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tion into Logic and Code Domains. LLM4EFFI118

divides efficiency optimization into two distinct119

domains: the "logic domain" and the "code do-120

main". In the logic domain, efficiency optimiza-121

tion focuses on exploring the optimal algorithmic122

approaches, while in the code domain, optimiza-123

tion deals with the practical implementation details.124

This separation effectively breaks down the chal-125

lenge of optimizing code efficiency into manage-126

able steps, making the overall efficiency optimiza-127

tion process more systematic and targeted.128

Uniqueness 2: The Order of Correctness and Ef-129

ficiency. The order in which correctness and effi-130

ciency are optimized plays a critical role. By prior-131

itizing efficiency first, a wider range of algorithmic132

solutions can be explored, leading to the discov-133

ery of multiple efficient approaches. Correctness134

is then incrementally ensured across these solu-135

tions. This approach avoids prematurely constrain-136

ing efficiency optimization by focusing too early137

on correctness. Prioritizing efficiency first allows138

for greater room for improvement and significantly139

enhances the potential for efficiency gains.140

We validate LLM4EFFI on three recently pro-141

posed code efficiency benchmarks: EvalPerf (Liu142

et al., 2024), ENAMEL (Qiu et al., 2024), and143

Mercury (Du et al., 2024). Experimental results144

show that LLM4EFFI consistently enhances both145

code correctness and efficiency across various146

LLM backbones, achieving state-of-the-art per-147

formance in efficiency metrics. Specifically, us-148

ing the DeepSeek-V3 backbone, LLM4EFFI im-149

proves eff@1 by 9.27% on ENAMEL and boosts150

DPS_norm by 6.63% on Mercury.151

Overall, we summarize our contributions as fol-152

lows, with corresponding code available at link1:153

• We propose LLM4EFFI, the first framework154

that simultaneously optimizes both code effi-155

ciency and correctness.156

• We introduce two key features: Separation of157

Efficiency Optimization into Logic and Code158

Domains and Order of Correctness and Effi-159

ciency. We hope these unique features will160

contribute to the advancement of the code ef-161

ficiency community.162

• Extensive experiments and analysis on three163

benchmarks across different LLM backbones164

demonstrate the effectiveness and robustness165

of LLM4EFFI in efficient code generation.166

1https://anonymous.4open.science/r/
LLM4EFFI-04B2

2 Related Works 167

2.1 LLMs for Code Domain. 168

Large language models have been widely applied to 169

coding tasks and have shown strong performance 170

across various coding scenarios and evaluations. 171

Most existing research focuses on code generation, 172

with numerous techniques developed to enhance its 173

quality. Some methods aim to improve the quality 174

of synthetic code data (Wei et al., 2024; Luo et al., 175

2024; Lei et al., 2024), enhance self-consistency 176

(Le et al., 2024; Huang et al., 2024a), or leverage 177

feedback from human or LLM annotations (Chen 178

et al., 2024; Wu et al., 2023; Tang et al., 2023). 179

Other approaches utilize multi-agent collaboration 180

frameworks to enhance code generation (Zhong 181

et al., 2024; Shinn et al., 2023; Islam et al., 2024; 182

Madaan et al., 2023; Li et al., 2024). However, 183

these methods primarily focus on the correctness of 184

the generated code, with relatively little emphasis 185

on the efficiency of the generated code. 186

2.2 Code Efficiency. 187

Until recently, the academic community has only 188

begun to pay significant attention to the efficiency 189

of generated code. Recently, several efficiency- 190

focused benchmarks (HUANG et al., 2024; Du 191

et al., 2024; Liu et al., 2024; Qiu et al., 2024) have 192

emerged, aiming to provide a more comprehen- 193

sive evaluation of LLMs’ ability to generate effi- 194

cient code. However, empirical studies and evalua- 195

tions of these benchmarks show that current LLMs 196

still face significant challenges in generating ef- 197

ficient code. To improve code efficiency, recent 198

research such as ECCO (Waghjale et al., 2024) 199

adopts self-refinement, prompting LLMs to con- 200

sider possible optimization strategies and refine 201

their outputs. Effi-Learner (Huang et al., 2024b) 202

proposes a self-optimization framework that uses 203

execution overhead profiles, feeding them back into 204

the LLM to revise the code and reduce time over- 205

head. However, these methods focus on enhancing 206

the efficiency of code after it has been generated, 207

rather than starting with the goal of generating both 208

efficient and correct code from the beginning. 209

3 Methodology 210

Problem Formulation. In the code efficiency 211

task, each sample is represented as a pair (Q,Th), 212

where Q denotes the task description, and Th corre- 213

sponds to the hidden test cases. Our goal is to gen- 214

erate the corresponding code solution S that passes 215
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the hidden test cases and achieves the highest effi-216

