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Abstract

Large Language Models (LLMs), particularly
Code LLMs, have demonstrated impressive per-
formance in code generation. Current research
primarily focuses on the correctness of gen-
erated code, while efficiency remains less ex-
plored. Recent works have focused on modify-
ing the initial version of the code to improve
its efficiency. However, such refinements are
limited by the algorithmic design and overall
logic of the initial code, resulting in only in-
cremental improvements. In contrast, when hu-
man developers write high-quality code, they
typically begin by designing several potential
solutions at the logical level, evaluating vari-
ous algorithms and their complexities, and then
proceeding to implement and optimize the so-
lution. In this study, we introduce LLM4EFFI:
Large Language Model for Code Efficiency, a
novel framework that enables LLMs to gen-
erate code that balances both efficiency and
correctness. Specifically, LLM4EFFI divides
the efficiency optimization process into two
domains: algorithmic exploration in the logic
domain and implementation optimization in the
code domain. The correctness of the code is
then guaranteed through a synthetic test case
refinement process. This approach, which pri-
oritizes efficiency before ensuring correctness,
offers a new paradigm for efficient code genera-
tion. Experiments demonstrate that LLM4EFFI
consistently improves both efficiency and cor-
rectness, achieving new state-of-the-art perfor-
mance in code efficiency benchmarks across
various LLM backbones.

1 Introduction.

Large Language Models (LLMs), particularly those
specialized in code, are revolutionizing the field of
software engineering at an unprecedented pace. A
significant area of advancement lies in automated
code generation (Liu et al., 2023), where LLMs
such as GPT-40 (OpenAl, 2024), Gemini (Team
et al., 2023), the DeepSeek Series (DeepSeek-Al,
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Figure 1: Comparison of LLM4EFFI with existing meth-
ods. Existing methods generate code first, then optimize
it using strategy and execution profiles. In contrast,
LLMA4EFFI starts with the task, focusing on efficiency
through algorithm exploration and implementation, fol-
lowed by correctness refinement.

2024a), and the Qwen Series (Yang et al., 2024a,b)
demonstrating remarkable capabilities. These mod-
els have attracted considerable attention from both
academia and industry, consistently breaking new
ground on code completion and generation bench-
marks, including HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021), and LiveCodeBench
(Jain et al., 2024).

While these LL.Ms achieve impressive accuracy
in automatic code generation, practical software
engineering applications require more than just cor-
rect code—they also demand efficiency (Shi et al.,
2024; Niu et al., 2024). In real-world scenarios,
even correct code often requires manual optimiza-
tion by engineers before it can be used, which un-
dermines the goal of "out-of-the-box" automated
code generation. Therefore, generating code that is
both correct and efficient is essential, yet automat-
ing this process has not been widely explored.

Recent preliminary works (Huang et al., 2024b;
Waghjale et al., 2024) have explored feedback-
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Figure 2: The workflow of LLM4EFFI. Given a programming task, LLM4EFFI formalizes it into a code-oriented
description, generates optimal algorithms and pseudocode in logic domain, and then produces implementation
suggestions in code domain. LLM4EFFI synthesizes test cases and uses a verification-based adaptive framework to
evaluate candidate solutions. The final code is selected based on the highest pass rate of the "checked" test cases.

based approaches to optimize generated code and
enhance its efficiency. As illustrated in Figure
1, these methods typically involve profiling code
execution time and incorporating reflective feed-
back into the optimization process. However, the
"generate-then-optimize" paradigm is constrained
by the algorithmic design and overall structure of
the initial code, leading to only incremental im-
provements. We provide detailed examples in Fig-
ure 23 and 22 in Appendix B. In contrast, when
human developers write high-quality code, whether
in practical software development or algorithmic
teaching scenarios, they typically start by design-
ing multiple potential solutions at a logical level.
For example, when tackling a sorting problem, a
developer might consider Quicksort for its average-
case efficiency of O(N x* log N), while also fac-
toring in its worst-case time complexity of O(N?).
By carefully analyzing the problem’s constraints
and evaluating various algorithms along with their
complexities, they then proceed to implement the
solution, applying various coding techniques to op-
timize it. Finally, they debug and refine the code to
achieve a high-quality implementation.

Inspired by this thought, we propose LLM4EFFI,
as shown in Figure 2, a novel paradigm that en-
ables LLMs to generate both efficient and correct

code. Specifically, for a given programming task
described in natural language, LLM4EFFI first "for-
malizes" it into a code-oriented problem descrip-
tion. In other words, it converts the broad natural
language statement into a clear, concrete, and well-
defined coding problem, ensuring that the LLM can
accurately interpret it. Next, LLM4EFFI prompts
the LLM for logic-level reasoning and exploration,
considering various algorithmic approaches, pro-
viding corresponding complexity analyses, and
generating relevant pseudocode. Based on these
different algorithm designs and their associated
pseudocode, LLM4EFFI suggests code implemen-
tation strategies, followed by code generation and
optimization at the implementation level, as high-
quality code also requires careful consideration dur-
ing the practical implementation stage. To ensure
the functional correctness of the generated code
while targeting efficiency, LLM4EFFI introduces
a bidirectional verification-based adaptive testing
framework to check synthetic test cases. Finally,
the code solutions are executed on the "checked"
test cases and iterated upon for correctness. The
solution with highest pass rate across the "checked"
test cases is selected as the final generated code.
The LLM4EFFI has two distinctive uniqueness:
Uniqueness 1: Separation of Efficiency Optimiza-



tion into Logic and Code Domains. LLM4EFFI
divides efficiency optimization into two distinct
domains: the "logic domain" and the "code do-
main". In the logic domain, efficiency optimiza-
tion focuses on exploring the optimal algorithmic
approaches, while in the code domain, optimiza-
tion deals with the practical implementation details.
This separation effectively breaks down the chal-
lenge of optimizing code efficiency into manage-
able steps, making the overall efficiency optimiza-
tion process more systematic and targeted.

Uniqueness 2: The Order of Correctness and Ef-
ficiency. The order in which correctness and effi-
ciency are optimized plays a critical role. By prior-
itizing efficiency first, a wider range of algorithmic
solutions can be explored, leading to the discov-
ery of multiple efficient approaches. Correctness
is then incrementally ensured across these solu-
tions. This approach avoids prematurely constrain-
ing efficiency optimization by focusing too early
on correctness. Prioritizing efficiency first allows
for greater room for improvement and significantly
enhances the potential for efficiency gains.

We validate LLM4EFFI on three recently pro-
posed code efficiency benchmarks: EvalPerf (Liu
et al., 2024), ENAMEL (Qiu et al., 2024), and
Mercury (Du et al., 2024). Experimental results
show that LLM4EFFI consistently enhances both
code correctness and efficiency across various
LLM backbones, achieving state-of-the-art per-
formance in efficiency metrics. Specifically, us-
ing the DeepSeek-V3 backbone, LLM4EFFI im-
proves eff@1 by 9.27% on ENAMEL and boosts
DPS_norm by 6.63% on Mercury.

Overall, we summarize our contributions as fol-
lows, with corresponding code available at link':

* We propose LLM4EFFI, the first framework

that simultaneously optimizes both code effi-
ciency and correctness.

We introduce two key features: Separation of
Efficiency Optimization into Logic and Code
Domains and Order of Correctness and Effi-
ciency. We hope these unique features will
contribute to the advancement of the code ef-
ficiency community.

Extensive experiments and analysis on three
benchmarks across different LLM backbones
demonstrate the effectiveness and robustness
of LLM4EFFI in efficient code generation.

lhttps ://anonymous. 4open.science/r/
LLM4EFFI-04B2

2 Related Works
2.1 LLMs for Code Domain.

Large language models have been widely applied to
coding tasks and have shown strong performance
across various coding scenarios and evaluations.
Most existing research focuses on code generation,
with numerous techniques developed to enhance its
quality. Some methods aim to improve the quality
of synthetic code data (Wei et al., 2024; Luo et al.,
2024; Lei et al., 2024), enhance self-consistency
(Le et al., 2024; Huang et al., 2024a), or leverage
feedback from human or LLM annotations (Chen
et al., 2024; Wu et al., 2023; Tang et al., 2023).
Other approaches utilize multi-agent collaboration
frameworks to enhance code generation (Zhong
et al., 2024; Shinn et al., 2023; Islam et al., 2024;
Madaan et al., 2023; Li et al., 2024). However,
these methods primarily focus on the correctness of
the generated code, with relatively little emphasis
on the efficiency of the generated code.

2.2 Code Efficiency.

Until recently, the academic community has only
begun to pay significant attention to the efficiency
of generated code. Recently, several efficiency-
focused benchmarks (HUANG et al., 2024; Du
et al., 2024; Liu et al., 2024; Qiu et al., 2024) have
emerged, aiming to provide a more comprehen-
sive evaluation of LLMs’ ability to generate effi-
cient code. However, empirical studies and evalua-
tions of these benchmarks show that current LLMs
still face significant challenges in generating ef-
ficient code. To improve code efficiency, recent
research such as ECCO (Waghjale et al., 2024)
adopts self-refinement, prompting LLMs to con-
sider possible optimization strategies and refine
their outputs. Effi-Learner (Huang et al., 2024b)
proposes a self-optimization framework that uses
execution overhead profiles, feeding them back into
the LLM to revise the code and reduce time over-
head. However, these methods focus on enhancing
the efficiency of code after it has been generated,
rather than starting with the goal of generating both
efficient and correct code from the beginning.

3 Methodology

Problem Formulation. In the code efficiency
task, each sample is represented as a pair (Q, Tp,),
where () denotes the task description, and 7}, corre-
sponds to the hidden test cases. Our goal is to gen-
erate the corresponding code solution .S that passes
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the hidden test cases and achieves the highest effi-
ciency (i.e., the shortest execution time). Notably,
to better simulate real-world scenarios, we assume
there are no public test cases. 7}, is only used dur-
ing the evaluation stage and is not visible during
efficiency and correctness optimization stages.

3.1 Overview.

We present the framework of LLM4EFFI in Fig-
ure 2. For a given programming task described in
natural language, LLM4EFFI first "formalizes" it
into a code-oriented problem description (Section
3.2). Next, LLM4EFFI queries the LLM for logic-
domain reasoning and exploration, generating mul-
tiple optimal algorithmic solutions along with their
corresponding pseudocode (Section 3.3). Based on
these algorithm designs and their associated pseu-
docode, LLM4EFFI analyzes and generates code
implementation suggestions, followed by the gen-
eration and optimization of the corresponding code
at the implementation level (Section 3.4). To fur-
ther refine the solutions for correctness, LLM4EFFI
synthesizes a large number of test cases and utilizes
a bidirectional verification-based adaptive testing
framework to "check" these synthetic test cases.
The "checked" test cases are then used to evaluate
the candidate code solutions (Section 3.5). The so-
lution with highest pass rate across the "checked"
test cases is selected as the final generated code.

3.2 Task Formalization.

In the initial task formalization stage, LLM4EFFI
ensures that the task description is clear and un-
ambiguous, which is crucial for the success of
subsequent stages. As highlighted by Han et al.
(2024), errors in LLM-generated code often arise
from an insufficient or unclear understanding of
the task. Therefore, LLM4EFFI prompts the LLM
to comprehend the task from four key dimensions:
entry point function name, input/output conditions
and parameter types, edge cases, and expected
behavior. Based on these dimensions, the LLM
is further encouraged to engage in self-reflection to
confirm whether it has fully grasped all aspects of

the task, thus laying a solid foundation for the sub-

sequent stages. Formally, Q) — Q rormai check 0.

3.3 Algorithmic Exploration in Logic Domain.

For the formalized task defined in the first stage,
LLM4EFFI prompts the LLM to engage in algo-
rithmic reasoning at the logical level, rather than

immediately generating code. This approach mir-
rors that of human programmers, who first per-
form abstract and high-level reasoning before im-
plementation. The LLM is prompted to explore
multiple potential optimal algorithms, analyze their
corresponding complexities, and represent the en-
tire logical process with pseudocode. Formally,
Q formal — {Algo, Cplz, Pseudo}, where Algo
refers to the algorithm plan, Cplz refers to the
complexity analysis, and Pseudo refers to the cor-
responding pseudocode.