ciency (i.e., the shortest execution time). Notably,217

to better simulate real-world scenarios, we assume218

there are no public test cases. Th is only used dur-219

ing the evaluation stage and is not visible during220

efficiency and correctness optimization stages.221

3.1 Overview.222

We present the framework of LLM4EFFI in Fig-223

ure 2. For a given programming task described in224

natural language, LLM4EFFI first "formalizes" it225

into a code-oriented problem description (Section226

3.2). Next, LLM4EFFI queries the LLM for logic-227

domain reasoning and exploration, generating mul-228

tiple optimal algorithmic solutions along with their229

corresponding pseudocode (Section 3.3). Based on230

these algorithm designs and their associated pseu-231

docode, LLM4EFFI analyzes and generates code232

implementation suggestions, followed by the gen-233

eration and optimization of the corresponding code234

at the implementation level (Section 3.4). To fur-235

ther refine the solutions for correctness, LLM4EFFI236

synthesizes a large number of test cases and utilizes237

a bidirectional verification-based adaptive testing238

framework to "check" these synthetic test cases.239

The "checked" test cases are then used to evaluate240

the candidate code solutions (Section 3.5). The so-241

lution with highest pass rate across the "checked"242

test cases is selected as the final generated code.243

3.2 Task Formalization.244

In the initial task formalization stage, LLM4EFFI245

ensures that the task description is clear and un-246

ambiguous, which is crucial for the success of247

subsequent stages. As highlighted by Han et al.248

(2024), errors in LLM-generated code often arise249

from an insufficient or unclear understanding of250

the task. Therefore, LLM4EFFI prompts the LLM251

to comprehend the task from four key dimensions:252

entry point function name, input/output conditions253

and parameter types, edge cases, and expected254

behavior. Based on these dimensions, the LLM255

is further encouraged to engage in self-reflection to256

confirm whether it has fully grasped all aspects of257

the task, thus laying a solid foundation for the sub-258

sequent stages. Formally, Q→ Qformal
check←→ Q.259

3.3 Algorithmic Exploration in Logic Domain.260

For the formalized task defined in the first stage,261

LLM4EFFI prompts the LLM to engage in algo-262

rithmic reasoning at the logical level, rather than263

immediately generating code. This approach mir- 264

rors that of human programmers, who first per- 265

form abstract and high-level reasoning before im- 266

plementation. The LLM is prompted to explore 267

multiple potential optimal algorithms, analyze their 268

corresponding complexities, and represent the en- 269

tire logical process with pseudocode. Formally, 270

Qformal → {Algo, Cplx, Pseudo}, where Algo 271

refers to the algorithm plan, Cplx refers to the 272

complexity analysis, and Pseudo refers to the cor- 273

responding pseudocode. 274

3.4 Implementation Optimization in Code 275

Domain. 276

Excellent code not only requires careful algorithm 277

design but also necessitates optimization at the 278

implementation level. Even when the same 279

algorithm is used, different implementation 280

approaches can lead to significant variations in 281

code efficiency (Shypula et al., 2024; Coignion 282

et al., 2024). When implementing code based on 283

the algorithm plan and corresponding pseudocode, 284

LLM4EFFI prompts the LLM to provide practical 285

suggestions derived from Algo and Pseudo, 286

such as replacing a manual binary exponen- 287

tiation implementation with Python’s built-in 288

pow function, among other optimizations. We 289

provide three detailed examples in the appendix to 290

illustrate this process. Subsequently, LLM4EFFI 291

generates the corresponding code based on the 292

Algo, Pseudo, and implementation suggestions, 293

while also checking for further optimization 294

opportunities. Formally, {Algo, Pseudo} → 295

{Suggs}, and {Algo, Pseudo, Suggs} → 296

{Code Candidates}. 297

3.5 Code Correctness. 298

To ensure the functional correctness of generated 299

code while targeting efficiency, LLM4EFFI intro- 300

duces a bidirectional verification-based adaptive 301

testing framework. The process works as follows: 302

First, LLM4EFFI automatically synthesizes a large 303

number of test cases based on the formalized task 304

description Qformal. These test cases are designed 305

to cover a wide range of edge cases, thoroughly test- 306

ing the robustness and reliability of the generated 307

code. However, since the synthesized test cases 308

may not be entirely correct, LLM4EFFI performs 309

bidirectional verification to validate them. 310

Forward Verification: If all candidate code imple- 311

mentations pass a specific test case, the test case 312

is marked as trusted. Otherwise, Reverse Review: 313
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LLMs Methods EvalPerf Mercury ENAMEL

DPS_norm Pass@1 Beyond@1 Pass@1 eff@1 Pass@1

Qwen2.5-Coder
-32B-Instruct

Instruct 80.92 85.59 76.97 94.14 50.44 85.21
ECCO 82.16 63.56 73.29 89.06 41.89 71.83
Effi-Learner 82.45 77.11 77.13 91.41 50.12 81.69
LLM4EFFI (ours) 86.20 +5.28 87.30 +1.71 78.96 +1.99 93.75 -0.39 51.26 +0.82 86.62 +1.41

Qwen2.5-72B
-Instruct

Instruct 79.29 88.14 72.50 86.72 49.78 83.80
ECCO 80.06 64.41 74.10 89.84 41.90 72.53
Effi-Learner 79.90 81.36 77.10 91.02 47.42 76.76
LLM4EFFI (ours) 84.00 +4.71 88.98 +0.84 77.45 +4.95 90.63 +3.91 51.49 +1.71 87.32 +3.52

GPT-4o-mini

Instruct 80.04 85.59 69.59 82.81 48.26 80.28
ECCO 75.18 44.07 72.29 86.33 30.75 57.75
Effi-Learner 79.80 81.36 73.45 88.67 45.69 77.46
LLM4EFFI (ours) 83.78 +3.74 88.14 +2.55 74.94 +5.35 89.45 +6.64 49.89 +1.63 80.99 +0.71

GPT-4o

Instruct 79.59 86.70 73.14 87.50 47.63 80.99
ECCO 80.65 61.02 77.70 92.18 38.63 64.79
Effi-Learner 79.39 79.67 79.24 93.36 48.52 81.69
LLM4EFFI (ours) 86.39 +6.80 88.98 +2.28 77.81 +4.67 93.75 +6.25 55.26 +7.63 83.80 +2.81

DeepSeek-V3

Instruct 80.45 89.84 79.90 94.53 51.14 86.62
ECCO 81.08 61.84 63.26 74.61 45.84 75.35
Effi-Learner 79.00 88.14 78.83 92.58 52.22 83.80
LLM4EFFI (ours) 87.08 +6.63 90.67 +0.83 82.76 +2.86 96.09 +1.56 60.41 +9.27 89.44 +2.82

Table 1: Main Result. The results of LLM4EFFI, Instruct, ECCO, and Effi-Learner methods on the EvalPerf,
Mercury, and ENAMEL benchmarks are presented using the Qwen2.5-Coder-32B-Instruct, Qwen2.5-72B-Instruct,
GPT-4o-mini, GPT-4o, and DeepSeek-V3 LLM backbones. Correctness is evaluated using Pass@1, while efficiency
is measured using the respective efficiency metrics for each of the three benchmarks.