3.4 Implementation Optimization in Code
Domain.

Excellent code not only requires careful algorithm
design but also necessitates optimization at the
implementation level. Even when the same
algorithm is used, different implementation
approaches can lead to significant variations in
code efficiency (Shypula et al., 2024; Coignion
et al., 2024). When implementing code based on
the algorithm plan and corresponding pseudocode,
LLM4EFFI prompts the LLM to provide practical
suggestions derived from Algo and Pseudo,
such as replacing a manual binary exponen-
tiation implementation with Python’s built-in
pow function, among other optimizations. We
provide three detailed examples in the appendix to
illustrate this process. Subsequently, LLM4EFFI
generates the corresponding code based on the
Algo, Pseudo, and implementation suggestions,
while also checking for further optimization
opportunities. Formally, {Algo, Pseudo} —
{Suggs}, and {Algo,Pseudo,Suggs} —
{Code Candidates}.

3.5 Code Correctness.

To ensure the functional correctness of generated
code while targeting efficiency, LLM4EFFI intro-
duces a bidirectional verification-based adaptive
testing framework. The process works as follows:
First, LLM4EFFI automatically synthesizes a large
number of test cases based on the formalized task
description ) formai- These test cases are designed
to cover a wide range of edge cases, thoroughly test-
ing the robustness and reliability of the generated
code. However, since the synthesized test cases
may not be entirely correct, LLM4EFFI performs
bidirectional verification to validate them.

Forward Verification: If all candidate code imple-
mentations pass a specific test case, the test case
is marked as trusted. Otherwise, Reverse Review:



LLMs Methods EvalPerf Mercury ENAMEL
DPS_norm Pass@1 Beyond@1 Pass@1 eff@1 Pass@1
Instruct 80.92 85.59 76.97 94.14 50.44 85.21
Qwen2.5-Coder ECCO 82.16 63.56 73.29 89.06 41.89 71.83
-32B-Instruct Effi-Learner 82.45 77.11 77.13 91.41 50.12 81.69
LLM4EFFI (ours) 86.20 +5.28 87.30 +1.71 7896 +1.99 93.75-0.39 51.26 +0.82 86.62 +1.41
Instruct 79.29 88.14 72.50 86.72 49.78 83.80
Qwen2.5-72B ECCO 80.06 64.41 74.10 89.84 41.90 72.53
-Instruct Effi-Learner 79.90 81.36 77.10 91.02 47.42 76.76
LLM4EFFI (ours) 84.00 +4.71 88.98 +0.84 77.45 +4.95 90.63 +3.91 51.49 +1.71 87.32 +3.52
Instruct 80.04 85.59 69.59 82.81 48.26 80.28
GPT-40-mini ECCO 75.18 44.07 72.29 86.33 30.75 57.75
Effi-Learner 79.80 81.36 73.45 88.67 45.69 77.46
LLM4EFFI (ours) 83.78 +3.74 88.14 +2.55 7494 +5.35 89.45 +6.64 49.89 +1.63 80.99 +0.71
Instruct 79.59 86.70 73.14 87.50 47.63 80.99
GPTo4o ECCO 80.65 61.02 77.70 92.18 38.63 64.79
Effi-Learner 79.39 79.67 79.24 93.36 48.52 81.69
LLM4EFFI (ours) 86.39 +6.80 88.98 +2.28 77.81 +4.67 93.75 +6.25 55.26 +7.63 83.80 +2.81
Instruct 80.45 89.84 79.90 94.53 51.14 86.62
DeepSeek-V3 ECCO 81.08 61.84 63.26 74.61 45.84 75.35
Effi-Learner 79.00 88.14 78.83 92.58 52.22 83.80
LLM4EFFI (ours) 87.08 +6.63 90.67 +0.83 82.76 +2.86 96.09 +1.56 60.41 +9.27 89.44 +2.82

Table 1: Main Result. The results of LLM4EFFI, Instruct, ECCO, and Effi-Learner methods on the EvalPerf,
Mercury, and ENAMEL benchmarks are presented using the Qwen2.5-Coder-32B-Instruct, Qwen2.5-72B-Instruct,
GPT-40-mini, GPT-40, and DeepSeek-V3 LLM backbones. Correctness is evaluated using Pass@ 1, while efficiency
is measured using the respective efficiency metrics for each of the three benchmarks.

For test cases that cause failures in any candidate
code, LLM4EFFI performs a () f,mq1-based review.
It checks whether the test case aligns with the in-
tent of the formal task description and conducts
a semantic consistency check, which is similar to
Test-Driven Development (Erdogmus et al., 2010)
in software engineering. If the test case passes the
reverse review, it is retained; otherwise, it is dis-
carded. Finally, the retained test cases are marked
as "checked". These "checked" test cases are then
used to evaluate the generated code candidates,
with any failures triggering further refinements.
The code candidate that passes the most "checked"

test cases is ultimately selected as the final solution.
check

Formally, Q formar — {Synth. test cases} —
{Checked test cases} selget {final solution}.

4 Experiments

We evaluate LLM4EFFI on three code efficiency
evaluation benchmarks: EvalPerf (Liu et al., 2024),
Mercury (Du et al., 2024) and ENAMEL (Qiu
et al., 2024). EvalPerf focuses on performance-
challenging tasks and uses Differential Perfor-
mance Evaluation to assess efficiency across dif-
ferent LLMs and solutions. Its efficiency metric,
DPS_norm, is calculated by determining the cumu-

lative ratio of the reference solution that is imme-
diately slower than the new solution, normalized
by the total number of solutions. This ensures a
fair comparison of code efficiency based on ref-
erence solutions with varying performance levels.
Mercury introduces the Beyond metric to evalu-
ate both functional correctness and code efficiency.
The Beyond metric is calculated by normalizing the
runtime percentiles of LLM solution samples over
the runtime distribution for each task, ensuring con-
sistent runtime comparisons across different envi-
ronments and hardware configurations. ENAMEL
evaluates code efficiency using the eff@1 metric.
This efficiency score is determined by measuring
the worst execution time of the code sample across
test cases of varying difficulty levels. The score
is then adjusted using a weighted average across
these levels to account for hardware fluctuations.
The eff@1 metric ranges from O to 1, with higher
values indicating greater code efficiency. A value
exceeding 1 signifies that the generated code is
more efficient than the expert-level solution.