For test cases that cause failures in any candidate314

code, LLM4EFFI performs a Qformal-based review.315

It checks whether the test case aligns with the in-316

tent of the formal task description and conducts317

a semantic consistency check, which is similar to318

Test-Driven Development (Erdogmus et al., 2010)319

in software engineering. If the test case passes the320

reverse review, it is retained; otherwise, it is dis-321

carded. Finally, the retained test cases are marked322

as "checked". These "checked" test cases are then323

used to evaluate the generated code candidates,324

with any failures triggering further refinements.325

The code candidate that passes the most "checked"326

test cases is ultimately selected as the final solution.327

Formally, Qformal → {Synth. test cases}
check→328

{Checked test cases} select→ {final solution}.329

4 Experiments330

We evaluate LLM4EFFI on three code efficiency331

evaluation benchmarks: EvalPerf (Liu et al., 2024),332

Mercury (Du et al., 2024) and ENAMEL (Qiu333

et al., 2024). EvalPerf focuses on performance-334

challenging tasks and uses Differential Perfor-335

mance Evaluation to assess efficiency across dif-336

ferent LLMs and solutions. Its efficiency metric,337

DPS_norm, is calculated by determining the cumu-338

lative ratio of the reference solution that is imme- 339

diately slower than the new solution, normalized 340

by the total number of solutions. This ensures a 341

fair comparison of code efficiency based on ref- 342

erence solutions with varying performance levels. 343

Mercury introduces the Beyond metric to evalu- 344

ate both functional correctness and code efficiency. 345

The Beyond metric is calculated by normalizing the 346

runtime percentiles of LLM solution samples over 347

the runtime distribution for each task, ensuring con- 348

sistent runtime comparisons across different envi- 349

ronments and hardware configurations. ENAMEL 350

evaluates code efficiency using the eff@1 metric. 351

This efficiency score is determined by measuring 352

the worst execution time of the code sample across 353

test cases of varying difficulty levels. The score 354

is then adjusted using a weighted average across 355

these levels to account for hardware fluctuations. 356

The eff@1 metric ranges from 0 to 1, with higher 357

values indicating greater code efficiency. A value 358

exceeding 1 signifies that the generated code is 359

more efficient than the expert-level solution. 360

4.1 Compared Methods. 361

We evaluate the direct instruction of generating 362

correct and efficient code as the Instruct baseline. 363

We compare LLM4EFFI with two recent proposed 364
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Models Methods EvalPerf Mercury ENAMEL

DPS_norm Pass@1 Beyond@1 Pass@1 eff@1 Pass@1

Qwen2.5-Coder
-32B-Instruct

LLM4EFFI 86.20 87.30 78.96 93.75 51.26 86.62
Variant-1 77.21 -8.99 80.51 -6.79 77.89 -1.07 93.34 -0.41 48.57 -2.69 81.69 -4.93
Variant-2 75.75 -10.45 81.36 -5.94 75.86 -3.10 92.19 -1.56 45.68 -5.58 83.10 -3.52
Variant-3 81.19 -5.01 72.03 -15.27 72.56 -6.40 85.16 -8.59 47.48 -3.78 77.46 -9.16

DeepSeek-V3

LLM4EFFI 87.08 90.67 82.76 96.09 60.41 89.44
Variant-1 79.72 -7.36 84.75 -5.92 81.58 -1.18 94.53 -1.56 53.23 -7.18 88.03 -1.41
Variant-2 77.07 -10.01 83.05 -7.62 80.10 -2.66 94.53 -1.56 53.62 -6.79 88.73 -0.71
Variant-3 82.62 -4.46 82.01 -8.66 79.75 -3.01 92.58 -3.51 54.58 -5.83 81.69 -7.75

Table 2: Ablation Study Results. The results of LLM4EFFI, Variant-1, Variant-2, and Variant-3 are presented
using Qwen2.5-Coder-32B-Instruct and DeepSeek-V3 as LLM backbones on the EvalPerf, Mercury, and ENAMEL
benchmarks. We have highlighted the performance changes of Variants compared to LLM4EFFI with colors.

methods ECCO (Waghjale et al., 2024) and Effi-365

Learner (Huang et al., 2024b) for code efficiency.366

• ECCO: A self-refine with NL feedback approach367

that prompts the LLM to generate code, then asks368

if improvements in correctness or efficiency can369

be made, and finally refines the solution based370

on optimization suggestions.371

• Effi-Learner: First generates code using instruc-372

tion prompts same as Instruct baseline, then ex-373

ecutes the code with test cases to collect perfor-374

mance profiles, including runtime and memory375

usage. These profiles are fed back into the LLM376

along with the code, prompting the LLM to refine377

the code for efficiency based on the profile. It is378

worth noting that Effi-Learner relies on test case379

oracles, and in this study, we use the visible test380

cases from the task. In contrast, LLM4EFFI does381

not rely on any test case oracles; all test cases are382

synthetically generated by LLM4EFFI itself.383

4.2 Experiment Setup.384

To comprehensively evaluate LLM4EFFI, we se-385

lected five different LLM backbones: two propri-386

etary models, GPT-4o (OpenAI, 2024) and GPT-387

4o-mini, and three open-source models, including388

DeepSeek-V3 (DeepSeek-AI, 2024b), Qwen2.5-389

72B-Instruct (Yang et al., 2024b), and Qwen2.5-390

Coder-32B-Instruct (Hui et al., 2024). During the391

LLM4EFFI process, we set the number of algorithm392

plans to 5 and the number of synthetic test cases393

to 20, followed by one iteration to refine the code394

for correctness. All prompts used in LLM4EFFI are395

detailed in Appendix A. To ensure consistency and396

a fair comparison, all experiments were conducted397

with the temperature set to 0, and each experiment398

was repeated three times to compute an average,399

thereby eliminating any potential disruptions.400

4.3 Main Results. 401

We compare LLM4EFFI with the other methods on 402

the EvalPerf, Mercury, and ENAMEL benchmarks, 403

and present the results in Table 1. First, we observe 404

that direct instruction prompts yield good perfor- 405

mance, indicating that LLMs have a reasonable 406

understanding of correct and efficient code. Then, 407

through ECCO, we observe a slight improvement 408

in efficiency on EvalPerf and Mercury. However, 409

this improvement often comes at the cost of cor- 410

rectness. Particularly in more complex benchmarks 411

like ENAMEL, the approach results in a decline in 412

both efficiency and correctness. This suggests that 413

relying solely on code understanding to generate 414

optimization suggestions is insufficient. When op- 415

timization strategies are based purely on code-level 416

analysis, they often fail to align with the broader 417

logical requirements of the task. The mismatch 418

between the code domain and the logic strategy 419

domain makes such methods less effective. 420

Moreover, Effi-Learner shows some gains in ef- 421

ficiency and correctness on specific benchmarks, 422

such as when using GPT-4o on the Mercury bench- 423

mark. However, its performance varies signifi- 424

cantly across different LLM backbones and bench- 425

marks, often falling short of the direct Instruct 426

baseline. More importantly, Effi-Learner faces a 427

recurring issue: both efficiency and correctness suf- 428

fer simultaneously. This stems from its feedback 429

mechanism, which focuses solely on performance 430

metrics like execution time, neglecting the code’s 431

functionality and correctness. Additionally, the 432

lack of a comprehensive algorithmic strategy leads 433

to an over-prioritization of execution time, often 434

sacrificing code accuracy and resulting in a decline 435

in both efficiency and correctness. 436
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Models Methods EvalPerf Mercury ENAMEL