4.1 Compared Methods.

We evaluate the direct instruction of generating
correct and efficient code as the Instruct baseline.
We compare LLM4EFFI with two recent proposed



Models Methods EvalPerf Mercury ENAMEL
DPS_norm Pass@1 Beyond@1 Pass@1 eff@1 Pass@1
LLM4EFFI 86.20 87.30 78.96 93.75 51.26 86.62
Qwen2.5-Coder  Variant-1 77.21 -8.99 80.51-6.79  77.89-1.07 93.34-041 48.57-2.69 81.69-4.93
-32B-Instruct Variant-2 75.75 -10.45 81.36-594  75.86-3.10 92.19-1.56 45.68-5.58 83.10-3.52
Variant-3 81.19 -5.01 72.03-1527 72.56-6.40 85.16-8.59 47.48-3.78 77.46-9.16
LLM4EFFI 87.08 90.67 82.76 96.09 60.41 89.44
DeepSeek-V3 Variant-1 79.72 -7.36 84.75-592  81.58-1.18 94.53-1.56 53.23-7.18 88.03-141
Variant-2 77.07-10.01  83.05-7.62  80.10-2.66 94.53-1.56 53.62-6.79 88.73-0.71
Variant-3 82.62 -4.46 82.01-8.66  79.75-3.01 92.58-3.51 54.58-583 81.69-7.75

Table 2: Ablation Study Results. The results of LLM4EFFI, Variant-1, Variant-2, and Variant-3 are presented
using Qwen2.5-Coder-32B-Instruct and DeepSeek-V3 as LLM backbones on the EvalPerf, Mercury, and ENAMEL
benchmarks. We have highlighted the performance changes of Variants compared to LLM4EFFI with colors.

methods ECCO (Waghjale et al., 2024) and Effi-

Learner (Huang et al., 2024b) for code efficiency.

* ECCO: A self-refine with NL feedback approach
that prompts the LLM to generate code, then asks
if improvements in correctness or efficiency can
be made, and finally refines the solution based
on optimization suggestions.

 Effi-Learner: First generates code using instruc-
tion prompts same as Instruct baseline, then ex-
ecutes the code with test cases to collect perfor-
mance profiles, including runtime and memory
usage. These profiles are fed back into the LLM
along with the code, prompting the LLM to refine
the code for efficiency based on the profile. It is
worth noting that Effi-Learner relies on test case
oracles, and in this study, we use the visible test
cases from the task. In contrast, LLM4EFFI does
not rely on any test case oracles; all test cases are
synthetically generated by LLM4EFFI itself.

4.2 Experiment Setup.

To comprehensively evaluate LLM4EFFI, we se-
lected five different LLM backbones: two propri-
etary models, GPT-40 (OpenAl, 2024) and GPT-
40-mini, and three open-source models, including
DeepSeek-V3 (DeepSeek-Al, 2024b), Qwen2.5-
72B-Instruct (Yang et al., 2024b), and Qwen2.5-
Coder-32B-Instruct (Hui et al., 2024). During the
LLMA4EFFI process, we set the number of algorithm
plans to 5 and the number of synthetic test cases
to 20, followed by one iteration to refine the code
for correctness. All prompts used in LLM4EFFI are
detailed in Appendix A. To ensure consistency and
a fair comparison, all experiments were conducted
with the temperature set to 0, and each experiment
was repeated three times to compute an average,
thereby eliminating any potential disruptions.

4.3 Main Results.

We compare LLM4EFFI with the other methods on
the EvalPerf, Mercury, and ENAMEL benchmarks,
and present the results in Table 1. First, we observe
that direct instruction prompts yield good perfor-
mance, indicating that LLMs have a reasonable
understanding of correct and efficient code. Then,
through ECCO, we observe a slight improvement
in efficiency on EvalPerf and Mercury. However,
this improvement often comes at the cost of cor-
rectness. Particularly in more complex benchmarks
like ENAMEL, the approach results in a decline in
both efficiency and correctness. This suggests that
relying solely on code understanding to generate
optimization suggestions is insufficient. When op-
timization strategies are based purely on code-level
analysis, they often fail to align with the broader
logical requirements of the task. The mismatch
between the code domain and the logic strategy
domain makes such methods less effective.

Moreover, Effi-Learner shows some gains in ef-
ficiency and correctness on specific benchmarks,
such as when using GPT-40 on the Mercury bench-
mark. However, its performance varies signifi-
cantly across different LLM backbones and bench-
marks, often falling short of the direct Instruct
baseline. More importantly, Effi-Learner faces a
recurring issue: both efficiency and correctness suf-
fer simultaneously. This stems from its feedback
mechanism, which focuses solely on performance
metrics like execution time, neglecting the code’s
functionality and correctness. Additionally, the
lack of a comprehensive algorithmic strategy leads
to an over-prioritization of execution time, often
sacrificing code accuracy and resulting in a decline
in both efficiency and correctness.



Models Methods EvalPerf Mercury ENAMEL
DPS_norm Pass@1 Beyond@1 Pass@1 eff@1 Pass@1
Qwen2.5-Coder LLMA4EFFI 86.20 87.30 78.96 93.75 51.26 86.62
-32B-instruct w/o Uniqueness-1 ~ 80.84-5.36  79.66-7.64  76.75-2.21  94.14+0.39 50.95-0.31 80.98 -5.64
w/o Uniqueness-2 ~ 78.07 -8.13  70.34-16.96  72.83 -6.13 87.11-6.64  47.62-3.64 77.46-9.16
LLM4EFFI 87.08 90.67 82.76 96.09 60.41 89.44
DeepSeek-V3 w/o Uniqueness-1 8091 -6.17  85.59 -5.08 81.79 -0.97 95.31-0.78  54.70-5.71 85.92-3.52
w/o Uniqueness-2  80.42-6.66 79.66-11.01 62.90-19.86 74.61-21.48 53.92-6.49 84.50-4.94

Table 3: LLM4EFFI Uniqueness Study Results. The results of LLM4EFFI, w/o Uniqueness-1, and w/o Uniqueness-
2 are presented using Qwen2.5-Coder-32B-Instruct and DeepSeek-V3 as LLM backbones on the EvalPerf, Mercury,
and ENAMEL benchmarks. We have highlighted the performance changes compared to LLM4EFFI with colors.

In comparison, LLM4EFFI achieves a simultane-
ous improvement in both correctness and efficiency
through efficiency optimizations at the logical and
code implementation levels, followed by refine-
ment of correctness using "checked" test case feed-
back. The results demonstrate that LLM4EFFI de-
livers robust and consistent performance improve-
ments across various benchmarks and different
LLM backbones, with the gains highlighted in
color. For example, using DeepSeek-V3 as the
backbone on EvalPerf, LLM4EFFI improved the
efficiency metric DPS_norm by 6.63%, while on
ENAMEL, eff@1 increased by 9.27%, and Pass@1
improved by 2.82%.

4.4 Ablation Study.

LLM4EFFI incorporates several unique design
choices, such as separating efficiency optimization
into the logic domain and code implementation
level. To better understand the impact of each com-
ponent, we conduct the following ablation study:

* Variant-1: (Without Algorithmic Exploration
in the Logic Domain): In this variant, no algo-
rithmic exploration is performed for efficiency
optimization in the logic domain. Instead, the
LLM directly generates the same count efficient
code solution, followed by implementation-level
optimization (based on the formalized task and
the generated code solution). All other steps re-
main the same as in LLM4EFFI.

* Variant-2: (Without Implementation Optimiza-
tion in the Code Domain): This variant omits
the implementation optimization step in the code
domain, while all other processes are identical to
those in LLM4EFFIL.

¢ Variant-3: (Without Code Correctness Refine-
ment): In this variant, after generating the
efficiency-optimized code solutions, the LLM
independently selects the most efficient and cor-

rect code as the final output.

We conduct the ablation study using Qwen2.5-
Coder-32B-Instruct and DeepSeek-V3 as LLM
backbones, with the results presented in Table 2.
The results show that removing any component
significantly impacts both efficiency and correct-
ness. Specifically, omitting Algorithmic Explo-
ration in the Logic Domain (Variant-1) or Im-
plementation Optimization in the Code Domain
(Variant-2) leads to a marked decline in efficiency
metrics across all three benchmarks. Additionally,
removing Code Correctness Refinement (Variant-
3) results in a significant drop in Pass@1. These re-
sults align with our expectations, as both Algorith-
mic Exploration and Implementation Optimization
are designed for efficiency, while Code Correctness
Refinement ensures the final code retains functional
correctness after efficiency-driven steps.

S Deeper Analysis

5.1 LLM4EFFI Uniqueness Analysis.

As mentioned in the Introduction, LLM4EFFI has
two distinct features: Uniqueness 1: Separation
of Efficiency Optimization into Logic and Code
Domains, and Uniqueness 2: The Order of Cor-
rectness and Efficiency. To gain a deeper under-
standing of these unique advantages, we conducted
the following comparative experiments:

* w/o Uniqueness-1: Rather than separating effi-
ciency optimization into the logic and code do-
mains, we prompt the LLM to generate code that
is both efficient and correct. Then, based on
the formalized task and the generated code, the
LLM is queried to suggest any possible strate-
gies for optimizing efficiency. Subsequently, we
optimize the generated code according to these
strategies, with the following steps remaining the
same as in LLM4EFFI. It is important to note that



the difference between w/o Uniqueness-1 and
ECCO lies in the fact that ECCO provides cor-
rectness or efficiency strategies solely based on
the code, whereas w/o Uniqueness-1 generates
efficiency-focused strategies based on both the
formalized task and the generated code, followed
by refinement for correctness.

* w/o Uniqueness-2: We changed the priority se-
quence of correctness and efficiency. In this
approach, we first generate the code based on
the formalized task and refine it for correctness.
Then, we conduct algorithm exploration and im-
plement optimal methods based on the formal-
ized task and the refined code. Finally, we opti-
mize the code using the explored algorithms and
implementation suggestions.

The results of the uniqueness study are presented in

Table 3. As shown, in the absence of Uniqueness-

1, the performance of Qwen2.5-Coder-32B-Instruct

on Mercury showed a slight increase in Pass@1,

but in other cases, the performance declined, par-
ticularly in terms of DPS_norm on EvalPerf and
eff@1 on ENAMEL. This underscores the impor-
tance of separating efficiency optimization into the
logic and code domains. This separation effectively
breaks down the challenge of optimizing code effi-
ciency into manageable steps, making the overall
optimization process more focused and targeted.

On the other hand, in the absence of Uniqueness-

2, both efficiency and correctness saw significant

declines across all benchmarks and different LLM

backbones. The main reason for this is that op-

timizing correctness before efficiency limits the

LLM’s ability to explore efficient algorithms and

practical optimizations. In fact, this approach of-

ten backfires, resulting in a situation where code
correctness is sacrificed in the pursuit of efficiency.

These findings further validate the "efficiency-first,

correctness-later” strategy as a crucial approach for

generating both efficient and correct code.

5.2 Performance of Different Difficulty Levels.

To evaluate the performance of LLM4EFFI on
tasks of varying difficulty levels, we conducted
an analysis across three levels—Easy, Medium,
and Hard—using Mercury with DeepSeek-V3 as
the backbone. The results are shown in Figure
3. LLMA4EFFI consistently achieves the highest
Beyond@1 metrics, outperforming other methods
across tasks ranging from easy to difficult. This ro-
bust performance highlights the LLM4EFFI ’s effec-
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Figure 3: The Beyond@1 performance of LLM4EFFI

on tasks of varying difficulty levels in Mercury, with
DeepSeek-V3 as the backbone.

tiveness in tackling a broad spectrum of challenges.
Additionally, we observed a significant drop in per-
formance for ECCO on hard-level tasks. This de-
cline is mainly due to the difficulty of providing
valid optimization suggestions for complex code, a
challenge that remains substantial for LLMs.

5.3 Case Study.

To provide a more intuitive demonstration of
L1LM4EFFI, we conducted a case study, with the
process detailed in Appendix B. It can be observed
that methods like ECCO and Effi-Learner, which
generate code first and then optimize for efficiency,
are constrained by the algorithmic design and over-
all structure of the initial code, leading to only
incremental improvements. In contrast, LLM4EFFI
breaks free from these constraints, enabling it to
fully explore more efficient algorithms at a high
level based on the task, while also incorporating
practical level efficiency optimizations, thus achiev-
ing more effective efficiency optimization.