DPS_norm Pass@1 Beyond@1 Pass@1 eff@1 Pass@1

Qwen2.5-Coder
-32B-Instruct

LLM4EFFI 86.20 87.30 78.96 93.75 51.26 86.62
w/o Uniqueness-1 80.84 -5.36 79.66 -7.64 76.75 -2.21 94.14 +0.39 50.95 -0.31 80.98 -5.64
w/o Uniqueness-2 78.07 -8.13 70.34 -16.96 72.83 -6.13 87.11 -6.64 47.62 -3.64 77.46 -9.16

DeepSeek-V3
LLM4EFFI 87.08 90.67 82.76 96.09 60.41 89.44
w/o Uniqueness-1 80.91 -6.17 85.59 -5.08 81.79 -0.97 95.31 -0.78 54.70 -5.71 85.92 -3.52
w/o Uniqueness-2 80.42 -6.66 79.66 -11.01 62.90 -19.86 74.61 -21.48 53.92 -6.49 84.50 -4.94

Table 3: LLM4EFFI Uniqueness Study Results. The results of LLM4EFFI, w/o Uniqueness-1, and w/o Uniqueness-
2 are presented using Qwen2.5-Coder-32B-Instruct and DeepSeek-V3 as LLM backbones on the EvalPerf, Mercury,
and ENAMEL benchmarks. We have highlighted the performance changes compared to LLM4EFFI with colors.

In comparison, LLM4EFFI achieves a simultane-437

ous improvement in both correctness and efficiency438

through efficiency optimizations at the logical and439

code implementation levels, followed by refine-440

ment of correctness using "checked" test case feed-441

back. The results demonstrate that LLM4EFFI de-442

livers robust and consistent performance improve-443

ments across various benchmarks and different444

LLM backbones, with the gains highlighted in445

color. For example, using DeepSeek-V3 as the446

backbone on EvalPerf, LLM4EFFI improved the447

efficiency metric DPS_norm by 6.63%, while on448

ENAMEL, eff@1 increased by 9.27%, and Pass@1449

improved by 2.82%.450

4.4 Ablation Study.451

LLM4EFFI incorporates several unique design452

choices, such as separating efficiency optimization453

into the logic domain and code implementation454

level. To better understand the impact of each com-455

ponent, we conduct the following ablation study:456

• Variant-1: (Without Algorithmic Exploration457

in the Logic Domain): In this variant, no algo-458

rithmic exploration is performed for efficiency459

optimization in the logic domain. Instead, the460

LLM directly generates the same count efficient461

code solution, followed by implementation-level462

optimization (based on the formalized task and463

the generated code solution). All other steps re-464

main the same as in LLM4EFFI.465

• Variant-2: (Without Implementation Optimiza-466

tion in the Code Domain): This variant omits467

the implementation optimization step in the code468

domain, while all other processes are identical to469

those in LLM4EFFI.470

• Variant-3: (Without Code Correctness Refine-471

ment): In this variant, after generating the472

efficiency-optimized code solutions, the LLM473

independently selects the most efficient and cor-474

rect code as the final output. 475

We conduct the ablation study using Qwen2.5- 476

Coder-32B-Instruct and DeepSeek-V3 as LLM 477

backbones, with the results presented in Table 2. 478

The results show that removing any component 479

significantly impacts both efficiency and correct- 480

ness. Specifically, omitting Algorithmic Explo- 481

ration in the Logic Domain (Variant-1) or Im- 482

plementation Optimization in the Code Domain 483

(Variant-2) leads to a marked decline in efficiency 484

metrics across all three benchmarks. Additionally, 485

removing Code Correctness Refinement (Variant- 486

3) results in a significant drop in Pass@1. These re- 487

sults align with our expectations, as both Algorith- 488

mic Exploration and Implementation Optimization 489

are designed for efficiency, while Code Correctness 490

Refinement ensures the final code retains functional 491

correctness after efficiency-driven steps. 492

5 Deeper Analysis 493

5.1 LLM4EFFI Uniqueness Analysis. 494

As mentioned in the Introduction, LLM4EFFI has 495

two distinct features: Uniqueness 1: Separation 496

of Efficiency Optimization into Logic and Code 497

Domains, and Uniqueness 2: The Order of Cor- 498

rectness and Efficiency. To gain a deeper under- 499

standing of these unique advantages, we conducted 500

the following comparative experiments: 501

• w/o Uniqueness-1: Rather than separating effi- 502

ciency optimization into the logic and code do- 503

mains, we prompt the LLM to generate code that 504

is both efficient and correct. Then, based on 505

the formalized task and the generated code, the 506

LLM is queried to suggest any possible strate- 507

gies for optimizing efficiency. Subsequently, we 508

optimize the generated code according to these 509

strategies, with the following steps remaining the 510

same as in LLM4EFFI. It is important to note that 511
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the difference between w/o Uniqueness-1 and512

ECCO lies in the fact that ECCO provides cor-513

rectness or efficiency strategies solely based on514

the code, whereas w/o Uniqueness-1 generates515

efficiency-focused strategies based on both the516

formalized task and the generated code, followed517

by refinement for correctness.518

• w/o Uniqueness-2: We changed the priority se-519

quence of correctness and efficiency. In this520

approach, we first generate the code based on521

the formalized task and refine it for correctness.522

Then, we conduct algorithm exploration and im-523

plement optimal methods based on the formal-524

ized task and the refined code. Finally, we opti-525

mize the code using the explored algorithms and526

implementation suggestions.527

The results of the uniqueness study are presented in528

Table 3. As shown, in the absence of Uniqueness-529

1, the performance of Qwen2.5-Coder-32B-Instruct530

on Mercury showed a slight increase in Pass@1,531

but in other cases, the performance declined, par-532

ticularly in terms of DPS_norm on EvalPerf and533

eff@1 on ENAMEL. This underscores the impor-534

tance of separating efficiency optimization into the535

logic and code domains. This separation effectively536

breaks down the challenge of optimizing code effi-537

ciency into manageable steps, making the overall538

optimization process more focused and targeted.539

On the other hand, in the absence of Uniqueness-540

2, both efficiency and correctness saw significant541

declines across all benchmarks and different LLM542

backbones. The main reason for this is that op-543

timizing correctness before efficiency limits the544

LLM’s ability to explore efficient algorithms and545

practical optimizations. In fact, this approach of-546

ten backfires, resulting in a situation where code547

correctness is sacrificed in the pursuit of efficiency.548

These findings further validate the "efficiency-first,549

correctness-later" strategy as a crucial approach for550

generating both efficient and correct code.551

5.2 Performance of Different Difficulty Levels.552

To evaluate the performance of LLM4EFFI on553

tasks of varying difficulty levels, we conducted554

an analysis across three levels—Easy, Medium,555

and Hard—using Mercury with DeepSeek-V3 as556

the backbone. The results are shown in Figure557

3. LLM4EFFI consistently achieves the highest558

Beyond@1 metrics, outperforming other methods559

across tasks ranging from easy to difficult. This ro-560

bust performance highlights the LLM4EFFI ’s effec-561

Easy Medium Hard
40

50

60

70

80

90

100

Be
yo

nd
@

1

83.11 81.39

75.26

69.39

74.31

46.76

81.26 81.88

73.55

87.49
83.71

77.08

Original ECCO Effi-Learner LLM4EFFI

Figure 3: The Beyond@1 performance of LLM4EFFI
on tasks of varying difficulty levels in Mercury, with
DeepSeek-V3 as the backbone.

tiveness in tackling a broad spectrum of challenges. 562

Additionally, we observed a significant drop in per- 563

formance for ECCO on hard-level tasks. This de- 564

cline is mainly due to the difficulty of providing 565

valid optimization suggestions for complex code, a 566

challenge that remains substantial for LLMs. 567

5.3 Case Study. 568

To provide a more intuitive demonstration of 569

LLM4EFFI, we conducted a case study, with the 570

process detailed in Appendix B. It can be observed 571

that methods like ECCO and Effi-Learner, which 572

generate code first and then optimize for efficiency, 573

are constrained by the algorithmic design and over- 574

all structure of the initial code, leading to only 575

incremental improvements. In contrast, LLM4EFFI 576

breaks free from these constraints, enabling it to 577

fully explore more efficient algorithms at a high 578

level based on the task, while also incorporating 579

practical level efficiency optimizations, thus achiev- 580

ing more effective efficiency optimization. 581

6 Conclusion 582

In this paper, we presented LLM4EFFI, a novel 583

framework designed to generate both efficient 584

and correct code. By separating efficiency op- 585

timization into the logic and code domains and 586

adopting an "efficiency-first, correctness-later" ap- 587

proach, LLM4EFFI enables the exploration of a 588

broader range of algorithmic solutions while main- 589

taining functional correctness. Experimental re- 590

sults demonstrate LLM4EFFI ’s robust performance, 591

with consistent improvements in both efficiency 592

and correctness across different LLM backbones. 593
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Limitation594

Although LLM4EFFI excels at generating both effi-595

cient and correct code, it also has some limitations.596

One major challenge is the trade-off between ef-597

ficiency and maintainability. In some cases, the598

generated efficient code may become more com-599

plex and harder to read. Achieving the right bal-600

ance between efficiency and maintainability is not601

always straightforward, and in certain cases, highly602

efficient code may sacrifice readability and ease of603

future modifications. Future work will focus on604

optimizing the LLM4EFFI to improve its scalabil-605

ity and extend its applicability to more complex606

software engineering tasks.607
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A Appendix of Prompts.806

A.1 Prompts of LLM4EFFI.807

Task Formalization

System:
As a professional algorithm engineer, please analyze
the given algorithm problem according to the follow-
ing categories. Do not provide any example imple-
mentation:

• Entry Point Function Name

• Input/Output Conditions

• Edge Cases and Parameter Types (Int, String,
etc.)

• Expected Behavior

User:
The algorithm problem description is as follows:
<natural language description>

Figure 4: Task Formalization.

Task Formalization Check

System:
As an excellent algorithm engineer, please analyze
whether the explanation of the problem matches the
original requirements. If they are consistent, output
“Yes”. If they are not consistent, output “No” and
provide the reason, as shown below: {"Yes":"NULL"}
{"No":"The reason is"}
User:
<natural language description>
<task description>

Figure 5: Checking the Task Formalization Result.

Synthesize Test Case Inputs

System:
As a tester, your task is to create comprehensive test
inputs for the function based on its definition and doc-
string. These inputs should focus on edge scenarios
to ensure the code’s robustness and reliability. Please
output all test cases in a single line, starting with in-
put.
User:
EXAMPLES:
Function:

from typing import *
def find_the_median(arr: List[int]) ->

float:
Given an unsorted array of

integers `arr`, find the
median of the array.

The median is the middle value in
an ordered list of numbers.

If the length of the array is
even, then the median is the
average of the two middle
numbers.

Test Inputs (OUTPUT format):
input: [1]
input: [-1, -2, -3, 4, 5]
input: [4, 4, 4]
input: [....]
input: [....]
END OF EXAMPLES.
Function:
<task description>

Figure 6: Synthesize Test Case Inputs.

Implementation Optimization in Code
Domain

System:
As a professional Python algorithm programming ex-
pert, please provide suggestions for improving code
efficiency based on the potential inefficiencies men-
tioned above. For example:
1. Using xxx instead of xxx can significantly improve
code efficiency.
Please provide at least 20 suggestions.
User:
<algorithm description>

Figure 7: Implementation Optimization in Code Do-
main.
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Complete Test Case Generation

System:
As a programmer, your task is to calculate all test out-
puts and write the test case statement corresponding
to the test input for the function, given its definition
and docstring. Write one test case as a single-line
assert statement.
User:
EXAMPLES:
Function:

from typing import List
def find_the_median(arr: List[int]) ->

float:
Given an unsorted array of

integers `arr`, find the
median of the array. The
median is the middle value in
an ordered list of numbers.

If the length of the array is
even, then the median is the
average of the two middle
numbers.

Test Input:
input: [1, 3, 2, 5]
Test Case:

assert find_the_median([1, 3, 2, 5]) == 2.5

END OF EXAMPLES.
FUNCTION:
<task description> <input case>

Figure 8: Complete Test Case Generation.