6 Conclusion

In this paper, we presented LLM4EFFI, a novel
framework designed to generate both efficient
and correct code. By separating efficiency op-
timization into the logic and code domains and
adopting an "efficiency-first, correctness-later" ap-
proach, LLM4EFFI enables the exploration of a
broader range of algorithmic solutions while main-
taining functional correctness. Experimental re-
sults demonstrate LLM4EFFI ’s robust performance,
with consistent improvements in both efficiency
and correctness across different LLM backbones.



Limitation

Although LLM4EFFI excels at generating both effi-
cient and correct code, it also has some limitations.
One major challenge is the trade-off between ef-
ficiency and maintainability. In some cases, the
generated efficient code may become more com-
plex and harder to read. Achieving the right bal-
ance between efficiency and maintainability is not
always straightforward, and in certain cases, highly
efficient code may sacrifice readability and ease of
future modifications. Future work will focus on
optimizing the LLM4EFFI to improve its scalabil-
ity and extend its applicability to more complex
software engineering tasks.
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A Appendix of Prompts.
A.1 Prompts of LLM4EFFI.

Task Formalization

System:

As a professional algorithm engineer, please analyze
the given algorithm problem according to the follow-
ing categories. Do not provide any example imple-
mentation:

* Entry Point Function Name
* Input/Output Conditions

* Edge Cases and Parameter Types (Int, String,
etc.)

* Expected Behavior
User:

The algorithm problem description is as follows:
<natural language description>

Figure 4: Task Formalization.

Task Formalization Check

System:

As an excellent algorithm engineer, please analyze
whether the explanation of the problem matches the
original requirements. If they are consistent, output
“Yes”. If they are not consistent, output “No” and
provide the reason, as shown below: {"Yes":"NULL"}
{"No":"The reason is"}

User:

<natural language description>

<task description>

Figure 5: Checking the Task Formalization Result.
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Synthesize Test Case Inputs

S

System:

As a tester, your task is to create comprehensive test
inputs for the function based on its definition and doc-
string. These inputs should focus on edge scenarios
to ensure the code’s robustness and reliability. Please
output all test cases in a single line, starting with in-
put.

User:

EXAMPLES:

Function:

from typing import *
def find_the_median(arr: List[int]) ->
float:

Given an unsorted array of
integers “arr”, find the
median of the array.

The median is the middle value in
an ordered list of numbers.

If the length of the array is
even, then the median is the
average of the two middle
numbers.

Test Inputs (OUTPUT format):
input: [1]

input: [-1, -2, -3, 4, 5]

input: [4, 4, 4]

input: [....]

input: [....]

END OF EXAMPLES.
Function:

<task description>

Figure 6: Synthesize Test Case Inputs.

Implementation Optimization in Code
Domain

.

System:

As a professional Python algorithm programming ex-
pert, please provide suggestions for improving code
efficiency based on the potential inefficiencies men-
tioned above. For example:

1. Using xxx instead of xxx can significantly improve
code efficiency.

Please provide at least 20 suggestions.

User:

<algorithm description>

Figure 7: Implementation Optimization in Code Do-

main.




System:

As a programmer, your task is to calculate all test out-
puts and write the test case statement corresponding
to the test input for the function, given its definition
and docstring. Write one test case as a single-line
assert statement.

User:

EXAMPLES:

Function:

from typing import List
def find_the_median(arr: List[int]) ->
float:

Given an unsorted array of
integers “arr”, find the
median of the array. The
median is the middle value in
an ordered list of numbers.

If the length of the array is
even, then the median is the
average of the two middle
numbers.

Test Input:

input: [1, 3, 2, 5]

Test Case:

assert find_the_median([1, 3, 2, 5]) == 2.5

END OF EXAMPLES.
FUNCTION:
<task description> <input case>

Figure 8: Complete Test Case Generation.
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System:

As a professional algorithm engineer, you can effec-
tively design multiple algorithms to solve the problem
with low time complexity and output them in pseudo
algorithm format. A pseudo algorithm is a nonlin-
ear, high-level programming language for algorithmic
logic. It combines natural language and programming
structures to express the steps and sums of algorithms.
The main purpose of process algorithms is to clearly
display the core ideas and logic of the algorithm with-
out relying on specific programming language syntax.
Please design 5 excellent algorithm solutions based
on the problem description provided. The time com-
plexity of the algorithm needs to be as small as pos-
sible, and try to output 5 algorithms in the form of a
pseudo-algorithm in the following format: PS: DO
NOT provide implementation examples!

“~algorithmi

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

{algorithm key description: this
algorithm using xxx, the key is to
make sure xxx}

{pseudo algorithm: ..}

User:
<task description>

Figure 9: Algorithmic Exploration in Logic Domain.



Code Candidates Generation

System:

As a professional algorithm engineer, please convert
the selected algorithm into corresponding code. En-
sure the code is complete and well-formatted. When
converting to a standardized format, be sure to follow
the guidelines specified in the “original question for-
mat”:

1. Use the same function name as given in the original
question format; do not rename it.

2. You may incorporate practical optimization details
drawn from the knowledge base.

The final output format should be as follows:

“python
{<code>

User:

<task description>

<algorithm description>

<efficiency optimization suggestions>

Figure 10: Code Candidates Generation.

Code Refinement for Correctness

System:

As a professional code programming algorithm expert,
your task is to correct the code and ensure that the
code is fixed without impacting its time complexity
or practical efficiency. Then I will provide you with
specific code and test cases.

Important Notes:

1. Do not alter the algorithm itself

2. Do not change the format, such as the function
name.

3. Please output in the specified format.

4. Ensure there are no syntax errors.

Please output in this format:

* T Tpython
{code}

User:

<task description>

<algorithm description>

<efficiency optimization suggestions>

Figure 11: Code Refinement for Correctness.
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Final Results Selection on Code Candi-
dates

System:

As a professional algorithm engineer, please help me
choose the most efficient code from the following
codes. It is worth mentioning that it is necessary
to consider the time complexity and practical level
comprehensively:

INPUT:

{ "1":"def ...()....",

"2": "def ...()..."

1
OUTPUT:

TS text
{key}

EXAMPLE:
INPUT:
{"1":"def ...0)....",
"2": "def ...()..."

}
OUTPUT:

T T text
1

User:
<corrected code candidate>

Figure 12: Final Results Selection on Code Candidates
(Optional).

Direct Code Generation Prompt for
Variant-1

System:

As a professional Python algorithm engineer, please
solve the algorithms problem and generate a solution
code. The final output format should be as follows:

“python
{code}

User:
<task description>

-

Figure 13: Direct Code Generation Prompt for Variant-
1.



Direct Code Generation Prompt for w/o Efficiency Optimization Prompt in Effi-
Uniqueness-1&w/o Uniqueness-2 Learner.

System:

As a professional Python algorithm engineer, please
solve the algorithm problem and generate 5 solution
codes. Please improve the efficiency of the code as
much as possible while ensuring the correctness of the
code. The final output format should be as follows:

* T Tpythoni
{code}
* T python2
{code}
* T Tpython3
{code}
** Tpython4
{code}
** “python5
{code}

User:
<task description>

Figure 14: Direct Code Generation Prompt for w/o
Uniqueness-1&w/o Uniqueness-2.

A.2 Prompts of Effi-Learner.

Original Code Generation Prompt in Effi-

Learner

Please complete Python code based on the task de-
scription.

# Task description:<Task description>

#Solution:

Figure 15: Original Code Generation Prompt in Effi-
Learner.
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Optimize the efficiency of the following Python code
based on the task, test case, and overhead analysis
provided. Ensure the optimized code can pass the
given test case.

Task Description:

<task description>

Test Case:

<test case>

Original Code:

T Tpython
<original code>

Overhead Analysis:

<profile of original code>

Optimization Rules:

- Encapsulate the optimized code within a Python
code block (i.e., python[ Your Code Here]).

- Do not include the test case within the code block.

- Focus solely on code optimization; test cases are
already provided.

- Ensure the provided test case passes with your
optimized solution.

Figure 16: Efficiency Optimization Prompt in Effi-
Learner.

A.3 Prompts of ECCO.

Original Code Generation Prompt in

ECCO

Write a python code which is efficient in terms of
runtime and memory usage for the following problem
description. Wrap the optimized code in a block of 3
backticks

Figure 17: Original Code Generation Prompt in ECCO.

Feedback Generation Prompt in ECCO

Give feedback in english for why the code solution

below is incorrect or inefficient and how the program
can be fixed based on the problem description.
<original code>

Figure 18: Feedback Generation Prompt in ECCO.



Refine the given incorrect or sub-optimal code
solution based on the feedback specified below. Wrap
the refined code in a block of 3 backticks
<optimization suggestion>

<original code>

Figure 19: Refine Prompt in ECCO.

A.4 Prompts of Instruct.

Please generate an efficient and correct code directly

Figure 20: Prompt for Instruction Baseline.
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B Case Study.

B.1 The Execution Details of Each Process of
LLM4EFFI.

As shown in Figure 21, LLM4EFFI firstly analyzes
the algorithm problem, "returns the n-th number
that is both a Fibonacci number and a prime num-
ber", providing a detailed explanation of key as-
pects, including the entry point, expected behavior,
and edge cases. Based on this analysis and the prob-
lem description, LLM4EFFI explores potential algo-
rithms and generates five efficient solutions, such
as using the Fibonacci sequence generation method
and Binet’s formula. Next, LLM4EFFI examines
the implementation details of these algorithms and
identifies the optimal practical approaches. For
example, it uses Python’s built-in pow() function
for efficient exponentiation and applies the Miller-
Rabin primality test (based on the Monte Carlo
method) to enhance the efficiency of prime number
detection for large numbers.

Then, LLM4EFFI combines the explored algo-
rithms and practical operations to generate five dis-
tinct code implementations. To validate the cor-
rectness of these codes, LLM4EFFI generates 20
test cases based on the algorithm description and
outputs them in the format "assert prime_fib(3) ==
5". Each code is then executed with these 20 test
cases, recording the number of passed test cases
(Pass¢ < 20) and the number of successful execu-
tions for each test case (Pass. < 5). Subsequently,
LLMA4EFFI checks the test cases that are not passed
by the code implementations, ensuring that correct
test cases are not excluded due to code errors and
preventing incorrect test cases from being misused
in subsequent iterations.

After filtering, LLM4EFFI obtains a new batch
of test cases and executes them again to gather new
results. For the failed test cases, an iterative feed-
back mechanism is applied to optimize the code.
Then, the code, enhanced with the iterative feed-
back, is executed once more, and the final passing
results are recorded. All codes are then ranked in
descending order based on their correctness, and
the most accurate code is selected.

This process ensures the identification of the
most optimal solution while maintaining both high
efficiency and accuracy in code implementation.

B.2 Comparison of Methods.

In Figures 22 and Figures 23, we compare the code
efficiency optimization processes of the three tools.
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Implement a function that takes an non-negative integer and returns an array of the first n.integers that are prime numbers and less than n

LLM4EFFI

Algorithm Candidates

Effi-Learner

‘Algorithm key description:
This algorithm uses the Sieve of Eratosthenes.
The key idea is to efficiently mark non-prime
numbers in a boolean array and collect primes
less than "n’.
Pseudo algorithm:
function count_up_to(n):
ifn<=1:
return empty list
create a boolean array ‘is_prime® of size
'n’, initialized to True
set ‘is_prime[0]' and ‘is_prime[1]' to False

{algorithm key description: this
algorithm using trial division, the
key is to check divisibility of each
number up to sqri(n) to determine
primality}
Pseudo algorithm:
function count_up_to(n):
ifn<=1:
return empty list
create an empty list primes
for i from 2 to n-1:
is_prime = True

def is_prime(num):

""Helper function to check if a number
is prime.""

if num <2:

return False

int(num ** 0.5) + 1):
o

return False
return True

def count_up_to(n):

ECCO

def count_up_to(n):
ifn<2:
return []

sieve = [True] * n
sieve[0] = sieve[1] = False

for current in range(2, int(n ** 0.5) + 1):
if sieve[current]:
for multiple in range(current * current, n, current):
sieve[multiple] = False

for i from 2 to sqri(n):

for j from 2 to sqri(i):
if is_prime[i]" s True:

""Returns a list of prime numbers less

primes = [num for num, is_prime in enumerate(sieve) if
i3 %3 = 0 than n.""" is_prime]
forj from 'i *i' to 'n’ with step 'i": is_prime = False primes =[] Teturn primes
set “is_prime[j]' to False break for num in range(2, n):
collect all indices ‘i’ where ‘is_prime[i]" s

ifis_prime:
append i to primes
return primes

ifis_prime(num):
primes.append(num)
return primes

True and i <n"
return the collected list

Optimi: Suggestions

1. Initialize the boolean array with "bytearray" instead of list
2.Avoid unnecessary checks in the inner loop
3.Use list comprehension for collecting primes

eff@1=0.30

$ ) 4 $

def count_up_to(n):

eff@1=0.57

import math

def count_up_to(n):

A "Returns a list of prime numbers less than n using the Sieve of ifn<2:
def count_up_to(n): Eratosthenes."" return []
ifn<=1: ifn<2:
return [] rotum []

is_prime = bytearray([1]) * n
is_prime[0] = is_prime[1]=0

sieve = [True] * n

sieve  [True] * sieve[0] = sieve[1] = False # 0 and 1 are not prime numbers

sieve[0] = sieve[1] = False

for current in range(2, int(n ** 0.5) + 1):
if sieve[current]:

sqrt_n = math.isqri(n)
for i in range(2, sqrt_n + 1):
ifis_prime[i]:
is_primefi * i:n:i] = b'x00' * len(range(i * i, n, 1))

for current_num in range(2, int(n ** 0.5) + 1):
if sieve[current_num]:
for multiple in range(current * current, n, current):

for multiple in range(current_num * current_num, n, current_num):
sieve[multiple] = False

sieve[multiple] = False

primes = [num for num, is_prime in enumerate(sieve) if is_prime]

primes = [i for i, prime in enumerate(is_prime) if prime] eturn primes

primes = [num for num, is_prime in enumerate(sieve) if is_prime]
return primes

return primes

eff@1=1.15

eff@1=0.56 eff@1=0.57

Figure 22: The diagram demonstrates how LLM4EFFI, Effi-Learner, and ECCO generate code. LLM4EFFI, through
deep exploration of the algorithm domain, generates a set of efficient and high-quality algorithm candidates.
However, the time complexity of these algorithms is similar, and there is no significant difference from the original
code generated by Effi-Learner and ECCO. Subsequently, LLM4EFFI identifies key optimization suggestions in
its practical recommendations, such as replacing list with bytearray, among others. As a result, although the final

code has a similar time complexity to the other two tools, it significantly outperforms them in the final ENAMEL
efficiency evaluation metrics.
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Prime_fib returns n-th number that is a Fibonacci number and it's also prime.

LLMA4EFFI

Algorithm Candidates

: function prime_fib(n):
i ifn<1:return
invalid_input
count =0
k=1
while True:
fib = binet_formula(k)
if miller_rabin(fib):

: function prime_fib(n):

ifn<lI:
return invalid_input

count = 0

k=1

while True:
fib = matrix_exponentiation(k)
if fermat_primality_test(fib):

count += 1 count += 1
if count == n: if count == n:
return fib return fib
k+=1 k+=1
Optimization Suggestions

i **Efficient Primality Testing**:

Use the Miller-Rabin

primality test for probabilistic primality checking, which is

: faster for large numbers.

import math
import random

defis_prime(n, k=5):
ifn<2:
return False

for _ in range(k):
X =pow(a, d, n)
continue

X =pow(x, 2, n)
ifx==n-1:
break
else:
return False
return True

def prime_fib(n):
ifn<=0:
return None
count = 0
a,b=0,1
while True:

if is_prime(b):
count += 1
if count == n:
return b
a,b=b,a+b

forpin[2,3,5,7, 11,
ifn%p==0:
return n==p
d=n-1
s=0
whiled % 2==0:
d/=2
s+=1

a = random.randint(2, min(n - 2, 1 << 30))
ifx==1orx==n-

for __ inrange(s - 1):

ifb%2!=00orb==2:

13]:

1:

Om-klogn)

eff@1=1.28

Effi-Learner
Original Code

def is_prime(num: int) -> bool:
"""Check if a number is
prime."""
if num < 2:
return False
for i in range(2, int(num**0.5) +
1):
ifnum % i==0:
return False
return True

def prime_fib(n: int) -> int:
count = 0
a,b=1,1
while True:
a,b=b,a+b
if is_prime(a):
count += 1
if count ==n:
return a

eff@1=0.34

def is_prime(num: int) -> bool:
if num < 2:
return False
if num ==2:
return True
if num % 2 == 0:
return False
1,2):
if num % i==0:
return False
return True

def prime_fib(n: int) -> int:
count = 0
a,b=1,1
while True:
a,b=b,a+b
if is_prime(a):
count += 1
if count ==n:
return a

om«vF,)

eff@1=0.34

ECCO

def is_prime(n: int) -> bool:
ifn<2:
return False
ifnin (2, 3):
return True
ifn%2==00rn%3==0:
return False
i=5
while i *i<=n:
ifn%i=0o0rn%(i+2)==0:
return False
i+t=6
return True

def prime_fib(n: int) -> int:
count =0
a,b=0,1
while True:
a,b=b,a+b
if is_prime(a):
count += |
if count == n:
return a

eff@1=0.34

import math
from functools import Iru_cache

@]Iru_cache(maxsize=None)
defis_prime(n: int) -> bool:
ifn<2:
return False
ifnin (2, 3):
return True
ifn%2==00rn%3==0:
return False
i=5
while i *i<=n:
ifn%i==0o0rn%(i+2)==0:
return False
it=6
return True

def prime_fib(n: int) -> int:
count = 0
a,b=0,1
while True:
a,b=b,a+b
if is_prime(a):
count += 1
if count == n:
return a

eff@1=0.34

Figure 23: The figure illustrates the code generation process of LLM4EFFI, Effi-Learner, and ECCO. LLM4EFFI,
through deep exploration of the algorithm domain, generates a set of efficient and high-quality algorithm candidates.
By incorporating practical optimization suggestions, it ultimately produces an algorithm with a time complexity of
only O(n - klogn), achieving a high score of 1.28 on the ENAMEL test set. In contrast, Effi-Learner and ECCO,
constrained by the O(n - /F,,) time complexity of their code algorithms, can only perform local optimizations on
certain implementations, resulting in minimal improvements, with the final efficiency index reaching only 0.34.
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