Algorithmic Exploration in Logic Domain

System:
As a professional algorithm engineer, you can effec-
tively design multiple algorithms to solve the problem
with low time complexity and output them in pseudo
algorithm format. A pseudo algorithm is a nonlin-
ear, high-level programming language for algorithmic
logic. It combines natural language and programming
structures to express the steps and sums of algorithms.
The main purpose of process algorithms is to clearly
display the core ideas and logic of the algorithm with-
out relying on specific programming language syntax.
Please design 5 excellent algorithm solutions based
on the problem description provided. The time com-
plexity of the algorithm needs to be as small as pos-
sible, and try to output 5 algorithms in the form of a
pseudo-algorithm in the following format: PS: DO
NOT provide implementation examples!

```algorithm1
{algorithm key description: this

algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

User:
<task description>

Figure 9: Algorithmic Exploration in Logic Domain.
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Code Candidates Generation

System:
As a professional algorithm engineer, please convert
the selected algorithm into corresponding code. En-
sure the code is complete and well-formatted. When
converting to a standardized format, be sure to follow
the guidelines specified in the “original question for-
mat”:
1. Use the same function name as given in the original
question format; do not rename it.
2. You may incorporate practical optimization details
drawn from the knowledge base.
The final output format should be as follows:

```python
{<code>
```

User:
<task description>
<algorithm description>
<efficiency optimization suggestions>

Figure 10: Code Candidates Generation.

Code Refinement for Correctness

System:
As a professional code programming algorithm expert,
your task is to correct the code and ensure that the
code is fixed without impacting its time complexity
or practical efficiency. Then I will provide you with
specific code and test cases.
Important Notes:
1. Do not alter the algorithm itself
2. Do not change the format, such as the function
name.
3. Please output in the specified format.
4. Ensure there are no syntax errors.
Please output in this format:

```python
{code}
```

User:
<task description>
<algorithm description>
<efficiency optimization suggestions>

Figure 11: Code Refinement for Correctness.

Final Results Selection on Code Candi-
dates

System:
As a professional algorithm engineer, please help me
choose the most efficient code from the following
codes. It is worth mentioning that it is necessary
to consider the time complexity and practical level
comprehensively:
INPUT:
{ "1":"def ...()....",
"2": "def ...()..."
}
OUTPUT:

```text
{key}
```

EXAMPLE:
INPUT:
{ "1":"def ...()....",
"2": "def ...()..."
}
OUTPUT:

```text
1
```

User:
<corrected code candidate>

Figure 12: Final Results Selection on Code Candidates
(Optional).

Direct Code Generation Prompt for
Variant-1

System:
As a professional Python algorithm engineer, please
solve the algorithms problem and generate a solution
code. The final output format should be as follows:

```python
{code}
```

User:
<task description>

Figure 13: Direct Code Generation Prompt for Variant-
1.
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Direct Code Generation Prompt for w/o
Uniqueness-1&w/o Uniqueness-2

System:
As a professional Python algorithm engineer, please
solve the algorithm problem and generate 5 solution
codes. Please improve the efficiency of the code as
much as possible while ensuring the correctness of the
code. The final output format should be as follows:

```python1
{code}
```
```python2
{code}
```
```python3
{code}
```
```python4
{code}
```
```python5
{code}
```

User:
<task description>

Figure 14: Direct Code Generation Prompt for w/o
Uniqueness-1&w/o Uniqueness-2.

A.2 Prompts of Effi-Learner.808

Original Code Generation Prompt in Effi-
Learner

Please complete Python code based on the task de-
scription.
# Task description:<Task description>
#Solution:

Figure 15: Original Code Generation Prompt in Effi-
Learner.

Efficiency Optimization Prompt in Effi-
Learner.

Optimize the efficiency of the following Python code
based on the task, test case, and overhead analysis
provided. Ensure the optimized code can pass the
given test case.
Task Description:
<task description>
Test Case:
<test case>
Original Code:

```python
<original code>
```

Overhead Analysis:
<profile of original code>
Optimization Rules:
- Encapsulate the optimized code within a Python
code block (i.e., python[Your Code Here]).
- Do not include the test case within the code block.
- Focus solely on code optimization; test cases are
already provided.
- Ensure the provided test case passes with your
optimized solution.

Figure 16: Efficiency Optimization Prompt in Effi-
Learner.

A.3 Prompts of ECCO. 809

Original Code Generation Prompt in
ECCO

Write a python code which is efficient in terms of
runtime and memory usage for the following problem
description. Wrap the optimized code in a block of 3
backticks

Figure 17: Original Code Generation Prompt in ECCO.

Feedback Generation Prompt in ECCO

Give feedback in english for why the code solution
below is incorrect or inefficient and how the program
can be fixed based on the problem description.
<original code>

Figure 18: Feedback Generation Prompt in ECCO.
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Refine Prompt in ECCO

Refine the given incorrect or sub-optimal code
solution based on the feedback specified below. Wrap
the refined code in a block of 3 backticks
<optimization suggestion>
<original code>

Figure 19: Refine Prompt in ECCO.

A.4 Prompts of Instruct.810

Prompt for Instruction Baseline

Please generate an efficient and correct code directly

Figure 20: Prompt for Instruction Baseline.

B Case Study. 811

B.1 The Execution Details of Each Process of 812

LLM4EFFI. 813

As shown in Figure 21, LLM4EFFI firstly analyzes 814

the algorithm problem, "returns the n-th number 815

that is both a Fibonacci number and a prime num- 816

ber", providing a detailed explanation of key as- 817

pects, including the entry point, expected behavior, 818

and edge cases. Based on this analysis and the prob- 819

lem description, LLM4EFFI explores potential algo- 820

rithms and generates five efficient solutions, such 821

as using the Fibonacci sequence generation method 822

and Binet’s formula. Next, LLM4EFFI examines 823

the implementation details of these algorithms and 824

identifies the optimal practical approaches. For 825

example, it uses Python’s built-in pow() function 826

for efficient exponentiation and applies the Miller- 827

Rabin primality test (based on the Monte Carlo 828

method) to enhance the efficiency of prime number 829

detection for large numbers. 830

Then, LLM4EFFI combines the explored algo- 831

rithms and practical operations to generate five dis- 832

tinct code implementations. To validate the cor- 833

rectness of these codes, LLM4EFFI generates 20 834

test cases based on the algorithm description and 835

outputs them in the format "assert prime_fib(3) == 836

5". Each code is then executed with these 20 test 837

cases, recording the number of passed test cases 838

(Passt ≤ 20) and the number of successful execu- 839

tions for each test case (Passc ≤ 5). Subsequently, 840

LLM4EFFI checks the test cases that are not passed 841

by the code implementations, ensuring that correct 842

test cases are not excluded due to code errors and 843

preventing incorrect test cases from being misused 844

in subsequent iterations. 845

After filtering, LLM4EFFI obtains a new batch 846

of test cases and executes them again to gather new 847

results. For the failed test cases, an iterative feed- 848

back mechanism is applied to optimize the code. 849

Then, the code, enhanced with the iterative feed- 850

back, is executed once more, and the final passing 851

results are recorded. All codes are then ranked in 852

descending order based on their correctness, and 853

the most accurate code is selected. 854

This process ensures the identification of the 855

most optimal solution while maintaining both high 856

efficiency and accuracy in code implementation. 857

B.2 Comparison of Methods. 858

In Figures 22 and Figures 23, we compare the code 859

efficiency optimization processes of the three tools. 860
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function prime_fib(n):
    if n < 1: return 
invalid_input
    count = 0
    k = 1
    while True:
        fib = binet_formula(k)
        if miller_rabin(fib):
            count += 1
            if count == n:
                return fib
        k += 1

{ pseudo algorithm:
 function prime_fib(n):
    if n <= 0:
      return \"Invalid 
input\"
    memo = []
    a, b = 0, 1
    while len(memo) < 
n:
      if is_prime(b):
        memo.append(b)\
     a, b = b, a + b
    return memo[n-1]
}

Algorithm Candidates

Optimization Suggestions

import math
import random

def is_prime(n, k=5):
    if n < 2:
        return False
    for p in [2, 3, 5, 7, 11, 13]:
        if n % p == 0:
            return n == p
    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1
    for _ in range(k):
        a = random.randint(2, min(n - 2, 1 << 30))
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            continue
        for __ in range(s - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
            return False
    return True

def prime_fib(n):
    if n <= 0:
        return None
    count = 0
    a, b = 0, 1
    while True:
        if b % 2 != 0 or b == 2: 
            if is_prime(b):
                count += 1
                if count == n:
                    return b
        a, b = b, a + b

eff@1=1.28

**Efficient Primality 
Testing**: Use the 
Miller-Rabin 
primality test for 
probabilistic 
primality checking, 
which is faster for 
large numbers.

O(� ∙ �푙���)

import math
import random

def is_prime(n, k=5):
    if n < 2:
        return False
    for p in [2, 3, 5, 7, 11, 13]:
        if n % p == 0:
            return n == p
    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1
    for _ in range(k):
        a = random.randint(2, min(n - 2, 1 << 30))
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            continue
        for __ in range(s - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
            return False
    return True

def prime_fib(n):
    if n <= 0:
        return None
    count = 0
    a, b = 0, 1
    while True:
        if b % 2 != 0 or b == 2: 
            if is_prime(b):
                count += 1
                if count == n:
                    return b
        a, b = b, a + b

（1）assert prime_fib(3) == 5
（2）assert prime_fib(5) == 89
（3）assert prime_fib(8) == 32
（4）assert prime_fib(20) == 433494437
（5）assert prime_fib(15) == 28657

......

from typing import List
import math
from functools import lru_cache

def is_prime(n: int) -> bool:
    if n < 2:
        return False
    for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]:
        if n % p == 0:
            return n == p
    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1
    for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]:
        if a >= n:
            continue
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            continue
        for _ in range(s - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
            return False
    return True

def prime_fib(n: int) -> int:
    if n <= 0:
        raise ValueError("Invalid input")
    count = 0
    i = 0
    while count < n:
        f = fib(i)
        if is_prime(f):
            count += 1
        i += 1
        return fib(i - 1)

1

（1）assert prime_fib(3) == 5
（2）assert prime_fib(5) == 89
（3）
（4）assert prime_fib(20) == 433494437
（5）assert prime_fib(15) == 28657

......

Precompute Small 
Fibonacci Primes：
Precompute and store 
the first few 
Fibonacci primes 
(e.g., up to n = 20) in 
a list.
......

2

def prime_fib(n: int):
    """
    prime_fib returns the n-th number that is both a 
Fibonacci number and a prime.

    Args:
        n (int): The position of the desired Fibonacci prime 
number.

    Returns:
        int: The n-th Fibonacci number that is also a prime 
number.

    Examples:
        >>> prime_fib(1)
        2
        >>> prime_fib(2)
        3
        >>> prime_fib(3)
        5
        >>> prime_fib(4)
        13
        >>> prime_fib(5)
        89

    Notes:
        1. The entry point function name is `prime_fib`.
        2. The function takes a single integer input `n`, which 
represents the position of the desired Fibonacci prime 
number in the sequence of Fibonacci primes.
        3. The function returns an integer, which is the `n-th` 
Fibonacci number that is also a prime number.
        4. Edge cases include `n = 1` (first Fibonacci prime is 
2), `n = 0` (invalid input), and large values of `n` 
(Fibonacci primes become rare).
        5. The input parameter `n` is of type `int` and must be 
a positive integer.
        6. The function should generate Fibonacci numbers, 
check for primality, and return the `n-th` Fibonacci prime.
        7. The function should handle edge cases gracefully 
and be optimized for large values of `n`.
    """
    # Function implementation here

Prime_fib returns the n-th number that is both a 
Fibonacci number and a prime.

Check

Correct

Correct

1 2

1 2
1

Task Formalization

Algorithm Exploration
&

Implementation Optimization

Code Correctness

Code Candidates

Figure 21: The figure illustrates the specific output of each subtask process of LLM4EFFI in solving algorithm
problems.

861
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Implement a function that takes an non-negative integer and returns an array of the first n.integers that are prime numbers and less than n.

Algorithm key description: 
This algorithm uses the Sieve of Eratosthenes. 
The key idea is to efficiently mark non-prime 
numbers in a boolean array and collect primes 
less than `n`.
Pseudo algorithm:
function count_up_to(n):
    if n <= 1:
        return empty list
        create a boolean array `is_prime` of size 
`n`, initialized to True
    set `is_prime[0]` and `is_prime[1]` to False
    for i from 2 to sqrt(n):
        if `is_prime[i]` is True:
            for j from `i * i` to `n` with step `i`:
                set `is_prime[j]` to False
    collect all indices `i` where `is_prime[i]` is 
True and `i < n`
    return the collected list

LLM4EFFI

1 Algorithm Candidates

Effi-Learner ECCO

def count_up_to(n):
    if n < 2:
        return []

    sieve = [True] * n
    sieve[0] = sieve[1] = False  # 0 and 1 are not prime numbers

    for current_num in range(2, int(n ** 0.5) + 1):
        if sieve[current_num]:
            for multiple in range(current_num * current_num, n, current_num):
                sieve[multiple] = False

    primes = [num for num, is_prime in enumerate(sieve) if is_prime]
    return primes

def count_up_to(n):
    """Returns a list of prime numbers less than n using the Sieve of 
Eratosthenes."""
    if n < 2:
        return []

    sieve = [True] * n
    sieve[0] = sieve[1] = False
    for current in range(2, int(n ** 0.5) + 1):
        if sieve[current]:
            for multiple in range(current * current, n, current):
                sieve[multiple] = False

    primes = [num for num, is_prime in enumerate(sieve) if is_prime]
    return primes

def count_up_to(n):
    if n < 2:
        return []

    sieve = [True] * n
    sieve[0] = sieve[1] = False

    for current in range(2, int(n ** 0.5) + 1):
        if sieve[current]:
            for multiple in range(current * current, n, current):
                sieve[multiple] = False

    primes = [num for num, is_prime in enumerate(sieve) if 
is_prime]
    return primes

def is_prime(num):
    """Helper function to check if a number 
is prime."""
    if num < 2:
        return False
    for i in range(2, int(num ** 0.5) + 1):
        if num % i == 0:
            return False
    return True

def count_up_to(n):
    """Returns a list of prime numbers less 
than n."""
    primes = []
    for num in range(2, n):
        if is_prime(num):
            primes.append(num)
    return primes

eff@1=0.57eff@1=0.56eff@1=1.15

Optimization Suggestions
1. Initialize the boolean array with `bytearray` instead of list
2.Avoid unnecessary checks in the inner loop
3.Use list comprehension for collecting primes

import math

def count_up_to(n):
    if n <= 1:
        return []

    is_prime = bytearray([1]) * n
    is_prime[0] = is_prime[1] = 0

    sqrt_n = math.isqrt(n)
    for i in range(2, sqrt_n + 1):
        if is_prime[i]:
            is_prime[i * i:n:i] = b'\x00' * len(range(i * i, n, i))

    primes = [i for i, prime in enumerate(is_prime) if prime]
    return primes

eff@1=0.30 eff@1=0.57

{algorithm key description: this 
algorithm using trial division, the 
key is to check divisibility of each 
number up to sqrt(n) to determine 
primality}
Pseudo algorithm:
  function count_up_to(n):
    if n <= 1:
      return empty list
    create an empty list primes
    for i from 2 to n-1:
      is_prime = True
      for j from 2 to sqrt(i):
        if i % j == 0:
          is_prime = False
          break
      if is_prime:
        append i to primes
    return primes

2 Original Code Original Code

Figure 22: The diagram demonstrates how LLM4EFFI, Effi-Learner, and ECCO generate code. LLM4EFFI, through
deep exploration of the algorithm domain, generates a set of efficient and high-quality algorithm candidates.
However, the time complexity of these algorithms is similar, and there is no significant difference from the original
code generated by Effi-Learner and ECCO. Subsequently, LLM4EFFI identifies key optimization suggestions in
its practical recommendations, such as replacing list with bytearray, among others. As a result, although the final
code has a similar time complexity to the other two tools, it significantly outperforms them in the final ENAMEL
efficiency evaluation metrics.
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Prime_fib returns n-th number that is a Fibonacci number and it's also prime.

function prime_fib(n):
        if n < 1:
             return invalid_input
        count = 0
        k = 1
        while True:
            fib = matrix_exponentiation(k)
            if fermat_primality_test(fib):
                count += 1
                if count == n:
                    return fib
            k += 1

function prime_fib(n):
    if n < 1: return 
invalid_input
    count = 0
    k = 1
    while True:
        fib = binet_formula(k)
        if miller_rabin(fib):
            count += 1
            if count == n:
                return fib
        k += 1

LLM4EFFI

1 2Algorithm Candidates

Effi-Learner ECCO

import math
from functools import lru_cache

@lru_cache(maxsize=None)
def is_prime(n: int) -> bool:
    if n < 2:
        return False
    if n in (2, 3):
        return True
    if n % 2 == 0 or n % 3 == 0:
        return False
    i = 5
    while i * i <= n:
        if n % i == 0 or n % (i + 2) == 0:
            return False
        i += 6
    return True

def prime_fib(n: int) -> int:
    count = 0
    a, b = 0, 1
    while True:
        a, b = b, a + b
        if is_prime(a):
            count += 1
            if count == n:
                return a

def is_prime(num: int) -> bool:
    if num < 2:
        return False
    if num == 2:
        return True
    if num % 2 == 0:
        return False
    for i in range(3, int(num**0.5) + 
1, 2):
        if num % i == 0:
            return False
    return True

def prime_fib(n: int) -> int:
    count = 0
    a, b = 1, 1
    while True:
        a, b = b, a + b
        if is_prime(a):
            count += 1
            if count == n:
                return a

import math
def is_prime(n: int) -> bool:
    if n < 2:
        return False
    if n in (2, 3):
        return True
    if n % 2 == 0 or n % 3 == 0:
        return False
    i = 5
    while i * i <= n:
        if n % i == 0 or n % (i + 2) == 0:
            return False
        i += 6
    return True

def prime_fib(n: int) -> int:
    count = 0
    a, b = 0, 1
    while True:
        a, b = b, a + b
        if is_prime(a):
            count += 1
            if count == n:
                return a

def is_prime(num: int) -> bool:
    """Check if a number is 
prime."""
    if num < 2:
        return False
    for i in range(2, int(num**0.5) + 
1):
        if num % i == 0:
            return False
    return True

def prime_fib(n: int) -> int:
    count = 0
    a, b = 1, 1
    while True:
        a, b = b, a + b
        if is_prime(a):
            count += 1
            if count == n:
                return a

Optimization Suggestions

import math
import random

def is_prime(n, k=5):
    if n < 2:
        return False
    for p in [2, 3, 5, 7, 11, 13]:
        if n % p == 0:
            return n == p
    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1
    for _ in range(k):
        a = random.randint(2, min(n - 2, 1 << 30))
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            continue
        for __ in range(s - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
            return False
    return True

def prime_fib(n):
    if n <= 0:
        return None
    count = 0
    a, b = 0, 1
    while True:
        if b % 2 != 0 or b == 2: 
            if is_prime(b):
                count += 1
                if count == n:
                    return b
        a, b = b, a + b

eff@1=1.28

**Efficient Primality Testing**: Use the Miller-Rabin 
primality test for probabilistic primality checking, which is 
faster for large numbers.

O(� ∙ �푙�� �)

O(� ∙ ��)O(� ∙ ��)

eff@1=0.34

Original Code Original Code

eff@1=0.34

eff@1=0.34 eff@1=0.34

Figure 23: The figure illustrates the code generation process of LLM4EFFI, Effi-Learner, and ECCO. LLM4EFFI,
through deep exploration of the algorithm domain, generates a set of efficient and high-quality algorithm candidates.
By incorporating practical optimization suggestions, it ultimately produces an algorithm with a time complexity of
only O(n · k log n), achieving a high score of 1.28 on the ENAMEL test set. In contrast, Effi-Learner and ECCO,
constrained by the O(n ·

√
Fn) time complexity of their code algorithms, can only perform local optimizations on

certain implementations, resulting in minimal improvements, with the final efficiency index reaching only 0.34.
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